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Abstract

We construct for each tidy symmetric multicategory Q a cartesian monad (EQ; TQ), and ex-
tend this assignation to a functor. We exhibit a relationship between the slice construction on
symmetric multicategories, and the ‘free operad’ monad construction on suitable monads. We
use this to give an explicit description of the relationship between Baez–Dolan and Leinster
opetopes.
c© 2003 Elsevier B.V. All rights reserved.
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0. Introduction

The present paper follows from [4] and we refer the reader to that paper for intro-
ductory and motivating remarks, and de>nitions concerning the Baez–Dolan theory.

In this paper we address the de>nition of weak n-category given by Tom Leinster in
[10]. This approach is based on (E; T )-multicategories; these structures were de>ned
by Burroni [2] and have also been treated by Hermida [5].

The role that these multicategories play is not explicitly analogous to that of op-
erads and multicategories in the opetopic and multitopic versions respectively, so the
comparison is more subtle than in [4]. In fact, rather than comparing the role of sym-
metric multicategories with that of (E; T )-multicategories, we compare it with the role
of cartesian monads. This is the subject of Section 1.2.
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To study this relationship, we can restrict our attention to tidy symmetric multicat-
egories. In Section 1.2 we construct a functor

� :TidySymMulticat→ CartMonad

where CartMonad is the category of cartesian monads and cartesian monad opfunctors.
Given a tidy symmetric multicategory Q we construct a cartesian monad (EQ; TQ) which
acts on sets of ‘labelled Q-objects’ to give sets of ‘source-labelled Q-arrows’.

The idea is that, for an (E; T )-multicategory, much information about an arrow is
given by its domain, that is, by the action of T ; in the Baez–Dolan setting the domain
of an arrow is just a list of objects, and the information is captured elsewhere. So, the
functor part of TQ is constructed from the collection of arrows itself, the unit from the
identities, and multiplication from the reduction laws of Q.

In Section 2 we examine the construction of opetopes. First we examine the process
of constructing k-cells from (k−1)-cells. In [1] Baez and Dolan de>ne the ‘slicing’ pro-
cess for this purpose. Leinster does de>ne a slicing process on (E; T )-multicategories,
but since we are considering a comparison between symmetric multicategories and
monads, we seek an analogous process de>ned on these monads, rather than on (E; T )-
multicategories. That is, given a suitable monad (E; T ), the monad (E; T )′ = (E′; T ′)
is de>ned to be the ‘free (E; T )-operad monad’ [10]. We show that

�(Q+) ∼= �(Q)′:

In this sense, the processes are analogous.
Finally, we apply these results to the construction of opetopes. Having established

a relationship between the underlying theories, it is straightforward to compare these
constructions.

Leinster constructs ‘opetopes’ which are not a priori the same, but have an analo-
gous role, based on a series (Set=Sn; Tn) of cartesian monads. We show that, for each
n¿ 0

�(I n+) ∼= (Set=Sn; Tn)

and deduce that

o(I n+) � Sn

for each n¿ 0, where o denotes the object-category. Informally, we see that Baez–
Dolan opetopes and Leinster opetopes are the same up to isomorphism.

Throughout this paper we repeatedly >nd that the details of proofs are >ddly but
uninteresting. So we include some informal comments about how the constructions may
be interpreted, as a gesture towards demonstrating that the notions are in fact naturally
arising. The aim is to shed some light on the relationship between the various structures
involved, a relationship which has previously remained unclear.
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1. The theory of multicategories

In this section we examine the underlying theories involved, and we construct a way
of relating these theories to one another; this relationship provides subsequent equiv-
alences between the de>nitions. We adopt a concrete approach here; certain aspects
of the de>nitions suggest a more abstract approach but this will require further work
beyond the scope of this work.

1.1. (E; T )-multicategories

In [10] opetopes are constructed using (E; T )-multicategories. These are de>ned by
Burroni in [2] as ‘T -categories’.

De�nition 1.1. Let T be a cartesian monad on a cartesian category E. An (E; T )-
multicategory is given by an ‘objects-object’ C0 and an ‘arrows-object’ C1, with a
diagram

TC0
d←−− C1

c−−→ C0

in E together with maps C0
ids−−→C1 and C1 ◦ C1

comp−−→C1 satisfying associative and
identity laws. (See [10] for full details.)

We write CartMonad for the category of cartesian monads and cartesian monad
opfunctors (see [11,10] for de>nitions).

1.2. Relationship between symmetric multicategories and cartesian monads

We begin the comparison by constructing a functor

� :TidySymMulticat→ CartMonad:

This is enough since we have seen [4] that all the symmetric multicategories involved
in the construction of opetopes are tidy.

Given any tidy symmetric multicategory Q, we construct a cartesian monad �(Q) =
(EQ; TQ), say.

Write o(Q)=C. Q is tidy, so C � S, say, where S is a discrete category. For various
of the constructions which follow, we assume that we have chosen a speci>c functor
S ∼−−→C. However, when isomorphism classes are taken subsequently, we observe that
the construction in question does not depend on the choice of this functor.

Put EQ = Set=S and observe immediately that this is cartesian. (This is suHcient
here, though of course Set/S has much more structure than this.)

Informally, an element (X; f) = (X
f−−→ S) of Set=S may be thought of as a system

for labelling Q-objects with ‘compatible’ elements of X ; each ‘label’ is compatible with
an isomorphism class of Q-objects. Then the action of TQ assigns compatible labels
to the source elements of Q-arrows in every way possible; the target is not aIected.
The resulting set of ‘source-labelled Q-arrows’ is itself made into a set of labels by
regarding each arrow as a ‘label’ for its target.
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We now give the formal de>nition of the functor TQ :EQ → EQ. For the action on
object-categories, consider (X; f)=(X

f−−→ S)∈Set=S. We have the following compos-
ite functor

elt Q s−−→ FCop ∼−−→ FSop

where F denotes the free symmetric strict monoidal category monad on Cat, and s and
t the source and target functions, respectively. Consider the pullback elt Q×FSopFX op.
Since Q is tidy, elt Q is equivalent to a discrete category, so this pullback is equivalent
to a discrete category X ′, say. Put TQ(X; f) = (X ′; f′) where f′ is the composite

X ′ ∼−−→ elt Q ×FSop FX op → elt Q t−−→ C ∼−−→ S:

We now de>ne the action of TQ on morphisms. A morphism h : (X; f)→ (Y; g) in
Set=S induces a functor elt Q×FSopFX op → elt Q×FSopFY op which gives a morphism
h′ :X ′ → Y ′; by construction this is in fact a morphism in Set=S. We de>ne TQ on
morphisms by TQ(h) = h′. This is clearly functorial; we now show that it inherits a
cartesian monad structure from the identities and composition of Q. For convenience
we write EQ = E and TQ = T .

• unit
Using the above notation, we de>ne the unit by components

�(X;f) : (X; f)→ (X ′; f′):

Given (X; f)∈Set=S, we have a functor X → elt Q given by the composite

X
f−−→ S ∼−−→ C 1−−−→ elt Q:

We also have a functor X →FX op given by the unit of the monad F. These induce
a functor

X → elt Q ×FSop FX op

and we de>ne the component �(X;f) to be the composite

X → elt Q ×FSop FX op ∼−−→ X ′:

Explicitly, �(X;f) acts as follows. We have �(x;f)(x) = [(1c; x)], the isomorphism class
of (1c; x)∈ elt Q ×FSop FX op. So (1c; x) is an “identity labelled by x”, where c∈C is
any object in the isomorphism class fx.

It is straightforward to check that this de>nes a cartesian natural transformation as
required.

• multiplication

We de>ne multiplication by components �(X;f) : (X ′′; f′′)→ (X ′; f′).
Now by de>nition

X ′ � elt Q ×FSop FX op = A; say

and

X ′′ � elt Q ×FSop FX ′op = B; say:
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We use the universal property of the pullback A to induce a morphism B → A, and
hence X ′′ → X ′; we do this via the morphisms

elt Q ×FX ′op p2−−→ FX ′op Fp2−−→ FFX op �−−→ FX op;

where p1 and p2 denote the >rst and second projections respectively, and

elt Q ×FX ′op (1;Fp1)−−−→ elt Q ×F(elt Q)op → elt Q;

where the second morphism is composition in Q.
Informally, (X; f) is a system for labelling Q-objects, and T (X; f) = (X ′; f′) gives

source-labelled Q-arrows. A typical element of X ′ may be thought of as the isomor-
phism class of

where �∈ elt Q and s(�) ∼= (fx1; : : : ; fxn). Then we can draw � as (the isomorphism
class of)

where �; �1; : : : ; �m ∈ elt Q and s(�) ∼= (t(�1); : : : t(�m)). So, via the relevant object-
isomorphisms, we may compose the underlying Q-arrows to give �′, say, which is
de>ned up to isomorphism. We then concatenate the X -labels (via the multiplication



224 E. Cheng / Journal of Pure and Applied Algebra 186 (2004) 219–231

for F) to give

Finally, we take the isomorphism class of this to give �(X;f)(�)∈X ′, and f′′(�(X;f)(�))
= [t(�′)] = [t(�)]∈ S.

It follows that � de>ned in this way is a cartesian natural transformation.
Finally, it is easy to check that T preserves pullbacks, so TQ =(T; �; �) is a cartesian

monad on EQ = E. So we may de>ne �(Q) = (EQ; TQ); we de>ne the action of � on
morphisms in the obvious way.

We observe immediately that the construction of (EQ; TQ) uses only the isomorphism
classes of objects and arrows of Q. So

(EQ1 ; TQ1 ) ∼= (EQ2 ; TQ2 )⇔ Q1 � Q2:

Recall [4] that we expect that a symmetric multicategory Q may be given as a monad in
a certain bicategory, in which case the identities are given by the unit, and composition
laws by multiplication. In this abstract framework there should be a morphism from
the underlying bicategory to the 2-category Cat, taking the monad Q to the monad TQ,
but this is somewhat beyond the scope of this work.

2. The theory of opetopes

In this section we give the construction of Leinster opetopes, and show in what
sense this is equivalent to the construction of opetopes given in [4]. That is, we show
that the respective categories of k-opetopes are equivalent.

We >rst discuss the process by which (k+1)-cells are constructed from k-cells. Recall
that, in [1], the ‘slice’ construction is used, giving for any symmetric multicategory Q
the slice multicategory Q+.

2.1. Slicing a (E; T )-multicategory

In [10] the ‘free (E; T )-operad’ construction is used to construct (k + 1)-cells from
k-cells; this gives, for any suitable monad (E; T ), the ‘free (E; T )-operad’ monad
(E; T )′ = (E′; T ′). In order to compare this construction with the Baez–Dolan slice,
we will examine the monad �(Q)′. However, we must >rst check that �(Q)′ can actu-
ally be constructed, that is, that �(Q) = (EQ; TQ) is a suitable monad.
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Recall [10] that a cartesian monad (E; T ) is suitable if it satis>es:

1. E has disjoint >nite coproducts which are stable under pullback
2. E has colimits of nested sequences; these commute with pullbacks and have monic

coprojections
3. T preserves colimits of nested sequences.

Here a nested sequence is a string of composable monics.
It is straightforward to check that if Q is a tidy symmetric multicategory, (EQ; TQ)

is a suitable monad.

2.2. Comparison of slice

We are now ready to compare the slice constructions and make precise the sense in
which they correspond to one another. We show that the functor

� :TidySymMulticat→ CartMonad:

‘commutes’ with slicing, up to isomorphism, in the following sense.

Proposition 2.1. Let Q be a tidy symmetric multicategory. Then

�(Q)′ ∼= �(Q+)

that is

(E′
Q; T ′

Q) ∼= (EQ+ ; TQ+)

in the category CartMonad.

Note that Q+ is tidy since Q is tidy (see [4]), so we can indeed form the monad
�(Q+).

This proof is somewhat technical and we defer it to the Appendix. Informally, the
idea is as follows. TQ+ takes a set A of ‘labels for arrows of Q’ and returns the set
of con>gurations for composing labelled arrows according to their underlying arrows.
On the other hand, T ′

Q gives the set of all formal composites of arrows labelled in A
according to the structure of TQ, which is precisely the set of con>gurations as above.

Recall that

�(Q1) ∼= �(Q2)⇔ Q1 � Q2:

We immediately deduce the following result, comparing all three processes of slicing
(see [4]).

Corollary 2.2. Let M be a generalised multicategory. Then

��(M+) ∼= �(�(M)+) ∼= ��(M)′:
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2.3. Opetopes

We are now ready to compare the diIerent constructions of opetopes, applying the
results we have already established.

2.4. Leinster opetopes

In [10], k-opetopes are de>ned by a sequence (Set=Sk ; Tk) of cartesian monads given
by iterating the slice as follows.

For any cartesian monad (E; T ) write

(E; T )k′
=

{
(E; T ); k = 0;

((E; T )(k−1)′)′; k¿ 1:

Put (E0; T0)= (Set; id) and for k¿ 1 put (Ek ; Tk)= (Set; id)k′
. It follows that for each

k; (Ek ; Tk) is of the form (Set=Sk ; Tk) where S0 = 1 and Sk+1 is given by


Sk+1

↓
Sk


 = Tk




Sk

↓
Sk

1


 :

Then Leinster k-opetopes are de>ned to be the members of Sk ; as above, we will
regard Sk as a discrete category.

2.5. Comparisons of opetopes

We now compare opetopes and Leinster opetopes.

Proposition 2.3. For each k¿ 0

�(I k+) ∼= (Set; id)k′
= (Set=Sk ; Tk):

Proof. By induction, using Proposition 2.1.

Then on objects, the above equivalence gives the following result.

Corollary 2.4. For each k¿ 0

Ck � Sk :

Recall [4] that we also have for each k a (discrete) category Pk of ‘multitopes’, the
analogous notion as de>ned in [6] (serialised in [7–9]); in [4] we prove that, for each
k¿ 0, Pk � Ck . So we immediately have the following result, comparing all three
theories:
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Corollary 2.5. For each k¿ 0

Pk � Ck � Sk :

This result shows that multitopes, opetopes, and Leinster opetopes are the same, up
to isomorphism.

We eventually aim to de>ne a category Opetope of opetopes of all dimensions,
whose morphisms are ‘face maps’ of opetopes; this is the subject of [3].
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Appendix A. Proof of Proposition 2.1

We now give the proof of Proposition 2.1 deferred from Section 2.2.
First we show that E′

Q
∼= EQ+ . Now EQ+ =Set=SQ+ where SQ+ ∼= o(Q+)=elt Q, and

E′
Q = Set=S ′

Q where


S ′
Q

↓
SQ


 = TQ




SQ

↓
SQ

1


 :

So by de>nition S ′
Q is equivalent to a pullback of elt Q over an identity morphism.

Thus S ′
Q � elt Q, giving S ′

Q
∼= SQ+ . So we have E′

Q
∼= EQ+ . We write elements of both

these categories as sets over S ′, since confusion is unlikely.
Consider (A; f)=(A

f−−→ S ′)∈E′
Q
∼= EQ+ . Write T ′

Q(A; f)=(A1; f1) and T+
Q (A; f)=

(A2; f2). We show (A1; f1) ∼= (A2; f2).
Now A2 � elt Q+ ×FS′op FAop, and f2 is given by the composite

A2 � elt Q+ ×FS′op FAop → elt Q+ tQ+−−→ elt Q ∼−−→ S ′

where tQ+ is the target map of Q+.
Informally, since we are here considering S ′ � o(Q+)=elt (Q), the object (A

f−−→ S ′)
may be thought of as a set of labels for arrows of Q. Then A2 is the set of all possible
source-labelled arrows of Q+.

Since an arrow of Q+ is given by a tree with nodes corresponding to arrows of Q,
an element of A2 may be thought of as a con>guration for composing labelled arrows
of Q via object-isomorphisms, where composition is according to the underlying arrows
only. f2 acts by composing the underlying arrows of Q and then taking isomorphism
classes.
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We now turn our attention to the action of T ′
Q. (For full details of the free multi-

category construction we refer the reader to [10].) For convenience we write TQ = T
and SQ = S, so we need to form

(T;Set=S)′ = (T ′; S ′):

To construct A1, we form the free multicategory on the following graph:

Recall we have T




S

↓
S


=




S ′

↓
S


 and the map A→ S is the composite A

f−−→ S ′ → S.

The graph underlying the free operad is then

The construction gives a sequence of graphs

where C(0) = S; d0 = �T and


C(k+1)

↓
S


 =




S

↓ 1
S


 +




A

↓
S


 ◦




C(k)

↓
S


 :
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Here ◦ is composition in the bicategory of spans, and dk+1 is given by the composite


A

↓
S


 ◦




C(k)

↓
S


→ T




C(k)

↓
S


 Tdk−−→ TT




S

↓
S


 �T−−→ T




S

↓
S


 :

This construction gives a nested sequence (C(k); f(k))∈Set=S with (C(0); f(0)) = (S; 1)
and

C(k+1) = S
∐

T (C(k))×S′ A

where (by abuse of notation) we write

T




C(k)

↓
S


 =




T (C(k))

↓
S


 :

f(k+1) is given by 1
∐

(T (C(k))×s′ A
dk+1−−→ S ′ → S) and




A1

↓
S


 is then the colimit of

this nested sequence.
Informally, the sets C(k) may be thought of as formal composites of ‘depth’ at

most k. The formula for C(k) says that a composite is either null or is a generating
arrow composed with other composites. We aim to show that these formal composites
correspond to the formal composites given by the source-labelled arrows of Q+.

We show that A1
∼= A2 � elt Q+ ×FS′op FAop as follows. For each k we exhibit an

embedding

gk : C(k) ,→ A2

which makes the following diagram commute:

Then the colimit induces the map required.
We proceed by induction. De>ne g0 : S → elt Q+×FS′opFAop as follows. Let [x]∈ S

denote the isomorphism class of x∈ o(Q). Given any [x]∈ S, we have a nullary arrow
�x ∈Q+(·; 1x). Recall that an arrow of Q+ may be regarded as a tree with nodes
corresponding to the source elements (which are themselves arrows of Q) and edges
labelled by object-morphisms of Q. Then �x ∈Q+(·; 1x) is given by a tree with no
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nodes, that is, a single edge labelled by 1x. The source of � is empty, so we can de>ne
g0 by

g0([x]) = [(�x; ·)];
where (�x; ·)∈ elt Q+ ×FS′op FAop, and observe immediately that

x ∼= x′ ∈ o(Q)⇔ 1x
∼= 1x′ ∈ elt Q:

Furthermore we have

d0[x] = �T [x] = [1x] = f2g0[x]

as required.
For the induction step, consider y∈C(k+1). If y∈ S then put gk+1(y)=g0(y). Other-

wise, we have y=(�; a)∈T (C(k))×S′ A. Here the map T (C(k))→ S ′ is given by Tf(k).
Recall that by de>nition, T (C(k)) is equivalent to the pullback elt Q ×FSop F(C(k))op

so an element of T (C(k)) is an isomorphism class of arrows of Q source-labelled by
compatible elements of C(k). We write the pullback as C(k). Then Tf(k) is the map
given by the composite

T (C(k)) ∼−−→ C(k) → elt Q ∼−−→ S ′:

Informally, Tf(k) removes the labels, leaving only the (isomorphism class of the)
underlying arrow of Q.

Now we in fact exhibit a full and faithful functor

C(k) ×S′ A→ elt Q+ ×FS′op FAop:

Let ((&; b); a)∈C(k) ×S′ A. So &∈ elt Q; b = b1; : : : ; bn ∈F(C(k))op and a∈A such that
[sQ(&)] = (f(k)(b1); : : : ; f(k)(bn)) and f(a) = [&].

Informally, we have an arrow & of Q, source-labelled by the bi ∈C(k), and a com-
patible label a∈A. We seek a formal composite of labelled arrows, of depth up to
k + 1. By induction, we already have for each element of C(k) a formal composite of
labelled arrows, of depth up to k. So we aim to form a formal composite of these
together with & labelled by a.

By induction we have for each 16 i6 n

gk(bi) = ((i; pi)∈ elt Q+ ×FS′op FAop; say:

The commuting condition implies that for each i; [sQ(&)i] = [tQtQ+((i)]. This gives us
a way of constructing a new element of elt Q+ from the data given, since each (i can
be composed with & at the ith place, via the appropriate object-isomorphism. That is,
we form a tree by induction, as shown in the following diagram:
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where )i is the tree for (i. Each (i has its nodes (that is, source elements) labelled
by elements of A; to complete the de>nition it remains only to ‘label’ the node corre-
sponding to &. But we have f(a) = [&], that is, a is a compatible label for &. So we
let a be the label for &.

So we have de>ned a full and faithful functor as intended, inducing, on isomorphism
classes, an embedding gk+1 :C(k) ,→ A2 as required. It is straightforward to check the
commuting condition; informally, dk acts by ignoring the labels and composing the
underlying arrows of Q, as does �. Since � is induced from composition in Q, and
tQ+ is constructed from composition of a formal composite of arrows of Q, we have
f2 ◦ gk+1 = dk+1 as required.

So we have for each k¿ 0 an embedding gk , inducing a map A1 → A2 in Set=S ′. It
is straightforward to check that this is surjective and hence an isomorphism; it is also
easy to check the axioms for a monad opfunctor. So we have

(EQ+ ; TQ+) ∼= (E′
Q; T ′

Q)

as required.
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