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Bax and Bak are two nuclear-encoded proteins present in higher eukaryotes that are able to pierce the
mitochondrial outer membrane to mediate cell death by apoptosis. Thus, organelles recruited by nucleated
cells to supply energy can be recruited by Bax and Bak to kill cells. The two proteins lie in wait in healthy cells
where they adopt a globular a-helical structure, seemingly as monomers. Following a variety of stress signals,
they convert into pore-forming proteins by changing conformation and assembling into oligomeric
complexes in the mitochondrial outer membrane. Proteins from the mitochondrial intermembrane space
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Apoptosis then empty into the cytosol to activate proteases that dismantle the cell. The arrangement of Bax and Bak in
Bak membrane-bound complexes, and how the complexes porate the membrane, is far from being understood.
Bax However, recent data indicate that they first form symmetric BH3:groove dimers which can be linked via an

Conformation change
Mitochondrion

interface between the a6-helices to form high order oligomers. Here, we review how Bax and Bak change
conformation and oligomerize, as well as how oligomers might form a pore. This article is part of a Special

Mitochondrial permeability
Oligomerization

Issue entitled Mitochondria: the deadly organelle.

Crown Copyright © 2011 Published by Elsevier B.V. All rights reserved.

1. Introduction

A major means by which mitochondria can be “deadly” is by releasing
pro-apoptotic proteins from the intermembrane space as an early step in
apoptotic cell death (Fig. 1, mitochondrial pathway). The principal killing
factor is cytochrome ¢, which once in the cytosol initiates the activation of
caspases (aspartate-specific proteases) and cleavage of multiple cellular
proteins. A second protein released from the intermembrane space, Smac/
DIABLO, enhances caspase activation. While cytochrome ¢ and Smac
induce apoptotic cell death and loss of cell membrane integrity within 4-
24 hours, if their action is blocked, the damage to mitochondria still
results in a slower, necrotic death. In apoptosis initiated by death receptor
signaling (Fig. 1, death receptor pathway), mitochondrial damage is not
required in most cells (type I cells) as caspase-8 can directly activate
downstream caspases. However, in certain cells (type II cells), recruit-
ment of the mitochondrial pathway by caspase-8 cleaving and activating
Bid to its truncated form (tBid) is required for cell death [1,2].

The mitochondrial pathway of apoptosis is regulated principally by
the Bcl-2 protein family, whose members fall into three subclasses:
the pro-apoptotic BH3-only proteins; the prosurvival Bcl-2-like
proteins; and the pore-forming Bax and Bak proteins (Figs. 1 and 2)
[3]. Four Bcl-2 homology domains (BH1-BH4) characterize this family
of proteins (Fig. 2). Note that the BH4 domain as defined in this review

Abbreviations: BH, Bcl-2 homology; OM, outer membrane; tBid, truncated Bid; TM,
transmembrane
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refers to a recently described structural motif (b, XXdp3d4, Where X is
any amino acid, ¢ is a hydrophobic residue, and ¢5 is an aromatic residue)
present in a wide range of Bcl-2 proteins [4], rather than to the BH4
domain originally reported only in Bcl-2, Bcl-x;, and Bcl-w [5]. The
prosurvival proteins (Bcl-2, Bcl-xy, Bcl-w, Mcl-1, A1) each contain four BH
domains [4] and are “prosurvival” due to their ability to bind and
sequester their pro-apoptotic relatives. The BH3-only proteins (Bid, Bim,
Puma, Noxa, Bad, Bmf, Hrk, and Bik) are pro-apoptotic and act as sensors
of specific types of cellular stress [6,7]. Bax, Bak, and perhaps Bok, which
also contain four BH domains [4], are the critical effectors of apoptosis
acting downstream of both the prosurvival and BH3-only members to
permeabilize the mitochondrial outer membrane (OM) [8,9]. Additional
Bcl-2 family members have been described recently with potential pro-
apoptotic (Bcl-G, Bcl-Rambo) or prosurvival (Bcl-B) capacity. Defining
their precise roles in regulating apoptosis is the subject of significant
interest [73].

Death or survival is determined by the levels of pro-apoptotic and
prosurvival proteins in each cell, as well as by binding between the
triad of Bcl-2 subfamilies. Binding in most cases involves the BH3
domain being sequestered in the hydrophobic surface groove on
another family member (Fig. 3C) [10-12]. In addition, sequence
differences confer specific binding [13,14]. For example, the BH3-only
proteins Bid, Bim, and Puma bind strongly to all prosurvival proteins,
while others exhibit specificity for particular prosurvival homologues.
Binding of activated Bax and Bak by prosurvival proteins also involves
a BH3:groove interaction [10]. Thus, a BH3:groove interaction is
involved when prosurvival proteins block apoptosis upstream by
sequestering BH3-only proteins or when they block apoptosis
downstream by sequestering activated Bax and Bak.
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Fig. 1. Multiple pathways to apoptosis. The mitochondrial (or intrinsic) pathway is
induced as a response to cellular stress and results in the activation of the pro-apoptotic
BH3-only proteins. BH3-only proteins may directly bind and activate Bax and Bak (I,
dashed lines), and may also bind to the prosurvival Bcl-2-like proteins to indirectly
activate Bax and Bak (II). Once activated, Bax and Bak oligomerize to form pores in the
mitochondrial outer membrane that release cytochrome c. Cytosolic cytochrome c leads
to caspase activation and subsequent cell death. The death receptor (extrinsic) pathway
is initiated by death ligands such as FasL, tumor-necrosis factor o (TNFat), or TNF-
related apoptosis inducing ligand (TRAIL) binding to cell surface receptors, resulting in
the activation of caspase-8. Active caspase-8 can either activate downstream caspases
directly (in type I cells) or engage the intrinsic pathway via a cleaved form of the BH3-
only protein Bid (tBid) (in type II cells).

The final interaction between the triad of Bcl-2-type proteins,
between BH3-only proteins and Bax or Bak, appears to be transient
and thus more difficult to validate. However, its importance may be
paramount as this may be a major mechanism for triggering Bax and
Bak conversion to their activated and oligomerized forms. The
binding site on Bax and Bak may be the canonical hydrophobic
surface groove [15-17], arguing for a BH3:groove interaction being
involved in all interactions between Bcl-2 family members [18].
However, other groups have proposed the N-terminus of Bax as a
binding site [19,20]. In particular, a transient binding site for a
stapled Bim BH3 peptide has been mapped to an al/a6 “rear”
pocket of Bax, from which a model for the Bax:BimBH3 complex has
been proposed [20]. The transient nature of these interactions may
be due to a decrease in affinity once Bax and Bak convert to the
activated conformations.

Based on the binding between different Bcl-2 members, two
models of Bax and Bak activation, the direct and indirect models, have
been proposed [73]. Briefly, in the direct model, BH3-only proteins
such as Bid, Bim, and Puma (called “activators”) bind directly to Bax
and Bak (Fig. 1, step I). In the indirect model, Bax and Bak become
activated after being displaced from prosurvival proteins by BH3-only
proteins (Fig. 1, step II). Alternatively, aspects of both the direct and
indirect models may be important [18,21,22].

As alluded to, the point of no return in mitochondrial apoptosis
occurs when Bax or Bak generate the “apoptotic pore” in the
mitochondrial OM. While it is known that pore formation involves
major conformation changes in Bax and Bak, followed by homo-
oligomerization, there are as yet no structures of Bax or Bak in their
activated or oligomerized forms. Thus, a major goal in the apoptosis
field is to identify the step-wise activation of Bax and Bak to form a
pore in the mitochondrial OM—a pore that converts mitochondria

into a “deadly organelle.” Here, we review recent progress towards
this goal, including our recent findings and those of others, that Bax
and Bak oligomerization involves two distinct interfaces, a BH3:
groove interface to form symmetric dimers and an a6:a6 interface
that can link dimers to higher order oligomers. Eventual atomic
resolution of the oligomeric interfaces may assist the current design
of therapeutics that remove cancer cells, or conversely, rescue
normal cells [23,24].

2. Bax and Bak in healthy cells and Bax translocation to
mitochondria

In healthy cells, Bak is inserted in the mitochondrial OM, whereas
Bax is predominantly cytosolic with a minor population loosely
attached to the OM [25-27]. A small portion of Bax and Bak can also
locate to the endoplasmic reticulum [28,29], although the physiolog-
ical role of this population is unclear [30]. During apoptosis, Bax
translocates from the cytosol to insert into the OM, and both Bax and
Bak convert from the non-activated to the activated conformation
(see section 3).

2.1. Molecular structures of non-activated Bax and Bak

The structures of non-activated Bax and Bak [17,31,32] exhibit the
same fold as Mcl-1 and other prosurvival proteins (Fig. 3A-C).
Essentially, both Bax and Bak are globular proteins comprising 9
helices. The hydrophobic a5 helix is protected within a bundle of 7
amphipathic helices. The remaining a9 at the C-terminus acts as a
transmembrane domain that can anchor Bax and Bak in the
mitochondrial OM. In the Bax structure, a9 is sequestered in its
own hydrophobic groove, explaining why Bax is predominantly
cytosolic (Fig. 3B, D). In the Bak structures [31,32], a9 is absent and
the groove is narrow and occluded by side chains that potentially
restrict docking of a9 (Fig. 3A). However, as other members of the
Bcl-2 family demonstrate dynamic structural plasticity within the
groove region [33], this may also apply to Bak.

In the structures, two other functionally important hydrophobic
regions are also buried prior to activation. In a1, the newly described
BH4 sequence motif contains hydrophobic and aromatic residues that
make several contacts with a2, a5, and a6, apparently stabilizing the
tertiary structure (Figs. 2 and 3E). In a2, four hydrophobic residues in
the BH3 domain that are important for binding between Bcl-2 family
members face the hydrophobic core (not shown).

2.2. Triggering mitochondrial Bax translocation and activation

Clearly, Bax translocation from the cytosol to the mitochondrial
outer membrane is an important feature of apoptosis biology [34].
However, a consensus on the mechanism(s) involved has not been
reached for perhaps three reasons. First, the different experimental
approaches used may generate different outcomes. Ideally, Bax
function should be analyzed in cells stably expressing full-length Bax
at normal levels, with translocation initiated by a physiological
apoptotic stimulus. However, due to obvious experimental limita-
tions of this approach, many studies have utilized cell-free
approaches and truncated or overexpressed Bax. In these circum-
stances, at least a portion of Bax may adopt conformations capable of
non-Bax-like function or partial Bax function. For example, if the Bax
BH3 domain was exposed but the hydrophobic groove destroyed,
this Bax may act like a BH3-only protein and heterodimerize with
prosurvival proteins or directly activate other Bax and Bak molecules
[35]. Finally, the function of Bax and Bak variants should be tested in
cells lacking endogenous Bax and Bak to exclude interference by
those proteins.

Second, at least two populations of Bax co-localize with mito-
chondria, with peripherally attached and membrane-inserted forms
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Fig. 2. The Bcl-2 protein family. Mammalian Bcl-2 proteins can be divided into three subfamilies, the prosurvival proteins, the pro-apoptotic BH3-only proteins, and the pro-apoptotic
Bax and Bak proteins. The presence of four Bcl-2 homology (BH) domains is as indicated. Note that the BH4 domain refers to a recently described structural motif (bbyXXd3da,
where X is any amino acid, ¢ is a hydrophobic residue, and &3 is an aromatic residue) that is present in each prosurvival protein and in Bax and Bak [4]. As examples, the BH4
sequences in human Bcl-2 and human Bax are shown. Many members also contain a C-terminal transmembrane (TM) domain. While most BH3-only proteins are unstructured, the
prosurvival proteins as well as Bax and Bak each adopt an a-helical structure (Bax a-helices are indicated).

characterized by carbonate extraction [27]. Distinct membrane-
inserted forms may also exist (see below). Unless carbonate
extraction experiments are performed, it is difficult to discern events
that translocate/address/target/localize Bax to the membrane from
events that insert Bax into the membrane.

The third reason for the lack of consensus on Bax translocation is
that it often occurs as part of activation and a complex set of
conformation changes. Indeed, distinct translocation mechanisms
may exist as a range of biochemical stimuli can trigger activation of
Bax (and Bak). Aside from direct activation by BH3-only proteins such
as Bim and Bid (or the related BH3 peptides) [14,19,36,37], other
triggers include chemical stimuli such as H,0,, as well as low and high
pH, mild heat, proteolytic cleavage, and post-translational modifica-
tion such as phosphorylation [38-43]. In the next section, we attempt
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to address the most significant findings on Bax and Bak conformation
changes during activation.

3. Conformation changes of Bax and Bak during activation

A number of biochemical studies have demonstrated that several
regions of Bax and Bak undergo conformation rearrangements during
apoptosis. These include the N-terminus, BH3 domain, and hydro-
phobic groove. In Bax, a-helices 5, 6, and 9 also change conformation.
We are just starting to understand whether each conformation change
is necessary for pro-apoptotic function and in which order these
changes might occur. In this section, we discuss each change and then
consider whether Bax and Bak activation might be initiated from the
N-terminus, the C-terminus, or both.

C. Mcl-1:BimBH3
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Fig. 3. Structures of Bax and Bak. (A, B, C) Cartoon and surface overlays of Bak (2IMT), Bax (1F16; the flexible N-terminal 12 residues have been omitted for clarity), and Mcl-1
complexed with a Bim peptide (2NL9). a-Helices 1-8 are in orange except for those regions contributing to the hydrophobic groove (green) and BH3 domain (red). The Bak groove
appears closed. The Bax groove harbors a9 (yellow) which acts as a transmembrane (TM) domain, while the Mcl-1 groove harbors the Bim BH3 peptide (red). (D, E) Rotation of the
Bax structure to view the TM:groove interaction and the a1/a6-helices on opposite sides of the molecule. Color coding is as in (B), with the newly defined BH4 motif and side chains

(LLQGFI) in a1 also indicated (purple).
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3.1. The C-terminus: function and conformation change

As for most Bcl-2 members, Bax and Bak contain a C-terminal
hydrophobic region («9) that can act as a transmembrane domain
within the OM (reviewed in references 16 and 34). This 9 helix is
sequestered in the hydrophobic groove in cytosolic Bax (Fig. 3B, D)
[17] and becomes exposed in order to facilitate translocation and
insertion during apoptosis. Mutations at the C-terminus support the
importance of this region for Bax translocation. For example,
replacement of serine at position 184 in a9 with valine targets Bax
to mitochondria [44]. In addition, mutation of proline at position 168
in the linker region prior to a9 decreases Bax translocation and
activity, arguing that this linker region is important for 9 exposure
and membrane insertion [45,46].

Additional testing of whether the Bax C-terminus acts as an
addressing and/or insertion motif has involved two approaches, 1)
fusing the Bax C-terminus to a GFP molecule and testing whether it
targets to mitochondria and 2) truncating this region and testing
whether Bax no longer targets to mitochondria. However, both
approaches gave contrasting findings presumably due to different
experimental conditions as discussed above. For example, the
C-terminal 21 or 24 residues of Bax failed to target GFP to
mitochondria in some studies [44,47], but 23, 24, or 27 residues
were able to do so in others [45], including in bax ™~ bak ™'~ cells
[46,48]. In the other set of experiments, after C-terminal truncation,
Bax still localized to mitochondria in some studies[47,49,50] but
remained cytosolic in others, even after apoptotic signaling [27,44,45].
A more recent detailed study found that Bax mutants that were unable
to target mitochondria in bax™~ bak~~ cells could do so in the
presence of endogenous Bax [46], suggesting that endogenous Bax
and Bak may have become activated and affected the localization of
the truncated proteins. Another recent study found that the Bax C-
terminus was essential for mediating Bax OM insertion but was not
the only addressing signal [48].

In Bak, the C-terminus is membrane-inserted prior to apoptosis,
perhaps because this hydrophobic region inserts more readily into the
OM than into the Bak groove. The Bak C-terminus can target GFP to
mitochondria [51] and is essential for Bak insertion into the OM as its
truncation abrogated Bak mitochondrial localization and function
after stable expression in bax ™~ bak™'~ cells [52].

3.2. The N-terminus: function and conformation change

The N-termini in Bax and Bak contain two regions, the
N-segment and the a1 helix. The N-segment in Bax (residues 1-15)
is flexible and exposed to solvent [17], while that in Bak (residues
1-23) is partially structured according to antibody and crosslinking
studies [52]. The N-segment in Bak seems to play no role in stability
or function as its truncation did not affect these characteristics [52].
However, Bak stability and function was greatly decreased by
removing most of al [52]. The stability of Bax after N-terminal
truncation has not been examined; however, truncation of the first
20 residues (the ART domain) increased mitochondrial-targeting of
in vitro translated Bax [53], and a natural Bax variant (Bax ) lacking
the first 19 residues localized mainly to mitochondria [54]. Indeed,
Vallette et al. [47] found that removing the ART domain exposes a
mitochondrial-targeting sequence within residues 20-37 as this
region fused to GFP targets to mitochondria. However, a longer Bax
sequence (residues 1-50) failed to target YFP to mitochondria [46],
and at least in some systems, Bax can translocate without detectable
N-terminal epitope exposure [44,55]. A possible explanation for
these findings is that removing the BH4 domain in Bax «l
destabilizes the protein (as shown for Bak) to expose regions that
target mitochondria.

During apoptosis, the N-terminus in both Bax and Bak undergoes
conformation change, although the extent of this change is not clear.

For example, a1 may reposition entirely, rotate slightly, or become
less helical. Perhaps, the clearest data are based on the 6A7 antibody
whose epitope has been carefully mapped to Bax residues 13-19 at
the start of a1 [56]. This and other antibodies to a1 are conformation-
specific as they only recognize Bax after an apoptotic stimulus [57]. In
Bak, antibodies to the N-segment are also conformation-specific
[25,52,58].

3.3. The BH3 domain and hydrophobic groove: function and
conformation change

A key step in Bax and Bak activation is exposure of the BH3
domain as this domain is critical for oligomerization and pro-
apoptotic function [59,60] (see section 4). As discussed above, prior
to apoptosis, the hydrophobic BH3 residues face the core of Bax and
of Bak [17,31]. Following apoptotic signaling, the Bak BH3 domain
is exposed transiently before becoming re-buried in Bak homo-
oligomers [60]. For example, antibody to the Bak BH3 domain did
not recognize Bak before or after mitochondria were treated with
tBid but did so if added during tBid treatment [60]. Very recent
studies provide evidence that the Bax BH3 domain is also exposed
during activation [61,62]. Whether the Bax BH3 domain then binds
to the hydrophobic groove in another activated Bax molecule has
not been demonstrated.

3.4. The Bax a-helices 5 and 6

Structural similarity of Bcl-2 proteins to pore-forming proteins
such as diphtheria toxin suggested that Bax and Bak form pores by
inserting a-helices 5 and 6 into the OM [63]. In support of this
hypothesis, these two helices in Bax become membrane-inserted
following apoptotic signaling in myc—/~ cells [64]. Notably, insertion
was an early event as the 6A7 epitope was not exposed, and
oligomerization had not occurred. Thus, a conformation change that
essentially turns the Bax and Bak proteins inside-out may be involved
in their activation and be required for self-association and pore
formation.

3.5. Possible sequence of conformation changes

As outlined, a number of conformation changes are associated
with Bax and Bak activation, although it remains unclear in which
order these changes occur. Based on the extensive molecular
contacts made between «-helices 1, 2, 5, 6, and 9, changes in
conformation of any of these regions could theoretically trigger
changes in other regions. For example, as a2 containing the BH3
domain is juxtaposed with both terminal helices (a1 and «9),
movement of either terminus may trigger BH3 exposure. Indeed,
different sites may be targeted by different triggers of Bax and Bak
conformation change (e.g. Bim, heat, oxidants, phosphorylation) and
consequently involve distinct sequences of conformation change. As
refolding, once triggered, will be driven towards the lowest free
energy state, it is likely that the final conformation in each case is
equivalent.

In terms of activation by BH3-only proteins, two binding sites
on Bax have been proposed, the hydrophobic groove and the a1/a6
rear pocket on the other side of the molecule (Fig. 3D, E). The Bax
hydrophobic groove is a potential binding site provided the
C-terminus can be displaced [15-18]. Thus, a hypothetical sequence
of changes in Bax starting at the C-terminus (Fig. 4, dashed arrows)
would be Bim or Bid displacing the C-terminus (®9) and binding to
the groove, followed by exposure of the Bax BH3 domain (in o2).
Once the BH3 domain is exposed, conformation change of the
groove seems likely as a2 is adjacent to, or even forms part of, the
groove in the non-activated structures (Fig. 3). Modification of the
groove may dislodge Bim or Bid, accounting for the transient nature
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Fig. 4. Two proposed sequences of Bax conformation change during apoptosis. Schematic of the sequence of Bax conformation changes initiated by Bim binding at the N-terminus, as
recently reported [61] (solid arrows). A different sequence may occur if Bim binds to the hydrophobic groove after displacement of the C-terminus (dashed arrows). Both sets of
conformation change may generate an activated monomer with an exposed BH3 domain that can then form symmetric BH3:groove dimers. The non-activated form of Bax is
represented as a globular molecule (orange) containing a hydrophobic surface groove (3/a4; green) and a buried BH3 domain («2; red). Two other regions, the N-terminal o1
helix and the C-terminal a9 helix, are also initially buried but become exposed either as early or late events in the two models. See text for a detailed description of the possible
binding and conformation changes involved. Note that exposure of the a5/a6 hairpin is not included in these models. Bak is likely to undergo similar conformation changes.

of this binding. In addition, BH3 exposure and groove conformation
change may occur roughly simultaneously, allowing the BH3 in one
molecule to bind to a modified groove in another molecule [18]
(see section 4). Finally, changes to the BH3 and groove may alter
the N-terminus.

Binding to the o1/a6 rear pocket of Bax would result in roughly
the reverse sequence of conformation changes (Fig. 4, solid arrows). A
stapled Bim BH3 peptide first exposes the N-terminal epitope (6A7
epitope in 1) and the BH3 domain («2), followed by exposure of a9
[20,61]. Lalier et al. [65] proposed a similar but distinct sequence of
Bax conformation changes initiated at the N-terminus. Clearly, further
studies are required to test these hypotheses, including how exposure
of the a5/at6 hairpin and its insertion into the OM may relate to the
two models presented.

4. Homo-oligomerization: two distinct interfaces

After Bax and Bak become activated, the newly exposed regions
allow new interactions and thus oligomerization. Membrane insertion
itself may also drive conformation changes [66]. Anchorage of
activated Bax and Bak in the OM may assist oligomerization by
concentrating the proteins and by aligning the protein regions that are
to form interfaces. The formation of Bax and Bak homooligomers
during apoptosis has been observed for some time [67,68] and more
recently shown to be necessary for pore formation [59,60].

An early speculative model of Bax/Bak oligomerization involved a
single interface, in which the front of one molecule interacts with the
back of the next molecule to form a “daisy-chain” [69]. A single
interface was also proposed recently in the “asymmetric autoactiva-
tion” model where the exposed Bax BH3 domain binds to the ot1/c6
rear pocket [22]. However, our recent biochemical studies with Bak
support a “two interface” model involving the BH3:groove and a6:a6
interfaces (Fig. 5) [52,60]. Very recent in vitro experiments also
support the concept of two distinct interfaces in oligomers of Bax as
well as Bak [62,70,71].

4.1. A BH3:groove interface forms symmetric Bak dimers

As discussed above, following Bak activation in mitochondria or in
cells, the exposed BH3 domain binds to the hydrophobic groove of
another activated Bak molecule [52,60]. This interaction was
identified by different means, including cysteine linkage between
the BH3 domain and groove only after apoptotic signaling. This
linkage could be attributed to functional oligomeric Bak rather than to
a minor non-functional population of oligomers as one pair of cysteine
residues (in the BH3 domain and in the groove) essentially linked all
activated Bak as BH3:groove dimers [60].

As the groove in non-activated Bak is occluded (Fig. 3A) [31], it
must convert to a more open conformation to allow a BH3:groove
interaction. As discussed above, the BH3 domain and groove are
adjacent in the molecule, suggesting that BH3 exposure and groove
opening occur simultaneously during Bak conformation change,
thereby coordinating exposure of the BH3 domain with its binding
to the groove of the partner Bak molecule.

Notably, BH3:groove interactions between two activated Bak
molecules are reciprocal (Figs. 4 and 5) as Bak containing cysteine
in both the BH3 domain and the groove can be linked as dimers but
not as higher order oligomers [52]. Reciprocal binding is feasible from
a structural point of view as an exposed BH3 domain and the groove
would be on the same side of activated Bak (Fig. 3D). Reciprocal BH3:
groove interactions would strengthen the interaction by increasing
the buried surface area between the two proteins. Symmetric Bak
dimers are distinct from the domain swap dimers reported for several
Bcl-2 homologs [4,72,73] as the exposed BH3 domain does not return
to a similar position in its Bak partner.

4.2. An a6:a6 interface can link symmetric Bak dimers to higher
order oligomers

The formation of symmetric (BH3:groove) dimers specifies that a
second interface is needed to form higher order oligomers of Bak (and
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may occur prior to formation of a BH3:groove interface outside the membrane and formation of an a6:a6 interface within the membrane.

of Bax). Accordingly, we found that Bak dimers could be linked via an
a6:a6 interface to form higher order oligomers (Fig. 5) [52]. The
a6:a6 interface forms after the BH3:groove interface as antibody to
the Bak BH3 domain blocked a6:06 interaction. As a6 is on the
opposite side of the molecule from the BH3 domain and groove
(Fig. 3D, E), both the BH3:groove and a6:c6 interfaces might form on
the mitochondrial surface without major rearrangement of the a3-a6
region (Fig. 5A). However, if the Bak o5/06 hairpin becomes
membrane-inserted, as shown for Bax [64], an a6:06 interface may
form within the OM (Fig. 5B).

Bak oligomers (>18 mer) were observed in our linkage studies
where disulphide bonds linked both the BH3:groove and the 0:6:0t6
interfaces [52]. Oligomers of similar size are evident in apoptotic
cell lysates examined by both size exclusion chromatography and
Blue Native PAGE (see section 5). Our evidence that an o6:06
interface in Bak forms only after apoptosis is contrary to evidence of
a Zn-mediated o6:6 interface in non-activated Bak that blocks
activation [31], possibly because the latter studies were based on
Bak lacking the N- and C-termini.

Compared to the BH3:groove interface, the at6:a6 interface is less
well defined and not yet shown to be needed for Bax and Bak function.
For instance, while mutations in the BH3 domain or groove blocked
cytochrome c release, mutations in a6 of Bax or Bak have not blocked
cytochrome c release [52,59]. Moreover, there are no significant
hydrophobic surfaces in the a6 region, and three charged residues in
a6 would generate significant electrostatic repulsion, especially if the
helices were strictly parallel, as discussed [22]. One possibility is that

the a6-helices adopt a criss-cross orientation, which may still allow
cysteines placed along 3 turns of a6 to link to themselves [52],
especially if dimers could rotate slightly. These possibilities require
further examination, including whether the a6:a6 interaction is
driven by forces outside this region, perhaps by the membrane itself.
Alternatively, if the a6:a6 interface occurs within the OM (Fig. 5B),
hydrophilic residues along the a6 surface may drive the interface due
to the hydrophobic environment of the lipid bilayer.

Very recent analysis of Bax and Bak oligomers formed in non-
mitochondrial assays support the “two interface” model of oligomer-
ization [62,70,71]. Two reports utilized electron paramagnetic
resonance (EPR) spectroscopy of spin-labeled Bax and Bak to measure
residue positions in oligomers that form in liposomes [70,71]. The
distances measured between specific BH3 residues were consistent
with symmetric BH3:groove dimers as modeled in Fig. 5A. A third
report based on photocross-linkage of specific residues found that
detergent-induced (Triton X-100) Bax oligomers contained one
interface involving the BH3 domain and a second interface involving
the other side of the molecule [62]. Together, these studies indicate
that Bax and Bak homo-oligomerize via equivalent mechanisms.

4.3. Implications of an exposed BH3 domain and a functioning groove

With their BH3 domain exposed, activated Bax and Bak resemble
BH3-only proteins in that the BH3 domain can bind to the groove of
prosurvival proteins [74,75]. Indeed, binding of activated Bax and Bak
by prosurvival proteins is proposed to be a major mechanism used by
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prosurvival proteins to inhibit apoptosis [74,75]. Although there are
no structures of full-length Bax and Bak bound to prosurvival proteins,
the similar size and structure of Bax and Bak and prosurvival proteins
suggests that heterodimers may partly resemble Bax and Bak
homodimers (Fig. 5A). Moreover, according to the “embedded
together” model, when Bax binds Bcl-2, both proteins have the a5/
6 hairpin inserted in the OM (Fig. 5B) [22,76]. Heterodimers must be
unable to multimerize further, as prosurvival proteins block homo-
oligomerization of Bax and Bak [62,77]. (As noted in section 1,
prosurvival proteins can also block Bax homo-oligomerization
indirectly, i.e. by blocking its translocation to mitochondria [78],
presumably by sequestering activator BH3-only proteins.) In hetero-
dimers, the BH3:groove interaction may not be symmetric (Fig. 5A) as
the structures of Bcl-x; and A1l bound to Bak BH3 peptides do not
exhibit exposed BH3 domains [10,79].

In some aspects, Bax and Bak also resemble prosurvival proteins
as the groove in activated Bak is able to bind the BH3 domain of
another activated Bak molecule. As noted in section 3.5, it is also
possible that the groove in non-activated Bax and Bak is a binding
site for activator BH3-only proteins such as Bid and Bim [15-18,30]. It
will be interesting to determine exactly how the groove changes
upon activation and whether it might convert from a groove with
strong affinity for Bid and Bim to one with strong affinity for Bak and
Bax BH3 domains.

Further studies are needed to clarify how Bax and Bak interact
with themselves, with other members of the Bcl-2 family, and with
the OM. These studies may continue to be difficult due to the
inherent difficulties of studying membrane proteins and the major
conformation changes that occur in Bax and Bak and perhaps also in
prosurvival proteins. Defining how and when interfaces allow
activated Bax and Bak to oligomerize will bring us closer to
understanding the pore complex and how pore formation might be
blocked to prevent apoptosis.

5. Porating the mitochondrial outer membrane

How oligomerized Bax and Bak allow passage of large proteins
across the OM is an ongoing question. An early hypothesis was that
the OM tears as a result of matrix swelling, which was caused by Bcl-2
proteins targeting the “permeability transition” pore, a pore already
pre-formed in mitochondria [80]. However, genetic studies have since
indicated that while permeability transition may account for cell
death induced by signals such as ionized calcium, it is not the
mechanism used by the Bcl-2 family to permeabilize the OM [81,82]
(see Kinnally et al. in this issue).

A range of biochemical and biophysical studies then addressed
whether Bcl-2 family members had direct effects on membranes and
were capable of forming channels themselves. These studies often
used planar lipid bilayers (to measure ion channels) or liposomes (to
measure protein channels). Studies also examined whether Bax and
Bak pierce membranes as do bacterial pore-forming toxins (e.g. the
colicins and diphtheria toxin) or pore-forming peptides (e.g.
alamethicin, melittin, and magainin).

5.1. Do Bax and Bak functionally mimic bacterial pore-forming toxins?

A clue to the mechanism by which Bax and Bak may form pores
arose from the first structure of a Bcl-2 protein, that of Bcl-x;. The
o-helical fold of Bcl-x; resembled that of the colicins and of the pore-
forming domain of diphtheria toxin, with core hydrophobic helices
cloaked by amphipathic helices [63]. On contacting membranes, the
two central helices of the pore-forming domains of colicin and
diphtheria toxin are thought to insert as an «-helical hairpin in
membranes [83]. This insertion may make the membrane leaky to
ions, thereby causing membrane depolarization and death of the
target cell, or may facilitate passage of another protein or domain

across the membrane [84]. As an example of the latter, pore formation
by diphtheria toxin allows passage of the catalytic domain that then
blocks protein synthesis in the target cell [85].

Like pore-forming toxins, Bax can undergo significant conforma-
tion change on association with the mitochondrial OM (see above),
including insertion of the a5/a6 hairpin into membranes [64]. As
discussed above, the Bcl-2 at5/a6 hairpin is also proposed to insert
into the OM [86]. However, there are important differences between
the central helices of the pore-forming proteins and those of the Bcl-2
proteins. Firstly, while the central helices of colicin and of the
diphtheria toxin pore-forming domain are hydrophobic, those in Bax,
Bak, and Bcl-2 each contain 2 or more charged residues. Secondly,
whereas a5 in Bax is potentially long enough to span a lipid bilayer as
an a-helix, the central helices of colicin are not. Thus, these structural
differences between pore-forming toxins and the Bcl-2 proteins imply
distinct mechanisms of pore formation.

5.2. Evidence that Bcl-2 proteins can form ion channels

Bax, Bcl-x, and Bcl-2 can each form ion channels in planar lipid
bilayers [87-90]. The channels are ion-selective, pH-sensitive,
voltage-insensitive, and of variable conductance. Initial studies
indicated that channels formed by Bcl-2 and Bcl-x; were cation-
specific whereas those formed by Bax were more anion-specific [87],
supporting a model whereby prosurvival and pro-apoptotic Bcl-2
proteins regulate mitochondrial ionic balance. An increase in “Bax-
like” channel activity during apoptosis could potentially lead to a
disruption of this balance with mitochondrial swelling and rupture of
the mitochondrial OM, akin to the opening of the permeability
transition pore. However, given the abundance and high conductance
of the VDAC channels in the mitochondrial OM, the limited
conductance of the Bcl-2 proteins is unlikely to significantly affect
ionic balance across that membrane. Nevertheless, the ability of Bax to
form ion channels in vitro may in some way reflect its pro-apoptotic
function in cells, as Bcl-2 blocks both processes [88].

5.3. Evidence that Bax and Bak can form protein channels

It is possible that Bax ion channels in the OM play a minor role in
apoptosis and that Bax (and presumably also Bak) forms large protein
channels in the OM that act as a direct conduit for cytochrome c. A
channel comprising oligomers of Bax, termed the mitochondrial
apoptosis-induced channel (MAC), was detected by patch clamp
analysis of mitochondria isolated from cells undergoing apoptosis
[91]. In those studies, MAC was voltage-insensitive and so unlikely to
involve VDAC. Its cation selectivity and estimated pore diameter of
4nm was consistent with passage of the positively charged
cytochrome c. Indeed, addition of cytochrome c¢ reduced the
conductance of the MAC, supporting the pore as a direct translocator
of cytochrome c rather than a mere facilitator. Notably, either Bax or
Bak was required for the MAC to form. In addition, MAC-like activity
was detected in yeast mitochondria expressing Bax [92], suggesting
that Bax was able to form the pore in the absence of other Bcl-2
proteins, as reported for Bax in liposomes [93].

The size of the apoptotic pore has been examined using several
model systems. A tetramer was the minimal Bax oligomer to
translocate cytochrome c across liposomes [94]. The MAC pore formed
by Bax has been further characterized to comprise 9 molecules with a
pore diameter of 6 nm [95]. Much larger Bax and Bak oligomers (>100
molecules) were reported in dying cells [96,97]. At least 18 molecules
were observed in Bak oligomers where disulphide bonds linked both
the BH3:groove and the a6:6 interfaces [52], and in Bax oligomers
analyzed by Blue Native PAGE [98]. Such large oligomers are
consistent with activated Bax forming supramolecular pores in
liposomes [93] and explain the coordinated release of both small
and large proteins from mitochondria. Thus, while several approaches
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detect large Bax (and Bak) oligomers in apoptotic cells, the size of
the functional pore and whether pores can adopt several sizes
remain unclear.

A peptide corresponding to the Bax a5/a6 hairpin could form
pores in liposomes, although larger pores were formed by full-length
Bax [99]. This raises the possibility that Bax permeabilizes the OM in a
step-wise fashion, where a5/a6 insertion forms ion channels and
subsequent oligomerization forms protein pores. Consistent with this,
Andrews et al. [64] found that Bax inserted the ot5/ac6 hairpin prior to
oligomerization and that activated Bax caused limited membrane
permeability that increased over time to allow passage of high
molecular weight proteins [100].

5.4. Proteinaceous or lipidic pore?

Biophysical studies suggest two predominant mechanisms by
which «-helical proteins or peptides form pores: proteinaceous
(barrel-stave) and lipidic (toroidal) pores (reviewed in reference
101). Here, we briefly describe the two pore types as formed by
a-helical pore-forming peptides (e.g. alamethicin, melittin, and
magainin) and compare them to pores formed by Bax and Bak.

5.4.1. Proteinaceous (barrel-stave) pores

The prototypical proteinaceous pore is based on the pores
generated by the alamethicin 21 residue peptide (produced by the
fungus Trichoderma viride). The helices align closely in the bilayer so
that protein forms the solvent-exposed surface of the pore (Fig. 6A).
Proteinaceous pores generally exhibit single conductance and due to
their inherent instability are limited to less than 10 peptides with a
pore diameter of approximately 2 nm. Alamethicin pores, for
example, comprise 5-10 peptides with a pore diameter of 1.8 nm
[102], which is too small to traffic proteins released with cytochrome c
during apoptosis. However, it remains possible that full-length
proteins may form stable oligomeric complexes and thus larger
pores. It is interesting to note that a dodecameric barrel-stave
complex is evident in the crystal structure of the cytolysin A pore,
currently the only structure of a membrane-inserted a-helical pore-
forming toxin [103].

5.4.2. Lipidic (toroidal) pores

These pores are formed by melittin (from bee venom) and
magainin (from Xenopus laevis skin) [104]. Prior to pore formation,
the amphipathic peptides lie on the membrane surface and once at a
certain concentration increase surface tension to invaginate the

A. Barrel-stave pore (e.g. alamethicin)

Fig. 6. Two mechanisms by which Bax and Bak oligomers might porate the
mitochondrial outer membrane. (A) In the barrel-stave model, a-helical peptide
“staves” align to form a barrel-like pore that spans the membrane. Peptides are adjacent
to the lipid acyl chains. (B) In the toroidal pore model, a-helical peptides induce
membrane curvature such that the outer and inner leaflets are continuous. Peptides are
adjacent to the lipid headgroups.

membrane so that the outer leaflet of the membrane is continuous
with the inner leaflet. Thus, the solvent-exposed surface of the pore is
lined by lipid headgroups as well as by protein (Fig. 6B). Lipidic pores
are stable due to intercalated lipid reducing the impact of charge-
charge repulsion between adjacent peptides. As a consequence, lipidic
pores can be larger than barrel-stave pores and can increase in
diameter [101]. A defining characteristic of lipidic pores is their
promotion by positive membrane curvature, such as that induced by
non-lamellar lipids [105]. In addition, membrane invagination
accommodates shorter helices lining the pore. Accordingly, colicin
may form a lipidic rather than a proteinaceous pore as its channel
activity is enhanced by positive membrane curvature [106] and its
central helices are relatively short.

5.4.3. Does Bax form a proteinaceous or lipidic pore?

Based on the above criteria, the membrane-inserted o5/o6
hairpin of Bax [64] could self-associate to form either proteina-
ceous or lipidic pores. Although a barrel-stave assembly of Bax
molecules was proposed for the MAC in mitochondria isolated
from apoptotic cells [95], Bax pores formed in planar lipid bilayers
and liposomes have characteristics of lipidic pores. Firstly, Bax
formed channels with variable conductance states [107]. Secondly,
at physiological pH the a5/a6 hairpin of Bax (and of Bak) has a
net positive charge, less compatible with barrel-stave pores that
are largely restricted to peptides of neutral charge. Thirdly, lipids
that induce positive membrane curvature promote Bax pore
formation [108,109]. Finally, lipidic pores can expand to actually
destabilize the lipid bilayer, which would allow efflux not just of
cytochrome c but of the larger proteins known to cross the OM
during apoptosis [107,109]. As Bcl-x, does not cause lipid
destabilization in planar lipid bilayers [107], it is intriguing to
speculate that the propensity of Bax but not Bcl-x; to self-
associate is directly related to membrane destabilization of the
mitochondrial OM.

Elegant structural studies are beginning to throw some light on
how Bax and Bak associate with, and insert into, model membranes.
According to X-ray diffraction in a multiple lipid bilayer system, the
Bax o5/a6 hairpin forms lipidic pores up to 5 nm in diameter [110].
This may be a conservative estimate as in liposomes, the Bax a.5/a6
peptide formed pores over 11 nm in diameter, and full-length Bax
protein formed even larger pores [99,109]. Thus, several liposome
studies imply a Bax lipidic pore.

Whether Bax and Bak homo-oligomerization and pore formation
is encouraged at specific sites in the OM is unclear. Association of Bax
and Bak with components of the mitochondrial fission/fusion
machinery suggests their selective recruitment to fission/fusion
sites in the OM [111]. The precise role of mitochondrial fission and
fusion in apoptosis is controversial and discussed by Martinou et al.
in this issue.

6. Perspectives

These two fascinating proteins, Bax and Bak, are just beginning to
divulge their secrets. A major challenge is to obtain structures of the
activated Bax and Bak as monomers, homodimers, heterodimers, and
higher order oligomers, preferably of full-length proteins within
membranes. Obtaining structures of membrane-integrated complexes
may be technically challenging if the lipidic pore model holds.
Nevertheless, even one or two structures of the activated proteins in
their non-membrane-integrated forms would allow more informed
functional studies to interrogate the apparent multiple steps involved
in Bax and Bak activation, including translocation, membrane
insertion, and oligomerization. Another challenge is to understand
the role of the mitochondrial outer membrane itself, in particular the
lipid components, in each step of Bax and Bak function. A combination
of biochemical and structural approaches as well as new emerging
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technologies will be needed to discern the true nature of Bax and
Bak oligomers.

Ultimately, understanding how Bax and Bak regulate mitochon-
drial permeabilization during apoptosis will allow better design of
drugs that target the Bcl-2-regulated pathway. Each step and each
interface in Bax and Bak homo- and heterooligomers is a potential
new therapeutic target.
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