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We show several results concerning the finite groups that occur as Galois groups
of unramified covers of projective curves in characteristic p. In particular, we prove
that every finite group with g generators occurs over some curve of genus g. This
implies, for example, that every finite simple group occurs in genus 2. By similar
methods, we obtain several other families of groups which occur in genus 2. In
addition, we show that if a group G occurs over some curve of genus g, then it
must occur over “almost all”’ curves of genus g or greater. The results are obtained
using formal patching.  © 1996 Academic Press, Inc.

INTRODUCTION

This paper contains several results concerning the fundamental group of
projective curves over algebraically closed fields of characteristic p. Al-
though the fundamental group is known in characteristic 0, and in charac-
teristic p for genus 0 and 1, little has been known for genus = 2 in
characteristic p. Here, we determine large classes of groups that are
quotients of 7, of curves of genus g in characteristic p, using the
technique of formal patching. (See Section 3 and Propositions 5.5, 5.6.)
Moreover, each such group occurs over a generic curve of genus g, though
not necessarily over all curves of genus g. (See Section 4.)

More specifically, given a curve C over an algebraically closed field k,
let 7,(C) be the set of isomorphism classes of finite groups occurring as
Galois groups of unramified Galois covers of C. Recall that this is equal to
the set of continuous quotients of the algebraic fundamental group = ,(C).
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Since the same set of finite groups can form more than one inverse system,
7, does not in general determine 7. But in the case of projective curves,
7, does indeed determine ,; cf. the discussion below.

In the case where k is the complex numbers C, the set =, is well
understood for both affine and projective curves. Namely, for non-negative
integers g and r, let Fy , be the group generated by elements a, ..., a4,
by,....bg, ¢yy... 0, subject to the single relation 12 ,[a;, b;][T;_c; =1,
where [a, b] denotes the commutator aba b 1. Then for a complex
projective curve X (or equivalently Riemann surface) of genus g and for
distinct closed points {7}, 7,,..., 7.} on X, the group F, , may be identified
with the topological fundamental group of X — {r;, 7,,...,7}. This is
done by letting a; and b; correspond to loops around the jth “hole,” and
c¢; correspond to a loop around 7. With this identification, we get a
complete description of 77, (and even ;) for complex curves. Specifically,
G lies in (X — {7, 7,,...,7}) if and only if G is a finite quotient of
Fy ,. Moreover, for any algebralcally closed field of characteristic O,
Grothendieck showed that the same result holds [Gr, XIII, Cor. 2.12].

In characteristic p # 0 the situation is quite different. For example,
while the complex affine line is simply connected, the affine line over a
field & of characteristic p # 0 is not. In particular, the Artin—Schreier
equations (e.g., y? —y = x) induce non-trivial covers of P} which have
Galois group Z/pZ and are ramified only at infinity. Thus there are
groups contained in m,(P; — {r,}) which are not quotients of F,, = {e}.
Abhyankar, in his 1957 paper [Ab], found many examples of groups lying in

m (Pt — {7, 7,,..., 7). From these, he conjectured that given a smooth
connected projective k-curve X of genus g, a finite group G lies in
(X — {7, 7,,...,7}) if and only if every prime-to-p quotient of G is a

quotient of Fj ,. The forward implication was shown by Grothendieck in
[Gr, XIII, Cor. 2.12], and recently the converse was proven by Harbater in
[Ha2]. Harbater’s proof uses formal patching (which is related to rigid
analysis) and relies on Raynaud’s proof [Ra] of the conjecture in the case
where X = P} and r = 1. From Abhyankar’s conjecture we deduce two
important facts about affine curves: First, that m (X —{r, 7,,..., 7}
depends only on the number 2g + r, where g is genus of X and r > 0;
and second, that =, of an affine k-curve strictly contains =, of the
“analogous complex curve.” However, Abhyankar’s conjecture does not
give us 7, of affine curves. For example, an elliptic curve with one point
removed has the same , as a projective curve with three points removed;
however, their 7,’s are different (for this and other such examples see [Bo,
Ha3)). In fact, recent work of Tamagawa shows that for a k-curve U, the
group ,(U) determines the genus and “p-rank” of the projective comple-
tion X of U, as well as the number of points in X — U, whereas these are
not determined by ;.
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In this paper we consider unramified Galois covers of projective k-curves.
For such curves, m, is only known in genus zero (P}) and genus one
(elliptic curves). Recall that ,(P}) is trivial and 7, of an elliptic k-curve
X depends on the curve. Specifically, if X is ordinary then 7,(X) = {Z/
nXZ/m:m,neZ,(p,n) =1} where (a, b) denotes the greatest com-
mon divisor of a and b, and if it is supersingular then 7 (X) = {Z/n X
Z/m:m,neZ_,(p,m)=(p,n)=1}. Notice that in either case, m,(X)
is contained in 7, of any complex elliptic curve, and that this inclusion is
the opposite of the one arising in the situation of affine curves (of any
genus). In fact, Grothendieck showed in [Gr, XIII, Cor. 2.12] that this
containment holds for 7, of projective k-curves C of all possible genera,
and that the containment is always strict if g > 0. (The strictness here
holds because the p-rank of 7, is less than or equal to g.) This implies
that =, (C) is a quotient of 7, of the “analogous complex curve” and
hence is finitely generated. Since finitely generated profinite groups are
determined by their continuous finite quotients [FJ, Prop. 15.4], we see
that for projective curves mr, determines .

Known results about 7,(C) for C projective and of genus g include the
following:

(D [Gr, XIII, Cor. 2.12] If G € =, (C) then G is in 7, of a complex
curve of genus g (the latter 7, being known explicitly). The converse also
holds if G has order prime-to-p.

(2) A p-group G cannot lie in 7,(C) if its p-rank is greater than g. A
given p-group G of rank g will lie in 7, of a generic curve of genus g.
(This follows by combining results about the Hasse—Witt invariant with the
Burnside Basis Theorem.)

(3) [Na1] (cf. Theorem 3.12 below) For G to lie in ,(C), it is
necessary that G satisfy a certain condition concerning generators of
group rings (although it is unknown whether this condition is a conse-
guence of (1) and (2) above).

But for groups G that are neither of order prime-to-p nor a power of p,
the above do not necessarily provide a condition that is sufficient to imply
that G is in 7, of a curve of genus g.

The purpose of this paper is to provide conditions for G to lie in 7, of a
curve of genus g. For example, we show that every finite group lies in m,
of some projective k-curve X (Corollary 3.7 below), and that in fact X may
be chosen with its genus bounded by the number of generators of the
group. Using the classification theorem of finite simple groups, this implies
that any finite simple group lies in 7, of some smooth projective k-curve
of genus 2 (Corollary 3.6 below). The drawback to the above results is that
for a given group we find one curve X of genus g for which G lies in
m,(X). However, in Section 4 we show that this in fact implies that G lies
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in , of almost all curves of genus g. Specifically, if G lies in 7, of some
projective curve of genus g, then there exists a non-empty open subset 1V
in the moduli space of curves of genus g such that G lies in 7, of any
curve corresponding to a point in V' (Proposition 4.2 below). With this
result we show that if G lies in 7, of a curve of genus g then for all
g’ > g, the group G lies in 7, of almost all curves of genus g’ (Corollary
3.9 and Proposition 4.2 below).

The main results of the paper, Theorems 3.1 and 5.4, construct G-Galois
covers of projective k-curves of genus g by pasting together tamely
ramified Galois covers of k-curves of lower genus in such a way that the
ramification cancels. By induction, and Theorem 3.1 applied to unramified
covers, we get Theorem 3.3, from which the above results follow. Theorem
5.4 allows us to use pasting arguments more complicated than those used
in Section 3. In this way we obtain, for example, concrete descriptions of
many groups which occur in m, of projective k-curves of genus 2. (See
Propositions 5.5 and 5.6 for a sample.) The proofs of all these results use
formal patching and are similar to the methods used by Harbater to prove
the Abhyankar conjecture. For a description of the use of formal patching
(and rigid analysis) in Galois theory see the forthcoming books of Volklein
[V] and Malle and Matzat [MM], as well as recent papers on the subject by
Fried and Volklein [FV] and Haran and Volklein [HV].

The structure of this paper is as follows: Section 1 gives the necessary
background. Section 2 gives various formal patching and deformation
results; these can be viewed as corresponding to results in rigid analysis.
Section 3 proves the main results and their corollaries using the prelimi-
nary work in Section 2. Section 4 proves the above result about open sets
in the moduli space of curves of genus g. Finally, Section 5 gives some
generalizations of the results in Section 3. This paper is adapted from the
author’s 1994 University of Pennsylvania Ph.D. thesis.

Many of the results in this paper also follow work done simultaneously
by Mohamed Saidi in his 1994 Ph.D. thesis [Sa]. In his thesis M. Saidi uses
rigid geometry instead of formal patching.

1. BACKGROUND

This section summarizes the necessary formal patching results and
explains how they are applied. We begin by building the deformation,
consisting of a scheme X that is proper over a complete local ring D, with
closed fibre X. (This construction can be thought of as a “very small”
deformation of X.) Given X, Grothendieck’s Existence Theorem [Gr,
X111, Cor. 2.12] says that there exists an equivalence of categories between
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the category of coherent sheaves on X, and the category of formal
coherent sheaves on X. The result allows patching on covers which are
defined over deformations of affine opens of X. However, here we will
need a generalization of Grothendieck’s result by Harbater which, loosely
speaking, allows us to replace one of these affine opens of X by the
spectrum of the complete local ring at a closed point on X (cf. [Hal]). The
gluing here is done by “patching” the corresponding modules.

For any ring R, let .#(R) denote the category of finitely presented
R-modules, and let #(R) and 2(R) denote the subcategory of .Z(R)
consisting of free and projective R-modules, respectively. Given categories
&, %,% and functors &/ - & and & — &, let & X% denote the cate-
gory of triples (a, b, ¢) of objects in &, &, % together with isomorphisms
between ¢ and the images of a and of b in #. Let D be a ring; then for
D-algebras A, B, and C define the base change functor

M(D) >#(A) ><J»f/(C)/%(B)
by
M (M&yA,M®,B,M®,C).

Given a quadruple (A, B,C, D) of domains, we say that it satisfies the
patching property for modules (cf. [Hal]) if the base change functor is an
equivalence of categories whose inverse (up to equivalence of functors) is
given by the fiber product of modules

(My, Mg, Mc) = M, Xy Mp.

Similarly it satisfies the patching property for free modules (resp. for
projective modules) if the corresponding assertion holds with .# replaced
by 7 (resp. by 2).

We can also define analogous categories for any scheme X. Let (X))
(resp. ./92(X)) denote the category of coherent sheaves of projec-
tive @y-modules (resp. projective @y-algebras). Also, let .#%(X) denote
the subcategory of (X ) consisting of sheaves which are generically
separable.

We will need only one case from the main formal patching result in
[Hall. In order to state it, we introduce some notation which will be used
throughout this paper. If X is a normal schneme and ¢ is a point of X,
then let 7y , be the total ring of fractions of the complete local ring @y .
Given another scheme Y, a morphism Y — X which is finite and generi-
cally separable (cf. [Ha, 2]) will be called a cover. If the cover Y — X is
étale and if G c Aut(Y/X) is a finite group acting simply transitively on a
geometric fibre, then Y — X together with this action will be called a



GROUPS OVER PROJECTIVE CURVES 775

G-Galois cover. Now, for any finite group G let G2(X) be the subcate-
gory of #2(X) consisting of G-Galois sheaves. Let k be an algebraically
closed field.

THeoreM 1.1 [Hal, Thm. 1(3)]. Let X be an irreducible regular projective
curve over a field k, having function field K(X). Let ¢ be a closed point of X,
and let Spec(S) = X — {&}. Then the base change functors

P(X) >P(X) Xz, ) P(Ox )
@(X X Spec(k[[t]])) _)ga(S[[t]]) Xﬂ(jxvé[[t]])y(é;,f[[t]])

are equivalences of categories. Moreover, the result remains true if P is
replaced by AP, FP, or GP (for any finite group G).

Since we will be looking at projective modules, the following lemma
gives a condition for flatness, which implies projectivity in our situation.

LEMMA 1.2. Let R C S be noetherian rings of dimension 2. Suppose that
R is regular and that S is normal, finitely generated R-module. Then S is flat
over R.

Proof. Let m be a maximal ideal of R, and take A4 to be the localiza-
tion of R at m. Then, A is a noetherian local ring. Let B = S ®;, A. Since
S is dimension 2 and normal, so is B, and hence B is Cohen—Macauley. By
[Ma, Thm 18.H, p. 140; AB, p. 113, Ex. 4], B is a flat (in fact free)
A-module, and this implies that S is a flat R-module. |

In addition to needing Theorem 1.1, we will also need a more special-
ized formal patching result [Ha2, Prop. 2.3] that relies on Theorem 1.1.
Roughly, it is the following: Let G be a finite group generated by
subgroups G, and G,, and let W, — X, be connected G,-Galois (possibly
branched) covers of k-curves for i = 1,2. By taking a disjoint union of
copies of W, we obtain disconnected G-Galois covers of the X, for
i = 1,2. These covers are then deformed to get disconnected G-Galois
covers of curves over k[[z]]. The result shows that given some ‘““patching
data” for these deformations, there is an irreducible G-Galois cover
defined over k[[¢]], whose closed fibre is a union of the original discon-
nected G-Galois covers which we deformed.

To understand the precise statement of the result we must recall the
definition of induced covers. If H is a subgroup of a finite group G, and
Z —Y is an H-Galois cover, then there is an induced G-Galois cover
Ind% Z — Y which is the disjoint union of (G : H) copies of Z, indexed by
the left cosets of H in G. The stabilizer of the identity copy is H € G, and
the stabilizers of the other copies are the conjugates of H in G.
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As in [Ha3], let T* be an irreducible k[[z]]-scheme of relative dimension
1, whose closed fibre is a union of two smooth irreducible curves X, and
X,. Because this result relies on Theorem 1.1, which only holds for smooth
curves, we assume the existence of a smooth projective curve L and a flat
covering ¢*: T* — L X, Spec(k[[¢]D over k[[¢]]. For i = 1,2 let X| = X,

— {r} = Spec(R,) for some ring R,. Let X/* = Spec(R[[¢]]) and X’* =
Spec(% [[#]D, where 7 is the unique common point of X; and X,.

Consider a finite group G, together with subgroups G,, G,, and I that
together generate G. For i = 1,2 let W/* — X/* be an irreducible normal
G;-Galois cover, and let W’* be an |rredu0|ble component of w/* Xy X,’*
such that I, = GaI(W’*/X'*) is contained in 1. Also, let 7% = Spec(@’T* D)
and let N* - T* _be an irreducible normal /-Galois cover, together with
an |somorph|sms N* X7 X* - Ind,(W’*) of I-Galois covers of X!*, for
=12

ProprosiTioN 1.3 [Ha3, Prop. 2.1, or Ha2, Prop. 2.3]. In the above
situation, there is an irreducible normal G-Galois cover V* — T* such that
V* Xpue X[* = IndG (W/*) as G-Galois covers of X|* for i = 1,2, and

l

V* X T* = IndYN* as G-Galois covers of T*.

We will use this result in Section 2 to build an unramified connected
G-Galois cover of a curve of genus g by deforming G-Galois covers of
curves of lower genus. In Section 5, we generalize Proposition 1.3 to allow
the closed fibre to have more than one double point. This gives us more
flexibility in the construction of Galois covers.

2. FORMAL PATCHING RESULTS

In this section we prove some variants and applications of formal
patching results in [Hal, Ha2]. These results provide the deformation and
patching methods needed to build G-Galois covers in Sections 3, 4, and 5.

Most of the patching arguments in this paper follow a similar pattern.
We start with a degenerate curve T, consisting of a union of two projective
k-curves crossing transversely at a point. Taking g to be the arithmetic
genus of T, Lemma 2.3 deforms T to obtain 7* which is irreducible and
projective of genus g. In Proposition 2.4, Galois covers of the components
of the degenerate curve T are first pasted together and then deformed in
order to construct a G-Galois cover of T*. At this point, 7* and its cover
are curves over k[[¢]], so in Proposition 2.5 we globalize the construction to
obtain a family of covers parameterized by an actual k-variety of finite
type over k[t]. In this way it is possible to choose a non-degenerate
member of the family which will be a G-Galois cover of a smooth
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connected projective k-curve of genus g. These results roughly correspond
to the steps needed to prove the main result, Theorem 3.1, as well as its
generalizations in Section 5.

As a preliminary step, in Lemma 2.1 we use Theorem 1.1 to construct a
kl[z]]-curve by patching together local deformations of a degenerate k-
curve. As discussed in Section 1, Harbater’s equivalence (Theorem 1.1)
holds only for smooth curves, so we must first map our degenerate curve
down to a projective k-line and then build its deformation locally over
Pi x, Spec(k[[¢]D.

Throughout this paper we will let L denote the projective k-line and
identify L with its image in L* = L X, Spec(k[[¢]]), via the inclusion
L — L* (induced by the natural ring morphism). Also, we let K = k((¢)).

LEMMA 2.1, Let ¢: T — L be a connected cover. Pick a closed point X in
L, and let L' =L — ), L = Spec(&, ,) = Spec(kl[x]), and L' =
Spec(fz’/ ) = Spec(k((x))) (where x is a local uniformizer on L at )). Let
¢".T" > L' and ¢: T — L be the pullbacks of ¢: T — L via the morphisms
L' > L and L > L, respectively, and let L'* = Spec(&, [[1]D), I* =
Spec(@, ,[[¢1D, and L = SpeC(%fL A1), Suppose that ¢'*: T"* — L'™*
and ¢*: T* — L* are flat covers for which the closed fibers are isomorphic to
¢ T" - L' and ¢: T — L (respectively) and the pullbacks over L'* are
each étale. Then there exists a projective kl[t]]-curve T* and a covering
morphism ¢*: T* — L*, such that T* X« L™ = T"* as a cover of L'* and
T* X;x L¥ = T* as a cover of L*; and the closed fibre of ¢* is isomorphic
top: T — L.

Proof. The cover ¢ is a flat, hence projective, morphism. Since it is also
generically separable, the pair (T, ¢) defines an object in .#2(L), so by
Theorem 1.1, it induces (via base change) &, €.92(#,) and &7 €
F2(&r1) along with an isomorphism 6: @7 &, %, , = ®ﬁﬂsz A

Consider the covers ¢'* and ¢* These are flat by hypothe5|s and
consequently ;. and &7 are flat (hence projective) algebras over &,
and @5, respectively. Then because ¢'* and ¢* are generically separable,
@r+ and @z. define objects in F#(@,.«) and FP(F5+), respectively.
Moreover, the closed fibre of ¢'*: T"* — L'* is isomorphic to ¢
T" — L', so there is an isomorphism of ,%/ ,-algebras

a: ((ﬁT* @, zA[[t]]) mod t) = O 8, ‘%AL,A'

Similarly, from the definition of $* there is an isomorphism of 5%,{
algebras

! ((ﬁf* Rpps ‘%;L/\[[t]]) mod t) = 07 8, '%,>L,/\'
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By hypothesis the covers T X, L'>L, T Xz L' >L' T* X, L'*

- L'*, and T* x; [ L'* — L'* are étale. Consider the category E«(L'*)
of étale covers of L’* and the category Et(L") of étale covers of L'. There
is a natural functor between them defined by restricting to the closed fiber
of the cover in Et(L'*). By [Gr, I, Cor. 8.4], this is an equivalence of
categories, so it must take homomorphisms to homomorphisms. In particu-
lar, it must take isomorphisms to isomorphisms. Therefore, the isomor-
phism 0: @, ®, % , = &7 ®,. % , induced (above) from ¢: T — L is
also induced by a unique isomorphism

0% Opos s, ‘%’;)\[[t]] = O B, ‘%AL)\[[Z]]

With the isomorphism 6*, the triple

(@’T,,*,@’f*,( I1 ,727*',7))

ned W)
defines an object in
yy(@ir*) Xyg(ﬁi'*) yy( @’Z*) .

By Theorem 1.1 applied to L*, the above triple combined with the
isomorphism 6* induces a covering ¢*: T* — L* such that 7% X;. L'*
= T"* as a cover of L'* and T* x,. L* = T*, as a cover of L*.

Notice that the closed fibre of ¢* gives an object in A in #2(L). We
claim that A corresponds to the element .¥%(L) induced by ¢: T — L.
This is because the base change functor in Theorem 1.1 commutes with
the functor .#»(L*) — .#2(L) defined by restriction. |

The above lemma allows us to patch deformed covers when we know the
patching on the closed fibre. Next we prove a technical lemma which
determines the genus of the deformed curves constructed in Lemma 2.3.

We will denote the arithmetic genus of a curve X by p,(X) and the
Euler characteristic of sheaf % on X by y(%) = X(—21)dim, H'(X,%). If

= @y then we write x(X) = x(@y).

LEMMA 2.2. Suppose that T is a connected reduced k-curve with irre-
ducible components X, ..., X,. Assume also that the singular locus T of T
contains at most double poznts and let v;; = #(X; N X;) for i #j. Then
Pa(T) = (T p (X)) + (T w) — 7 + 1

Proof.  Let T be the normalization of T, and let f: T - T be the
associated birational morphism. Similarly, let X be the normalization of
X; for i=1,2,...,r. For any point 7€ T, denote by &, the integral
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closure of #,. Then, the morphism f induces an exact sequence of sheaves
onT, 0>, > f.0r > X, 0./ — 0, which yields the equality

x(f267) = x(e) + x| T é/e) (1)

T7€T
As f: T — T is an affine morphism of noetherian separated schemes,
H(T,o7) = H(T, f.@p) [Ht, I, Ex. 41]. Thus, x(f.@p) = x(D).
Moreover, the scheme T is isomorphic to the disjoint union of X,... X,

so y(T) = P 1,\/(X) To compute X(ZTETﬁ/ﬁ) we let 8, denote the
length of @ /@, so that dim H(T, @/ﬁ) = §,. Since the support of
each 4. /4. is a point, X(@’/@’) = dim, H(T, @’/@’) 0 x(L..,0./3.)
Y. oo x(@/8) =Y. _,5. If  lies |nT T, then T is smooth at 7, so

6. = 0. On the other hand, if r € T then T has a normal crossing at 7 so
6. = 1[Ht IV, Ex. 1.8]. Therefore, ¥, .8, = #1. For i = 1,2,...,r, let
Tl be the singular Iocus of X; and let v, = #7T,. Then we have T =
U, (X;inX) U UL WhICh implies that #1T =Y, Therefore,

Y, cr0. = Z,SI i Rewrltlng (1), we get x(T) = Z’X(Xl) : ” v;.. Since
p4(X) =1 — x(X) for any curve X, this implies

z<} ij

— = Y (pu(E) + ) - Towy 2

i=1 i<j

Each component X; of T is an irreducible k-curve, so again, x(X;) =
x(X) — X, c x 8, From this we get p, (X)) =p(X) + X .5, Since
every point 7 € T, is a node on X;, 6 =1 as above, so ZTEx 0, = v;.

Therefore p,(X,) = p(X.) + v,,. Substituting this into (2) yields p (T) =
ECip X)) —r+1+ X, v as desired. ]

Next, in Lemma 2.3, we construct a degenerate k-curve T of genus g
from two smooth k-curves of lower genus. Then, we deform T to get a
smooth K-curve of genus g. The construction and local deformation of T
are concrete, and the patching uses Lemmas 2.1 and 2.2. As stated in the
introduction to this section, Lemma 2.3 corresponds to the first part of the
proof of the main result (Theorem 3.1).

LEMMA 2.3. Let L be the projective y-line over k, let n be a positive
integer, and let X, and X, be smooth connected projective k-curves of genus
0, and Q,, respectively. For i = 1,2, suppose that ¢,;. X, — L is a covering
morphism, with branch locus B;, and suppose M is a closed point in L —

(B, U B,) with local parameter x. Choose 1, € ¢ *(X) and identify L with its
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image in L* = L %, Spec(k[[¢]]) (via the inclusion L — L*). Then there
exists a normal projective k[[t ]]-curve T*, a covering morphism ¢*: T* — L*,
and a point v € (¢*)"1(\) such that

(@) on the closed fibre ¢: T — L of ¢*: T* — L*, the k-cuwrve T is
isomorphic to a union of X, and X,, with T, and 7, identified at a normal
crossing T € T,

(b) the kl[t]l-curve T* is regular away from 7, and there is an isomor-
phism of kllx, t]l-algebras between @p« . and kl[x,, x,,t]l/(x,x, — t"),
where x, + x, = X;

(c) on the generic fibre $°: T° — L° = L X, Spec(K) of ¢*: T* — L*,
the scheme T° is a regular irreducible projective K-curve of genus g, + g,.

y T

Proof. We will proceed in three steps: Step 1 builds the closed fibre ¢:
T — L; Step 2 deforms this cover locally and applies Lemma 2.1 to prove
(a) and (b); then, Step 3 proves (c) using Lemma 2.2.

Step 1. Construction of the closed fibre T. Take x; € é’X .,» to be a local
unlformlzer at 7, on X; such that ¢*(x) = x,. Let X = X, X X,, and
= (X, X {r,)) U ({r}} X X,) € X. Then the complete local ring @’T]T =
k[[xl, xz]]/(xlxz). Identifying X, with its image in T, the k-curve T is a
union of X, and X, with 7, identified with =, at a normal crossing 7 € T.
The morphisms ¢, define rational functions s, on 7" with s,(y) = 0 for all
y € X; (j # ©). Consider the rational function s = s, + s,. This restricts to
a cover ¢: T — L which takes = to the point A on L. If we let d; denote
the degree of ¢;: X; — L, then ¢ is a cover of degree d, + d,.

Now we epr|C|tIy descrlbe the local patches of ¢ _ WhICh WI|| be de-
formed in Step 2. Let L' =L —{A} and L = Spec(ﬁL ) = Spec(k[[x]D.
Pulling back ¢: T'— L over the _inclusions L" — L and L—L, we get
covers ¢": T" — L' and é: T — L, respectively (where 7" =T — ¢~ (),
and T is the disjoint union over n € ¢ 1(A) of T = Spec(@’T ). For
b, if n# 1, then there is a unique i € {1,2} such that n € X;, and this
implies that T = Spec(@’x n) Otherwise, n=r, and we get T
Spec(k[[ x,, xz]]/(xlxz)) where ¢ restricted to 7. is defined by x, + x, = x.
By hypothesis ¢, and ¢, are unramified at A for i = 1,2, and thus the
cover ¢": T" X, L' — L' is étale and the cover d) T — L is flat and étale
away from r € T

Step 2. Deformation of ¢: T — L. We define the deformation of ¢:
T — L locally over the patches described above in such a way that Lemma
2.1 applies.

To deform ¢': T" — L', let L'* = Spec(#, [[¢]D and define ¢'*: T'*
— L'* to be the pullback of ¢’ via the morphism L'* — L' (from the
natural ring morphism). The new cover ¢'* is a trivial deformation of its
closed fibre ¢, and as such is étale over L'* = Spec(,%L Al 1D,
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To deform ¢, we first deform each <;'>|r for n € ¢ 1(X), and then take
their disjoint union. There are two cases: Either n € (¢ *(A) — {r}) or
not. If n € (¢~ *(A) — {7}), then let 4)* T* — [* pe the pullback of ¢>|T
via L* — L. Since the ¢,;’s are unramlfled over Aand n # T, qs* Tn* N
is an &tale cover. Otherwise, n = 7, and we let T* = Spec(k[[xl, x,, t1l/
(x,x, — t")). Define &*: T* — [* via x, + x, = x. The Jacobian criterion
shows that T* is regular away from 7. Thus, T* is_normal over L* and
hence (by Lemma 1.2) flat. Moreover the cover d)* is induced by the
extension of k[[x, ]l by h(z) = z* —xz +t", so ramlflcatlon occurs over
the locus B in L* defined by the discriminant x2 — 4¢". Notice that in
Opn =57 [t = k(()[]] the power series x? — 4¢" is invertible.
Therefore, B does not lie in L'*, so T* X L% — [ is an étale coyer
of L. Let T* be the disjoint union over n € = ¢~ (M) of T*’s and let P+
T* - L* be the flat_cover induced by the qb* ’s. Since each ¢>* is étale
over L'*, the cover ¢* is also étale over L'*.

Now by Lemma 2.1 there exists a projective k[[¢]]-curve T*, a covering
morphism ¢*: T* — L*, such that T* X;. L™ =T"*, T* X« L[¥ = T*,
and T* X;« L =T as covers of L'*, L* and L, respectrvely So, (a) is
satisfied. To check where T* is regular, it is enough to look at 7"* and
T*. The deformation T"* is a trivial deformation of smooth curves so it is
regular. Moreover, we showed above that T* is regular away from 7, so (b)
is now satisfied. And, since 7% is regular away from 7, we also have that
T* is normal. Thus by Lemma 1.2, T* defines a flat family over L* which
is regular on the generic fiber.

Step 3. The genus of T*. Let ¢°: T° — L° be the generic fiber of ¢*:
T* — L*; then T° is a connected K-curve because T is. Since T° is a
smooth cover of L° = P¢, it must be projective. It remains to show that
the genus of T° is g, + g,. The scheme T* is a flat family of curves, and
hence the arithmetic genus is constant on the fibres [Ht, 111, Cor. 9.10].
Therefore, it suffices to show that p,(T) =g, + g,. This follows by
applying Lemma 2.2 with r = 2 and #(X; N X,) = 1. 1

Pick a compatible set of nth roots of unity ¢, € k£ for all positive
integers n prime to p. That is, take a set of nth roots of unity so that

m = ¢, for all positive integers n and m. Let 7,,7,,..., 7, be distinct
closed points on a smooth connected projective k-curve X. Let mi(X —
{r,, 75, ..., 7.} be the set of finite groups G which occur as Galois groups
of regular Galois covers of X, at most tamely ramified over {r;, 7,,..., 7},
and étale off this set. Let Z — X be such a cover and let n; be the
ramification index of a point o; over 7; for each i. Pick a uniformizer x; at
7, on X, and take z, € @, , to be a unlformlzer at o; such that z/" = x,.
Then the canonical generator of the inertia group of o; over 7; is the
element ¢, of the inertia group which takes z; to ¢, z; (thls is mdependent
of the choice of x; and z;). Now, given G € wj(X {Tl, Ty ..., 7)) and a
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corresponding G-Galois cover Z — X, if for each i there is a point o; in
Z over 7; whose inertia group has canonical generator c;, we say that G
lies in m{(X — {7}, 7,,..., 7)) with description (c,, c,,...,c,). Notice that
this description is determined up to conjugation of the individual c;’s
which corresponds to the choice of each point ¢; over each 7,.

Recall from Section 1, that if H is a subgroup of a finite group G, and
Z —'Y is an H-Galois cover, then there is an induced G-Galois cover
Ind% Z — Y which is the disjoint union of (G : H) copies of Z, indexed by
the left cosets of H in G. The stabilizer of the identity copy is H C G, and
the stabilizers of the other copies are the conjugates of H in G.

PROPOSITION 2.4.  In the situation of Lemma 2.3, assume that (p, n) = 1,
and let G be a finite group with subgroups H, and H, which together generate
G. Suppose that for i = 1,2, H, lies in wj(X; — 7,), with description (c,) in
H,, such that ¢, = c;* and ord(c;) = n. Then over the kl[t]l-curve T* there
exists a normal connected G-Galois cover *: C* — T* such that the generic
fibre °: C° — T is an unramified connected G-Galois cover of the K-

curve T°.

Proof. By hypothesis, for i = 1,2 there exist H,-Galois covers ;:
W, — X, ramified only over 7; € X,. Let o, be a point in i *(r,) with
inertia group canonically generated by c;. Restricting ; gives H-Galois
covers /: W) — X! = X, — {r;}, where X’ is identified with its image in T
(the closed fibre of T* from Lemma 2.3). Let X/* and X!* be the formal
completions of T* along X! and X = Spec(% ) = Spec(k((x,)), re-
spectively (x; is a local parameter at 7, on X). Let W = Spec(%W w)
Take w; € @’W », o be a uniformizer so that w" = x; and c¢,(w;) =
Then W/ = Spec(k((w »). Pulling back W' and W' by X* — X’
and X’* - X’ respectively, we obtain H.-Galois unramified covers ™
W - X* and I = {c,y-Galois covers W’* - X/*.

Let S* = s, here S$* = k[[x,, x,, t]]/(x x, — t")). Now let

* = Spec(k[[zy, 25, t]] / (212, — 1)),
and define an I-Galois cover §*: N* — T* by setting z/ iy and
z} —x2 and letting I = {c,) act by ¢,(z,) = {,z; and ¢,(z,) = ¢;*(z,) =
£, 'z,. Consider the I = {c¢,)-Galois cover of X’* = Spec(k((x,)I[¢]D given
by N/* = N* Xpx X!*. Notice that for (i, j) = (1,2) or (2,1),
O = k[[zlv Z2s t]]/(zlzZ — 1) & k((x,))[[t]]
=k((x)[[21, 22, t]] / (212, — 1, 2] = x;)
t
“ kD215 - | = s,

i
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so the (c,)>-cover N/* — X;* is defined via z/ =x, and c(z,) = [
Now, sending z; to w; defines an |somorph|sm of I-covers N’* - W’

By Proposition 1.3, applied with H, = G,, i =1,2,and I = <c1> = {c,,
there exists an irreducible normal G- GaI0|s cover ¢*: C* — T*, such that
C* Xy X[™ = Indf W™ as G-Galois covers of X;*, and C* X« T =
IndGN* as G- GaI0|s covers of T*.

If Y C° = T° denotes the generic fibre, then C° is connected
because C* is irreducible. Since ¢/ is unramified for i = 1,2, the trivial
deformation '* is also unramified. Therefore, * is ramified only on
INdSN* over T*. The Jacobian criterion implies that IndSN* — T* is
branched only at the point defined by (x; =x, =t = 0), which corre-
sponds to 7 on T* Thus the cover ° is étale, and hence C° is regular
and projective because T? is. Consequently, ¢°: C° — T, is an irre-
ducible, unramified cover. |

The following result globalizes our construction.

ProPOSITION 2.5.  Let T* be a normal (hence flat) projective k[[t]]-curve
and let y*: C* — T* be a G-Galois cover of k[ t]l-curves. Let ¢°: C° — T?
be its generic fibre and assume that C° is geometrically connected over K, °
is unramified, and T is a regular, projective K-curve of genus g. Then there
exist a k-variety E = Spec(A), where A C K and of finite type over klt]; a flat
projective E-curve Ty; and a regular G-Galois cover . Cp — Ty, such that

(@) Ty X%, Spec(K) is isomorphic to T°, and Cy %, Spec(K) is isomor-
phic to C° as a G-Galois cover of T?;

(b) for every closed point e in E, the fibre ,: C, = T, is a connected
unramified G-Galois cover of a smooth irreducible projective k-curve of
genus g.

Proof.  Since the connected normal G-Galois cover *: C* — T* is of
finite presentation, it descends to a regular k[¢]-algebra R c k[[¢]] of finite
type over k[z]. That is, for some such algebra R there is an irreducible
normal flat projective R-scheme T, and an irreducible normal projective
R-scheme Cp, together with a G-Galois covering morphism Cp — T
which induces *: C* — T* over k[[¢]]. Moreover, if we let 4 = R[¢™!]
and E = Spec(A), then ¢: Cp = (Cr Xgz E) = Ty = (Tx Xz E) is a reg-
ular (hence flat), projective cover which satisfies (a) and has unramified
fibres.

Since Cg induces C*, the fibre of C, over (¢ = 0) is connected and
generically smooth. Moreover C* is normal. If we apply [Hal, Prop. 5] to
Cr — Spec(R), and let € be the point (¢ = 0), it follows that for all
k-points ¢ in a dense open subset of Spec(R) (and hence in a dense open
subset E’ of E = Spec(R) — (¢ = 0)), the fibre C, is geometrically irre-
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ducible. We may assume that E’ is a basic open subset Spec(B) of E,
where B = R[t™ !, f ], for some non-zero f € R[t'].

It remains to show that each fibre 7, has genus g. The scheme T is a
flat projective algebraic family of k-curves parameterized by the variety E,
so by [Ht, Cor. 9.3], the Hilbert polynomial, and hence the arithmetic
genus, is constant on the fibres. Consider the fibre T, X, Spec(K), which
is isomorphic to 7°. Since T° is a projective regular K-curve of (geomet-
ric) genus g, its arithmetic genus is also g. Thus, the arithmetic genus of
the fibre Ty X, Spec(K) is g, which implies that the arithmetic genus of
every fibre of T, is g. The fibres 7, are smooth and projective, so in fact
their geometric genus is g. 1

3. CONSTRUCTION OF GALOIS COVERS

The goal of this section is to prove that certain classes of groups are
Galois groups over projective k-curves of genus g. This is done by using
the results of Section 2 to construct Galois covers of certain projective
curves of genus g. In the next section, we show that each of these groups
must therefore also arise as Galois groups over generic curves of genus g.

We begin with tamely ramified Galois covers of two k-curves of genus
g, and g, (where g, + g, = g). In Theorem 3.1, these covers are patched
together in such a way that the ramification cancels. This can be inter-
preted as an analog to Van Kampen’s theorem. Using this result and
generalizations of it, we gain some insight into which groups occur in the
set m, of a curve of genus g. For example, Corollary 3.2 implies that when
g = 2 there are groups generated by a minimum of three elements, which
occur in 7, (see Remark (1) below). This is compatible with Grothendieck’s
result, which shows that any group occurring in m, of a curve of genus g
must be generated by 2g generators subject to the commutator relation
[Gr, XIll, Cor. 2.12]. Also, Corollary 3.5 shows that every finite group with
g generators occurs in 1, of some curve of genus g.

Notation. Let ,(g) denote the set of groups G for which there exists
a smooth connected projective k-curve X of genus g with G € 7, (X).

THEOREM 3.1.  Let G be a finite group, let H, and H, be subgroups which
together generate G, and let 9, and g, be positive integers. Suppose that for
i = 1,2, there exists a smooth connected projective k-curve X, of genus Q;
such that H, lies in w!( X, — {r,}) with description (c,), where ¢, = c;* in G.

Then G lies in m,(g; + d,).

Proof. Let L be the projective k-line. There exists a branched cover ¢;:
X, - L, for i = 1,2. Let B, be the branch locus of ¢, and choose a closed

l
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point A on L so that A & B, U B,. Now pick 7, € ¢; () and identify L
with its image in L* = L X, Spec(k[[¢]D. Applying Lemma 2.3 (with n =
ord(c;)) we obtain a normal projective k[[¢]]-curve T*, a covering mor-
phism ¢*: T* — L* and a point 7 € (¢*) () satisfying (a), (b), and (c)
of that result. Then the curve T° in the generic fiber ¢°: T° — L° of ¢*:
T* — L* is a regular connected projective K-curve of genus g, + g,.

By Proposition 2.4 with n = ord(c,), there exists a normal connected
G-Galois cover ¢*: C* — T* such that the generic fibre °: C° - T is
an unramified regular connected G-Galois cover of K-curves. Moreover,
the genus (arithmetic and geometric) of T° is g, + g,. Proposition 2.5
allows us to descend this cover to one defined over to a ring A of finite
type over k[¢] satisfying (a) and (b) of that result. Therefore by specializing
to a k-point of E, we are done. |

COROLLARY 3.2. Suppose that G is a finite group which is generated by
elements a,, by, a,,b,. Assume also that [ay, b,]a, b,] =1 and that
char(k) = p is prime to the orders of the groups a;, b;) for i =1,2. Then
G € 7,(2).

Proof. Let H, = {a;, b;) and let [a,, b;] = ¢; for i = 1,2. Let X, be an
elliptic curve, and pick a closed point =, on X;. Now because p is prime to
the order of the group H,, we know that H; lies in m{(X; — {r;}) with
description (c;). In the group G, we have ¢, = c,* because c;c, =
[a,, billa,, b,] = 1. Since G is generated by H, and H,, we can apply

Theorem 3.1. |

Remarks. (1) Using the computer program GAP one can find a group
G of order 288 with the above description in terms of generators and
relations. This G is neither solvable nor generated by any two elements (cf.
Cor. 3.5). (2) Notice that in Corollary 3.2 the condition that p does not
divide the order of the group H, = {a;, b;) is just to ensure that H, lies in
mi(X; — {7,}). This is probably a much stronger condition than is neces-
sary, but very little is currently understood about the groups arising as
Galois groups of tame coverings of affine curves. Finally: (3) Taking the
genus equal to 2 was not important in Corollary 3.2. A similar argument
shows that a group with 2g, + 2g, generators (subject to a similar
commutator relation), will occur in 7,(g, + g,).

If we allow only unramified covers of the components of the degenerate
curve, then by induction on the number of components, we obtain the
following result.

THEOREM 3.3. Let G be a finite group and let H,,H,,..., H, be
subgroups of G which together generate G. Let 94, 95, ..., Q,, be non-nega-
tive integers with 9 = X, 0;. Suppose that for every i = 1,2,..., m there
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exists a smooth connected projective curve X; of genus 9; with H; € m,(X,).
Then G € w,(Q).

Proof. Using induction on m, it suffices to show the result for m = 2.
Now the theorem follows from Theorem 3.1 in the special case where c; is
the identity. 1

Notice that combining results 3.2 and 3.3 gives another family of groups
with 4g generators that occur in 7,(2g): Let G be a group by elements
{ci,dy, ¢ dy i =1,2,..., g} subject to the relations [¢,;, d;; ][ ¢;p, d;,] =
1 for all i, and the restriction that p does not divide the orders of the
subgroups generated by each {c;;, d;;, c¢;»,d;,}; then 3.2 and 3.3 together
imply that G lies in 7,(29).

Note: In the rest of this paper, all projective curves are required to be
smooth connected k-curves.

COROLLARY 3.4. Let X be a projective curve of genus g, and let G be a
finite group lying in 7[(X — {7}). Then G € m,(29).

Proof. Let Z — X be the G-Galois cover tamely ramified at =. Then
by [Gr, XIII, Cor. 2.12], G must be generated by elements
{a), by,..., a4, by, c}, where [a;, b,]...[a,, byl = c. Therefore G may be
generated by 2 g elements, and so by Theorem 3.3 there exists a projective
curve of genus 2g with G € 7(X). |

CoROLLARY 3.5.  Given any finite group G with g generators, G € m,(g).

Proof.  Suppose that {a;, a,,...,a,} generate G. In the hypothesis of
Theorem 3.3 let m = g. Foreach i = 1,2,..., g let H, = {a;) and let X;
be an ordinary elliptic curve. Then the H,’s together generate G, and since
H. is cyclic, H, lies in a,(X;). Apply Theorem 3.3. 1

As an example, consider G = S, the symmetric group on n objects. The
group S, is generated by (12) and (1234...n), so by Corollary 3.5 the
group S, lies in a,(2). Similarly, we have the following result for any finite
simple group.

CoROLLARY 3.6. If G is any finite simple group, then G € ,(2).

Proof. By the Classification Theorem of finite simple groups [Go],
every finite simple group is generated by two elements. Now use
Corollary 3.5. 1

Corollary 3.5 also gives us the following result, which was originally
shown by Serre in 1956 [Se].

CoroLLARY 3.7. If G is any finite group, then G € mw,(g) for some
positive integer d.
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Proof. Clear from Corollary 3.5. |

For any real number s let [s| denote the greatest integer less than or
equal to s.

COROLLARY 3.8. If G is a finite group of order n, then the group G lies in
m(9) for g = |log,(n)].

Proof. We use induction on n to show that G can be generated by
[log,(n)] elements. If G has only two elements, then clearly it is generated
by 1 = |log,(2)] element. Suppose that for all groups of order less than n
the statement holds. Then, let H be a maximal proper subgroup of G, so
it has at most n /2 elements. By the induction hypothesis, H must have a
generating set consisting of [log,(n/2)] elements, and hence G has a
generating set of [log,(n/2)] + 1 = |log,(n)] elements. To finish the proof,
apply Corollary 3.5. |

The next result relates 7,’s of curves of genus g to m,’s of curves of
higher genus.

CoROLLARY 3.9. Let G be a finite group and g be a positive integer. Then
G € = ,(Q) implies that for every integer g’ > g, G € m,(g’").

Proof. 1t suffices to show this for g’ = g + 1. Let X; be a projective
curve of genus g such that G € 7,(X;) and let X, be an elliptic curve.
Then let H, = G and H, = {e), where ¢ is the identity element of G.
Now apply Theorem 3.3 with m = 2. |

CoROLLARY 3.10. Given a finite group G = {a;, by, a,,b,), if la;, b;] =
1, [a,, b,] = 1, and if p = char(k) does not divide orders of a, and a,, then
G e m(2).

Proof. For i =1,2let H; be generated by elements a;, b, in G, and let

X, be an ordinary elliptic curve. Then since [a;,b;,] = 1 and p does not
divide orders of a;, H; € m,(X,). Apply Theorem 3.3. |

The above results all relate to the following question.

QuEsTION 3.11. For a fixed genus, which groups in 7, in characteristic
0 also occur in characteristic p > 0?

Since it is believed that the answer to Question 3.11 will depend on
more than just the genus of the k-curve, we may ask instead which finite
groups occur over most curves of a fixed genus. More specifically, for fixed
genus g, let M denote the moduli space of curves of genus g, and let X
be the generic curve of genus g (i.e., the curve corresponding to the
geometric generic point of Mg). Then for any finite group G, let Ug;
denote the subset of M consisting of the points for which G lies in m, of
the corresponding curve. Both here and in Section 5 we find examples of
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groups G for which U; < M is not empty. Consider now m,(X ), which is
equal to the set of finite groups for which U is dense in M. In the next
section we prove that in fact 7,(g) = 7,(X,). Therefore, our modified
question is asking how m,(g) in characteristic 0 compares with that in
characteristic p.

One approach to this question is to look at Hasse—Witt invariants of
curves and their n-cyclic covers (n is prime to p) [cf. Bo, Kt, Nal, Na2].
This is interesting because the Hasse—Witt invariant of a curve indicates
how many p-cyclic covers of that curve exist. In [Nal], Nakajima found a
family of groups occurring in ,(g), and related these groups to the
“p-rank” (Hasse—Witt invariant) of n-cyclic covers of curves of genus g.
The following is an example of one of these groups.

ExampLE. Let k be an algebraically closed field of characteristic p = 2
and X be the smooth connected projective k-curve of genus 2 defined by
the equation y? +y =x® + Ax®. Nakajima shows in [Nal, Sect. 6] that
there are 40 non-isomorphic connected étale A4,-Galois covers of X. So,
A, lies in 7,(2). Moreover, he uses the fact that 40 is maximal for the
number of non-isomorphic A,-covers of any genus two curve, to show that

s “3-ordinary” (a statement concerning the “‘p-rank” of 3-cyclic Galois
covers of X).

Recall from the Introduction that Grothendieck’s result [Gr, XIII, Cor.
2.12] implies that_m,(g) is contained in the finite quotients of Fy , (or
equivalently, of Fg o» the profinite completion of Fg ;). Moreover, this
containment is strict because the p-rank is bounded by the genus in
characteristic p. For genus one, m,(1) is equal to the set of finite quotients
of the inverse limit F, of the finite groups generated by elements a, b such
that [a, b] = 1 and p does not divide the order of a. Thus F; is a quotient

of Fy,. Ingenus > 1, consider the following two quotients of F ,

(1) the inverse limit Ii’, of the finite groups generated by elements
ay, by, a,5,by,... a4, by suchthat[ay, bylla,, b,]...[ag, by] = 1and p does
not divide the order of g, forall i = 1,2,..., g;

(2) the inverse limit Iiﬁ’ of the finite groups generated by elements
ay,by,ay,by,...,a,, b, such that [ay, b1la,, b,]...[a,, b,] = 1 and p does
not divide the order of the subgroup generated by {a,, a,,...,a,}.

Notice_that for genus one, F = F’ Fi’, whereas for all g > 1 the
groups F’ and F” are not equal. However in either case the set of finite
quotlents is smctly contained within the set of quotients of F .o~ More-
over, all the examples (both here and in Section 5) of gyoups occurring
over genus g curves also occur as quotients of F’ and Fy. This suggests
the question of whether ,(g) is the set of finite quotients of either of
these groups.
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For the first of these groups, this is not in general the case because of a
result of Nakajima.

THEOREM 3.12 [Nal, Theorem 5].  If a finite group G lies in w,(Q), then
there exists a surjective k[ G -homomorphism k[G1® — I;.

Using this we obtain the following proposition. |1 thank Bob Guralnick
for his help with this, and particularly for the example in the proof below.

ProposITION 3.13.  For g > 2, the set m,(Q) is not equal to the set of
finite quotients of Fy.

Proof. Let p be an odd prime. Let G be the semi-direct product of
V =(Z/pZ)*** and C = C, the cyclic group of order g, where 1 < g
p — 1,and C acts on V' as a scalar of order g. Let x be a generator for C
and choose generators a;, b, for G as follows: a; = xv; for some v; in V'
with v, =1, and b, =w; for some w;, € V, such that v,...,
Ug_1:W1,...,Wy_, are independent in V' and b, € V with [x, b,]™* =
[a;, b1]...[ay_, by_,] (this is possible because every element in V" is of
the form [x,v] for some v € V). On the other hand, if we take the
1-dimensional k[G]-module S where V' acts trivially and x acts via the
character corresponding to the gth root of 1 corresponding to the action
on V, then dim H(G, §) = 2g — 2. This in turn implies that the augmen-
tation ideal needs at least 2g — 2 generators, so with Nakajima’s result,
for g > 2 this is a counterexample. |

In light of Proposition 3.13, we are left with the question of whether the
set of quotients of Fy, or some variant of it, is equal to a,(g). However,
we could also ask the corresponding question about covers of affine
k-curves and finite quotients of F, .. Namely, let m;(g,r) be the set of
Galois groups over a genus g curve tamely branched at r given points and
unramified elsewhere. Since we are not allowing wild ramification, this set
is strictly contained in the finite quotients of F, , [Gr, XIII, Cor. 2.12].
How much smaller is it? The following example gives a family of quotients
of F, ,, the members of which are nor Galois groups of tame covers of a
genus g curves tamely branched at r points.

ExampLE. For positive integers n, a, and m with p = chark not
dividing na, let G,, be the semi-direct product of the elementary abelian
p-group E = {7,,...,7,) of rank m by the cyclic group & = (o) of order
n, where the action of H on E is given by 77 = 7, 1 <i < m. Then all
G, with r>g+m and a # 1mod p, are quotients of Fj, but not
elements of 7 of a curve of genus g with » puncturs. This example is due
to Kani [Ka, p. 204].

In the patching results of Sections 3 and 5 (viz. patching at tame branch
points), knowing that certain groups are Galois groups of tame covers of
curves of low genus can be used inductively to show that certain larger
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groups are Galois groups of unramified covers of projective curves of
higher genus. Therefore, the set aj(g, r) is useful for constructing covers
of projective curves.

4. GALOIS GROUPS OVER GENERIC CURVES

In this section we show that if a finite group G lies in , of a projective
k-curve of genus g, then G lies in m, of k-curves of genus g generically.
More precisely, let X be a smooth connected projective curve of genus g
corresponding to a point u in the moduli space M, of curves of genus g.
Suppose that G lies in 7, (X). We show that there exists a dense open
neighborhood U < M, of u, such that for every point in U, G lies in 7, of
the corresponding curve. This implies (in the notation of Section 3) that
m,(g) = WA(XQ).

To do this, one might try building a cover over a neighborhood of u in
M for which a versal family exists. However, M, is not a fine moduli
space, and if X is a curve with too many automorphisms then a neighbor-
hood with versal family does not exist. Therefore, we must build the family
some other way. Recall that a curve of genus g with level n-structure is a
pair, (X, 5), where X is a curve of genus g and & is a symplectic
monomorphism HX(X,Z/nZ) — (Z /nZ)*°, where (Z/nZ)*° has the
standard symplectic structure and H.(X,Z/nZ) has the symplectic struc-
ture defined by the cup product (cf. [Po, Lecture 10]). By [Po, p. 135] if we
pick a positive integer n that is prime to p and greater than or equal to 3,
then there exists a schneme H which parameterizes 3-canonical smooth
curves of genus g with level n-structure. Moreover, this H™ has a
universal family X™ — H™ and X is also a scheme. Over a point v in
H™ the fibre X, of X is a (3-canonically embedded) curve equipped
with a level n-structure §,. By [Po, p. 137] there is a covering morphism «:
H™ — M, taking v to the point in M, corresponding to the isomorphism
class [ X,] of X,.

Given u M let v be a point of H" lying over u, and consider
Spec(@’Hm )CH(’” Pulling X back to Spec(ﬁHm ) we get a local
family X of (3-canonical) smooth curves of genus g. However, X is also a
genus g curve over the complete local ring &y« , (equipped with a level
n-structure §), so it corresponds via « to a point in M,. We will build a
family of G-Galois covers over X, and then, the following lemma global-
izes this local family to one in which the base is an affine variety mapping
to M,.

LEMMA 4.1, Let v be a point in H™, § = ﬁAH(n)v . and V= Spec(S) with
inclusion map @: V — H"™. Define X to be the pullback of the universal
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family X — H™ via &. Let B: W — X be an étale Galois cover with
Galois group G, and let B: W — X be its closed fibre (the fibre over v). Then
there exist a k-variety E = Spec(A), where A C S and A is of finite type over
k; a morphism ag: E - H™; the pullback X, — E of X — H"™ via ag;
and a G-Galois cover Bg: Wy — Xg such that

(@) the pullback X X I{zs isomorphic to X ( as a 3-canonical curve over
V, and the pullback Wy, X, V' is isomorphic to W as a G-Galois cover of X;

(b) for every closed point e in E, the fibre B,: W, = X, is a connected
unramified G-Galois cover of a smooth irreducible projective k-curve of
genus g.

Proof. Since both_the morphism a: V- H™ and the connected
G-Galois cover B: W — X are of finite presentation, this construction
descends to an algebra R € S such that R is of finite type over k. That is,
for some such algebra R, if we let E = Spec(R) there is a morphism aj:
E — H™ the pullback X, of X via a; and moreover, there is an
irreducible normal projective R-scheme W, together with a G-Galois
étale covering morphism B;: W — X which induces B: W — X over S.

Let &: V' — E be the morphism induced by R  S. Then v’ = &(v) is a
closed point of E, and since W, induces W, the fibre of W, over v’ is
connected and smooth. Moreover W is smooth. Applying [Hal Proposi-
tion 5] to W, — E, and letting € = v’, it follows that for all k-points ¢ in a
dense open subset E’ of E, the fibre W, is (geometrically) irreducible. We
may assume that E’ is a basic open subset Spec(A4) of E, where A =
RIf 1], for some non-zero f € R.

With E replaced by E’, it remains to show that each fibre X, is a
smooth irreducible projective k-curve of genus g. Since the fibre X, is the
pullback of the universal family X over H™, each of the fibres is a
smooth irreducible projective curve of genus g with level n-structure.
Dropping the level n-structure, we have the desired curve. |

PROPOSITION 4.2. Let u be a closed point in My, and let X be the
corresponding curve of genus g. Suppose that G is a finite group lying in
7,(X). Then there exists an open neighborhood U of u in M, such that for all
w € U, the group G lies in m, of the corresponding curve of genus g.

Proof. Since G lies in m,(X), there exists a G-Galois cover g: W — X.
Let v be a point in H™ lying over u. Let V= Spec(@’mm ). Pulling back
the universal family X via the inclusion &: V' — H™, we get a family X
of (3-canonical) curves, such that the fibre over v € V is X. By the
equivalence of categories between the Et(X) and Et(X) [Gr, I, Cor. 8.4]
there exists a Galois cover W — X over I/ with Galois group G, such that
the v-fibre is W — X.
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Let S = é’\H(m’U. By Lemma 4.1, there exist a k-variety E = Spec(A),
where A c S and of finite type over k; a morphism «,: E - H and the
pullback X, of X" — H™ via ay; and a G-Galois cover B;: W, — X,
satisfying (a) and (b) of that result. Let &: V' — E be the morphism
induced by the inclusion A4 c S. Recall that the fibre of X — H™ over
a point w € H™ is a 3-canonical smooth curve X, with a level n-
structure §,, and that k: H"™ — M, is the map taking w to the point of
M, corresponding to the isomorphism class [ X,,]. Similarly, the pullback
koa:V — My of k takes a point w € V to the point of M, correspond-
ing to [ X x; {w}]

Since X, is the pullback of X — H"™ via ay, the map (ay ° & opr,):
X X V- H™ is equal to the following composition of the projection
maps X Xz X = X; » X" — H™. Composing with « tells us that
ke age g is the morphism taking a point w €V, with fiber X, in
X X vV, to the point of M corresponding to [ X, ]. By part (a) of Lemma

1, [X, %, V]1=[X]. Therefore for any w e V (X, Xz V) x {w}] =
[X Xp {w}], and this implies that k e @ = k o a; ° .

Let f be a non-zero function on an affine open neighborhood of u in
M. To show that the image of E in M is dense, it suffices to show that
the pullback of f to E is also non-zero. WeII the pullback of f to H™ is
non-zero since «: H™ ' = M, is a covering morphism, and hence its
pullback to V= Spec(é’Hm ) is also non-zero. Since V — M, factors
through E (because « e @ = k ° ay © &), the pullback of f to E is non zero,
as desired.

Let Z = Im(k o az). Now E is a variety, hence constructible, so Z, as
the image of a constructible, must be a constructible subset of M. By [Ht,
Chap. 11, Ex. 3.8], Z contains an open neighborhood U of u in U c M.
Conclude by part (b) of Lemma 4.1. |

This result says that for any g and G, either G occurs over no curve of
genus g, or G occurs over almost every such curve. More precisely, the
subset Ug of points in M, whose corresponding curves have a G-Galois
cover contains a dense open subset. However, coming back to the question
of what ,(g) is, it is unclear how U varies with G, and it is also unclear
what the intersection of all the U;’s is

QUESTION 4.3. Is the intersection of all the Uj;’s dense? Does it contain
any [,-points?
5. GENERALIZATIONS

This section generalizes the results of Sections 2 and 3 in order to
realize additional groups as Galois groups over projective curves. Specifi-
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cally, Theorem 5.4 permits more general constructions of G-Galois covers
over curves of arbitrary genus. Applying this in the case g = 2, we deduce
that certain additional classes of groups must lie in ,(2) (Props. 5.5 and
5.6). This construction involves the deformation of configurations more
complicated than those in the earlier sections of the paper, and in order to
do this we will first generalize some of the results in Section 2 as well as
two results (Cor. 2.2 and Prop. 2.3) from [Ha2].

For convenience, we state here the result in [Ha2] from which the
original [Ha2, Cor. 2.2] follows.

ProposITION 5.1 [Ha2, Prop. 2.1]. Let L be a regular connected projec-
tive k-curve let A be a closed point of L, and let Spec(S) = L — {A}. Let
L* = L %, Spec(k[[v]D, let ¢: T* — L* be a cover, and assume that ¢ is
flat (e.g., if T* is normal). Let % be the category

‘9&(‘1’*(3[[”]])) Xp($*(F, 101 @(¢*(@A’LA[[U]]))

Then the base change functor P(T*) — % is an equivalence of categories.
Moreover this remains true if P is replaced by ¥ P, P, or G for any finite
group G.

The following is the necessary generalization of [Ha2, Cor. 2.2]. The
proof given below is just a modification of the proof of the original result.

CoROLLARY 5.2 [cf. Ha2, Cor. 2.2]. Under the hypotheses of Proposition
5.1, assume that the closed fibre of T of T* is connected and has irreducible
components X, X,,..., X,, each of which is a k-curve; that the singular
locus A of T consists of a finite collection of nodes; and that A C ¢~ *(A) =
Fori=1,2,...,r let A\, =X, N A, and let R, be the ring of functions on the
affine curueX =X, — A letXl’>k = Spec(R; [[t]) and for T € A, let X’* =
Spec(jZ’X [[t]]) Also for T€ A let TF = Spec(&@y+ ,). Let & be the

category

( UX,*) XAl 1U e p (R 9?’( U T*)

i=1 TEA

Then the base change functor P(T*) — & is an equivalence of categories.
Moreover this remains true if P is replaced by ¥ P, P, or G for any finite
group G.

Proof. Viewing L c L*, let Di =DNX, Di=DnX], and L' =

— {A} = Spec(S). For i =1,2,...,r, let T/ = X, — D; and let S; be the
rmg of functions on the affine curve 7;. Let Y* be the puIIback of ¢*:
T* - L* over [* = Spec(@’L AlelD, so Y* = U SEDSpec(é’T* ), and let

Y'* = Ul U,cpSpec(Zy llelD. For i=1,2,...,r, let Y* =
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U Se D’Spec(ﬁT* 5[[ ]]) Y,* Ulr 1 U seD, Spec(v%( 5[[ ]]) and T’* =
Spec(S[]). Let #Z be as in Proposition 5.1. Thus & =2(U’_ 1T”“)
X oy P(Y*), and the base change functor 2(T*) —.% is an equiva-
lence of categories.

By [Hal, Prop. 3] (which is the affine analog of Theorem 1.1) and
induction on #(D}), base change induces an equivalence of categories

P(X[*) S2(T]F) Xoyry P(Y)

for i =1,2,...,r. So base change induces an equivalence of categories
P, X)) 539, where 9 =2(U/_ T*) Xayr P U Y), and
hence also induces an equwalence & > D Xpyr LU a (R
2 (U TeAT*) The latter category is canonically equwalent to %, because
of the disjoint unions = (UL Y") U WU, . T% and Y'* =
(U7, Y5 u (Ui1U, ey, X’*) Thus the base change functors 22(T%*)
- % and &€ - % are equwalences of categories, and hence so is the base
change functor (T*) — #. This proves the result for 2. Replacing %
throughout by 2%, #%, or G yields the proofs in those cases. |

The next step is to use Galois covers of k-curves X,,..., X, to build a
G-Galois cover of a degenerate curve T. Proposition 5.3 generalizes
Harbater’s Proposition 2.3 [Ha2], by not only allowing more intersections
between the X;’s but also allowing the X;’s to have self-intersections. The
changes here are somewhat more involved than those needed to generalize
[Ha2, Prop. 2.2]. We begin with some notation.

Notation. Given a connected k-curve T with singular locus A consist-
ing of at most finitely many nodes (e. 9., T in Cor. 5. 2), let X3,..., X, be its
irreducible components, and let f: T - T beits normallzatlon Thus 7 is
equal to the disjoint union of the normalizations X of the X/'s. If i #j
then let A;; = X; N X}, and let A;; be the singular Iocus of X,. If TE Alll2

and 7, ef (1) nXlk, then_x; . will denote the local parameter of Xk
at 7. Let X/ = Spec(ﬁ’/); S = Spec(k((x; , ). If 7€ A,,, where

i1 aéiz (i.e., 7 is a smooth pomt of X;) then X’ is isomorphic to

= Spec(jzf ). Otherwise, 7€ A, ;. ,Where i =i, (| e., 7 is a node on

X and X’ - |s canonically isomorphic to one of the two irreducible
components ‘of X ' ). Thus for any 7 € X;, we identify X/ with its image
in X;. Then, for T€ AN, T = Spec(@’T S = Spec(k[[x”, x; . 11/
(x;,x;,.,)), and X[*Tk = Spec(%fx [[t]]) is identified with the formal

completion of T along X’

ProposITION 5.3 [cf. Ha2, Prop. 2.3].  Assume the hypotheses of Corollary
5.2 and the notation above. Given a finite group G and subgroups
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G, G,,...,G,, suppose that there exist.

(1) a connected G-Galois cover . W — T, and irreducible normal
G,-Galois covers y*: W/* — X* such that for each i the closed fibre of y*:
W/* = X[* is smooth, irreducible, and isomorphic to the restriction of i to
WX, X!;

(2) for each 7 in_A, a subgroup I. of G and an irreducible normal
1 -Galois cover N * - T*

(3) foreach € A, and y € f*(7) n X (where f is defined abouve), an
irreducible component_ W;* of W/* Xy X, X/ * and a subgroup I, of I, N G;
such that GaI(W’*/X’ ) =1,; and
~ (4) for each € A; and y <€ f~ 1(7) ﬁX,,
X, Ind’ W'* of I- -Galois covers of X|

y

an isomorphism N Xz«

Then there is an irreducible normal G-Galois cover V* — T* such that
V* Xpe X[* = Indgl_W’* as G-Galois covers of X* fori=1,2,...,r, and

L

V* X f* = IndG1\7* as G-Galois covers of f* for each T € A.

Proof. We preserve the notation of the statements of 5.1 and 5.2. The
covers W/* — X/* and N* — T* are flat and hence define projective
modules, since the total spaces are normal surfaces. So for € A, 7, =
Indf&y: is an object in GA(T*) and Ind¢, @+ is an object in G.@(X'*)
and so for all i; <i, in{1,2,...,7}, 7; IndG Owix X Ind% Cw is an
object in G2(X[* U X[*). Since each 7€ A is assimed to be a normal

crossing, f L(z) ¢ T consists of a pair of points {7, 7,}, where 7, lies in a
unique X for some i, €{1,2,...,r}. Moreover, we may assume that
iy <i,,90 that 7 € A, ;, (see notatlon above). In this way, we associate to
each T€ A;, a unlque pair of points {7, 7,} € T. As above 7 =
Ind?flﬁvf,{m* X Ind,GTZ@’Wi,ZTZ* is an object in G@(ff,ﬁl U )'(\[;2). For [ =0,2,
let V,, = Spec(7;,) and for iy <i, € {1,2,...,r} let V,; = Spec(7; ;).

By definition of induced modules, if y lies in X, N f~*(A) then we have
an isomorphism

~ = G; ~
ﬁW,-’* ®R,[[t]] @’X‘_/y* i |ndly @)le'y*

of modules over X.*. For each 7 € A, ;,» we have the associated pair of

points {7, 7,} = f liy(r) where 7, € X, , so using Tz, » ~fz’f'\~ [[t]], the
above induces an isomorphism

%, )

— G ) ~ G - ~
= ('”de wir Br, 1) @’X;m*) X ('”dclzﬁ wir Br,iie @X;z._z*) = 7o

7, @, %R, [[t]]( X, . 1[[t]]

’2 T2
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in G@(X’ ;U X’ ..). Here the left hand side is the object in G@(Xl’lfl*

U X’ *) mduced by 7.~ Then because the V_ are disjoint, we get an
|somorph|sm

7i ®Ri1[[r11XRi2[[z11( I1 (
TEA

irip

L] <7k, 2[[;]])) et 1—[ 7,

in GA(U , ¢, (Xmik UX’:)) Here the left hand side is the object in
the category G,9?’(UTeA (X’ *u X’ #)) induced by 7%,i,.

Let 7y =T1. .\ 7%, Notice that |f re A, then X * UX * = X!*,
and if 7€ A, for i, <i, then X’ —X’ “'for k = 1,2. Thus 7, isan
object in G@(U 1UTeA(X”“)) Slmllarly, let 7, =11, Again,
because the 1, are disjoint we get an |somorph|sm

l1<lz l112

7 ®(1‘[,1<,2R IR ) ( 1_[ 1_[ ( [[[]] X%~ [[t]])) = 7

Xigirp
i1<ip TEA;;,

in GA(U; ;,U,cy, ) (X * UX’ ). Here the left hand side is the

1Ty
object in the category G@(UMSZUTeA ( l’m* UX’ -.7)) induced by
7.
Meanwhile, if 7 € A, ; , then the associated 7, and 7, lie |n X, and X
respectively, and the given isomorphisms N Xz« X,’T Indf W,;Tk
(k = 1,2) induce an isomorphism

05, (Fe, ] <, [100])

’2 T2
2
— G “ - =~
- 11 (nd§eg. @, @5 ) > 7%,

in G@(X’ U X’ .. Here, the left hand side is the object in GQZ’(X,’M*

UX’ *) induced by 7,,.. Let 7, = 1. . ,75,. Then because the V,_ are
dISjOInt we get an isomorphism

72 ®n7€/\(é7-*.7)( ]'_'[ ]'_'[ (

/ T
i1<i, TEA; v

(1] A, [010))) 5 73

i1ip

in GA(U; _;,U,cn, (Gﬁ(X’ * UX’ *))) Here, the left hand side is
the object in the category GA(U n=i,Uren, (G@(X’ * UX’ ) in-
duced by 7.

Let G% be the category which is the analog of the category & in
Corollary 5.2, but with % replaced by G#. Then the triple (77, 7,, 7,),
together with the above isomorphisms, defines an object in GZ. So by
Corollary 5.2 this object is induced (up to isomorphism) by an object 7~ in
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GP(T*). Thus V* = Spec(7') is a G-Galois cover of T* which induces
Indé w/* - X* and Ind“N* — T*, as G-Galois covers. Moreover, the
closed flbre is |somorph|c to . W — T. Because this is a flat family whose
closed fibre is connected, the cover IV* is connected.

To verify that 7* is normal, it suffices to show that for every closed
point o in the closed fibre of 7%, V* =V* Xpu Spec(é’T* ) is normal. If
o= 1€ Athen V* =V™* Xy T* = IndGN* which is normal. Otherwise,
we may identify o with some other point ‘on the closed fibre of 7%, i.e., a
point on the closed fibre X/ of some X/*, for some i € {1,2,...,r}.
Choosing & € W;* lying over o € X/*, we have that V* = Ind§ W* ><X,*
Spec(@’x’* ) is a union of copies of Spec(@’w* ) this is normal since
wis. |

The next proposition essentially reduces our construction of smooth
G-Galois covers to the problem of constructing the degenerate cover. We
add the following new notation to that which precedes Proposition 5.3.

Notation. In what follows let T be a connected k-curve with singular
locus A consisting of at most finitely many nodes; let X,,..., X, be its
irreducible components; and let L be the projective k-line with a closed
point A such that the local parameter at A on L is x. Then let ¢: T — L
be a cover and : W — T be a connected G-Galois cover for some finite
group G. Now we define the following special situation:

DerINITION.  Given T, L, G, and W as above, the pair (¢, ) is called
admissible if the following conditions are satisfied:

(a) The set A is contained in ¢ ().

(b) For every 7€ A;;, A the complete local ring é’}y, =
1/(x; , x;,.,) is an @’L y-algebra defined by x; | +x, . = x.

1Ty’ lz"z irTy
(c) For each i =1,2,...,r the restriction W, = W><T X, > X, is a

tame G-Galois cover for some subgroup G; of G, and this cover is
branched only at 7€ U, ;A;;.

(d) For any point w € W over 7€ A, ; where i, #i,, assume that
90 = gi;ﬁ, where g, , is the canonical generator of inertia of w on W, .

k[ x.

Let 729M(T') denote the set of finite groups G such that there exists a
pair (¢, ) as above which is admissible.

Notice that in terms of building the desired G-Galois cover, condition
(a) is just a matter of building the cover ¢: T — L so that the formal
patching results apply, and condition (b) is simply notational. Thus condi-
tions (c) and (d) are the essential part of admissibility, yet in practice it is
convenient to have all four conditions together.
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THEOREM 5.4. Given T as above, if G lies in w2™(T) and g = p (T),
then G lies in m,(Q).

Proof. Since G lies in 729™(T), there exist curves L and W as above
along with a pair of covers (¢, ) which is admissible. We proceed in three
steps: First we deform ¢: T — L; second we locally deform : W — T;
and third we use Proposition 5.3 to patch the local deformations of .

Step 1. Construction of ¢*: T* — L*. Asin Lemma 2.3, we will deform
¢, X; = L locally in such a way that Lemma 2.1 applies. Let L' = L — {A},
T'=T - ¢ (1), and L'* = Spec(&, [[¢]D. Then take ¢'*: T'* — L'* to
be the pullback of ¢ with respect to the morphism L'* — L (induced by
the natural ring morphism). Let L= Spec(é’L D L¥ = Spec(é"L Al 1D,
and for every 7 € ¢~ () let T = Spec(@’T ). Forte A, , by hypothe3|s
the restriction ¢|7: T — L is defined by x,, +x,, =x. Let n_
ord(g, ) = ord(g,, w) where  lies over r. Notice that if o is unramified
then n_= 1, and moreover since the cover ¢ is Galois this definition of 7,
is mdependent of the choice of the point « over 7. Now let T* =
Spec(kllx, ., x; ., t1/(x;, x; . —t""), and defme o TF > L by x,,,
+x; . =x. Meanwhile, for 7€ ¢~ 1(A) — A, let ¢}: T* — L* be the
puIIback of ¢l7. via_ L* - L (induced by the natural ring mclusmn) These
covers ¢>* induce ¢*: T% = (U eyt ATT ) - L*.

Let L* = L X, Spec(k[[¢]D. Applylng Lemma 2.1, we obtain a normal
projective k[[¢]]-curve T* and a covering morphism ¢*: T* — L*, such
that T* X;. L™ = T'* as a cover of L' and T* X« L* = T* as a cover
of I¥; and the closed fibre of ¢™* is isomorphic to ¢: T — L. This cover
satisfies all the hypotheses of Propositions 5.3.

Step 2. Local construction of *: W* — T*. We now deform :
W—> T in such a way that Proposition 5.3 applies. Let A, = AN X, =

1A, and let X/ = X, — A, = Spec(R,), and X;* = Spec(R[[¢]]). De-
note the pullback of o, via Xl’* - X, by ¢/*: W,-”k — X/*. This is an
irreducible normal G;-Galois cover such that the closed flbre is smooth,
irreducible, and isomorphic to the restriction of ¢ to W X, X;. Hence it
satisfies (1) of Proposition 5.3.

Next for 7€ A, ., , let X/* = Spec(@g, [[¢1D. (Recall from the above

notation that under the |dent|f|cat|0n of X’ = Spec(.7/X ) = k((x; ;)

with its isomorphic image in X, , the scheme X’*k is |dent|f|ed with the
formal completion of T along X’ ,). Let o be a point over 7. By
hypothesis we denote its canonical generator of inertiaon W, by g, ,. Let
1,=<g,,» =g, and define

= Spec(k[[zilfl’ Zisz’t]]/(Zilleisz - t)) - 7’—:’*
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to be the I-Galois cover defined by setting z/'- =x, . and letting I, act
by gikw(zikrk) = 0y Zir,

Consider now the cover . For 7€ A, ; where i, = i,, the cover ¢ is
unramified over 7, so there exist local parameters w; (k=1,2) on W
(hence on W, ) such that w, =ux,,  for k= 1 2, and W =

LTk y W

Spec(@’W ) = spec(kllw,; ., w, /(W  w ,m) Let Wl’k Tk
= Spec(k((w IL¢1D, and define a trivial cover W’ ’k . by let-
ting w, = Then W’ * s naturally |dent|f|ed Wlth an irreducible

LT lk’T,\

component of the restrlctlon W’* Xy X!

Ly Tk'

Similarly for r € A, ; where 11 * 12, W, is smooth at w, so we choose a

local parameter w; such that Wik’ = Spec(ﬁw )— Spec(k[[w ]])
wiz =x; ;and gzkw(ka) Ly Wi, AGain, let W’ = Spec(k((w )
[[]D, and define an I-Galois cover W’ * X’ by wht =X, . and

g,kw( lm) Ea Wi r As above, W’ 't is naturally |dent|f|ed W|th an
irreducible component of W, X X’

Ly Tk :

The I-Galois covers N* — T* and W, * —>X’ * satisfy hypotheses
(2) and (3) of Proposition 5.3 (respectlvely) Thus to' apply Proposition 5.3,
it remains to show that hypothesis (4) of that result holds. Let N’* =

N* X7 X’* Then
ﬁNW - k((xlATk))[[Zilfl' Zizfz’ t]]/(zilnzizrz —t" Zt,‘frk _xika)

= k((z;,-))[Le]]-

We deduce that the I -cover ﬁ’* = N* X7 X[*T )'(\’*k is defined via
the extension k((z; . M1l of k((xl D] with the 1, action induced
from N* - T* So we define an |somorph|sm of I Gal0|s covers N’*

W by sendlng z, tow,, and this satisfies hypothe5|s (4) of Proposmon

IT)

5.3.

Step 3. Patching. Applying Proposition 5.3, we get an irreducible nor-
mal G-Galois cover VV* — T* over k[[¢]] such that V* X, X/* = IndGN*
as G Galois covers of T* for each 7€ A. The deformatlon T”* =

X7 is a trivial deformatlon of a regular k-curve, so it is regular.
Slmllarly, the Jacobian criterion implies that T* is regular away from
7€ A (see Lemma 2.3, Step 2). Thus, T* is regular away from A, which
implies that its generic fibre is regular and also that T* defines a flat
family over L* (Lemma 1.2). Let VV° —» T° be the generic fibre of
V* — T* Then, T° is a connected K-curve because T is connected and
T* is flat, and also T is projective because it is smooth over P}. Since T*
is a flat family over L*, the arithmetic genus is constant on the fibres [Ht,
111, Cor. 9.10], and therefore the genus of T° is equal to p,(T).

The K-curve V° is connected because V'* is irreducible. Since
restricted to W, X X] is unramified for i = 1,2,..., r, the trivial deforma-

L
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tion tp’* is also unramified. Therefore, * is ramified only on IndGN*

over T* for r € A. The Jacobian criterion implies that IndGN* T* is
branched only at 7. Thus the cover ° is étale, and hence V” is regular
and projective because T7° is. Consequently, °: V° — T?, is an irre-
ducible, unramified G-Galois cover. Proposition 2.5 allows us to descend
the G-Galois cover '* — T* to aring A of finite type over k[¢] satisfying
(@) and (b) of that result. Therefore, by specializing to a k-point of
E = Spec(A), we are done. |

Remark. Now, consider the semi-stable compactification ]\71g of M.
Theorem 5.4 shows that for any degenerate curve T corresponding to a
point on the boundary, 724™(T) is contained in ,(g). For example,
Proposition 5.5 below examines a family of groups lying in 729™(T,), where
T, is the semi-stable curve of genus 2 constructed by taking two P}’s which
meet one another in three points. One can also show that =,(T,) is in fact
strictly contained in m,(2) by examining the p-rank of I-cyclic covers of
both T, and X, (cf. [Bo).

Before constructing the final examples, we must recall that for any
G-Galois cover 6: C —» D, if r€ D and o € 6 *(r) are fixed, then for any
o' € 07 1(r) there exists an element & € G taking o to o’ under the
action of G on C. We denote such a o' by o”. Moreover, if 7 is a branch
point of # and g is the canonical generator of inertia at o on D, then
hgh~! is the canonical generator of inertia at o” on D. Given any
induced cover, Ind%C’ —> D the connected components of Ind%C’ are
indexed by the cosets of H in G, so we denote by (C’ ) the component of
Ind% C’ corresponding to the coset gH.

The constructions in 5.5 and 5.6 have only smooth irreducible compo-
nents, and therefore do not need the full strength of the previous results.
We build G-Galois covers of a curve of genus 2 by deforming a G-Galois
cover of degenerate curve T. As mentioned above, the next proposition
builds a G-Galois cover of some genus two curve by deforming two P'’s
which meet in three points.

ProposITION 5.5.  Given finite groups H, and H, generated by elements
{c,,d,} and {c,, d,} (resp.), and take G to be a finite group generated by H,
together with H,, where ¢, = gc,9™ ' and d, = hd,h™* for some g, h € G,
and c,d, = c,d,. Suppose that for i = 1,2, H, € wi(P* —{0,1,}) with
descriptions (c;*, c,d,, d;Y) and (d,, d; c; , c,), respectively. Then G lies
in m(2).

Proof. We proceed in two steps which then allow us to apply Theorem
5.4: First, we build a degenerate k-curve T of genus 2 and a covering ¢:
T — L; second, we build a G-Galois cover : W — T such that the pair
(¢, ¢) is admissible.
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Step 1. Construction of T — L. Let X, denote the projective k-line and
let A; = {a,y, @;,, a;5) be an ordered set of closed points on X. Similarly,
let X, denote the projective k-line and let A, = {a,;, a,, @y} be an
ordered set of closed points on X,. Then by hypothesis, H, lies in
m,(X; — A,). As before, let L be the projective k-line and take a closed
point A with local parameter x. Then for each i = 1,2, there exists a
covering morphism ¢,: X; — L, unramified at A, such that ¢, '(A) =
(because the X;’s are all P;’s). Take x;; € @’X . to be a local unlformlzer
at a;; on X, such that ¢*(x) = x;;, and let 7 'be a union of X, and X,
such that X, and X, cross transversely at closed points «;, a,, and a5 in
T (where a,; € X, is identified with «,; € X, for j = 1,2,3). Then, the
complete local ring @’T o = Kllxy; x5/ Cxyjx, ) for j = 1,2,3. Also, T is
constructed so that it is smooth outside of A = {«a,, «,, a;}. Identifying X;
with its image in 7', we equate «;; with «; for all i, j. The covers ¢; and
QZ induce a cover ¢: T — L for which ¢ '(A) = A. Moreover, letting

= Spec(ﬁL ) and T = Spec(ﬁT a) we get ¢ = ¢>|T T — L is de-
flned by x;; + x,, = x. Thus ¢: T — L satisfies conditions (a) and (b) of
admissibility. In the notation of Lemma 2.2, we have r = 2 and v;, = 3, SO
pT)=0+3—-2+1=2

Step 2. Construction of G-Galois cover of T. Since H; € mi(X, —
{ayy, ay,, ay5}) with description (g,, 9,, 95) = (¢; %, ¢,d,, di 1Y), there exists
a smooth connected H;-Galois cover W, — X, such that over each a;
there is a ramified point w,; with canonical generator of inertia g;.
Similarly, as H, € m/(X, — {a,;, a,,, a,}) with description
(d,,d;'c; !, c,), there exists a smooth connected H,-Galois cover W, — X,
such that over each «a,; there is a ramified point w,; with canonical
generator of inertia h;, where the h, =c,, h, =d;'c;*, and hy = d,.
Since ¢, = gc, 97", d; = hd,h™', and c,d; = c,d,, we have that ord(%;)
= ord(g,) = n,.

Let ;: IndG W, — X; be the induced G-Galois covers, and for any
acG let (W) denote the component of Ind% W, corresponding to the
coset aH,. Let W be a union of Ind$ W and IndG W, such that for every
a € G, (W) and (W,),, cross transversely at a closed point f (where
o}, € (W), is identified with o € (Wy),,); W), and (W,), cross trans-
versely at a closed point wj in W (where w{, € (W,), is identified with
ws, € (W,),); and (W), and (W,),, cross transversely at a closed point wj§
in W (where w?, € (W,), is identified with wl¢ € (W,), ). Also, W may be
constructed so that it is smooth outside of Q) ={w/:a € G, j =1,2,3,4}.
Identify (W), with its image in W.

Let (W), be the connected component of (W,), on W. Since the ;s
agree on the points of (), they induce a G-Galois cover : W — T. This
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cover is connected because H, and H, together generate G. Thus :
W — T satisfies conditions (c) and (d) of admissibility.

We have now defined covers ¢: T — L and : W — T satisfying all the
conditions of admissibility. Hence by Theorem 5.4 we obtain the desired
smooth connected projective k-curve Y of genus p,(T) = 2 such that G
lies in 7,(Y). 1

PropPosITION 5.6. Let G be a finite group generated by elements
a;,b,,a,,b,, wherela,, b,lla,, b,] =1 and p is prime to the orders of a, and
a,. Let H, = {a,, a,,la,, b,1), and suppose that H, € wi(P{ —
{ay, a,, ag, a,}) with description

(ay, bya;*brt, ay, bya; *by ).
Then G lies in m,(2).

Proof. We follow the same two steps as those in Proposition 5.5.

Step 1. Construction of T — L. Let X, = P{ and rename
{ay, a,, ag, ad by Ay = {ag, @y, ags, ag,)- By hypothesis, H, € mi(X, —
Ay). For i =1,2,let H, = {a;) and X, be another projective k-line. Given
Ay = {ayy, apt, A, = {a,,, ay,) closed points in X, and X,, respectively,
we know that H, € m/(X, — A,) with description (a; ', a,), and H, €
mi(X, — A,) with description (a; %, a,). Let L be the projective k-line and
take a closed point A with local parameter x. Then for each i = 0,1,2
there exists a covering morphism ¢, X; — L, unramified at A, such that
¢;'(M) = A, (because the X;'s are all Pl’s) Take x,; € @’X to be a
local uniformizer at «,;; on X; such that ¢*(x) =X;; Let T be a union of
X,, X;, and X, such that X, and X, cross transversely at closed points «,
and a, in T (where ay; € X is identified with «,; € X, for j = 1,2); and
X, and X, cross transversely at closed points «; and «, in T (where
ag; € X, is identified with a,; € X, for j = 3,4). We identify X; with its
image in T, and then 1 equate «;; and a;. For i =1,2,if a; € X; then the
complete local ring @’T o = k[[xoj, ]]/(xojxl]) We construct T so that it
is smooth outside of A = {«;, @), a3, a,}. Since ¢;(A,) = A € L, the cov-
ers ¢, ¢;, ¢, induce a cover ¢: T — L for which ¢~'(A) = A. Moreover,
letting L = Spec(é’L ) and T, = Spec(é’T a) we get qS qSIT T L
is defined by x; + y;; = x. Thus ¢: T — L satisfies conditions (a) and (b)

of admissibility. In the notation of Lemma 2.2, we have r = 3 and v, =
,=2and v;,=0,50 p(T)=0+4-3+1=2

Step 2. Construction of G-Galois cover of T. Since H; € mi(X; —
{ay;, a,}) with description (a;%, a,), there exists a smooth connected
H,-Galois cover W, — X, such that over each «ay; (j = 1,2) there is a
ramified point w,; with canonical generator of inertia 4;, where h; = =a;*
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and h, = a,. For j = 3,4, do the same for H, and X, with h; = a,* and
h, = a,.

Meanwhile, by hypothesis H, € wi(X, — {ag;, ag, a3, @gs}) With
description

(ay, bya;*brt, ay, bya; *by ).

So, there exists a smooth connected H-Galois cover W, — X, such that
over each ay; there is a ramified point w,; with canonlcal generator of
inertia g;, where g, = a;, 9, = bya; 'b;*, g3 = a,, and g, = b,a; 'b; .

Let ¢ Ind, W, — X, be the induced G-Galois covers, and as above for
any g € G let (W) denote the component of Ind¢, W; corresponding to
the coset gH,. Let W be a union of Ind$; W, Indg Wl, and Indf; W, such
that for every h € G (W), and (W,), cross transversely at a closed point
w! in W (where of, € (W,), is identified with wn e (W, )h) W,), and
(W), cross transversely at a closed point wj (where wg, € (W), is
identified with wp" € W), h) (Wy), and (W,), cross transversely at a
closed point w! in W(Where wly € (Wy), is identified with of, € (W,),);
and (W,), and (W), , cross transversely at a closed point ; in W (where
wl, € (W), is identified with wlz" € (Wy)y,). Also, we construct W so
that it is smooth outside of Q = {w/ :h € G j=1,2,3,4} and then we
identify (W), with its image in W.

Let (W), be the connected component of (W), on W. Since the ;s
agree on the points of (), they induce a G-Galois cover ¢: W — T. Notice
that by construction, (W), < (W), and (W), < (W),, where e is the
identity element of the group G. To show that W is connected it suffices to
show that for each g € G the component (W), is contained in (W),.
Recall that g is a word in a,, by, a,, b,, S0 by induction on the length of
that word it suffices to show that each (W), and (), is contained in
(W),. Well, (W,), is contained in (W),, so H, is contained in the stabilizer
of (W),. Thus, as a; is contained in H,, (W) must be contained in (W),.
For b;, we know (W)b c (W), and (W), < (W),, so (W), is contained in
(W),. Thus ¢: W — T satisfies conditions (c) and (d) of admissibility.

We have now defined covers ¢: T — L and : W — T satisfying all the
conditions of admissibility. Hence by Theorem 5.4, we obtain the desired
smooth connected projective k-curve Y of genus p,(T) = 2 such that G
lies in m,(Y). 1

Remark. In Proposition 5.6, the hypothesis that H, € w/(P! —
{ay, ay, as, a,}) with description (a,, b,a; *b;?, a,, b,a; by 1) is satisfied
if p is prime to the order of the group H,.
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