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Consider the independent Wishart matrices S, ~ W(2+ 18, q,) and S,~
W(Z, q,), where X' is an unknown positive definite (p.d.) matrix, € is an unknown
nonnegative definite (n.n.d.) matrix, and 1 is a known positive scalar. For the
estimation of O, a class of estimators of the form 6. ,, = (c/A){S, /g, — &(S1/g2)}
(¢20, <), uniformly better than the unbiased estimator @,=(1/A)}{S,/q, —
S./q,}, is derived (for the squared error loss function). Necessary and sufficient
conditions are obtained for the existence of an n.n.d. estimator of the form &, ,,
uniformly better than €. It tumns out that such an n.nd. estimator exists only
under restrictive conditions. However, for a suitable choice of ¢>0, £¢>0, the
estimator obtained by taking the positive part of é(u, results in an nnd.
estimator, say 6. ., that is uniformly better than &,. Numerical results indicate
that in terms of mean squared error, Q(MH performs much better than both 8
and the restricted maximum likelihood estimator @ggy, of ©. Similar results are
also obtained for the nonnegative estimation of tr & and a’@a, where a is an
arbitrary nonzero vector. For estimating £, we have derived estimators that are
claimed to be uniformly better than the unbiased estimator £, = S, /g, under the
squared error loss function and the entropy loss function. We have been able to
establish the claim only in the bivariate case. Numerical results are reported
showing the risk improvement of our proposed estimators of 2. € 1994 Academic

Press. Inc.

1. INTRODUCTION AND SUMMARY

In the context of univariate mixed effects models, a problem that has
received considerable attention is the nonnegative estimation of variance
components corresponding to the random effects. Several procedures,
which include the maximum likelihood (ML) and restricted maximum
likelihcod (REML) approaches, have been suggested to arrive at non-
negative estimators of the variance components in the univariate set up.
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However, the problem has not recetved the same amount of attention in
the multivariate context, even though multivariate models with mixed
effects can frequently arise in applications. In a recent application con-
sidered in Calvin and Dykstra (1991a, b) and Calvin and Sedransk (1991)
dealing with the quality of care received by cancer patients at hospitals in
the United States, the data was analysed using the following two-way
nested random effects model:

Yau=4+a +b;+ey. (1.1

Here y;; is a bivariate response vector, x4 is a general mean, a,, b;;, and e
are independent bivariate random vectors distributed as a,~ N(0, Z2),
b~ N(0,2,), and ey ~N(0,Z,). When experimental data can be
modelled using a multivariate mixed effects model, an important problem
is the inference concerning the multivariate components of variance, for
example, estimation of the parameter matrices &',, X, and X', in the model
(L.1). In the present paper, we shall treat this problem in multivariate
balanced models involving exactly one random effect and hence two
variance components, namely the variance component corresponding to
the random effect and that corresponding to the experimental error. The
problem of estimating a variance component in such models reduces to the
consideration of two independent random p x p matrices, say S, and S,,
following the central Wishart distributions

S ~W,(Z+i6,9) and  S,~W,(Z, q) (1.2)

where ¢, and ¢, satisfy ¢, > p, ¢, = p, 2 is a positive scalar, X is the
covariance matrix of the experimental errors in the model, and @ is the
covariance matrix corresponding to the random effect. Here X is assumed
to be a positive definite (p.d.) matrix and @ is assumed to be nonnegative
definite (n.n.d.). Unbiased estimators of @ and X, which are obviously

given by
1 (S, S,
éb,=—{—'~~—=} (1.3)
Aldy 9
and
fb‘:—é'w—z, (1.4)
q>

are obtained using the multivariate analysis of variance procedure applied
to the mixed model involving @ and X as the components of variance. As
is well known, X is p.d. but &, is not always n.n.d.
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Amemiya (1985) has suggested a procedure to modify @, to make it
n.n.d. It turns out that the resulting estimator is the REML estimator of 6.
The procedure can be described as follows. First obtain a nonsingular
matrix T satisfying S; =T7'AT and S, = T'T, where A =diag(4,, .., 4,)is a
diagonal matrix. Then &, = (1/1) T'(A/q, — I/q,) T. In the diagonal matrix
A= A/q,— I/q,, replace any negative diagonal element by zero and call the
resulting matrix 4. Then n.n.d. estimator suggested by Amemiya (1985) is

1
QREMLzzT’A*T, (1.5)

where we use the notation @ ggy, to emphasize that the estimator in (1.5)
is also the REML estimator of &. In fact, for a general balanced multi-
variate mixed effects model, Calvin and Dykstra (1991a) have proposed an
algorithm to derive the REML estimators of the multivariate components
of variance. In another paper, Calvin and Dykstra (1991b}, a least squares
type approach is used for estimating multivariate components of variance.
For the model (1.2), which involves only two variance components, the
REML estimators of @ and X' have explicit expressions as seen from (1.5)
and (3.1) However, for a general multivariate balanced mixed effects
model, the REML estimators do not have analytic expressions and have to
be computed by an iterative algorithm.

The estimator suggested by Amemiya (1985) and those derived by
Calvin and Dykstra (1991a, b) are motivated only by the requirement that
the estimated covariance matrix € be n.n.d. It was not required that the
estimators possess good frequentist properties in the sense of having a
smaller risk, say, compared to the unbiased estimator @,. [If & is an
estimator of @ in (1.2), the loss function we shall use is tr(® — @)?]. In
fact, unlike in the univariate case, risk comparisons of various n.n.d.
estimators of multivariate components of variance is not available in the
literature. A major goal of this article is to derive n.n.d. estimators of &
having good performance in terms of risk; in particular, n.n.d. estimators
that are uniformly better than @ in (1.3). Furthermore, the estimators we
shall derive have explicit analytic expressions and hence are easily com-
putable. Our research in this context is motivated by similar resuits in the
univariate case recently obtained by Mathew ez al. (1992a) and Kelly and
Mathew (1993). In these papers, the authors have obtained satisfactory
nonnegative estimators of the variance components for univariate balanced
mixed models. In Section 2, we have achieved the same for the model (1.2).
Numerical results regarding the performance of the proposed estimators as
well as those derived by Amemiya (1985) and Calvin and Dykstra
{1991a, b) are also reported. It turns out that the n.n.d. estimators that we
have proposed have considerable advantage over the others in the sense of

683/51/1-7
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having a smaller risk. We would also like to point out that our results in
Section 2, derived in the context of a balanced multivariate model involving
only one random effect (namely, the model (1.2)) is also applicable to some
models involving more than one random effect, including, for example, the
model (1.1). Even though the model (1.1) involves three variance com-
ponents, namely, X, Z,, and X, for estimating the random effects
variance components X, and 2, the problem actually reduces to the same
in a model that involves only two variance components. This is so because
for the model (1.1) the sum of squares and sum of products matrices, say
S,. S, and S, are independently distributed as

Su~W2(Ee+22h+4Zuv6)y Sh~W2(2e+22h’7)w
and

S.~ W2, 14). (1.6)

Thus, for estimating X', it is enough to consider the matrices S, and S, so
that the model involves only the two variance components (X', +22X,) and
2 ,. This is obviously true for estimating £, as well. (However, a similar con-
clusion is not always true for any multivariate balanced mixed model; for
some counter examples in the univariante case, see Mathew et al. (1992a)).

In applications, it may be of interest to estimate certain scalar valued
functions of a multivariate component of variance, for example, tr @ or the
sum of all the elements of the variance component matrix @ or just its
diagonal elements &,;. In the context of the model {1.1), it may be of some
interest to estimate tr 2, or 12,1 or X, where 1 denotes a vector of
ones of appropriate dimension and 2, ;, denotes the ith diagonal element
of Z,. tr X, is clearly the sum of the variances of the components of the
random effect b; and 12,1 is the variance of ]’b,-j, 1.e., the variance of the
sum of the random variables in b,. For the model (1.2), the nonnegative
estimation of tr ® and a’@a, a #0, is also addressed in Section 2. We have
once again numerically compared the various competing estimators of
these scalar valued functions of 6.

Section 3 deals with the estimation of the error variance component X in
the model (1.2). The unbiased estimator £, in (1.4) is obviously p.d. and
is a function of only S,. In Section 3 we claim that this estimator can be
uniformly improved using an estimator that is a function of both S| and S,
under two loss functions, namely, the entropy loss function L, (X, X)=
tr2X'—In|ZX"'|—p and the invariant squared error loss function
L%, 2)=tr(£X ' —I)?. However, we have been able to prove this claim
only when p = 2. Numerical results are reported regarding the performance
of the new estimators. Our results in this regard generalize the correspond-
ing univariate results given in Mathew et al. (1992b).
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2. NONNEGATIVE ESTIMATION OF &

The probiem we shall address in this section is that of obtaining some
n.nd. estimators of © that are uniformly better than &, given in (1.3). We
first explore the possibility of improving @ ,, using estimators that are linear
combinations of S, and S, given in (1.2). Following Kelly and Mathew
(1993), we express such an estimator as

1
élr.e):g ____S]__E_SZ . (21)
A L9y q>

where ¢ and ¢ are real numbers. Clearly, @, ,, is n.n.d. if ¢ >0 and £<0.

We shall first characterize ¢ and ¢ such that @, ,, has a uniformly
smaller risk compared to @, where, for an estimator @ of @, the risk
function is defined as

R(O, ©)=tr E(6 — &)~ (2.2)

We shall consider only ¢ and ¢ satisfying ¢ >0 and e< 1 since, as will be
seen shortly, it is enough to consider only such values to achieve risk

improvement over @,. Also note that if c<0 or if ¢>1, @(c, o IS not
always n.n.d. and furthermore when ¢ >0, if ¢ > 1 then @, ,, is more likely
to be not n.n.d. compared to &,,. We now compute the risk of @'u). For

this we use the fact that if 4={((a,))~ W, (Z, m), then E(4)=mX and
Covlay, ay) =m(o,0,+0,0,), where o, is the (ij)th element of X (see
Muirhead, 1982, p. 90). Direct computations then yield

2

R(O,0r ) =35 (X +10) + (1(Z +10)})
c’e? c?
+ =5 [t E)+ (tr 2]+ = (1 — &) tr(Z2?)
A%q, A

+(c—1)? tr(@2)+2-§(c— (1 —e) tr(20@).  (2.3)

Equation (2.3) obviously reduces to the risk of &, when c=1, e=1.
Letting 2 —0 and O — 0 respectively in the expression for the rnisk
difference R(6,, ,,, ©)— R(O,, ), we see that the inequalities (2.4) and
(2.5) below are necessary for R(@m o @) < R(B, O);

~1~-(cz-l){tr(@z)-f-(tr@)z} +{c—1)* (@) <0 (2.4)

1
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for all n.nd. ©, and

2
%JCL+3)—(L+1J}hNZQ+(UZY}
91 4 91 4>

+ X1 =) tr(Z?) <0 (2.5)

for all p.d. X. Observe that for (24) to hold, the condition ¢*—1<0 is
necessary. Arguing as in the proof of Lemma 2.1 in Mathew et al. (1992a),
it can be shown that (2.4) and (2.5) are sufficient as well for R(@(m,, )<
R(Oy, 6).

We now derive the conditions under which (24) and (2.5) will hold
uniformly in @ and X respectively. Observe that it is enough to derive con-
ditions under which (2.4) will hold for all n.n.d. @ satisfying tr(@>) = 1.
Since ¢2—1<0, the LHS of {2.4) is a maximum when tr @ is a minimum
and subject to tr @* =1, the minimum value of tr @ is 1. Consequently,
(24) holds for all n.nd. @ if and only if

2ct—1)

q,

+(c—1)?<0. (2.6)
Using a similar argument, we see that (2.5) holds for all pd. X if and only

if
2 1 1
Z{CZ (_1_+_8__)_(—+——>}+c2(1 — &) <0, (27)
9y 42 9 942

Thus R(®,. ,,, @) < R(®, ) uniformly in £ and @ if and only if ¢ and ¢
satisfy (2.6) and (2.7). Finally, we observe that (2.6) is equivalent to

co<e<l, (2.8)
where
q,—2
= m. 0,———'— . 2.9
comman {0. 225} 29)

Furthermore, for any ¢ satisfying (2.8), an interval for ¢ can be specified
from (2.7) as

Eor SESEpcs (2.10)

where ¢, and ¢, are the lower and upper bounds (depending on c¢) for &,
obtained from (2.7).

It is interesting to observe that (2.6) and (2.7) involve only the d.f’s of
S, and S,, and not their dimension, implying thereby that these two
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inequalities coincide with similar conditions derived by Kelly and Mathew
(1993) in the univariate case. Consequently, for improving over @, using
an estimator of the form @, ,,, all the results in the univariate case can be
adopted in the multivariate set up as well. Thus, there exists an n.n.d.
estimator @(M, having uniformly smaller risk compared to &, if and only
if (Mathew et al., 1992a)

¢,=3 and (¢ 2 q,<2(q, +q:){q, +2), or gq,=1or2
(2.11)

We summarize the above observations in the following theorem.

THeOREM 2.1.  Consider the model (1.2) where g, and g, satisfy q,= p,
q, =2 p. Let ¢y, &g, and &, be given by (2.9) and (2.10). Then

(i} if q =1 o0r 2, the estimtor O, has a uniformly smaller risk than
Oy if c=0, or if e<min{l, &1} for any c satisfying 0<c<1;

(ii) if g, =3, the estimator @, ,, has a uniformly smaller risk than &,
if eo. <e<min{l, e, .} for any ¢ satisfying c, < c<1; and

(iii) there exists a nonnegative definite estimator of the form 6,
having a uniformly smaller risk than @ if and only if (2.11) holds.

In situations where (2.11) holds, we have an n.n.d. ém .; providing uniform
risk improvement over @ . However, if (2.11) does not hold, such an n.n.d.
6,..., does not exist and in this case if risk improvement over @, is desired
along with nonnegativity, our recommendation is as follows: choose ¢ and
£ so that R(ém 0 ©) < R(O,, @) (one possible choice is ¢, and ¢, given
later in (2.12)). Now “truncate” the estimator @, ,, at zero, ie., take the
spectral decomposition of @, ,, and replace any negative eigenvalue by
zero. We shall denote the n.n.d. estimator so obtained by &, ,,,. The
following lemma, which is an obvious extension of the corresponding
univariate result, shows that é(“) ., has a uniformly smaller risk compared

to 6.

LeMMA 2.1. Let @ be any estimator of O satisfying R(6, ©) < R(O, @)
and let &, denote the estimator obtained by replacing the negative eigen-
values by zero in the spectral decomposition of @. Then tr(6, —0)*<
tr(@ — ©)? and hence, R(@ , , @) < R(O, @) uniformly.

Proof. Consider the spectral decomposition & = PDP', where P is an
orthogonal matrix and D =diag{d,,..,d,,d,,,,..d,) is the diagonal
matrix consisting of the eigenvalues of @ with d;=z0fori=1,2,..r and
d, <0 for i=r+1,..p. Then @, =P diag(d,, .., d,,0,..0)P. Defining
POP' = 0* =((0})), we get

683/51/1-8
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tr(@ — @)’ = tr(D — ©*)?

=)’f d—03)+Y 6r°

i=1 i#j

HM\

(d 0¥ 4 Z ox+ Y %2

i=r+1 i#j

(since d, <0 fori=r+1,.. p)
=tr(@, —0)%

which proves the lemma.

A question of practical importance is the choice of ¢ and ¢. A choice that
we recommend is obtained by minimizing the LHS of (2.6) with respect to
¢ and the LHS of (2.7) with respect to ¢. The resulting values, say ¢, and
€y, are given by

q»
g, +2

9

— 2.12
742 (2.12)

cp= and £ =

The above choice is motivated by the fact that the LHSs of (2.6) and (2.7)
are respectively the coefficients of #2 and ¢2 in the risk of @, ,,. In other
words, ¢, and ¢, minimize the leading terms in the risk of @,, ,,. However,
ém.m is not always n.n.d. We thus recommend é(c..e1)+ as an estimator
of @. The estimator O, , . is n.n.d, it is uniformly better than & (from
Lemma 2.1) and the simulation results reported below show that its risk
performance is much better than the REML estimator @ gy -

It should be noted that the above modification of 6, ,,, to arrive at
6., .+ Is quite different from the modification of &, to arrive at the
REML estimator given in (1.5). It is clear that the same modification can
also be applied to @, ,,, to arrive at the n.nd. estimator, say €, ,,» and
the spectral decomposition approach can in turn be applied to @, resulting
in an n.nd. estimator, say éu +- While it is clear (from Lemma 2.1) that
O, is uniformly better than @, it is not clear if €, , . is uniformly
better than @ ,. However, our numerical computations indicate that the
difference between the MSEs (and also the biases) of &, ,,, and &, -
(and also between those of @, and Gggyy ) is not significant.

In Table I, we have reported the MSEs and squared biases of several
competing estimators of @ in the model (1.2) for p=2, g,=5 and ¢,=5.
/ appearing in (1.2) was taken to be one. Note that if @ is an estimator of
O, the squared bias is defined as tr( (@) — @) The estimators considered
are Oy, Opemr, Ovys O, o+ and O, , ., where ¢, and ¢, are given by
(2.12) and &, ,,,, and O, .. are defined above. The MSEs and biases
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TABLE I

MSEs and Squared Biases (Based on 50,000 Simulations) of Different Estimators of € in the
Model (1.2) for p=2; q,=5,¢.=5Z=1;A=1;0=4,(} }), and & =4,1, for
8,,9,=05, 1, and 4 (the Squared Biases Are Given in Parentheses)

d, 02
0.5 1 40 0.5 ] 4.0

&, 3.9884 6.3645 37.3221 3.9021 5.9980 31.1513
11— 2.6711 5.0286 36.0903 2.4962 44812 29.7944

(0.2645) (0.2296) (0.1966) (0.2158) (0.1290) (0.0143)
6., 26194 5.0037 36.1843 2.4283 44129 29.7504

(0.2489) (0.2212) {0.1986) (0.1970) (0.1152) (0.0121)
- 14473 27812 22.8639 1.3098 23257 16.9524

(0.1438) {0.2469) (4.4644) (0.0632) (0) (1.6733)
B\ .ye 14572 27697 22,7403 1.3292 23399 16.9528

(0.1436) (0.2316) {4.3620) (0.0682) {0.0002) {1.6654)

were computed based on 50,000 simulations and the parameter values used
are 2=/, and @=46,1,1), and @ =9,1,, for J,, 6,=0.5, 1, and 4, where
1, denotes a 2 x 1 vector of ones. In Table I, the squared biases are given
in parentheses. From Table I, it is clear that some of our proposed non-
negative estimators provide substantial reduction in MSE over both @,
and @gpy; - The estimators that we recommend are ém.m cand O ..
The differenice between the MSEs (and the biases) of these two estimators
is rather negligible.

Nonnegative Estimation of tr @

We shall first characterize ¢ >0 and ¢ < 1 so that tr &, ,, has a uniformly
smaller MSE than tr @ . If the resultant estimator tr @, ,, is always non-
negative, nothing needs to be done. Otherwise, the estimator tr &, ,, can
be truncated at zero to yield a satisfactory nonnegative estimator of tr &.
Towards this, we first compute the MSE of tr é(m,, which is given by

2 2 2 2.2
MSE(tr @, ) = E(tr 6, ,, — tr ©)} = —o—tr(5 + 40)* +

h 2 tl'( ):2)
Aq, A*q,

2
+§—2<1—e)2<tr2)2+(c—1)2(tr@)2

+25 = 1)1 =¢) (tr £)(tr O). (2.13)

L
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Using arguments similar to those that lead to Theorem 2.1, we see that the
inequalities (2.14) and (2.15) below are necessary and sufficient for
MSE(tr 8. ,,) < MSE(tr € ) uniformly in £ and &:

2~(02—1)+(0—1)2p<() (2.14)

q.

2 |
2{62<i+i)_<——+l>}+c2(l—6)2p<0. (215)
49, 42 q9: 4>

We note that the conditions (2.14) and (2.15) are stronger compared to
(2.6) and (2.7), since p occurs above with a positive coefficient in both the
inequalities. Equation (2.14) is obviously equivalent to

max {0, g'—":—z}gc@. (2.16)
Gp+2

For any c satisfying (2.16), an interval for ¢ can be obtained from (2.15),
Arguing as in the derivation of (2.11), we also conclude that there exists a

nonnegative estimator of the form tr @, ,, having a uniformly smaller
MSE compared to tr @, if and only if

qip 23,
and (2.17)

(ip—2YV 42<2g,+9:)(q,p+2)  or g p=1lor2

Values of ¢ and ¢ that we recommend for practical use are obtained by
minimizing the LHS of (2.14) with respect to ¢ and the LHS of (2.15) with
respect to ¢ These values, say ¢, and ¢,, are given by

q1P
Cz__—

— and g, =—127
1

P qap+2

(2.18)

The above choice of ¢ and ¢ can be justified by noting that the LHSs of
(2.14) and (2.15) are respectively the maximum values of the leading terms

involving @ and X in the MSE of &, ,,. Since &,>0, tr @, ,,, can be
negative, we consider the estimator
(tr 6, o)+ =max{0,tr 6, ..} (2.19)

In the numerical results reported in Table II, we have considered the
estimators tr @, tr Ogppe, (tr O,),, (tr ém.m)+’ and (tr@(q_sz))+,
where ¢,,é,,¢,, & are given (2.12) and (2.18), and (tr&,), and
(tr @, .+ are defined analogously to (tr@., ,,), in (219). The
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TABLE 11

MSEs and Squared Biases (Based on 50,000 Simulations) of Different Estimators of tr &
in the Model (1.2) for p=2; ¢, =5, 9,=5; X =5,; Ai=1; @ =46,(} !), and & = 4,1, for
8,,0,=05, 1, and 4 (the Squared Biases Are Given in Parentheses)

J, 4,
0.5 1 40 0.5 1 4.0
tr{ &) 2.7942 4.7773 33.3734 2.6066 4.0113 20.8769
(G rgmL) 2.2448 4.1305 32.6933 1.9468 31141 19.7977
(0.4979) (0.3976) (0.2719) (0.4316) (0.2578) (0.0281)
(tr &), 1.9198 4.0052 33.0535 1.7736 3.3546 20.7681
(0.0600) (0.0185) (0) (0.0560}) (0.0145) (6.0001)
(ré., ). 10810 2.1249 20.3387 0.9970 1.7623 13.9558
(0.0320) (0.0187) (3.5501) (0.0312)  (0.0195) (3.5148)
(tré,., ). 14322 28423 240235 13233 23654 15.4018
(0.0505) (0) (1.1235) {0.0484) (0) (1.1054)

parameter values considered are the same as in Table I and the computa-
tions in Table II are based on 50,000 simulations. From Table 11, it is clear
that a singificant reduction in MSE can be achieved over both tr @, and
tr Ogpmy, and (tr @m.m) , appears to be a satisfactory nonnegative
estimator of tr 6.

Nonnegative Estimation of a’@a, a#0

As before, we shall characterize ¢ and ¢ so that 2’6, ,,a has a uniformly
smaller MSE comparted to a’@,a for estimating a’@a. Note that the
estimators we are considering are linear combinations of a'S,a and a'S,a.
From (1.2), it is clear that

a'Sa~(a'Za+la'@a)y] and a'S,a~(a'Za)y2. (220)

Consequently, the problem of estimating a’®a is a univariate problem in
the model (2.20) that involves the two variance components a’'Za and a’@a.
Thus the results in the univariate case directly apply for the nonnegative
estimation of a’@a. In particular, the conditions (2.6) and (2.7) are
necessary and sufficient for a’@(a »a to have a uniformly smaller MSE
comparted to a’@ ,a.

In TableIIl, we have compared several competing estimators for
estimating 1'@1. The estimators considered are 1’0, 1, 1'@gpy 1,
(1'6,1),, and (1'6, ,,1), , where, for an estimator & of 8, (1'61), =
max{0, 1'61}. The same models and parameter values were considered as
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TABLE 11

MSEs and Squared Biases (Based on 50,000 Simulations} of Different Estimators of 1'€1
in the Model (1.2) for p=2; ¢, =5, ¢:=5; E=1; A=1; ©=4,(} }).
and @ =9d,1, for 0,,d,=10.5, 1. and 4 (the Squared Biases Are Given in Parentheses)

(sl 62
0.5 1 40 0.5 1 4.0

16,1 7.9152 15.8332 130.1574 5.1507 7.9235 41.2293
10 rem 1 6.1201 13.6800 128.7449 3.4458 5.9953 39.3690

(0.2802) (0.1461) {0.0300) (0.4247) (0.2506) (0.0227)
(1'6,1), 6.1032 14.2766 129.5631 3.3160 6.1125 40.1326

(0.0836) (0.0218) (0) (0.1847) (0.0836) (0.0024)
(l’ém'zl,l)+ 3.2220 7.8444 83.3603 1.8138 3.2251 239348

(0.0061) (0.4860)  (17.4442) (0.0674) (0.0060) (3.5024)

in Tables I and II, and the computations are based on 50,000 simulations.
Once again, the computations indicate that some of the proposed
estimators are superior to both 1’6 ,1 and 1'@ggy; 1. The estimator of
1'@1 that we recommend is (1'6,, 1), .

3. ESTIMATION OF THE ERROR VARIANCE COMPONENT 2

In this section we discuss the problem of estimation of the error variance
component X, based on §, and S, defined in (1.2). As noted before, the
UMVUE of X is given by £, = S, /g,. To describe the restricted maximum
likelihood estimator Xgpyy of Z. we use the representation S, =7"AT
and S,=T7'T used in (1.5), where 7 is a nonsingular matrix and
A=diag(4, .., 4,) is a diagonal matrix. Let D=diag(d,,..d,) be a
diagonal matrix with d,=1/g, if ,/g, = 1/q, and d,= (4, + 1)/(q, + ¢.) if
4:/q, <1/q,. Then Lypyy is given by (see Calvin and Dykstra, 1991b,
p. 859)

Lrem=T' DT. (3.1)

In the sequel we consider two types of invariant loss functions, the entropy
loss and the squared error loss:

L(Z D)=l '-m|fr "\ -p (3.2)
L2 Z)y=tr(EX ' —1)% (3.3)
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Proceeding in the same spirit as in Mathew et al. (1992b), we claim that

S +8S, ) —(p—1
_‘} - 1+(b i i |1+S;15‘I<ql+42 (p—1)
2(1)= Sl 2=1p 1 (3.4)
2 .
—= otherwise
q>

provides uniform risk improvement over S,/q, under L,. Note that £,
can equivalently be expressed as

T+ )T L —(p—1
£ G1+q,—(p—1) i=1 q:
(= , . (3.5)
T'T .
— otherwise
q>

Analogously, it is claimed that

—————-———+S’+(Sz 5 |I+S;‘S,l<—-———————-—ql+qqz__’_(;_3)
f(z)= ‘IIS q2 V4 2 (3.6)
2 .
otherwise
q2+2

is uniformly better than S,/(g,+2) (the best multiple of S, under L,)
under the squared error loss L,, and hence is uniformly better than X,
Z 5, can equivalently be expressed as

T+ T i —(p-3
(I+4) i {41y <Ltgzp=3d)
o g1+q—(p—3) i g, +2
2y — ' . (37)
T .
otherwise
g,+2

We have been able to establish the risk dominance of £;, and £,,, over £,
only in the bivariate case, i.e, p=2. Unfortunately, the proof is purely
algebraic in nature and lacks an immediate generalization for p>2. It is
interesting to compare Lgrpmi, 21, and 2y,,, and note how a drastic
modification of £ggn results in uniform risk improvement over X .

To derive 2 (1) and z (2 We decompose Sy and §, as

S, =T,T,, S,=T,T%, (3.8)

where T, =((z;,,)) and T,=((t,,))) are lower triangular matrices with
positive diagonal elements. Consider now an estimator of X of the form

=T, yW(UU') T, (3.9)
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where U=T;'T, and y(-) is a px p p.d. matrix-valued function of the
matrix argument UU’. X above can be motivated along the lines of Stein
(1964), Sinha (1976}, Shorrock and Zidek (1976), and Sinha and Ghosh
(1987). Note that y(UU’) = I/q, results in X .

Now consider the loss function L, and the problem of optimal choice of
Y(UU'Y in (3.9) to minimize the resultant risk of £. A standard conditional
argument (see Sinha and Ghosh, 1987} then yields that

Yol UU") ={Ey o( T3 T, U)} 7", (3.10)

The result given in Lemma 3.1, providing an upper bound of . (UU’) is
crucial for the proof of (3.4). We have been able to prove Lemma 3.1 only
for p=2.

LemMma 3.1.
I+ UU'| 1
lpopt( L]U,) S -—J——!-———I_L—'a
g tg—(p—1)
whathever be X and ©.

Using the convexity of L,, it then follows that given Y(UU’)= I/g, and
hence X, use of £, = T, (UU’) T, where

1 ! —(p—1
pavvny={ it =b 72 (3.11)
1
q_ otherwise

provides uniform improvement over 2 .. Since X |, defined above coincides
with the definition given in (3.4), we have proved the claim.

Proof of Lemma 3.1. for p=2. Recall that §, ~ W, (2 + 40, ¢q,) inde-
pendent of S, ~ W, (Z, g,). Due to the invariance of the loss function L,
{and also L,), without any loss of generality we can take 2=1, and @ to
be diagonal so that we can write

71_ =
{Z+10} '=L (0 L,

), o</, <1, i=1,2

Let S~ W, (2, v), v= p, and write =77’ where T is a lower triangular
matrix with 7= ((t;), ;>0,1,=0, j>i, i, j=1,.., p. Then the p.df of T
can be written as (see Anderson, 1984)

P
S(T)= Ke= V2 =rm (]‘1 z;;.'), (3.12)

i=1
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where here and throughout below K is used to denote a generic constant
(in some cases K may depend on some unknown parameters). Denote by
T, ={(t;,,) and T,=((t;,))) the appropriate lower triangular matrices
with positive diagonal elements corresponding to S, and S,, respectively.
The joint pdf of T, and T, can be obtained using (3.12). Making
the transformation (7,,T,)—»(U=T,'T,,T,) and noting that the
Jacobian =T]?_, #i,,» we get the joint p.d.f of U=((u;)) and T, as

AU, T,) = Ke (Ul NTy+ LT UU'TY] (ﬁ u?l :)(lp—[ ’Z:;)qz .>,
1 1
which results in the following conditional p.d.f. of T,, given U:
P
AT lu)y=Kexp[ —3tr{T, T, + LT, VT,} ] (n 1 *'). (3.13)
1

Here V=’ = ((v;)). We shall assume p =2 in the remainder of the proof.
It is easy to conclude from (3.13) that ¢, ,, is independent of (15,2), f232))
and

t? .
t“(2,~f(t“(2))=KeXp(———1—12(*2—)(1 +U|1111)) iy

p (1 ~Nl:_tzz(z;vzzlzz 1 :'
21(2y 1 f22(2) 1 + 1711122 ’ 1 + U11[22

gy T+ VTN
t22'2)~f(122(2))=Kexp(——%—Qlﬂ-—v—z[—>1‘2‘2(2), (3.14)
1nin

where v, =¢q, +¢,— 1, v, =9, + g, — 2. Direct computation then yields

E(T5T;|u)
1 + vi+1 vh15(r+ 1) _U12l22(v2+1)
| THonly T+only (T+uplp) I+ 6,V I+, V]
- ‘012122("2‘*'1) (va+ 1)1 +vy,1,)
[+ 1, V] {1+ 1, V|
(3.15)

To establish Lemma 3.1, we now show that

E(Tsz|”)>|1 Vl whatever be /|, /5. (3.16)
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In order to prove (3.16), it is enough to show that the smaller eigenvalue
of E(T,T,|u) is greater than or equal to v, /|74 V|, whatever be [, [,;, or
equivalently,

Vi

inf inf [XE(T,T x] > .
Oslll.lzz<lx:|\x<\:1[ (T3 To]u)x] 7+ V|

(3.17)
Upon simplyfing x'E(T% T, |u) x using (3.15), it is readily verified that
X'E(T5T, u) x 2 v d(x, 1), (3.18)

where

x? R 2]

dlx, l5) = +{ = Sl =x* /140! } —,  (3.19)
2 oy LT+, v Vitoul 11+ V|

and we write x = (x, /1 —x?), 0< x <1 (using the fact that |x} = 1). Thus,

in order to establish (3.17), it is enough to show that

¢(X, 122) -

____20’
[+ V|

for all x and /,, satisfying 0<x<1 and 0</,,<1. Writing 4=
v f(1+0y)) + 05,15, /(1 + v 1), t=x/\/l —x?% and using v,,v,, 2 v7,, it
can be verified that

1 1 —x?
o x, 122)—m> TE%% (A = 20,05t + 0y, 15}
1—x?2 120\’ V3l %
= t— 22 11las — =t .
T {A( ) > + vy, 15 y } (3.20)

The nonnegativity of the last expression in (3.20) can be established by
showing that v, /5, —v3,/3,/4 >0 (using v,,v,, > v},). This completes the
proof of Lemma 3.1.

We next consider the loss function L,. The risk of £ defined in (3.9) can
be computed as

EZ‘Q{L2(f’ E)}
= E; o[t(Toy(UU') THZ 7' = 1)?]
= E; o« t[ Toy(UU") Ty Ty (UU") T = 2T, y(UU) Th + 1]
=E; o+[tr Y(UU') E; { T T,Y(UV") T, T,| U}
— 2t Y(UU") Ef 0o { THT,| U} + p], (3.21)
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where the inner conditional expectation is evaluated for fixed U, the outer
expectation is evaluated with respect to U, and @* = AX ~'2@X V2 As in
the previous case, the problem now is to compute ¥, (UU’) and identify
an upper bound of it, similar to the one given in Lemma 3.1. We claim that
Yo UU') satisfies the inequality given below.

LEMMa 3.2,

|+ UU'|
ol VU ) <o [ 3.22
Vonl UU) g +q.—(p=3) " (3.22)

whatever be @ and X.

A proof of Lemma 3.2 is given in Mathew et al. (1992¢) for p=2. The
proof is computationally involved and is omitted here. As before, using the
convexity of L,, it then follows that, given y(UU’) = I/g, resulting in £,
use of £, = T, (UU') T, where

I+ U’ ,—(p—3
oo (UU") = q‘l =P v < (3.23)
otherwise
q2+2

yields uniform improvement over S, /(g, + 2). Since X5, coincides with X,
defined in (3.6), the claim is established for p =2.

TABLE IV

Risks (Based on 50,000 Simulations) of Different Estimators of 2 in the Model (1.2) for
p=29,=5¢=52=1I,i=1;0=45,(!1), and & =4,1, for ,,5,=001, 0.5, 4, and 9

s, 3,

0.01 0.5 4.0 9.0 0.01 0.5 4.0 9.0

(a) Risks of different estimators of X for the loss function L,

2o 07023 0.7074 0.7098  (.7100 0.7023 07076 0.7100  0.7100
L ep 06176 06256 06475 0.6412 06176 06247 06801 06991
S2/9: 07100 07100  0.7100  ©.7100 07100 07100 0.7100 07100

(b) Risks of different estimators of X for the loss function L,
., 0.7742  0.7775 0.7788 0.7789 0.7741  0.7775 0.7789 0.7789
XML 0.6557 0.7214 0.8350  0.8533 0.6557 0.7334  1.0477 1.1490
S,/(g.+2) 07789 0.7789 0.7789 0.7789 0.7789 0.7789 0.7789  0.7789
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In Table 1V, we give the risks of different competing estimators of X' in
the bivariate case for ¢, =35, ¢, =35. The parameter values considered are
the same as in Tables I-1I1. In Table IVa, we have considered the loss func-
tion L, given in (3.2) and have reported the risks of f(”, )fREML, and
L,=S,/q,. The loss function L,, given in (3.3), is considered in
Table IVb, and we have reported the risks of f(z), 2 remL, and S,/(g,+2).
The risks of S,/q, and S,/(q,+ 2) are clearly independent of 6.

The numerical results in Table II indicate that L'z, does have some
edge over both 2(1) and S,/q, with respect to the loss function L,.
However, with respect to the loss function L,, Lgeny provides improve-
ment over S,/(g,+ 2) only for very small values of @. For large values of
8, Zxenvy performs much worse than both E(z) and S,/(q,+2).
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