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the figure (panel A) describes the minimum requirements al. (2001 [this issue of Neuron]) addresses this issue by
modeling how early visual neurons translate stimuli intofor the DS response, which are a spatial asymmetry

and a time delay between the excitatory and inhibitory spikes.
To investigate neural coding, many researchers havesynapses. Yoshida et al. (2001) demonstrate that the

starburst cell may contribute to both of these minimum used computational tools adopted from linear systems
analysis (Marmarelis and Marmarelis, 1978). One of therequirements. However, one can predict that we have

to understand much more of the molecular and synaptic most common approaches is to treat sensory neurons
as filters whose outputs correspond to specific stimulusdetails of the starburst cell circuitry before directional

selectivity, this classical problem of computational neu- attributes in a scene. For example, neurons in primary
visual cortex are often modeled as filters tuned to spe-roscience, is finally understood.
cific orientations and spatial frequencies (DeValois and
DeValois, 1990). Often such models consider only a fewHeinz Wässle

Max-Planck-Institut für Hirnforschung critical stimulus attributes and ignore others. For com-
putational simplicity, they often assume that stimuli areDeutschordenstrasse 46

D-60528 Frankfurt/M. fixed and unchanging. However, even the simplest static
visual stimulus can elicit a dynamic series of actionGermany
potentials from visual neurons, and these responses can

Selected Reading develop and persist over time. The simplest filter models
fail to account for these complex temporal response
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dynamics.

Barlow, H.B., and Levick, W.R. (1965). J. Physiol. (Lond.) 178,
Recent efforts have focused more closely on modeling477–504.

responses to time-varying visual stimuli. One simpleBorg-Graham, L. (2001). Nat. Neurosci. 4, 176–183.
coding assumption that might reasonably account for

Brandstätter, J.H., Greferath, U., Euler, T., and Wässle, H. (1995).
the data is that neurons transmit information about time-Vis. Neurosci. 12, 345–358.
varying stimuli by means of a temporally modulated rateFamiglietti, E.V. (1991). J. Comp. Neurol. 309, 40–70.
code (for discussion of coding schemes, see Rieke et al.He, S., and Masland, R.H. (1997). Nature 389, 378–382.
[1997]). According to this view, information is encoded in

Koulen, P., Malitschek, B., Kuhn, R., Wässle, H., and Brandstätter,
the instantaneous firing rate, and downstream neuronsJ.H. (1996). Eur. J. Neurosci. 8, 2177–2187.
must estimate the instantaneous rate to decode theO’Malley, D.M., Sandell, J.H., and Masland, R.H. (1992). J. Neurosci.
spike train. This process cannot be modeled in terms of12, 1394–1408.
a static filtering operation but requires a spatiotemporalTaylor, W.R., He, S., Levick, W.R., and Vaney, D.I. (2000). Science
filter sensitive to time-varying signals (Bialek et al., 1991;289, 2347–2350.
Theunissen et al., 2001; Vinje and Gallant, 1998).Vaney, D.I. (1991). Progr. Ret. Res. 9, 1–28.

While spatiotemporal filtering models have clear ad-Wässle, H., and Boycott, B.B. (1991). Physiol. Rev. 71, 447–480.
vantages over static filters, they also have limitations.Yoshida, K., Watanabe, D., Ishikane, H., Tachibana, M., Pastan, I.,
Because real neurons transmit information via spikeand Nakanishi, S. (2001). Neuron 30, this issue, 771–780.
trains, they must simultaneously estimate the instanta-
neous firing rate of their inputs from a discrete series
of spikes and translate their own time-varying state intoReverse Spikeology: a series of spikes for output to other cells. To resolve

Predicting Single Spikes these decoding and encoding problems, modelers must
consider the relationship between spatiotemporal filter-
ing and the mechanisms governing spike generation. A

Neural models that simulate single spike trains can model that produces realistic spike trains in response
help us understand the basic principles of neural cod- to a time-varying visual stimulus has the potential to
ing in vision. Keat et al. (2001) develop a hybrid model substantially improve our understanding of neural coding.
that combines spatiotemporal filtering with nonlinear Unfortunately, several practical problems have dis-
spike generation. The model does a good job of pre- suaded researchers from constructing such models.
dicting the responses of single retinal ganglion cells Most importantly, many neurophysiological experiments
and thalamic relay neurons. have reported that action potentials are elicited unreli-

ably and that their timing accuracy is poor (Shadlen and
Newsome, 1998). In fact, these experiments have longWhen a digital camera is used to capture an image,
been used to argue that single spikes are irrelevant andthe camera converts the analog luminance signal into
to justify simplifying assumptions (such as the mean-a binary series of zeros and ones. Given only this binary
rate-code assumption described above). An additionalsignal and no information about the coding process, it
complication stems from the spatiotemporal filteringwould be difficult for an observer to reconstruct the
framework itself: filtering is usually implemented as aoriginal image. A similar coding process happens in the
quasilinear operation, but spiking is an inherently nonlin-brain when analog signals in the retina are recoded by
ear process that requires a different modeling approach.retinal ganglion cells into action potentials. From that
Computational models for spike generation have beenpoint onward, neurons throughout the visual system rep-
proposed (Gabbiani and Koch, 1998), but there has beenresent the world in terms of time varying spike trains.
relatively little work aimed at developing hybrid modelsUnderstanding these neural codes is one of the central

goals of systems neuroscience. The report by Keat et that integrate a filter-based input stage with a realistic
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spike generator (but see Chance et al., 1998; Worgotter reliably or when the timing variability of events exceeds
and Koch, 1991). their duration.

In this issue of Neuron, Keat et al. (2001) address this By attempting to predict spike trains of individual pe-
problem head on. Their stated goal is to create a model ripheral sensory and thalamic relay neurons, Keat et
that predicts individual spikes elicited in response to al. demonstrate the practical utility of hybrid single-cell
complex visual stimulation, focusing on retinal ganglion models that combine spatiotemporal filtering with non-
cells and neurons in the lateral geniculate nucleus. linear spike generation. The Keat et al. model makes a
These cells generate relatively reliable and accurate ac- clear distinction between deterministic and stochastic
tion potentials (Berry et al., 1997; Kara et al., 2000), aspects of the neural response. Future studies might
which is a necessary prerequisite for predicting single reveal whether the apparently random stochastic fea-
spikes solely from retinal input. They employ a standard tures are due to processes within the cell (which might be
linear filtering approach to account for the basic stimu- measurable using intracellular techniques) or whether
lus selectivity of their neurons. Additional mechanisms they reflect instead the influence of the local neural net-
are then invoked to control spike generation and timing. work. Because this model explicitly addresses spike
Spike generation is governed by thresholding the filter generation while retaining the power and flexibility of
output, and a feedback mechanism is proposed to ac- the filtering approach, it might also serve as a starting
count for both the refractory period and the observed point for modeling more central sensory neurons. Quan-
bursting patterns of spikes. titative models such as this allow us both to predict

Unfortunately, even peripheral sensory neurons and neural responses at a fine time scale and to understand
thalamic relay cells are neither perfectly accurate nor the limits of such predictions. They clearly demonstrate
completely reliable. When stimuli are repeated precisely, the growing power of computational approaches for un-
the resulting spike trains are still somewhat variable. derstanding how sensory neurons encode information.
This apparently random trial-to-trial variability cannot
be accounted for by a deterministic model. Keat et al. Jack L. Gallant1 and William E. Vinje2

approach this problem by considering responses at two 1 Department of Psychology and
levels. First, they model the occurrence of separate 2 Department of Molecular and Cellular Biology
spike clusters (which they call “events”) that can be University of California, Berkeley
identified in the records of these cells. Event occurrence Berkeley, California 94720
is governed by the estimated filter and the threshold,
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geniculate nucleus. Certain aspects of their model eval- (1997). Spikes: Exploring the Neural Code (Cambridge, MA: MIT
uation procedures are particularly noteworthy. Keat et Press).
al. fit their model separately to data acquired from each Shadlen, M.N., and Newsome, W.T. (1998). J. Neurosci. 18, 3870–
cell. In all cases, model parameters are fit using only a 3896.
portion of the data and the model is evaluated in terms Theunissen, F.E., David, S.V., Singh, N.C., Hsu, A., Vinje, W.E., and

Gallant, J.L. (2001). Network: Computation in Neural Systems, inof its ability to predict other data not used in the initial
press.fit. This clean separation of exploratory and confirmatory
Vinje, W.E., and Gallant, J.L. (1998). In Advances in Neural Informa-data sets ensures that the results are not biased by
tion Processing Systems 10, M.I. Jordan, M.J. Kearns, and S.A.overfitting.
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Worgotter, F., and Koch, C. (1991). J. Neurosci. 11, 1959–1979.their model in all three preparations, even though the

spike trains encountered in each case had very different
statistical characteristics. In many cases, the model pre-
dicts the occurrence and timing variability of events
quite well. The model does not predict single spikes
precisely, but this is to be expected due to the stochastic
nature of the variables governing spike generation. The
model also tends to fail when events are not elicited


