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This paper presents a first order perturbation analysis of stress concentration and surface morphology
instability of elastically anisotropic solids. The boundary of the solids under consideration is periodic
along two orthogonal directions. The magnitude of the undulation is sufficiently small so that a half-
space model can be used for simplification. We derive expressions for the stress concentration factors
and the critical wavelength of the perturbation in terms of the remote stresses, surface energy anisotropy
and the elastic anisotropy of the solid. Numerical applications to cubic materials using Barnett–Lothe
integrals are also given.
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1. Introduction the Green’s function for a half-space to solve directly the stress
A nominally flat material surface, in reality, always contains de-
fects and inhomogeneities originating from the manufacturing
process or environmental corrosion. When subject to mechanical
loading, the presence of defects can magnify stresses in the mate-
rial several times and eventually leads to the nucleation of plastic
deformation or fracture. Stress concentration is one of major con-
cerns in the reliability analysis of semiconductor thin films since
residual stresses in these structures are usually very high.

Instability of the surface morphology is another problem of thin
films mechanics which is also subject to this work. In presence of
mechanical stresses, a perturbation in the film’s shape can induce
mass diffusion and render the free surface unstable (Asaro and Tiller,
1972; Srolovitz, 1989). The instability can be understood by consider-
ing the variation of the strain and surface energy in response to the
perturbation (Freund and Suresh, 2003). Since perturbations are geo-
metrically similar to surface defects, the study of stress concentration
effect provides some insights into the surface instability problem.

In this paper, the surface defects or perturbations are both mod-
eled as a sinusoidal fluctuation about the mean reference plane.
The amplitude of the fluctuation is sufficiently small with respect
to the wavelength so that the half space model can be used. To de-
rive the solution which is first order accurate in perturbation, one
considers a usual elasticity problem where the stress boundary
conditions are determined from the zeroth-order stresses and the
boundary profile. Based on this observation, Gao (1991a) used
ll rights reserved.
fields for surfaces with sinusoidally wavy profile and single wave
profile. He concluded that for surfaces with relatively small ampli-
tude a to wavelength k ratio, say a/k = 0.1, the perturbation can
magnify the bulk stress by 2.25 times. In a separate work, Gao
(1991b) made use of the complex potential function method to
compute the complete stress field and the perturbation’s critical
wavelength kcr that induces the surface instability.

The works of Gao (1991a,b) are limited to a single material sys-
tem where it is treated as a homogeneous elastic half space. In real-
ity, thin film systems may be composed of several material layers
that interact and have considerable impact on the global behavior.
Freund and Jonsdottir (1993) formulated the problem concerning a
film bonded to a substrate with bidimensional shape perturbation.
They also determined the chemical potential that governs the dif-
fusion process and computed the most unstable wavemode. Kim
and Vlassak (2007) used the Airy stress function to investigate
multilayer thin films, each of which can have its own residual
stresses. In their works, all the considered materials are isotropic.

Anisotropic thin films are also studied in the past. Gao
(1991c) used the Stroh formalism to analyze the instability of
the thin films subject to perturbations along one direction. In
Gao (1991c), the stress concentration factors were also obtained
for some particular materials in closed form. Li et al. (2008) used
a similar approach as Kim and Vlassak (2007) to study cubic
film/substrate system. They found that anisotropic effect could
enhance the surface stability if the anisotropy ratio AR less than
1. The works of (Gao, 1991c; Li et al., 2008) are limited to one
dimensional surface perturbation so that two dimensional elas-
ticity theory can be used.
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The motivation of the present work is based on the fact that thin
film or imperfection profile can vary along any directions that lies
on the material’s mean plane. In the framework of anisotropic elas-
ticity, the problem will be treated in a general way with the use of
the Stroh formalism and the eigen solution method. The approach
is then applied to several particular cases where closed form and
numerical solutions are given. These results issued from the pres-
ent work show that both the wavelength of the surface profile
along two orthogonal directions and the complex stress state have
significant influences on the stress concentration and morphology
instability.

2. Problem formulation in anisotropic elasticity

2.1. Stress concentration in a wavy half space

In the Cartesian coordinate system Ox1x2x3 associated with the
orthonormal vector basis (e1,e2,e3), we consider a domain
bounded by the inequality

x2 � hðx1; x3ÞP 0; ð1Þ

where h(x1,x3) is a biperiodic function of two variables x1 and x3, ex-
pressed in the form

hðx1; x3Þ ¼ a cosðx1x1Þ cosðx3x3Þ; xi ¼
2p
ki
; i ¼ 1;3: ð2Þ

In Eq. (2), xi, ki are respectively the wavenumber and the wave-
length of h(x1,x3) in direction i (i = 1,3). The amplitude a of the wavy
surface appearing in (2) is assumed to be very small with respect to
the two wavelengths k1, k3, so that the dimensionless term e = ax
satisfies

e ¼ ax� 1; x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þx2
3

q
: ð3Þ

The term x introduced in (3) is called the equivalent wavenumber
of the wavy surface. On the other hand, we denote k as the equiva-
lent wavelength that satisfies the relations

k ¼ 2p=x or
1
k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k2

1

þ 1
k2

3

s
: ð4Þ

From (2) and (3), we remark that the case e = 0 corresponds to a flat
surface h(x1,x3) = 0 and a sufficiently small value of e as in (3), can
model a surface which is slightly deviated from the flat one. The
parameter e will be used in later perturbation analysis.

In terms of the boundary conditions, the surface x2 = h(x1,x3) is
free of stress and at infinity, the halfspace is subject to uniform lat-
eral stresses R0 with components R0

2i ¼ 0 (i = 1,2,3). In the coordi-
nate system Ox1x2x3, the components of the remote stresses R0 are
regrouped in the following matrix:

R0 ¼
R0

11 0 R0
13

0 0 0
R0

13 0 R0
33

264
375 in Ox1x2x3: ð5Þ

Hence, the boundary conditions of the problem are the two
equations

R � n ¼ 0 if x2 ¼ hðx1; x3Þ; lim
x2!1

R ¼ R0; ð6Þ

where R is the stress field in the solid and n is the normal vector to
the surface x2 = h(x1,x3). Since h(x1,x3) is given by (2), the normal
vector n is expressed in the exact form as

nðxÞ ¼ � e2 þ ax1 sinðx1x1Þ cosðx3x3Þe1 þ ax3 cosðx1x1Þ sinðx3x3Þe3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2x2

1 sin2ðx1x1Þ cos2ðx3x3Þ þ a2x2
3 cos2ðx1x1Þ sin2ðx3x3Þ

q :

ð7Þ
Inside the considered solid, we assume that the displacement u,
strain E and stress R satisfy the fundamental equations of linear
elasticity

R ¼ C : E; rx � R ¼ 0; E ¼ ðrxuþrt
xuÞ=2: ð8Þ

By writing (8)1,2, we mean that the solid is elastically anisotropic
and free of body force. The superscript t is used to designate the
transpose. The fourth order tensor C in (8)1 is called the elasticity
tensor. When the surface is flat (e = 0), it is straightforward to verify
that the trivial solution

R ¼ R0; E ¼ E0 ¼ C�1 : R0; u ¼ u0 ¼ E0 � x ð9Þ

satisfies all the elasticity Eq. (8) and the stress boundary conditions
(6). When e is nonzero and sufficiently small, i.e. 0 < e� 1, we treat
the half space as if it has a flat boundary and account for the undu-
lating effect of the surface by modifying the boundary equations at
x2 = 0 using (7). In the framework of perturbation analysis, we ex-
press the solution fields R, u, E and the normal vector n under
the form

Rðx; eÞ ¼ R0ðxÞ þ eR1ðxÞ þ e2R2ðxÞ þ � � �
uðx; eÞ ¼ u0ðxÞ þ eu1ðxÞ þ e2u2ðxÞ þ � � �
Eðx; eÞ ¼ E0ðxÞ þ eE1ðxÞ þ e2E2ðxÞ þ � � �
nðx; eÞ ¼ n0ðxÞ þ en1ðxÞ þ e2n2ðxÞ þ � � �

ð10Þ

Inserting (10) into (8) and carrying out the order analysis of e, we
can demonstrate that any group (i P 1) composed of three elements
Ri(x), Ei(x), ui(x) satisfy (8) and the conditions

R0 � n0 ¼ 0; R1 � n0 þ R0 � n1 ¼ 0; R0 � n2 þ R1 � n1 þ R2 � n0

¼ 0; . . . lim
x2!1

Ri ¼ 0; 8i P 1: ð11Þ

The final solution R, E, u can be constructed by solving successively
problems related to order ei: Ri, Ei, ui. If the perturbation parameter
e is small, the consideration of up to the first order of e can give sat-
isfactory results and will be adopted in the following analysis. From
(2), we can calculate the two leading terms n0 and n1 of n

n0ðxÞ ¼ �e2; n1ðxÞ ¼ � ~x1 sinðx1x1Þ cosðx3x3Þe1

� ~x3 cosðx1x1Þ sinðx3x3Þe3 ð12Þ

with ~x1; ~x3 being the normalized wavenumber

~x1 ¼ x1=x; ~x3 ¼ x3=x: ð13Þ

Inserting the formulae of n0 and n1 in (12) into the second equation
of (11) yields

2t1
2 þ ~x1t0

1 þ ~x3t0
3

� �
sinðx1x1 þx3x3Þ þ ~x1t0

1 � ~x3t0
3

� �
sinðx1x1

�x3x3Þ ¼ 0: ð14Þ

By writing ti
j in (14), we mean the stress vector on the face normal

to ej associated to the stress state Ri

ti
j ¼ Ri � ej ¼ Ri

1je1 þ Ri
2je2 þ Ri

3je3; j ¼ 1;2;3; i ¼ 1;2; . . . ð15Þ

From (5) and (14), we can see that the distribution t1
2 is a sinusoidal

function of x1, x3 and lies on the plane Ox1x3. The equation of t1
2 in

(14) serves as boundary conditions to determine the solution corre-
sponding to first order of e: R1, E1, u1 from the previously known
solution R0, E0, u0. In the framework of linear elasticity, R1 must
be linearly proportional to R0 via a fourth order tensor L, which al-
lows us to write

R ¼ ðIþ eLÞ : R0: ð16Þ
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The tensor I is the fourth-order identity tensor and the term Iþ eL
appears as the stress concentration tensor. Let us consider next a
special case where the stress tensor R0 takes Ox1 and Ox3 as its prin-
cipal axes, or

t0
1 ¼ R0

11e1; t0
3 ¼ R0

33e3: ð17Þ
All the components of the stress tensor R are of order e except R11

and R33. The maximal value of these two components are related to
R0

11 and R0
33 via the equations

R11 max ¼ R0
11 þ k11eR0

11 þ k13eR0
33;

R33 max ¼ R0
33 þ k31eR0

11 þ k33eR0
33:

ð18Þ

where k11, k13, k31, k33 are four constant factors. These factors plays
an important role in the stress concentration effect and their deter-
mination is the main objective of the stress concentration problem.

2.2. Surface morphology stability problem

Let us now consider another problem which is of practical inter-
est and most of all, it is closely linked to the stress concentration
problem discussed in the previous subsection. When we stress a
halfspace, a small perturbation in shape can give rise to the insta-
bility. Typically, a perturbation can be a sinusoidal of surface coor-
dinate (2) with increasing waviness e and the instability
correspond to an decrease in the free energy F in response to such
perturbation. The instability criteria can be expressed as follows

_F < 0 if _e > 0: ð19Þ

Due to the problem periodicity in x1, x3, we shall next restrict our
study to one period only, say the region having the area S0 = k1k3 de-
fined by

�k1=2 6 x1 6 k1=2; �k3=2 6 x3 6 k3=2: ð20Þ

The average free energy F (Freund and Suresh, 2003) per period is
equal to

F ¼ Ue þ Us; Ue ¼
1
S0

Z
V

weðEÞdV ; Us ¼
1
S0

Z
S
cs dS; ð21Þ

where Ue and Us are the average bulk and the surface energy per
period. These two energy terms can be evaluated by integrating
the strain and surface energy density we and cs over the volume V
and surface S per period of the considered system. If the distribution
of the surface energy density cs is known, the average surface en-
ergy per period is given by the formula

Us ¼
1
S0

Z
S0

cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

;1 þ h2
;3

q
dS: ð22Þ

Eq. (22) is obtained from (21)3 by transforming the integral over the
curved surface S into the integral over S0, the projection of S onto
the Ox1x3 plane. In this work, the surface energy density cs is as-
sumed to be a function of the local surface orientation (see Gao
(1991c)), say

cs ¼ csðh;1; h;3Þ: ð23Þ

We remark that the Taylor development of cs(h,1,h,3) andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

;1 þ h2
;3

q
around the origin (h,1,h,3) = (0,0) admit

csðh;1;h;3Þ ¼ csð0;0Þ þ h;1
@cs

@h;1
ð0;0Þ þ h;3

@cs

@h;3
ð0;0Þ

þ
h2
;1

2
@2cs

@h2
;1

ð0;0Þ þ
h2
;3

2
@2cs

@h2
;3

ð0;0Þþ h;1h;3
@2cs

@h;1h;3
ð0;0Þ þ � � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2

;1 þ h2
;3

q
¼ 1þ 1

2
h2
;1 þ h2

;3

� �
þ � � �

ð24Þ
The surface anisotropy effect considered in this paper is due to its
geometry only. The slope dependence of the surface energy density
function cs is considered the same along both directions Ox1 and Ox3

@cs

@h;1
ð0;0Þ ¼ @cs

@h;3
ð0;0Þ; @2cs

@h2
;1

ð0;0Þ ¼ @
2cs

@h2
;3

ð0;0Þ: ð25Þ

As long as the perturbation amplitude is sufficiently small, the sur-
face energy Us can be approximated by the expression

Us ’ c
csð0;0Þ

c
þ e2

8

� �
; c ¼ csð0;0Þ þ

@2cs

@h2
;1

ð0;0Þ ð26Þ

with c being the reduced surface energy density. The temporal
derivative of the surface energy _Us is given by

_Us ¼
1
4
ce _e: ð27Þ

The variation of the strain energy due to the film evolution is de-
rived in a general way in Freund and Suresh (2003). In the absence
of body force and work exchange between the materials and its sur-
roundings, the formula for _Ue is the following

_Ue ¼
1
S0

Z
S0

wevn dS: ð28Þ

where vn is the normal velocity at the surface due to the perturba-
tion. Given that the perturbation is described by (2), vn takes the
form as

vn ¼ �
_e
x

cosðx1x1Þ cosðx3x3Þ: ð29Þ

Next, assuming that we have solved the stress concentration prob-
lem described in the previous section and found the stress and
strain field solution R and E, the bulk strain energy density we is
determined by the expression

2we ¼ R : E ’ R0 : E0 þ 2eR0 : E1: ð30Þ

The temporal derivative _Ue becomes

_Ue ¼ �
_ee
x

I; ð31Þ

in which I denotes the following integral

I ¼ 1
S0

Z
S0

R0 : E1 cosðx1x1Þ cosðx3x3ÞdS: ð32Þ

The instability criteria (19) is now simplified into

xc < 4I or k > kcr ¼
pc
2I
: ð33Þ

The quantity kcr in (33) is called the critical wavelength. In this pa-
per, we also consider a special case where the waviness is in one
direction only, say x3 = 0 and x = x1 – 0. The surface profile func-
tion h has the following form:

hðx1; x3Þ ¼ a cos xx1: ð34Þ

The area S0 to compute the average surface energy and average en-
ergy is reduced to a rectangular area having the length k = k1 along
the direction Ox1 and unit length along the direction Ox3. The sur-
face energy is a scalar function of the slope h,1, i.e. cs = cs(h,1). In
such situation, Us and its time derivative _Us become

Us ¼ c
csð0Þ

c
þ e2

4

� �
; _Us ¼

1
2
ce _e ð35Þ

with c ¼ csð0Þ þ c00s ð0Þ. On the other hand, the temporal derivative of
the strain energy _Ue is written in the form as
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_Ue ¼ �
_ee
x

I; with I ¼ 1
k

Z þk=2

�k=2
R0 : E1 cosðxx1Þdx1: ð36Þ

The instability criteria for the one dimensionally undulating surface
now reads

xc < 2I or k > kcr ¼
pc
I
: ð37Þ

As we can see from the instability criteria (33) and (37), the most
important work in the instability analysis is now the evaluation of
the integral I specified by Eqs. (32) and (36). To facilitate the calcu-
lation of integral I, we rewrite the term R0 :E1 in another form

R0 : E1 ¼ t0
1 �
@u1

@x1
þ t0

2 �
@u1

@x2
þ t0

3 �
@u1

@x3
: ð38Þ

Due to the form of R0 given by (5), one can deduce that t0
2 ¼ 0 and

simplify Eq. (38) into the expression

R0 : E1 ¼ t0
1 �
@u1

@x1
þ t0

3 �
@u1

@x3
: ð39Þ
2.3. The Stroh formalism

Let us introduce first the elements of the Stroh formalism, an
important tool to solve our problems in anisotropic elasticity. We
rewrite the Hooke’s law (8) for anisotropic materials in the follow-
ing form:

ti ¼ Cij
@u
@xj

; i; j ¼ 1;2;3; ð40Þ

where ti, u are respectively the stress vector on the face normal to
Oxi and the displacement vector. The square matrices Cij are made
by rearranging the components of the fourth-order elasticity tensor
C as follows:

Cij ¼
Ci11j Ci12j Ci13j

Ci21j Ci22j Ci23j

Ci31j Ci32j Ci33j

264
375; i; j ¼ 1;2;3: ð41Þ

Due to the symmetry of C, we also must have the relation Cij ¼ Ct
ji.

In the absence of body force, the Navier equations in anisotropic
elasticity are then reduced to

Cij
@2u
@xi @xj

¼ 0: ð42Þ

For generalized plane strain problems in the plane Ox1x2, Stroh
(1958, 1962) investigated a special form of the displacement field

u ¼ af ðzÞ; z ¼ x1 þ nx2; ð43Þ

where n is a constant to be determined. Substituting into (42), we
obtain the matrix equation

ðC11 þ nðC12 þ C21Þ þ n2C22Þa ¼ 0: ð44Þ

The matrices C11, C12, C21, C22 are respectively equivalent to Q,R,Rt,T
in Ting (1996). To obtain a non trivial solution a, n must be a root of
the sextic equation

jC11 þ nðC12 þ C21Þ þ n2C22j ¼ 0: ð45Þ

Eq. (45) is called the characteristic equation and has no real roots.
We denote by n1, n2, n3 the three distinct complex roots of (45) with
positive imaginary parts and a1, a2, a3 the corresponding eigenvec-
tors. A real general solution for the displacement is derived by
superposing the eigensolutions as follows

u ¼ 2R
X3

a¼1

aafaðzaÞ
( )

; or u ¼ 2RfAfðzÞg for brevity ð46Þ
in which

A ¼ ½a1;a2;a3�; fðzÞ ¼ ½f1ðz1Þ; f2ðz2Þ; f3ðz3Þ�t ; zi ¼ x1 þ nix2: ð47Þ

The two notations Rfag and Ifag denote respectively the real and
imaginary part of the complex number a. Next, we define the two
matrices P and B by the expressions

P ¼ hnii ¼ diag½n1; n2; n3�; B ¼ C21Aþ C22AP: ð48Þ

In (48)1, we adopt the notation hnii for diagonal matrix whose ele-
ments are ni with i running from 1 to 3. Next, we introduce two Her-
mitian tensors in 2D anisotropic elasticity: the impedance tensor M
and its inverse M⁄ which will be used in the later analysis. By def-
inition, M and M⁄ are given by the expressions

M ¼ �iBA�1
; M� ¼ iAB�1

: ð49Þ

For monoclinic materials whose plane of symmetry coincides with
the plane Ox1x2, the matrix M⁄ depends on two roots n1 and n2 only
(see Ting (1996))

M� ¼
s011Ifn1 þ n2g �i s011n1n2 � s012

� �
0

�i s012 � s011
�n1

�n2
� �

s011Ifn1n2ð�n1 þ �n2Þg 0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s044s055 � s045s045

p
264

375:
ð50Þ

The computation of n1 and n2 in (50) is now based on the quartic
characteristic equation

s011n
4 � 2s016n

3 þ s012 þ s066

� �
n2 � 2s026nþ s022 ¼ 0; ð51Þ

and the remaining root n3 is determined by a separate quadratic
equation

s055n
2 � 2s045nþ s044 ¼ 0: ð52Þ

The components s0ab; a; b ¼ 1;2; . . . ;6 in (50)–(52) are the reduced
elastic compliances associated to a plane strain problem (Ting,
1996). They are related to the usual elastic compliances sab in Voigt
notation by the following expression:

s0ab ¼ sab �
sa3s3b

s33
: ð53Þ

Another matrix also needed for the later analysis is the matrix N de-
fined by

N ¼ BPB�1: ð54Þ

For monoclinic materials, the matrix B takes the form as

B ¼
�k1n1 �k2n2 0

k1 k2 0
0 0 �k3;

264
375; ð55Þ

where k1, k2, k3 are constants that depend on the normalization of
matrix B (Ting, 1996). The matrix N is independent of k1, k2, k3

and has a simple expression

N ¼ BPB�1 ¼
n1 þ n2 n1n2 0
�1 0 0
0 0 n3

264
375: ð56Þ

For general anisotropy, the matrices M⁄ and N can be determined
via the Barnett–Lothe tensors L, S, H (see Barnett and Lothe, 1973;
Ting, 1996)

M� ¼ L�1 � iSL�1; N ¼ �i C12C�1
22 C21 � C11

h i
M� � C12C�1

22 ; ð57Þ

The Barnett–Lothe tensors L, S, H can be computed numerically by
the integrals
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L ¼ � 1
p

Z p

0
C12ðhÞC�1

22 ðhÞC21ðhÞ � C11ðhÞ
h i

dh;

S ¼ � 1
p

Z p

0
C�1

22 ðhÞC21ðhÞdh; H ¼ 1
p

Z p

0
C�1

22 ðhÞdh;

ð58Þ

in which the matrices C11(h), C12(h) and C22(h) are defined by

C11ðhÞ ¼ C11 cos2 hþ ðC12 þ C21Þ sin h cos hþ C22 sin2 h;

C12ðhÞ ¼ C12 cos2 hþ ðC22 � C11Þ sin h cos h� C21 sin2 h;

C22ðhÞ ¼ C22 cos2 h� ðC12 þ C21Þ sin h cos hþ C11 sin2 h:

ð59Þ
3. One dimensional wavy surface

3.1. Stress concentration problem

In this section, we consider the case where the our surface is
undulating along one direction only, say Ox1. The values of the
wavenumbers x1, x3 and x are expressed as follows:

x3 ¼ 0; x ¼ x1 – 0: ð60Þ

As discussed in Section 2, in order to determine the solution u1, R1,
E1 corresponding to the first order of e, we consider a half space
subject to the stress boundary conditions at x2 = 0 and at infinity:

R1 � e2 ¼ t1
2 ¼ � sinðxx1Þt0

1 when x2 ¼ 0; lim
x2!1

R1 ¼ 0; ð61Þ

where t0
1 is a known vector equal to

t0
1 ¼ R0 � e1: ð62Þ

We note that the boundary conditions (61)1 are derived from (14)
using (60). With the Stroh formalism, one can verify that the vector
function f(z) in the form

fðzÞ ¼ 1
2x
heixzi iB�1t0

1 ð63Þ

correspond to a stress field satisfying the boundary conditions (61).
Indeed, the stress components associated to the given vector func-
tion f(z) become

t1
1 ¼ �RfiBPheixzi iB�1gt0

1;

t1
2 ¼ RfiBheixzi iB�1gt0

1;

t1
3 ¼ Rfi½C31Aþ C32AP�heixzi iB�1gt0

1:

ð64Þ

Due to the fact that the imaginary parts of zi are all positive, all
stress components decay as x2 ?1, so that the second condition
of (61) is fulfilled. Next, we also remark that the diagonal matrix
hexp(ixzi)i at x2 = 0 is reduced to a scalar matrix

hexpðixziÞi ¼ expðixx1ÞI at x2 ¼ 0; I ¼ diag½1;1;1�: ð65Þ

After substituting (65) into (64), we recover the first condition of
(61). To derive the stress field on the surface which is first order
accurate in e, we substitute x2 = 0 in (64) and use (10) to obtain

t1 ’ ½I� eRfiNeixx1g�t0
1;

t2 ’ �e sinðxx1Þt0
1;

t3 ’ t0
3 þ eRf½C31M� þ C32M�N�eixx1gt0

1;

ð66Þ

In a particular case where the uniform remote stress field whose
principal axes coincide with Ox1 and Ox3 as specified in Eq. (17).
The maximal stress R11max and R33max on the faces normal to Ox1

and Ox3 become

R11 max ¼ R0
11ð1þ jN11jeÞ;

R33 max ¼ R0
33 þ et

3ðC31M� þ C32M�NÞe1

		 		R0
11e:

ð67Þ
In (67), jaj denotes the modulus of the complex number a. The fac-
tors kij with i, j = 1, 3 according to the definition (18) are the
followings

k11 ¼ jN11j; k31 ¼ et
3ðC31M� þ C32M�NÞe1

		 		;
k13 ¼ k33 ¼ 0: ð68Þ

Since the matrix N and M⁄ for general anisotropy can be computed
numerically via the Barnett–Lothe integrals (57)–(59), the factors kij

can also be calculated numerically. For monoclinic materials whose
plane of symmetry coincide with Ox1x2, the form of the matrix N is
given by (56). The coefficient k11 can now be expressed by an aston-
ishingly simple equation

k11 ¼ jn1 þ n2j: ð69Þ

Thanks to the form of M⁄ in (50) and N in (56), the analytical for-
mula of k31 can also be obtained in terms the roots ni, the reduced
elastic compliances s0ij and the elasticity tensor components. We
also remark that for orthotropic materials with planes of symmetry
coinciding with Ox1x2, Ox1x3, Ox2x3, the characteristic Eq. (51) to
find n1, n2 is reduced to a quadratic equation of n2

s011n
4 þ 2s012 þ s066

� �
n2 þ s022 ¼ 0: ð70Þ

Thus the roots n1, n2 with positive imaginary parts for this case can
be determined explicitly from the relation

n2
i ¼

2s012 þ s066

2s011
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s012 þ s066

2s011


 �2

� s022

s011

s
; i ¼ 1;2: ð71Þ

With n3 given in (52), it is possible to express the matrices M⁄ and N
purely in terms of elastic constants. For isotropic materials with the
Young’s modulus E and the Poisson ratio m, the reduced elastic com-
pliances become s011 ¼ ð1� m2Þ=E; s012 ¼ �mð1þ mÞ=E; s016 ¼
2ð1þ mÞ=E. In such situation, we can easily calculate the roots
n1 = n2 = n3 = i and the stress concentration factors

k11 ¼ 2; k31 ¼ 2m; ð72Þ

which is in agreement with the results of Gao (1991a).
Next, based on (68) and (69), we calculate the coefficients k11

and k31 for some cubic materials with elastic constants c11, c12,
c44 in Voigt notation (see Table 1). The degree of departure from
isotropy is characterized by the anisotropy ratio ARdefined as

AR ¼ 2c44

c11 � c12
: ð73Þ

For the given materials in Table 1, AR ranges from 0.7 to 3.21 and
AR = 1 for isotropic materials. As for the factor k11, the numerical re-
sults show that the stress concentration for the materials with
AR < 1 (the factor k11 > 2) is more critical than those with AR > 1
(the factor k11 < 2).

3.2. Surface stability problem

Having found f(z) in (63), we develop the displacement field u1

corresponding the first order of e as follows:

u1 ¼ 1
x

R Aheixzi iB�1
n o

t0
1: ð74Þ

Differentiating u1 with respect to the spatial variable x1, x2, x3 and
substituting x2 = 0, we obtain the value of R0 :E1 in (39) on the sur-
face, for example

R0 : E1 ¼ t0
1:Rfeixx1 M�g � t0

1: ð75Þ

Denoting D as the real part of M⁄, or D ¼ RfM�g, the integral I de-
fined by (36) can be written as



Table 1
Factors k11 and k31 for some cubic materials ð ~x1 ¼ 1; ~x3 ¼ 0Þ.

Name AR c11 (GPa) c44 (GPa) c12 (GPa) n1 n2 k11 k31

Cu 3.21 168.4 75.4 121.4 0.77 + 0.64i �0.77 + 0.64i 1.28 0.54
Ag 3.01 124.0 46.1 93.4 0.77 + 0.64i �0.77 + 0.64i 1.28 0.55
Pt 1.59 346.7 76.5 250.7 0.57 + 0.82i �0.57 + 0.82i 1.66 0.69
Cr 0.70 339.8 99.0 58.6 0.60i 1.61i 2.21 0.33
Cb 0.78 240.2 28.2 125.6 0.45i 2.22i 2.67 0.92
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I ¼ x
2p

Z þk=2

�k=2
R0 : E1 cosðxx1Þdx1 ¼

1
2

t0
1 � D � t0

1: ð76Þ

The instability criteria (37) combined with (76) becomes

k > kcr ¼
2pc

t0
1 � D � t0

1

: ð77Þ

which is in agreement with the results of Gao (1991c). In a partic-
ular case where R0 take the principal axes to be Ox1 and Ox3 (see
Eq. (17)), the value of the critical wavelength kcr in (77) is simplified
into the form

kcr ¼
2pc

D11 R0
11

� �2 : ð78Þ

Interestingly, the critical wavelength kcr according to (78) is inde-
pendent of the lateral stress R0

33 acting in the direction Ox3. For gen-
eral anisotropic materials, D11 can be computed numerically via the
Barnett–Lothe integrals. For monoclinic materials whose plane of
symmetry coincide with Ox1x2, from (50), D11 admits a simple ana-
lytic expression

D11 ¼ s011Iðn1 þ n2Þ: ð79Þ

For isotropic material, using the fact that s011 ¼ ð1� m2Þ=E and
n1 = n2 = i, the criteria (78) is in agreement with the results issued
from Gao (1991b)

kcr ¼
pEc

ð1� m2Þ R0
11

� �2 : ð80Þ

For orthotropic materials taking both Ox1x2 and Ox2x3 as their
planes of symmetry, the characteristic equation to determine the
n1, n2 is reduced to a quadratic equation (70) of n2. One can also
demonstrate that if n1, n2 are roots with positive imaginary parts
then the following relation must verify

n1 þ n2 ¼ Iðn1 þ n2Þ: ð81Þ

Combined with (69), one can prove that D11 ¼ s011k11 and the insta-
bility criteria is directly related to the factor k11

kcr ¼
2pc

s011k11 R0
11

� �2 : ð82Þ

As the consequences, the values of k11 for some cubic materials gi-
ven in Table 1 can be used directly in the instability criteria.
4. Two dimensional wavy surface

We consider now the general case where the surface is undulat-
ing along two directions 1 and 3, e.g. x1 – 0, x3 – 0. In order to
determine the solution u1, R1, E1 corresponding to the first order
of e, we consider a half space subject to the stress boundary condi-
tions specified in (14). Before proceeding, we solve first the auxil-
iary problem presented in the following subsection.
4.1. Auxiliary problem and solution

The aim of this subsection is to find the solution u
01, R

01, E
01 that

satisfies the following boundary conditions:

R01 � e2 ¼ t012 ¼ �
1
2

~x1t0
1 þ v ~x3t0

3

� �
sinðx1x1 þ vx3x3Þ

when x2 ¼ 0; lim
x2!1

R01 ¼ 0; ð83Þ

The parameter v in (83) can take either of the two values v = +1 or
v = �1. To solve the problem with the boundary conditions (83),
one can use directly the results of the surface wave theory: finding
the displacement vector as a complex exponential function of the
coordinates. The form of latter is a special form of surface wave dis-
placement (see e.g.Ting, 1996; Tanuma, 2007) when the phase
speed is equal to 0. On the other hand, one can reduce the problem
to 2D case with a coordinate transformation and use the results of
Section 3. Such methods have been used in the works of Gao and
Suo (2003) and Gao (2003). They also showed that problems with
periodic tractions can also be solved since any periodic function is
equivalent to a Fourier series.

We study a special complex form of u
01 that satisfies the Navier

equation for anisotropic elasticity (42)

u01 ¼ a0eixð ~x1x1þv ~x3x3þn0x2Þ ð84Þ

with a0 being a constant complex vector. Next, we also define the
matrix C011;C

0
12;C

0
21;C

0
22 from Cij as follows:

C011 ¼ ~x2
1C11 þ v ~x1 ~x3ðC13 þ C31Þ þ ~x2

3C33; C022 ¼ C22;

C012 ¼ ~x1C12 þ v ~x3C32; C021 ¼ ~x1C21 þ v ~x3C23:
ð85Þ

Inserting the formula (84) into (42) combined with (85), we obtain
the equation

C011 þ C012 þ C021

� �
n0 þ C022n

02� 

a0 ¼ 0: ð86Þ

To find a nonzero vector a0, n must be a root of the equation

C011 þ C012 þ C021

� �
n0 þ C022n

02		 		 ¼ 0 ð87Þ

Here again, we encounter a characteristic sextic Eq. (87) to deter-
mine n0 and its associated eigenvector a0. Since this sextic equation
has no real roots (Ting, 1996; Willis, 1966), we denote n01; n02; n03 as
the three roots with positive imaginary parts and a01; a02; a03 are the
eigenvectors associated to them. We also define the matrix A0, P0 by

A0 ¼ a01; a
0
2; a

0
3

� 

; P0 ¼ n0i

� �
¼ diag n01; n

0
2; n

0
3

� 

: ð88Þ

Consequently, a complex solution of u
01 that satisfies the Navier’s

equation (42) can be constructed by a linear superposition. As we
are interested in real solution, the following real form for the dis-
placement field is chosen

u01 ¼ 2R A0heixn0i �xih
n o

: ð89Þ

Differentiating u
01 with respect to the coordinates x1, x2, x3 and

using the Hooke’s law (40), we can find the stress vectors
t011 ; t012 ; t013 on the faces normal to e1, e2, e3



Table 2
Factors kij for some cubic materials ð ~x1 ¼ ~x3 ¼ 1=

ffiffiffi
2
p
Þ.

Name AR c11 (GPa) c44 (GPa) c12 (GPa) k11 = k33 k13 = k31

Cu 3.21 168.4 75.4 121.4 0.63 0.07
Ag 3.01 124.0 46.1 93.4 0.66 0.08
Pt 1.59 346.7 76.5 250.7 0.94 0.17
Cr 0.70 339.8 99.0 58.6 1.29 0.10
Cb 0.78 240.2 28.2 125.6 1.70 0.28
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t011 ¼ 2xR iF0heixn0i �xih
n o

; t012 ¼ 2xR iB0heixn0i �xih
n o

;

t013 ¼ 2xR iG0heixn0i �xih
n o

; ð90Þ

where the matrices B0, F0 and G0 are defined by

F0 ¼ ð ~x1C11 þ v ~x3C13ÞA0 þ C12A0P0;

B0 ¼ ð ~x1C21 þ v ~x3C23ÞA0 þ C22A0P0;

G0 ¼ ð ~x1C31 þ v ~x3C33ÞA0 þ C32A0P0:

ð91Þ

Due to the fact that all n0i have positive imaginary parts, all stress
components decay when x2 ?1. At x2 = 0, the traction t2 becomes

t012 ¼ 2xR iB0heiðx1x1þvx3x3Þ
� �

: ð92Þ

As a result, by choosing conveniently the vector h as follows:

h ¼ 1
4x

B0�1 ~x1t0
1 þ v ~x3t0

3

� �
; ð93Þ

the stress boundary conditions (83) are satisfied. The corresponding
displacement field has now become

u01 ¼ 1
2x

R A0heixn0ixiB0�1
n o

~x1t0
1 þ v ~x3t0

3

� �
: ð94Þ

In another method, since the stress boundary condition (83)1 is a
function of x1 + vx3, the auxiliary problem can be reduced to a 2D
problem by changing the frame of reference (see Appendix A).

4.2. Stress concentration problem

In the auxiliary problem, v can take either of the two values:
v = +1 and v = �1. In what follows, we label the associated nota-
tion with superscript + and �, for example

u01þ;R01þ;E01þ;C0þij ;A
0þ
;P0þ;B0þ; . . . for v ¼ þ1;

u01�;R01�;E01�;C0�ij ;A
0�
;P0�;B0�; . . . for v ¼ �1:

ð95Þ

Using the results (94) from the auxiliary problem and the linear
superposition principle, one can obtain u1 in the form

u1 ¼ u01þ þ u01� ¼ 1
2x

R A0þheixn0þ
i
�xiðB0þÞ�1 ~x1t0

1 þ ~x3t0
3

� �n
þA0�heixn0�i �xiðB0�Þ�1 ~x1t0

1 � ~x3t0
3

� �o
: ð96Þ

The associated stress components grouped in vectors t1
1; t

1
2; t

1
3 are gi-

ven below

t1
1 ¼

1
2

R J0þ ~x1t0
1 þ ~x3t0

3

� �
eiðx1x1þx3x3Þ þ J0� ~x1t0

1 � ~x3t0
3

� �
eiðx1x1�x3 x3Þ

� �
;

t1
2 ¼�

1
2

~x1t0
1 þ ~x3t0

3

� �
sinðx1x1 þx3x3Þ �

1
2

~x1t0
1 � ~x3t0

3

� �
sinðx1x1 �x3x3Þ;

t1
3 ¼

1
2

R K0þ ~x1t0
1 þ ~x3t0

3

� �
eiðx1 x1þx3 x3Þ þK0�ð ~x1t0

1 � ~x3t0
3Þeiðx1 x1�x3 x3Þ

� �
:

ð97Þ

The matrices J
0± and K

0± in (97) are equal to the matrix products

J0� ¼ iF0�ðB0�Þ�1
; K0� ¼ iG0�ðB0�Þ�1

: ð98Þ

From the relations (91) and (98), the matrices J
0± and K

0± are given
explicitly by the expressions

J0� ¼ ð ~x1C11 � ~x3C13ÞM0�� þ C12M0��N0�;

K0� ¼ ð ~x1C31 � ~x3C33ÞM0�� þ C32M0��N0�
ð99Þ

with N
0± and M

0⁄± being the matrices

N0� ¼ B0�P0�ðB0�Þ�1
; M0�� ¼ iA0�ðB0�Þ�1

: ð100Þ

We consider next a special case where the principal axes of the
stress tensor coincide with Ox1 and Ox3 (see Eq. (17)) and the con-
sidered material has two planes of symmetry Ox1x2, Ox2x3. Due to
the symmetry of the problem (see Appendix B), the stress compo-
nents R1

11; R1
33 can be evaluated by the expression

R1
11 ¼ R0

11 ~x1J0þ11 þ R0
33 ~x3J0þ13

h i
cosðx1x1Þ cosðx3x3Þ;

R1
33 ¼ R0

11 ~x1K 0þ31 þ R0
33 ~x3K 0þ33

h i
cosðx1x1Þ cosðx3x3Þ;

ð101Þ

where J0þ11; J0þ13; K 0þ31 and K 0þ33 are the real elements of the matrices J
0+

and K
0+. The factor kij with i, j = 1, 3 according to definition (18) can

be computed as

k11 ¼ ~x1J0þ11; k33 ¼ ~x3K 0þ33; k13 ¼ ~x3J0þ13; k31 ¼ ~x3K 0þ31: ð102Þ

For isotropic materials with Young’s modulus E and Poisson ratio m,
the matrices J

0+ and K
0+ can be determined explicitly (see Appendix

C), which allows us to derive the factors kij. The factors kij for isotro-
pic materials are independent of the Young’s modulus E and written
as follows:

k11 ¼ 2 ~x2
1 1� m ~x2

3

� �
; k33 ¼ 2 ~x2

3 1� m ~x2
1

� �
;

k13 ¼ 2m ~x4
3; k31 ¼ 2m ~x4

1:
ð103Þ

For general anisotropic materials, it is possible to calculate J
0+ and

K
0+ numerically with the Barnett–Lothe integrals. As an example,

we consider a special system where the material is cubic ones
and the perturbation wavelength is the same for both two direc-
tions Ox1, Ox3 or

h ¼ a cosðxx1Þ cosðxx3Þ; ~x1 ¼ ~x3 ¼ 1=
ffiffiffi
2
p

: ð104Þ

The mechanical properties of the considered materials are taken to
be the same as Table 1 in Section 3 and the calculated values of kij

are given in Table 2. As in the one dimensional wavy surface case,
we observe the different stress concentration features for materials
with AR > 1 and AR < 1. The stress factors kij for materials with
AR < 1 is more critical than those with AR > 1.

4.3. Surface stability problem

The integral I specified by (32) becomes

I ¼ A
S0

Z
S0

cos2ðx1x1Þ cos2ðx3x3ÞdS ¼ A=4; ð105Þ

in which the constant A is defined by the expression

A ¼ 1
2

~x1t0
1 þ ~x3t0

3

� �
D0þ ~x1t0

1 þ ~x3t0
3

� �
þ 1

2
~x1t0

1 � ~x3t0
3

� �
D0� ~x1t0

1 � ~x3t0
3

� �
: ð106Þ

The matrices D
0± are the real parts of the matrices M

0⁄±. The instabil-
ity criteria (33) now becomes

4pc
kcr
¼ ~x1t0

1 þ ~x3t0
3

� �
D0þ ~x1t0

1 þ ~x3t0
3

� �
þ ~x1t0

1 � ~x3t0
3

� �
D0� ~x1t0

1 � ~x3t0
3

� �
: ð107Þ

We consider next a special case where the principal axes of the
stress tensor coincide with Ox1 and Ox3 and the material possesses
two planes of symmetry as Ox1x2, Ox2x3. The symmetry of the prob-
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Fig. 1. The variation of kcr(R0)2/2pc (the vertical axis) in terms of ~x2
1 (the horizontal axis) for different cubic materials in unit GPa. Due to the material symmetry, all curves

are symmetric with respect to the value ~x2
1 ¼ 1=2.

Table 3
Summary of results.

Generally anisotropic Monoclinic Isotropic

Stress factors (1D) Eq. (68) Eq. (69) Eq. (72)
Stability criteria (1D) Eqs. (77) and (78) Eq. (79) Eq. (80)

Generally anisotropic Orthotropic Isotropic

Stress factors (2D) Eq. (97) Eq. (102) Eq. (103)
Stability criteria (2D) Eq. (107) Eq. (108) Eq. (110)
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lem (see Appendix C) allows us to rewrite the instability criteria
(33) as

2pc
kcr
¼ ~x2

1D0þ11 R0
11

� �2
þ D0þ13þD0þ31

� �
~x1 ~x3R

0
11R

0
33þ ~x2

3D0þ33 R0
33

� �2
;

ð108Þ

where D0þ11; D0þ13; D0þ31; D0þ33 denotes the elements of the matrix D
0+.

For isotropic materials, the matrix M
0⁄± can be determined explicitly

(see Appendix C) and we can obtain immediately the required ele-
ments of the matrix D

0±

D0þ11 ¼
2ð1þ mÞ

E
1� m ~x2

1

� �
; D0þ33 ¼

2ð1þ mÞ
E

1� m ~x2
3

� �
;

D0þ13 ¼ D0þ31 ¼ �
2mð1þ mÞ

E
~x1 ~x3:

ð109Þ

With (109), the instability criteria (107) now takes the new form as

kcr ¼
pEc

1þ m
~x2

1 R0
11

� �2
þ ~x2

3 R0
33

� �2
� m ~x2

1R
0
11 þ ~x2

3R
0
33

� �2
� ��1

:

ð110Þ

In the case where R0
33 ¼ R0

11 ¼ R0, we recover the instability criteria
for isotropic materials (Freund and Suresh, 2003)

kcr ¼
pEc

ð1� m2ÞðR0Þ2
: ð111Þ

For general anisotropic materials and arbitrary values of ~x1 and ~x3,
explicit formulae for D

0± in terms of elastic constants are not avail-
able. However, the computation of D

0± can always be done numer-
ically by the Barnett–Lothe integrals. As an examples, we consider
a special case where the materials is cubic and the principal lateral
stresses are the same in both directions Ox1 and Ox3, i.e.
R0

33 ¼ R0
11 ¼ R0. The instability criteria can be written as
kcr ¼
2pc

Dð ~x1; ~x3ÞðR0Þ2
with

Dð ~x1; ~x3Þ ¼ ~x2
1D0þ11 þ D0þ13 þ D0þ31

� �
~x1 ~x3 þ ~x2

3D0þ33:

ð112Þ

The values of the term kcr(R0)2/2pc for different materials and val-
ues of ~x1 and ~x3 are plotted in Fig. 1. From the numerical results,
we remark that for anisotropic materials, the critical wavelength
kcr is also dependent on the wavelength ratio k1/k3 (via normalized
wavenumbers ~x1; ~x3), what is in contrast with the isotropic mate-
rials (see Eq. (111)). In terms of variation trend, we remark that
materials with AR > 1 tends to have maximal critical wavelength
kcr when the waviness is in one direction only while those with
AR < 1 tends to have maximal critical wavelength kcr when the wav-
iness is the same in both direction ~x1 ¼ ~x3 ¼ 1=

ffiffiffi
2
p

.

5. Conclusions and perspectives

In this paper, we have studied the two problems associated to
the thin film systems: the stress concentration and the surface
morphology instability. The considered thin film is elastically
anisotropic bounded by a bidimensional undulating free surface.
The surface anisotropy effect is also captured via a surface energy
function that depends on the perturbation slopes. The stress con-
centration factors and the critical wavelength of the shape pertur-
bation are expressed in terms of matrices which can be computed
easily with Barnett–Lothe integrals. Analytical solutions are also
obtained for some particular cases.

The results issued from this work have shown that the material
anisotropy have a considerable effect on both stress concentration
factors and the critical wavelength of the thin films. Interestingly,
the enhancement of the stress factors is observed in the cubic
materials with anisotropy ratio less than unity AR < 1. Although
the numerical examples concern bidimensional perturbations
whose directions coincide with the stress directions and the mate-
rial’s plane of symmetry, the general case can be treated without
difficulties using the same approach.

We also demonstrate that the thin film instability criteria writ-
ten in terms of critical equivalent wavelength kcr is now dependent
on the wavelength ratio k1/k3, kcr = kcr(k1/k3). Numerical examples
on some cubic materials with AR > 1 and AR < 1 show two com-
pletely different variation trends of kcr in terms of the ratio k1/k3.
Remarking that the cases k1/k3 = 0 or 1 correspond to the one
dimensional perturbation problem. We conclude that the ratioffiffiffi

2
p

given by Gao (1994) between the biaxial and the plane strain
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critical wavelength for isotropic materials is no longer applicable in
this situation.

Based on the Stroh formalism, the solutions derived by the
author are subject to the limitations of the method: the displace-
ment constraints. In the Stroh formalism, the displacement compo-
nents are invariant in one direction, say Ox3. However, in practice,
there are also problems with stress constraints, e.g. free stress con-
ditions as in isotropic elastic plane stress problem, ri3 = 0, i = 1, 2,
3. Isotropic elastic film systems with free lateral stress boundary
conditions were studied by Gao (1994). Similar results can also
be obtained in the framework of anisotropic elasticity if the mate-
rial has a plane of symmetry that coincides with Ox1x2. In this case,
the solutions to the plane stress problem can be obtained from the
solutions in the present paper (plane strain problem) by replacing
the reduced elastic compliances s0ij with the usual elastic compli-
ances sij (Ting, 1996).

The thin film studied in this paper is assumed to be sufficiently
thick so that it can be treated as a halfspace. As a result, the present
model can not account for the substrate stiffness. Another interest-
ing problem, the evolution of the shape perturbation is also lack-
ing. These problems can be solved using the same approach and
shall be addressed in the future work.

Finally, the main results of this paper are summarized in
Table 3. Some numerical examples of the derived equations are
also presented in Tables 1 and 2.

Appendix A

We consider the transformation matrix X in the following form

X ¼
~x1 0 v ~x3

0 1 0
�v ~x3 0 ~x1

264
375: ðA:1Þ

Under the change of frame, a point with coordinates x(x1,x2,x3) will
have coordinates x̂ðx̂1; x̂2; x̂3Þ that satisfy the relations

x̂ ¼ Xx; x̂1 ¼ ~x1x1 þ v ~x3x3; x̂2 ¼ x2;

x̂3 ¼ �v ~x3x1 þ ~x1x3 ðA:2Þ

and the boundary condition (83)1 becomes

t̂1
2 ¼ �

1
2

X ~x1t0
1 þ v ~x3t0

3

� �
sinðxx̂1Þ when x̂2 ¼ 0 ðA:3Þ

with t̂1
2 ¼ being the traction vector in the new system. The boundary

conditions (A.3) are similar to (61)1 in Section 3 and the solutions of
Section 3 can be used directly. However, we must also recalculate
the Stroh’s matrices: the matrices of elastic constants bCij, the matrix
of eigenvalues bP, the matrices of eigen vectors bA; bB. The matrices bCij

are defined from Cij via the transformation rules and thus are re-
lated to the matrices C0ij in (85) via the expressionbC11 ¼ XC011X

t; bC12 ¼ XC012X
t; bC21 ¼ XC021X

t;bC22 ¼ XC022X
t : ðA:4Þ

The matrices bA; bB; bP are determined using the Stroh’s procedure
and the matrices bCij. One can also find the following connections be-
tween bA, bB; bP and the matrices A0, B0, P0bP ¼ P0; bA ¼ XA0; bB ¼ XB0: ðA:5Þ
Appendix B

The material is assumed to be orthotropic with two planes of
symmetry Ox1x2 and Ox2x3 and the stress state R0 takes Ox1 and
Ox3 as its principal axes. Under these circumstances, the two set
of solutions R

01+, E
01+, u

01+ and R
01�, E

01�, u
01� correspond to two
symmetric loadings with respect to the material symmetry planes.
We shall verify that the solutions with + sign are symmetric to
those with � sign, or mathematically

u01þðxÞ ¼ Qu01�ðx�Þ; E01þðxÞ ¼ QE01�ðx�ÞQ t ;

R01þðxÞ ¼ QR01�ðx�ÞQ t; x� ¼ Qx
ðB:1Þ

with Q being either of the two matrices Q1 and Q3

Q 1 ¼
�1 0 0
0 1 0
0 0 1

264
375; Q 3 ¼

1 0 0
0 1 0
0 0 �1

264
375: ðB:2Þ

We also remark that with matrices Q1 and Q3 given by (B.2), the
point x⁄ is symmetric to x with respect to the plane Ox2x3 and Ox1x2.

Since the elasticity tensor C is invariant with respect to the
change of frame defined by Q, if the solution set R

01�(x), E
01�(x),

u
01�(x) satisfy the elasticity Eq. (8), R

01+(x), E
01+(x), u

01+(x) defined
by (B.1) also satisfy (8). Next, as the principal directions of the
stress state R0 coincide with e1 and e3 as in (17), using (83), we
can prove that the stress boundary conditions associated to R

01+,
E
01+,u

01+ are symmetric to those associated to R
01�, E

01�, u
01� with

respect to both planes Ox1x2 and Ox2x3

R01þðxÞe2 ¼ QR01�ðx�Þe2: ðB:3Þ

In particular, we obtain the following relations for displacements

u01þ1 ðx1; x2; x3Þ ¼ u01�1 ðx1; x2;�x3Þ;
u01þ1 ðx1; x2; x3Þ ¼ �u01�1 ð�x1; x2; x3Þ;
u01þ3 ðx1; x2; x3Þ ¼ u01�3 ð�x1; x2; x3Þ;
u01þ3 ðx1; x2; x3Þ ¼ �u01�3 ðx1; x2;�x3Þ:

ðB:4Þ

and other relations for stresses

R01þ11 ðx1;x2;x3Þ ¼ R01�11 ð�x1;x2;x3Þ ¼ R01þ11 ð�x1;x2;x3Þ ¼ R01�11 ðx1;x2;�x3Þ;
R01þ33 ðx1;x2;x3Þ ¼ R01�33 ðx1;x2;�x3Þ ¼ R01þ33 ð�x1;x2;x3Þ ¼ R01�33 ð�x1;x2;x3Þ;
R01þ13 ðx1;x2;x3Þ ¼ �R01�13 ð�x1;x2;x3Þ; R1þ

013ðx1;x2;x3Þ ¼ �R01�13 ðx1;x2;�x3Þ:
ðB:5Þ

The relations (B.4) and (B.5) are valid for any R0
11;R

0
33. Now we study

the components R01þ11 and R01�11 which can be computed from (97)
using (17)

R01þ11 ¼
1
2

R J0þ11 ~x1R
0
11 þ J0þ13 ~x3R

0
33

� �
eiðx1x1þx3x3Þ

n o
;

R01�11 ¼
1
2

R J0�11 ~x1R
0
11 � J0�13 ~x3R

0
33

� �
eiðx1x1�x3x3Þ

n o
:

ðB:6Þ

Making use of (B.5)1,2 and (B.6) which are valid for any R0
11; R0

33, we
must have

J0þ11 ¼ J0�11; I J0þ11

� �
¼ I J0�11

� �
¼ 0;

J0þ13 ¼ �J0�13; I J0þ13

� �
¼ �I J0�13

� �
¼ 0:

ðB:7Þ

Similarly, other relations concerning R1þ
33 and R1�

33 can also be
obtained

K 0þ33 ¼ �K 0�33; I K 0þ33

� �
¼ �I K 0�33

� �
¼ 0;

K 0þ31 ¼ K 0�31; I K 0þ31

� �
¼ I K 0�31

� �
¼ 0:

ðB:8Þ

Concerning the symmetry of displacement, we rewrite the displace-
ment on the surface u

01+ and u
01�

u01þ ¼ 1
2x

R �iM0�þ ~x1R
0
11e1 þ ~x3R

0
33e3

� �
eiðx1x1þx3x3Þ

n o
;

u01� ¼ 1
2x

R �iM0�þ ~x1R
0
11e1 � ~x3R

0
33e3

� �
eiðx1x1�x3x3Þ

n o
:

ðB:9Þ

Making use of (B.4) and (B.9), we obtain
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M0�þ
11 ¼M0��

11 ; M0�þ
33 ¼M0��

33 ; M0�þ
31 ¼�M0��

31 ; M0�þ
13 ¼�M0��

13 : ðB:10Þ

If the matrices D
0± are the real part of M

0⁄±, then we must have

D0þ11 ¼ D0�11; D0þ33 ¼ D0�33; D0þ31 ¼ �D0�31; D0þ13 ¼ �D0�13: ðB:11Þ
Appendix C

In this appendix, we present the calculation of the matrices J
0±,

K
0±, M

0⁄±, N
0±. Since the computation procedure is identical both

cases v = ±1, in what follows, we use notations without + or � sign,
i.e. the matrices J0, K0, M

0⁄, N0 that satisfy the relations

J0 ¼ iF0B0�1 ¼ ð ~x1C11 þ v ~x3C13ÞM0� þ C12M0�N0;

K0 ¼ iG0B0�1 ¼ ð ~x1C31 þ v ~x3C33ÞM0� þ C32M0�N0;

N0 ¼ B0P0B0�1; M0� ¼ iA0B0�1:

ðC:1Þ

In the frame Ox̂1x̂2x̂3 defined in Appendix A, we denote cM�; bN as the
matrices with similar meanings as M⁄, N in the Stroh formalism.
They are derived from the matrices bA; bB; bP by the expressionsbN ¼ bBbPbB�1; cM� ¼ ibAbB�1: ðC:2Þ

Thus, the matrices M
0⁄,N0 and M

0⁄N0 are connected to cM�; bN andcM� bN. Comparing the Eqs. (C.2) and (100), these relations read

M0� ¼ XtcM�X; N0 ¼ Xt bNX; M0�N0 ¼ XtcM� bNX: ðC:3Þ

For isotropic materials, cM� and bN is independent of frame, or

M� ¼cM�; N ¼ bN: ðC:4Þ

Making use of (50) and (56) and the fact that n1 = n2 = n3 = i, one can
determine explicitly M⁄ and N in terms of E and m

M� ¼cM� ¼ 1þ m
E

2ð1� mÞ ð1� 2mÞi 0
�ð1� 2mÞi 2ð1� mÞ 0

0 0 2

264
375;

N ¼ bN ¼ 2i �1 0
�1 0 0
0 0 i

264
375: ðC:5Þ

With (C.3, C.5) and (A.1), one can determine explicitly the matrices
M
0⁄, J0, K0

M0� ¼ 1þ m
E

2ð1� m ~x2
1Þ ~x1ð1� 2mÞi �2vm ~x1 ~x3

� ~x1ð1� 2mÞi 2ð1� mÞ �v ~x3ð1� 2mÞi
�2v ~x1 ~x3m v ~x3ð1� 2mÞi 2ð1� m ~x2

3Þ

264
375;
ðC:6Þ
J0 ¼
2 ~x1ð1� m ~x2

3Þ ð2m ~x2
3 þ ~x2

1Þi 2vm ~x3
3

i 0 0
v ~x3ð1� 2m ~x2

1Þ 0 ~x1ð1� 2m ~x2
3Þ

264
375; ðC:7Þ

K0 ¼
v ~x3ð1� 2m ~x2

1Þ v ~x1 ~x3ð1� 2mÞi ~x1ð1� 2m ~x2
3Þ

0 0 i

2 ~x3
1 ð ~x2

3 þ 2m ~x2
1Þi 2v ~x3ð1þ m ~x2

1Þ

264
375:
ðC:8Þ

By setting v = +1 or v = �1 in ((C.6)–(C.8)), we obtain the matrices
J
0±, K

0±, M
0⁄±. For general anisotropy, since the matrix cM� in the

frame Ox̂1x̂2x̂3 can be computed via the Barnett–Lothe integrals
(57)–(59), J

0±, K
0±, M

0⁄± can also be calculated numerically.
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