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SUMMARY

Many species of mammals are very good at catego-
rizing odors. One model for how this is achieved in-
volves the formation of ‘‘attractor’’ states in the olfac-
tory processing pathway, which converge to stable
representations for the odor. We analyzed the re-
sponses of rat olfactory bulb mitral/tufted (M/T) cells
using stimuli ‘‘morphing’’ from one odor to another
through intermediate mixtures. We then developed
a phenomenological model for the representation of
odors and mixtures by M/T cells and show that
>80% of odorant responses to different concentra-
tions and mixtures can be expressed in terms of
smoothly summing responses to air and the two
pure odorants. Furthermore, the model successfully
predicts M/T cell responses to odor mixtures when
respiration dependence is eliminated. Thus, odor
mixtures are represented in the bulb through sum-
mation of components, rather than distinct attractor
states. We suggest that our olfactory coding model
captures many aspects of single and mixed odor rep-
resentation in M/T cells.

INTRODUCTION

Attractor networks are the most common models for explaining

memory storage and recall, and input-output transformations in

networks of neurons (Amit, 1989; Hopfield, 1982; Rolls and

Treves, 1998). These Artificial Neural Networks (ANNs) have mul-

tiple stable states. Each such state is a specific, stable pattern of

spatial and possibly temporal activity across the network. The

key attribute of such an attractor network is that when its neu-

rons are stimulated with patterned input, the ANN converges

to the stored pattern most closely resembling the input.

A large body of work on categorical perception (Rotshtein

et al., 2005; Wyttenbach et al., 1996) might be explained by

such attractor-based models. The few explicit tests of these

ideas have provided some evidence for signatures of attractor

dynamics in different systems (Freedman et al., 2001; Guzowski

et al., 2004; K. Jezek et al., 2006, FENS Forum, abstract; Lee

et al., 2004; Leutgeb et al., 2005; Vazdarjanova and Guzowski,

2004; Wills et al., 2005). The recent work by Wills et al. and Jezek
et al. in the hippocampus and entorhinal cortex provides striking

results in favor of such theories.

It has been proposed that the mammalian olfactory bulb (OB)

may also act as an attractor-based neural network (Hendin et al.,

1998). A directly testable prediction of such a model is that the

network should transition abruptly from one stable state to an-

other when it is presented with a stimulus set that progresses

from one distinct odor stimulus to another through a series of in-

termediate mixtures. A related proposal, based on experiments

and models, suggests that odor representations in the OB take

the form of chaotic attractors (Freeman, 1991; Freeman and

Grajski, 1987). This idea is based on EEG recordings, and is

therefore not directly comparable to our single-unit recordings,

but it too predicts abrupt transitions between responses to

different odorants.

To address the question of whether olfactory responses

change abruptly, one must first consider how odors are repre-

sented in the OB. This is necessary to quantify transitions

between olfactory representations. These representations are

comprised of OB cell activity patterns in response to an odor

stimulus, and are transmitted to downstream regions through

the principal output neurons, the mitral/tufted (M/T) cells. The ac-

tivity of individual M/T cells can be patterned over respiration cy-

cles, both in terms of their baseline activity and in terms of their

response to an odor (Bhalla and Bower, 1997; Chaput and Hol-

ley, 1980; Macrides and Chorover, 1972). This patterned activity

is preserved in cells downstream in the piriform cortex (N. Uchida

and Z.F. Mainen, 2006, Soc. Neurosci., abstract; Wilson, 1998)

and hippocampus (Deshmukh and Bhalla, 2003) and may be

used for encoding olfactory information. Different odors can

evoke distinct patterns, which are often complicated combina-

tions of excitation and inhibition.

There is evidence that respiration-patterned activity is primar-

ily driven by olfactory receptor neuron (ORN) input patterns

(Sobel and Tank, 1993). Patterned activity to air alone may be ex-

plained by recent work on mechanosensitive properties of ORNs

(Grosmaitre et al., 2007). Studies have suggested that these pat-

terns are shaped further by processing within the bulb, through

the interaction of glomerular and M/T cell activity with inhibitory

neurons like the periglomerular and granule cells (Li and Hertz,

2000; Linster and Cleland, 2004; Linster and Hasselmo, 1997;

Shepherd, 2003). There have been many studies attempting to

provide a characterization of this behavior (Cang and Isaacson,

2003; Chalansonnet and Chaput, 1998; Giraudet et al., 2002;

Hamilton and Kauer, 1989; Harrison and Scott, 1986; Meredith,

1986; Motokizawa, 1996; Wellis et al., 1989). Nevertheless, these
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Figure 1. Recording Procedures and Data Representation

(A) Extracellular single-unit recordings were made using tetrodes, and the signal was amplified and filtered and acquired on a computer. The respiration of the rat

was typically steady at 1 Hz and was monitored with a thermocouple placed in front of its nostril. The odor presentation protocol is shown below.

(B) A schematic of the construction of a respiration raster that shows the respiration-locked firing pattern of a cell. The spike train is divided into each respiration

cycle, and each spike is replotted with the respiration phase on the y axis and time of respiration cycle start (or simply time) on the x axis, aligned to the odor valve

onset.

(C) Data from a cell with five trials of an odor presentation superimposed. Each + sign represents an action potential. The color plot to the right is the same data

after smoothing and color coding. The red bar indicates the duration of the odor stimulus here and in subsequent figures. This cell responds to the odor by chang-

ing its respiration tuning, but not its firing rate. The frequency shown on the side of the plot is the maximum firing rate on this figure here and in subsequent plots.
studies do not establish a unified model to explain how the pat-

terned responses of M/T cells can encode both identity and

intensity of odors. The issue of odor combinations has been ad-

dressed in human studies (Laing et al., 1984) and in many sys-

tems with nonrespiration-based odor sampling (Broome et al.,

2006; Kang and Caprio, 1995; Tabor et al., 2004). Only one study

has addressed odor mixtures in the context of respiration-pat-

terned responses (Giraudet et al., 2002), though here too this

issue has not been incorporated into a unified model.

Our experiments were designed to answer the initial question:

Does the OB show signatures of attractor dynamics? In the pro-

cess we have addressed the fundamental issue of the represen-

tation of odor identity and intensity in M/T cells, including their

responses to varying odor mixtures. This led us to formulate

a unified model explaining the behavior of these cells along mul-

tiple dimensions of odor identity, intensity, and combinations in

a limited concentration range.

RESULTS

Recordings and Respiration-Tuned Responses
We characterized responses of rat OB M/T cells to different

odors and analyzed how these responses changed when the

stimulus was ‘‘morphed’’ from one odor to another through a

series of intermediate mixtures. In order to do this, we performed

extracellular single-unit recordings from anesthetized, freely

breathing rats, using tetrodes. We recorded from 593 M/T cells

in these data sets and have analyzed a subset based on stability

and responsiveness to one or more odors. We simultaneously

recorded the breathing of the rat through a thermocouple placed

in front of its nostril. The anesthetized rats typically respired at

a steady rate of 1 Hz. We delivered controlled pulses of odor
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stimuli to the rats’ noses using an air-dilution olfactometer

(Figures 1A and 1B; see Experimental Procedures).

In our recordings we frequently observed a modulation of M/T

cell firing rate over the respiration cycle, as previously reported

(Deshmukh and Bhalla, 2003; Macrides and Chorover, 1972).

We refer to this phenomenon as respiration tuning. Figure 1B is

a schematic description of our procedure for characterizing res-

piration tuning, and Figure 1C shows an example of a cell with

five trials of odor presentation overlaid. This ‘‘respiration raster’’

was smoothed and color-coded for visualization (see Experi-

mental Procedures). In this example, without any odor, the cell

fired preferentially in the later part of the respiration cycle. In

the presence of odor, the cell responded by changing its respira-

tion tuning pattern rather than its mean firing rate. We used this

color-coded representation of an overlay of five trials in several

of our following illustrations.

Odor Response Distributions
We first tested each cell with 1% dilution of saturated odor vapor

from our panel of four odors: iso-amyl acetate, methyl amyl

ketone, 1,4-cineole and (+) limonene (at least three odors were

tested in the naive rats and the two familiar odors in the familiar-

ized rats—see below). The fraction of our total set of neurons

responding to at least one odorant was 50% in our study, in

line with published data (Giraudet et al., 2002). Out of these,

identical responses to two or more odorants were relatively com-

mon (23% of total), while different responses to two odors were

rare in our study (8%, or 47/593, of which only 66% were stable

through the length of the morph experiments). While our four-

odor panel was small, all four odorants had very different struc-

tures and functional groups, and were designed to be a represen-

tative sampling of functionally significant responses.
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Intermediate Responses to Mixtures
We looked for cells that showed different respiration-tuned re-

sponses to two odors. On finding such a cell, we performed

the morph protocol, i.e., presented mixtures of the two odors (la-

beled A and B) with the following compositions: [1.0A 0.0B],

[0.8A 0.2B], [0.6A 0.4B], [0.4A 0.6B], [0.2A 0.8B], [0.0A 1.0B].

We refer to this as the ‘‘morph sequence.’’ Each sequence

took approximately 30 min. When the recordings were excep-

tionally stable, we were able to perform the morph sequence in

both directions, and if possible a second time each.

Since most theoretical models of attractor-based networks

rely on the network being trained on the stimuli to be stored

(Hertz et al., 1991), we familiarized one group of rats on one

pair of odors (I and M) for 5–8 days before the recording (see Ex-

perimental Procedures). We compared these responses with

those from naive rats. We found no difference between the two

groups in all subsequent analysis and therefore pooled all the

cells (n = 32 cells; 19 naive, 13 odor-familiarized; distribution in

categories is not different for the two groups, chi-square test,

p < 0.05; see Table S1 available online).

In Figure 2 we present some examples of the neuronal re-

sponses to different pure odors and the morph sequence(s)

between them. Our findings were the following: (1) cells could

display clearly distinct responses to different odors; (2) the

responses to intermediate mixtures were intermediate between

the two pure odor cases; and (3) the baseline activity of the cell

drifted to varying degrees, as measured by the firing rate and

respiration tuning in the air periods of the same cell. The re-

sponse to the same odor after an interval also drifted. This drift

could be due to anesthesia effects (see Discussion) and has

been included in our quantification of the noise in the system

(see Supplementary Material). However, despite this drift, the re-

sponses varied smoothly between the two pure odor cases.

One of two prominent ways a cell behaved to a morph se-

quence was with a ‘‘band’’ of excitation gradually shifting along

the respiration phase axis. For example, in Figure 2A, the re-

sponse to 1% cineole (odor-on: red bar) is a large shift in respira-

tion tuning with a broad band of excitation, and for 1% iso-amyl

acetate, it is a smaller shift in respiration tuning and a narrower

band. The morph protocol for this cell was done in both direc-

tions, and one can observe the band gradually shifting higher

and becoming narrower in the forward morph while the reverse

occurs in the reverse morph. Other instances of such shifting

bands are shown in Figures 2B and 2E.

The second type of prominent behavior was firing rate building

up or fading out in specific phases of respiration. This can be

seen in Figures 2B, 2D, and 2F–2H.

A further class of responses is shown in Figure 2C, which

showed firing patterns changing even over the course of the

8 s odor presentation. We could not use this cell (n = 1) for sub-

sequent analysis, since that assumes a single stable respiration

tuning pattern for each odor. However, the basic result, smooth

transitions of responses, is still apparent in this example.

As a first-pass quantification, we extracted the values of the

two features mentioned above for each morph experiment (41

morphs from 32 cells): the position of the band or the firing rate

in a specific phase of respiration. For cells which had both these

effects, we chose the more prominent one. Some cells could not
be categorized in either group. The distribution to these groups is

shown in Figure 3F.

To estimate the position of the band, we fitted Gaussians to

the binned data (Figure 3A, see Experimental Procedures). As

a measure of firing rate, we summed up the total number of

spikes in a box enclosing the excitatory band (Figure 3B). We

plotted these values against the composition of the mixture.

These curves were fit to straight lines, logarithms, or sigmoids.

Examples are shown of cells which were best fit with straight

lines (Figure 3C), sigmoidal curves (Figure 3D), or logarithmic

curves (Figure 3E) (p < 0.01 and best explained variance by the

F statistic). An abrupt transition from one stable attractor to an-

other would be expected to give a steep sigmoid-like curve. As

can be seen in the distribution in Figure 3G, all three categories

existed in these morph sequences. Further, most morph se-

quences belonged to the straight line (38%) or log (29%) cate-

gories (see Experimental Procedures). Therefore this preliminary

analysis argues against strong attractor dynamics in OB re-

sponses to odorants.

Though we had recordings of some morph sequences re-

peated either in the reverse (n = 6) or forward (n = 1) direction,

we did not have sufficient data to analyze effects of hysteresis.

These initial findings were suggestive, but were based on

a model-free analysis that did not provide a deeper explanation

of why the parameters we tracked over the morph sequence

were the relevant ones. This analysis also failed to explain the fol-

lowing observations: (1) the presence of cells from which simple

features could not be extracted; (2) cells in which multiple fea-

tures coexisted and changed at different rates (such as in

Figure 2B with two regions of excitation, and Figure 2H with ex-

citation followed by inhibition); and (3) the exact specific shapes

of the intermediate responses.

Thus, our preliminary analysis argued against strong attractor

dynamics in the OB, but this analysis was limited in several ways.

To overcome these limitations, we developed a more complete

model of M/T cell responses as described below.

The Model: Addition of Excitatory and Inhibitory Input
Functions of Respiration Phase
Here we describe a phenomenological model for M/T cell activity

that explains most aspects of these complex responses to odors

and odor mixtures. The model may be summarized as follows

(Figure 4):

1. Odor input: Any odor that elicits a response from a cell pro-

vides an input that is a combination of excitation and inhi-

bition as a function of the respiration phase (Figure 4C).

2. Air input: Similarly, air itself provides an input that is a com-

bination of excitation and inhibition as a function of the res-

piration phase (Figure 4B).

3. Scaling: The odor input scales in amplitude, but not in

shape, when odor intensity changes (Figure 4D).

4. Additivity: The weighted odor and air inputs sum to give

the total input, which is also a function of respiration phase

(Figure 4D).

5. Firing rate: The output of a cell, measured in terms of firing

rate, is a sigmoidal function of its input (thus, strongly neg-

ative inputs give zero firing rate, while strongly positive

Neuron 57, 571–585, February 28, 2008 ª2008 Elsevier Inc. 573
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Figure 2. Odor Responses Pass through Intermediates During Exposure to the Morph Sequence

(A)–(D)showcells fromnaive rats. (E)–(H)are fromrats thatwere familiarizedwith the odors for5–8 days.Eachpanel is froma cell that responded to two odors differently,

and these two responsesare shown onthe top ofeachpanel. Below these are the responses to the mixtures of the two odors in the morphsequence, which can be seen

to pass through intermediate forms of responses. In a few particularly stable recordings, morph sequences were recorded in both directions as in (A), (B), (E), and (F).

Arrows indicate temporal order of recordings. The color coding is the same for all plots in each panel. Numbers in brackets are the highest firing rate in each panel.

574 Neuron 57, 571–585, February 28, 2008 ª2008 Elsevier Inc.
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Figure 3. Simple Analysis of Morphing Responses

(A) Estimating peak firing phase using Gaussian fit. (B) Firing rate buildup in a defined range of respiration phase. Rates were calculated by summing all spikes

within the selected respiration phase range, shown as a box on the raster plot. (C) Example of change of response as a function of composition of the mixture

fitting a straight line. (D) Sigmoid response. (E) Log response. (C) and (D) are from cells with firing rate buildup and (E) is from a cell with a shifting band. (F) The

distribution of the 41 morphs from 32 cells between firing phase and firing rate calculations. (G) The distribution of cells between straight line, log, sigmoid, and

other categories.
inputs elicit the saturation firing rate). The summed inputs,

when transformed through this sigmoid, give the instanta-

neous firing rate as a function of the respiration phase.

Using this model, we should be able to completely define the

response to any odorant mixture given just the underlying air and

pure odor inputs. We define an ‘‘input strength function’’ to be

the input mentioned in point 1. It is a measure of the actual total

input impinging on the cell from a source, the sum total of

which, when passed through the abovementioned sigmoid, re-

sults in the observed firing rate of the cell.

In order to compare the predictions of this model with our

experimental observations, we took two further steps.

First, the raw data were in the form of individual action poten-

tials, while the model predicted instantaneous firing rates. In or-

der to enable comparison, we transformed the observed firing

events into firing rates as follows. We first separated the respira-

tion raster along the time axis into two windows corresponding to
the ‘‘Air’’ and ‘‘Air+Odor’’ epochs. Within each epoch, we then

pooled the firing events into NR = 17 equally spaced bins along

the respiration phase axis. The bin size was chosen to strike

a balance between two competing effects: too large, and varia-

tions in firing rate over the respiration phase would be missed;

too small, and Poisson fluctuations would produce large errors

in the estimated rate. We found that using 10 bins instead of

17 reduced the quality of our fit, while using 25 bins instead of

17 left the quality essentially unchanged (see Figure S6 available

online).

The observed responses to air and to odor were thus repre-

sented as two NR-dimensional vectors of instantaneous firing

rates.

Second, the model gave us considerable freedom in choosing

how the inputs to the cell were represented as functions of the

respiration phase. One option was to represent the inputs as

sums of positive and negative Gaussians, as is often done in

center-surround models of spatial excitation and inhibition.
Neuron 57, 571–585, February 28, 2008 ª2008 Elsevier Inc. 575
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However, in the absence of detailed mechanistic information, we

had no reason to select this functional form over any other. A

more natural choice, given that the response is periodic over

the respiration cycle, would be to write the input as a truncated

Fourier series. We repeated the complete analysis using 9 and

11 coefficient Fourier sums as input strength functions. These

Fourier expansions did not follow some of the sharper changes

during the respiration cycle, suggesting that even 11-coefficient

series might be insufficient to represent the data. Further-

more, the resultant models did not explain 50% of the morph

sequences. We opted for the simplest approach, in which the

inputs themselves were represented, like the firing rate data,

as NR-dimensional vectors running over the respiration phase.

This makes no assumptions about functional form, but instead

spans the space of all possible functions.

Although we did not use a compact representation of the odor

or air inputs, the model was parsimonious. This was because we

were able to capture the responses to all mixtures of odors in

terms of just three input functions, one each for air, odor A,

and odor B. More precisely: a typical experiment involved

a morph sequence consisting of [1.0A 0.0B], [0.8A 0.2B], [0.6A

0.4B], [0.4A 0.6B], [0.2A 0.8B], [0.0A 1.0B], as well as exposure

to air alone. These seven curves (functions of respiration phase)

involved 7 3 17 = 119 datapoints. Our model uses just three of

these curves (the responses to pure A, pure B, and air alone)

to predict the four remaining mixture responses (4 3 17 = 68

datapoints) using just nine parameters, making this a highly con-

strained fit. In practice, we estimate the three pure responses as

well as the remaining nine parameters simultaneously, so as to fit

all seven curves; see Experimental Procedures.

Figure 4. Schematic of Model

(A) Example of a cell’s response to an odor shown in

three dimensions.

(B) The air input strength function of the cell (left) is

a function of the respiration cycle during air presenta-

tion. When passed through a sigmoid, the air input

function results in the firing rate over the respiration

cycle for the air period.

(C) The odor input strength function (black) is added to

the air input strength function (red) to give the function

AIR + ODOR (blue). This AIR + ODOR function, when

passed through the same sigmoid, will result in the

AIR + ODOR firing rate function (right).

(D) All possible mixture responses are obtained by

scaling each odor input strength function and adding

them to the air function. This is passed through the sig-

moid to obtain the response of the cell to the mixture.

Parameter estimation was carried out as

follows. For any given experiment, we first

represented the data as 17-bin vectors of

firing rates, with one vector for each interme-

diate odor mixture in a morph sequence.

Starting with an initial guess of parameter

values, we then used the model to generate

predicted firing rates for each intermediate

odor mixture. We then quantified the error

in terms of a chi-square statistic, essentially

summing the squared deviations of predictions from observa-

tions. By iteratively minimizing this score, we finally obtained

our best-fit parameters (Press and Teukolsky, 1992).

This model was a good description of the data in 80% (33 out

of 41) of the morph sequences that we obtained from the original

data set of 32 cells (see below). An example of one cell is in Fig-

ure 5, which is the same cell from Figure 2A (odors are here

labeled A and B for simplicity). Figure 5A compares the data to

the results obtained from the model for one morph sequence.

Figure 5B is the same comparison in a different format. As is

clearly seen in both these panels, there were a number of fea-

tures that changed over the morph sequence, and most of

them were captured in the model. Figure 5C shows overlaid

the data and model for the pure odors and air with error bars.

The underlying input strength functions for the two odors that

emerged from this analysis are shown in Figure 5D. These are the

functions of Figure 4D, the contributions of the odors on top of

the air baseline. It is interesting to note that these functions

have ‘‘inhibitory surrounds’’ around their excitatory components

that account for the bands shifting in the morph sequence as

opposed to the bands fading in and fading out.

The odor intensity coefficient is the scale factor by which the

input strength function is multiplied when the odor is present at

a particular concentration. It was defined as 1 for an odor at

1% concentration, and 0 when the odor was not present. The co-

efficients for intermediate odor concentrations were calculated

by fitting them to the data as part of the process of computing

the input strength functions. These odor intensity coefficients

are a measure of the effect of the odor on the cell and are plotted

in Figure 5E, against the externally applied odor concentrations.

576 Neuron 57, 571–585, February 28, 2008 ª2008 Elsevier Inc.
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In this case, these plots were both best fit with a straight line.

Figure 5F illustrates the process of addition of input strength

functions for one of the mixtures (.4A + .6B), and also shows

the approximate upper and lower cutoffs imposed by the sig-

moid (horizontal black lines). The green air curve in the left panel

gave the Model Air curve in Figure 5B when passed through the

sigmoid. Similarly, the brown curve in the middle panel, when

passed through this sigmoid, gave the red Model curve in the

Figure 5. Model Validation and Predictions

(A) Above is the original data showing odor responses to the morph sequence, and below is the model prediction. This is the same example from Figure 2A,

reverse morph. Cineole is odor A and iso amyl acetate is odor B. (B) Alternate representation of data in (A) and its comparison with the model. Odor periods

are placed alongside for each mixture of the morph sequence. The model representation is very close to the experiment. (C) Overlaid respiration phase versus

firing rate plots for the data (with error bars) and the model. Curves are shown for air, 1%A, and 1%B. (D) Input strength functions for odors A and B, showing

scaling with different odor concentrations. (E) Coefficients for odors A and B as a function of odor mixture. In this example the coefficients fit a straight line. (F) An

illustration of the process of obtaining the mixture response of .4A + .6B. The two respective curves from (D) of .4A and .6B are added to obtain the purple curve

(left). The air baseline is shown in green. The two horizontal lines correspond to the approximate lower and upper cutoffs imposed by the sigmoid, of zero and

saturated firing, respectively. Adding the three curves gives the brown Air + .4A + .6B curve (center). This is passed through the sigmoid to give the red curve (right)

showing the response for this particular mixture. It is a good fit to the experimental data, in black. Error bars indicate SEM.

Neuron 57, 571–585, February 28, 2008 ª2008 Elsevier Inc. 577
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right panel, and this is overlaid with the data for this particular

mixture of .4A + .6B.

Validating the Model in Terms of Statistical Significance
As our model included a large number of parameters and a sig-

moidal nonlinearity, it was particularly important to employ rigor-

ous tests for statistical significance. The first step in our evalua-

tion was to understand sources of noise in the measurements.

During a single-odor presentation session of five trials, mea-

sured firing rates displayed precisely the standard deviation

expected from Poisson statistics (Figure S2). However, a com-

parison of results between different odor presentations revealed

slightly larger fluctuations, about 1.21 times the Poisson expec-

tation (see Experimental Procedures). It is known that mamma-

lian M/T cell responses are highly variable (Bhalla and Bower,

1997; Chaput and Holley, 1985). To our knowledge, such vari-

ability has not been separated into trial-to-trial fluctuations in

anesthetized animals and variability in underlying respiration

tuning properties of M/T cells. It is the latter form of variability

that affects the current analysis (see Discussion). We added

this 1.21-times-Poisson noise estimate to our inferred air and

odor inputs, and used a Monte Carlo procedure to simulate

the distribution of chi-square values that would be observed if

the model were true (Experimental Procedures). We then com-

pared the actual chi-square value (obtained from fitting the

experimental data) to this simulated distribution of chi-square

values (obtained from the Monte Carlo procedure). If the actual

value lies near the mean of the simulated distribution, it is very

likely that the model is true. Using this procedure, we found

that data from 80% (33/41) of our experiments were within the

99.9% boundary and 54% (22/41) were within the 95% bound-

ary of the simulated chi-square scores (Figure 6). Since we have

been conservative in our noise estimate (which is set at just 1.2

times the minimum possible level) it is appropriate to use the

99.9% cutoff rather than the overly stringent 95% cutoff (Press

Figure 6. Population Data and Validation of the Model

A distribution of simulated chi-square scores was calculated for each morph

experiment in a Monte Carlo manner (n = 41 morphs). The difference between

the mean of the simulated scores and the score from fitting the data, normal-

ized by the standard deviation of the simulated score distribution, was found.

The histograms of these values are plotted. The two vertical lines are at ±3.29.

Eighty percent of morphs (33/41) were within this range. The arrowhead

indicates the bin in which the example from Figure 5 belongs.
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and Teukolsky, 1992) in selecting cells that are ‘‘well fit’’ by our

model.

Applicability of Model to Single-Odor
Concentration Series
The above model should also hold for cases where a single odor

is presented to the cell and its concentration is increased. The

model predicts that an increase in the concentration of a single

odor should lead to observations consistent with a single-odor

input strength function growing in size. For example, for most

simple input strength functions, one should observe the excit-

atory or inhibitory components of a response growing in ampli-

tude and possibly in width.

We performed these concentration series experiments on 24

cells (11 cells from the previous set, with two odor concentration

series each, and 13 new cells that responded to only one odor

and thus have one concentration series each, for a total of 35 se-

ries). Two examples of such experiments are shown in Figures

7A(i) and 7A(ii), with one primarily inhibitory and the other primar-

ily excitatory. These examples illustrate the key prediction of the

response, i.e., the increase in the amplitude or width of the re-

sponsive region but no shift in phase. The first example is further

explored in detail in Figures 7B–7E. In Figure 7B the data and the

prediction from the model are compared for all the concentra-

tions and the air, as in Figure 5B. Figure 7C shows the firing rates

as a function of respiration phase for the air period and the odor

period for the 1% odor case. The data and the model curves are

overlaid. In Figure 5D we show the underlying input strength

functions with a strong inhibitory component. One can see

from the asymmetry of this inhibitory component why the inhib-

itory ‘‘gap’’ increases more rapidly in one direction (toward the

later respiration phases). Also, increasing this odor’s concentra-

tion did not proportionately increase its effect on the cell, as is

seen in the plot of the odor intensity coefficients in Figure 7E.

Applying the same model validation to this data as to the

mixture data, we obtained the histogram in Figure 7F. Here,

91% (32/35) of the concentration series were within the 99.9%

boundary and 63% (22/35) were within the 95% boundary of

the chi-square scores expected if the model were true.

Revisiting the Attractor Question
In the above sections we have shown that our model of M/T cell

responses was able to encapsulate many of the encoding prop-

erties of these cells, and was quite accurate in describing how

these responses changed with mixtures of odors. A key predic-

tion of the model is that the contribution of each odor to the final

output of each cell is represented in its odor intensity coefficient.

This odor intensity coefficient is therefore a good measure of

how much each cell represents one odor or another. This makes

it a good variable to track over the morph sequence. Strong at-

tractor dynamics would predict that the odor intensity coefficient

should change abruptly through the morph sequence.

We obtained several kinds of curves when we plotted the odor

intensity coefficient against odor proportion (Figure 5E and

Figure 7E). As in Figure 3, we characterized the responses in

terms of the best fit to straight lines, logarithms, and sigmoids

(p < 0.01 and best explained variance by the F statistic). The dis-

tribution of responses is shown in Figure 7G (82 odor intensity
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coefficient plots, two for each of the 41 morph sequences). As

before, we observed cells belonging to all categories. In particu-

lar, sigmoid responses characteristic of attractor dynamics were

indeed seen, but accounted for only 26% of responses. Also, as

mentioned earlier, there was no difference between the naive

and familiarized groups (chi-square test, p < 0.05, Table S1).

We tested whether this broad distribution of odor morph re-

sponses was an inherent property of M/T cells. We did so by

generating odor intensity coefficient curves from the experi-

ments that involved only concentration series with a single

odor (Figure 7E). The distribution of cellular responses is shown

in Figure 7H. Again, we found that curves for odor intensity coef-

ficients were distributed between straight lines, logarithms, and

sigmoids. We performed a chi-square test between the distribu-

tions in Figure 7G and 7H, which showed that they were not dif-

ferent from each other (p < 0.05). Thus, even the relatively steep

sigmoid transitions of odor intensity coefficients in the morph

sequences were also seen in single-odor cases. There was no

tendency for any of the four different odors to have a predomi-

nance of any category (chi-square test, p < 0.05).

As we discuss below, this suggests that all the properties

shown by the cells in the odor-mixing experiments, including

the fraction of sigmoidal transitions, can be inferred from the

cases where single odors were presented separately, and may

not require attractor dynamics.

Direct Demonstration of Additivity
Our odorant and mixture representation model is complex be-

cause the respiration cycle introduces respiration phase depen-

dencies. To directly test the core assumptions of the model, we

eliminated respiration dependence. We did so using a double-

tracheotomized preparation where air/odorant intake was con-

tinuous. In each of the 10–15 trials, we presented odor in the

manner shown in Figure 8B. We found that cells were no longer

respiration-tuned in these experiments and had a flat baseline,

while they still responded in a time-dependent fashion to odors.

We tested whether the firing rate curves scaled in size while

preserving their shape with increasing odor concentration. As

seen in Figures 8C and 8D, this was indeed the case, and was

true for a variety of odor pulse durations and concentration

scales. To confirm this scaling rigorously, we fit all data in a given

concentration series by a single curve varying only in amplitude.

Predictions from this fit were consistent with the measured data

for 12 out of 17 cells, as shown in Figure 8E.

We asked if the response to a 0.5% + 0.5% mixture of two

odors eliciting different responses (henceforth, M) was the same

as the sum of the responses to two individual odorants at

0.5% concentration (henceforth, A and B). We were able to re-

cord 15 neurons that responded to two odorants with this proto-

col. We found that the mixture M was well predicted by simply

adding the individual responses A and B (M = A + B). Graphically,

this can be interpreted as the curve M/2 lying halfway between

the curves A and B [M/2 = (A+B)/2]. This is seen to be the case

in Figures 8F and 8G. To quantify this data, we took all measured

points where A and B were well separated and computed the

ratio R = (M/2 � B)/(A � B). This ratio should be 0.5 if M is per-

fectly predicted by the model. We see that measured values of

R indeed cluster around 0.5. The mean of the distribution is
0.49 ± 0.03, and 60 out of the 80 points lie within 2 standard

errors from the value 0.5. (Figure 8H).

In summary, we find that most OB neurons respond to odor

mixtures as a weighted sum of individual odor responses rather

than as distinct attractor states. This is an economical encoding

scheme for a stimulus modality rich in complex mixtures.

DISCUSSION

We have characterized M/T cell responses in the dimensions

of odor identity and intensity, and we have explored responses

in both dimensions through the use of odor combinations.

We find that responses to mixtures morph smoothly between

single odor responses; this trend is inconsistent with models of

strong attractor dynamics occurring in the OB. We show that

over a wide range of mixtures and concentrations, M/T cell re-

sponses can be described by a model of input strength functions

acting on a cell, where different odorant contributions combine

additively.

Is the Olfactory Bulb an Attractor Network?
An attractor network would be expected to exhibit abrupt transi-

tions upon presentation of morph sequences of odors. Most of

our experiments do not show abrupt transitions. The smooth

transitions between single-odor representations are apparent

in both the simple analysis and the model-based analysis. In

about 30% of cases in the model-based analysis, we see sig-

moid transitions that are relatively steep. However, these could

be accounted for by the responses of the cells to the increasing

concentration of a single odor, as seen in the single-odor con-

centration series data. As there was no elevation in occurrence

of abrupt transitions over the single-odor case, we consider

the rat OB free from strong attractor dynamics. Our data are

mostly from neurons recorded one at a time. A strong case for

attractors would require simultaneous recordings from many

neurons to show coherent transitions in the population. How-

ever, as we show that even cells recorded one at a time mostly

show smooth transitions, abrupt population transitions may be

ruled out. Attractor dynamics are invoked to explain recognition

of stored patterns or categorization of stimuli. To explain these

phenomena in olfaction, one will thus have to look at other mech-

anisms and other brain regions, a likely candidate being the

olfactory cortex (Haberly, 2001; Haberly and Bower, 1989;

Rennaker et al., 2007; Zou et al., 2005).

M/T Cell Encoding of Single Odors and Mixtures
In the process of addressing the attractor question, we have de-

veloped an encoding model for the representation of odors in

single M/T cells. This model describes three things about these

cells’ responses: the representation of odor identity, the repre-

sentation of odor intensity, and the summation of odors in odor

mixtures.

The model states that the firing rate profile of a cell over the

respiration cycle arises from an underlying input strength func-

tion specific to each odor. These functions have the interesting

property of scaling multiplicatively with odor concentration and

summing for different odor-air contributions. The multiplicative

odor scaling terms, or odor intensity coefficients, are a measure
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Figure 7. The Model in the Single-Odor Case

(A) Two examples of the effect of increasing the concentration of a single odor on a cell’s response, comparing data and model. A(i) is a primarily inhibitory

response and A(ii) is primarily excitatory. Here the effect is an increase in the width and/or amplitude of the response. This contrasts with the shift in the tuning

pattern seen in some of the mixture results. Example A(i) is explored in detail in the rest of the figure.

(B) Comparing the entire concentration series and the average air period for the data and model for the cell shown in A(i), as in Figure 5B.

(C) The 1% odor case and the air period overlaid for odor and model. Error bars indicate SEM.

(D) The input strength functions for the odor at different concentrations. The large inhibitory component is evident, and the asymmetry in its shape explains why

the inhibitory ‘‘gap’’ in the data increases in one direction more than the other (toward later respiration phases).

(E) The plot of the coefficients against the externally applied odor concentration is shown overlaid with the best fit; in this case, a sigmoid.

(F) The population analysis (akin to Figure 6), showing that 91% (32/35) of the experiments validate the model. Arrowhead indicates the bin in which example A(i)

belongs. Vertical red lines are at ±3.29.
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of overall input strength received by the cell from an odor at a par-

ticular concentration.

There are two distinct types of saturation that occur in our ex-

periment. First, the response to any given odor tends to saturate

at high odor concentrations. This is accounted for in the model

because the intensity coefficients can saturate even as concen-

tration increases, as seen in Figure 7E. Second, regardless of

odor concentration, the firing rate of a cell must remain between

zero and some physiologically constrained maximum value. In

our model, firing rates are obtained by a sigmoidal transforma-

tion, and so are naturally restricted between zero and maximal

values. Finally, we have observed that at high odor concentra-

tions the response can change qualitatively, varying over the

course of odor presentation as seen in Figure S5. In these cases

the model would fail to capture the observed behavior.

Our model is an economical phenomenological model, and

may be a useful stepping stone on the way to a mechanistic ex-

planation. We suggest that the primary mechanistic insight is the

additivity of the different odor contributions at the level of M/T

cell responses. We speculate that such additivity is more likely

at the input stage, rather than through feedback via granule

cells. This is because the observed simple additive responses

do not show history dependence, which might have been ex-

pected if feedback were present. Instead we suggest that con-

vergent odorant signals, possibly arising from receptor neuron

and periglomerular cell inputs, contribute to additivity at the

inputs.

M/T Cells Synthesize Novel Representations
to Odor Combinations
In the cases where two different odors elicit activity in a cell with

peaks at different phases of the respiration cycle, we often ob-

serve this peak shifting through intermediate phases on presen-

tation of odor mixtures (Figures 2A, 2B and 2E). Thus, the identity

of the mixture (as encoded by phase position) is now different

from either of the two primary components. Odor mixtures are

known to be elemental (the components are recognizable) or

configural (the mixture is qualitatively different from the compo-

nents) to a degree depending on concentration ratios (Kay et al.,

2005). Our observations of phase-position morphing provide

neuron-level mechanisms for configural odor mixtures. Consider

the activity of a given M/T cell that responds to two odors, A and

B, where each odor has a peak of activity at a different phase of

respiration (e.g., Figure 2). If the response to a mixture were

a simple weighted sum of the peaks due to A and B, it would

be an elemental response, because the individual odor identities,

as encoded by peak phase, are retained. Additionally, if different

neurons responded independently to A and B, they too might

contribute to an elemental response. This is the kind of response

seen at the glomerular level of the OB (Lin et al., 2006). A config-

ural response, on the other hand, occurs when mixtures give dif-

ferent responses from either individual odor, which is what we

sometimes observe (Figures 2A, 2B, and 2E) and now explain

in terms of our model (Figure 5). Though multiple levels of

processing seem to be involved, including receptor neurons
(Duchamp-Viret et al., 2003) and the glomerular layer (Linster

and Cleland, 2004), we suggest that this transformation from

elemental to configural responses is one of the computational

functions of the OB M/T cells.

Comparisons with Previous Studies
On examining earlier studies of M/T cell responses to different

odors and concentrations, we found that their data could also

be explained in the framework of this model. This is despite

the fact that the conditions of the experiments were often very

different. Cang and Isaacson (2003) performed whole-cell re-

cordings in rats and measured intracellular postsynaptic poten-

tials in response to odor stimuli. They observed that EPSPs and

IPSPs both grew multiplicatively in amplitude with odor concen-

tration, which is consistent with our model.

Chalansonnet and Chaput (1998) showed that when odor con-

centrations were increased, cells did not change their respiration

tuning for successive concentrations. This is consistent with our

model’s claim that increasing concentration only increases the

amplitude and not the shape of an odor input strength function.

While our study is based on natural respiration, some of our

findings are consistent with those from a study with controlled

airflow using tracheotomized rats and artificial sniffs (Harrison

and Scott, 1986). This study reported odor responses that

consisted of both excitatory and inhibitory components. Further-

more, the amplitude of both components of the response

increased with odor concentration, which is in agreement with

our data and model.

In a study in hamsters (Meredith, 1986) and in salamanders

(Hamilton and Kauer, 1989), the authors reported complex

odor responses consisting of both excitation and inhibition,

which changed with intensity in a similar manner as we found.

As in our study, these groups observed different timing patterns

of M/T cell activity for different odors.

Our results are not in agreement with those of Giraudet et al.

(2002), who find that one component in a binary mixture usually

dominates in M/T cell responses. This disagreement may arise

because their analysis does not consider the components of

a response saturating and going below zero firing rate, whereas

our analysis does.

Limitations of the Model
There were three main limitations of our model. First, when the

respiration tuning of the cell varied from cycle to cycle over the

duration of odor stimulus, the model was unable to explain the re-

sults. Second, we frequently observed a drift in baseline firing

pattern and response to an odor over the duration of a morph

sequence (�3 min). This was larger than that accounted for by

Poisson noise and may have been due to anesthesia level fluctu-

ations. We chose not to include this as a separate term in the

model to avoid further complexity, and instead incorporated

it in our estimate of noise as explained in the Supplemental

Material. Finally, most of the experiments that did not fit the

model were due to too large a baseline drift. However, in two

examples of a concentration series with an odor, there was
(G and H) Distributions of coefficient plots across straight line, log, and sigmoid categories for the morph and single-odor experiments, respectively. These two

distributions were not different as shown by a chi-square test (p < 0.05).
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inhibition that changed to excitation at one respiration phase,

and in one example there was a large shift in a band of excita-

tion. Neither of these rare cases could be explained by our

model.

Relevance in Awake Rats
It has been observed that respiration tuning exists in M/T cells in

awake rats, with a baseline tuning pattern for air that can change

on odor presentation (Bhalla and Bower, 1997). Further, in awake

Figure 8. Validation of Scaling and Additivity

(A) Diagram showing the double tracheotomy preparation and the odor presentation protocol. As earlier, an air stream was always blowing at the rat’s nose and

this was switched to an air + odor stream in the period shown (100, 200, or 500 ms).

(B) Raster showing a cell with a flat baseline responding to a 500 ms odor pulse. Below is the PSTH of same cell binned at 125 ms. Black bar: odor duration; blue

bar: suction duration; gray bar: 2 s period used for determining baseline firing rate. Both transient and stable firing rate changes from suction alone can be seen.

(C and D) Two examples of cells showing the same-shaped response scaling in amplitude with odor concentration. Shown are 200 ms and 100 ms odor pulses

[(C) and (D), respectively]; spikes are binned at 50 ms, and odor was iso-amyl acetate in both. Error bars indicating SEM have been removed for clarity.

(E) Predicted versus observed firing rate; baseline is plotted for the 12/17 cells that were consistent with a single-shape scaling (Q value > 0.001).

(F and G) Two examples of cells that showed that the response to the mixture was a direct summation of the responses to the components. A and B are the

components and M is the mixture. The dashed green line shows what the mixture would be if there were perfect addition. The odor pairs in (F) and (G) are

iso-amyl acetate/(+) limonene and methyl amyl ketone/iso-amyl acetate, respectively. Error bars indicate SEM.

(H) Histogram of the values of R. Perfect addition would cause these values to be 0.5 (red line).
582 Neuron 57, 571–585, February 28, 2008 ª2008 Elsevier Inc.
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rat recordings from piriform cortex, respiration-locked firing also

exists and can be different for different odors (N. Uchida and Z.F.

Mainen, 2006, Soc. Neurosci., abstract).

Thus, the basic property of respiration-phase tuned odor-spe-

cific responses is common to awake and anesthetized rats. We

therefore predict that our model of M/T cell encoding of odors

will also be applicable to awake animals.

EXPERIMENTAL PROCEDURES

We used standard extracellular single-unit recording techniques for our exper-

iments. These methods are very similar to those used in two earlier studies

from the lab (Deshmukh and Bhalla, 2003; Rajan et al., 2006). They are

described in detail in the Supplementary Material. Briefly, female wistar rats

(200–350 g) were anesthetized with xylazine (10 mg/kg) and ketamine

(100 mg/kg), and anesthesia was maintained with thiopental. Only females

were used since we could not induce complete surgical anesthesia to our

satisfaction in males. Respiration was monitored by placing a thermocouple

in the nostril.

Recordings were done with gold-plated tetrodes that were lowered from the

dorsal surface of the bulb to the mitral cell layer. This we identified by the dis-

tinctive high-amplitude and respiration-locked multiunit activity. In a few cases

we lesioned at the electrode tip and confirmed its placement in the mitral cell

layer by sectioning and staining. Signals were amplified (10,0003) and band-

pass filtered (300–6000 Hz), and triggered waveforms were digitized and

stored at 32 kHz. Single-unit data were extracted by clustering using MClust

(A.D. Redish; http://www.cbc.umn.edu/�redish/mclust/).

Cells were classified as responsive to an odor using Student’s t test and

MANOVA. Cells responding differently to two odors were used in the morph

experiments. Cells with very large changes in baseline (air period) firing rates

over a morph sequence/concentration series were excluded from the study.

Odors were delivered using a computer-controlled air dilution olfactometer

based on designs described earlier (Deshmukh and Bhalla, 2003; Slotnick and

Nigrosh, 1974).

Familiarization to Odors

One group of rats (n = 14) was familiarized to two odors (iso-amyl acetate and

methyl amyl ketone) by a classical-conditioning-like protocol. They were water

deprived for 20 hr and given water with iso-amyl acetate mixed in it at a final

concentration of 0.01% for 4 hr. They were also food deprived for 20 hr and

food was introduced into the cages preceded 5 min earlier by a small piece

of cloth moistened with 1% methyl amyl ketone, for 4 hr. The two odor expo-

sures were separated in time by at least 2 hr. This procedure was repeated for

5–8 days.

Calculating Air and Odor Response Functions

To estimate air and odor response functions, we defined two Dt = 7 s time win-

dows, one within the air period, 1 to 8 s before odor valve opening, and the

other within the odor presentation period, 1 to 8 s after odor valve opening.

The 1 s period immediately after valve opening was avoided, because there

were delays in the odor traveling down the delivery tube and because our

odor valve opening was not synchronized with respiration. For each window,

we binned firing events into NR = 17 bins along the respiration phase axis.

This produced two vectors: v0
i (air response) and v1

i (odor response), periodic

over the respiration cycle i = 1, ., NR, in units of firing rate.

Modeling the Response to Mixtures of Odors

We modeled our neuron as having a sigmoidal response to simple linear inputs

(Hertz et al., 1991):

vi = vmaxf
�
w0

i + cAwA
i + cBwB

i � b
�
: [1]

Here, vi represents the firing rate of a neuron during respiration phase i,

which can take some saturating value vmax. The vectors w0
i, wA

i, and wB
i rep-

resent inputs to the neurons due to air, odor A, and odor B, respectively. The

latter two are multiplied by concentration-dependent coefficients cA and cB.
Without loss of generality, the value of the coefficient at the maximum odorant

concentration is set to 1.0.

The function f (.) is a sigmoid, defined such that f (�0.5) = 0.1, f (0) = 0.5, and

f (+0.5) = 0.9:

fðxÞ= e4:39x

1 + e4:39x
: [2]

Finally, the quantity b sets the baseline firing rate of the neuron in the ab-

sence of any inputs. Note the following dependencies: vmax and b are fixed

for any given neuron; the vectors wi are functions of respiration phase alone,

but are concentration independent; and the coefficients c are functions of con-

centration alone, but are phase independent. These features strongly restrict

the space of possible responses to mixed odors. In effect, we are claiming

that the response to any mixture of odors is completely determined by the

response to the individual components.

Parameter Fitting

A typical morphing experiment involves Nmix = 6 presentations of odors A and

B, in the following proportions: [1.0A 0.0B], [0.8A 0.2B], [0.6A 0.4B], [0.4A

0.6B], [0.2A 0.8B], and [0.0A 1.0B]. For each such measurement, we obtained

the air and odor responses v0
i and v1

i. Since the six air responses were not

independent, we averaged them into a single vector hv 0
i i. This gives:

NRðNmix + 1Þ= 119 datapoints:

We fit these data to the neural model defined above. The concentration-de-

pendent coefficients were defined such that cA = 1.0 and cB = 0.0 for pure A,

and cA = 0.0 and cB = 1.0 for pure B, with their values for the four intermediate

mixtures left as free parameters. Since the baseline b could not be determined

independent of the vector w0
i (this would require varying the ‘‘strength’’ of the

air stimulus), this constant was absorbed into w0
i. Adding in vmax, wA

i, and wB
i,

this resulted in

1 + 2ðNmix � 2Þ+ 3ðNRÞ= 60 parameters:

This is a highly constrained fit, involving 59 degrees of freedom (d.f.). That is,

if we use the first 60 datapoints to calculate the parameters, we claim that the

remaining 59 datapoints will be completely determined. [Note that, in the sin-

gle-odor case, we fit NR 3 Nmix = 102 datapoints using 1 + (Nmix� 2) + 2(NR) =

39 parameters, corresponding to 63 d.f.]

The model was initialized with suitable parameter estimates based on the re-

sponse to pure odors, and the system was run to minimize the c2 score defined

in Equation 1 in the Supplementary Material. The minimization was performed

in MATLAB (Mathworks), using the fminsearch function. This procedure was

carried out for each independent morphing experiment.

Estimating Significance of the Fit

We estimated the significance of our fit using a Monte Carlo technique (Press

and Teukolsky, 1992). The c2 statistic has a well-defined distribution for linear

models. However, our model involves a sigmoidal nonlinearity, so we must be

careful in estimating the background distribution of c2 values against which to

test the significance of the fit. For each morphing experiment, we proceeded

as follows. Beginning with the best-fit predictions for the six odor presenta-

tions plus air, we generated a ‘‘fake data set’’ by adding Gaussian noise to

each datapoint, with variance equal to aeff times the Poisson estimate (see

the Supplementary Material). We then fitted parameters to this simulated

data set, exactly as described above. This procedure was repeated for 50 tri-

als, and the resulting parameters, as well as the resulting c2 values, were re-

corded for each trial. This procedure allowed us to estimate the mean and var-

iance of c2 values, assuming that the model is true, and that we understand

noise sources. We were therefore able to estimate the significance of our fit

in terms of the p value: the fraction of times the simulated c2 showed a greater

deviation from its mean value than the actual c2. If this number is close to unity,

we can be confident that the model explains the observations without being

overdetermined (c2 too large) or underdetermined (c2 too small); in practice,

we can settle for a p value as low as 1e�3 or above, since a wrong model

will typically produce a much lower value (Press and Teukolsky, 1992). This
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corresponds to ±3.29 standard deviations of a Gaussian, which defines the

boundaries in Figure 6 and Figure 7F.

Curve Fitting

For the simple analysis (Figure 3), shifting band responses and buildup re-

sponses were categorized by eye. Firing properties were quantified (see Sup-

plementary Material) and plotted. These plots were fit to a straight line, a log,

and a sigmoid. Fits with p < 0.01 were considered significant, and each fit was

assigned to the category with the highest explained variance. The explained

variance was measured with the F statistic, which is corrected for the different

d.f. (d.f. = 2 for straight line and log fits and d.f. = 4 for sigmoid fits).

SUPPLEMENTAL DATA

The Supplemental Data for this article can be found online at http://www.

neuron.org/cgi/content/full/57/4/571/DC1/.
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