
Theoretical Computer Science 416 (2012) 87–94

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

A linear time approximation algorithm for permutation flow
shop scheduling✩

Marcus Poggi ∗, David Sotelo
Departamento de Informática, PUC-Rio, Rua Marquês de São Vicente, 225 RDC, CEP 22451-900, RJ, Brazil

a r t i c l e i n f o

Article history:
Received 25 May 2009
Received in revised form 14 October 2011
Accepted 20 October 2011
Communicated by G. Ausiello

Keywords:
Permutation flow shop scheduling
Approximation algorithms
Erdös–Szekeres theorem

a b s t r a c t

In the last 40 years, the permutation flow shop scheduling (PFS) problem with makespan
minimization has been a central problem, known for its intractability, that has been
well studied from both theoretical and practical aspects. The currently best performance
ratio of a deterministic approximation algorithm for the PFS was recently presented by
Nagarajan and Sviridenko, using a connection between the PFS and the longest increasing
subsequence problem. In a different and independent way, this paper employs monotone
subsequences in the approximation analysis techniques. To do this, an extension of the
Erdös–Szekeres theorem to weighted monotone subsequences is presented. The result is a
simple deterministic algorithm for the PFS with a similar approximation guarantee, but a
much lower time complexity.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Problem definition

Permutation flow shop scheduling is a production planning process consisting of a set J = {J1, J2, . . . , Jn} of n jobs
to be executed in a set M = {M1,M2, . . . ,Mm} of m machines. In this process, every job Jj is composed by m stages
O1,j,O2,j, . . . ,Om,j, named operations. Every operation Oi,j has a non-negative processing time tij composing the matrix
T ∈ ℜ

+

M×J . The job operation Oi,j must be only executed on machine i. A machine cannot execute more than one operation
per time. Operation Oi,j can be executed only after operation Oi−1,j have finished. Preemption is not allowed; i.e., once an
operation is started, it must be completed without interruption. All jobs must be executed in the same order on every
machine, defined by a permutation π : {1, . . . , n} → J , with π(i) indicating the i-th job to be executed. The completion
time of an operation Oi,j, denoted by Ci,j, is defined by the recurrence:

Ci,π(j) =


tiπ(j) if i = 1 and j = 1
Ci,π(j−1) + tiπ(j) if i = 1 and j > 1
Ci−1,π(j) + tiπ(j) if i > 1 and j = 1
max(Ci,π(j−1), Ci−1,π(j))+ tiπ(j) if i > 1 and j > 1.

The completion time of a job Jj is Cm,j. The makespan of a permutation is the maximum completion time of a job.
The objective of the permutation flow shop scheduling problem (PFS) is to find a permutation π that minimizes the
makespan.

✩ A short extended abstract appeared in MAPSP 2009.
∗ Corresponding author. Tel.: +55 21 35271500, +55 21 35274339 (Office); fax: +55 21 35271530.

E-mail addresses: poggi@inf.puc-rio.br (M. Poggi), dsilva@inf.puc-rio.br (D. Sotelo).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.10.013

http://dx.doi.org/10.1016/j.tcs.2011.10.013
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:poggi@inf.puc-rio.br
mailto:dsilva@inf.puc-rio.br
http://dx.doi.org/10.1016/j.tcs.2011.10.013

88 M. Poggi, D. Sotelo / Theoretical Computer Science 416 (2012) 87–94

1.2. Previous results

In the last 40 years, the PFS has been a central problem in scheduling and operations research communities; it is known
for its intractability, and has been well studied from both theoretical and practical aspects. The PFS was proved strongly
NP-hard byGarey et al. [4] for instanceswith three ormoremachines. In a seminal paper, Johnson [8] presented a polynomial
time algorithm for instances with two machines. Gonzalez and Sahni [6] showed that every busy scheduling for the PFS has
an approximation factor ofm times the optimal solution.

Nowicki and Smutnicki [11–13] explored worst-case analysis on the approximation factor of several PFS algorithms,
achieving a tight bound of ⌈m/2⌉. Potts et al. [14] proved the existence of some instances for which non-permutation-
based solutions are Ω(

√
m) less costly than permutation-based ones. Sevast’janov [18] developed geometric methods to

analyze scheduling problems, including the PFS, introducing an algorithm that always produces a schedule with additive
factor bounded by O(m2)max{tij}. Hall [7] presented a polynomial time approximation scheme (PTAS) for the PFS when
m = 3. Sviridenko [20] presented a randomized algorithm based on Chernoff bounds arguments with a performance ratio
of O(

√
m logm) and additive factor limited to O(m logm)max{tij}. Approximation ratios for a large number of PFS heuristics

were surveyed by Gupta et al. [3].
The best known approximation algorithm for the PFS to date, due to Nagarajan and Sviridenko [9], has a performance

ratio of O(
√
min {n,m}), and is based on a connection between the PFS and the longest increasing subsequence problem.

This reduction allows proving that a random permutation achieves the claimed approximation guarantee. A corresponding
deterministic algorithm is obtained further using the method of pessimistic estimators [15]. Finally, this algorithm resolves
an open question from [14] matching the gap between optimal solutions for permutation and non-permutation schedules.
Due to the relevance of the approximation factor obtained, the time complexity analysis of the deterministic approximation
algorithm from [9] is not explicitly given in the paper. In the Appendix, a lower bound ofΩ(n4.m) is established.

1.3. This paper’s contribution and organization

The purpose of this work is to present a simple and intuitive deterministic approximation algorithm for the PFS with
performance ratio 2

√
2n + m and time complexityΘ(nm). These results were achieved independently [16] and in parallel

with those of Nagarajan and Sviridenko, as mentioned in their published paper [10] (Section 1.2). When n = Θ(m), this is
the best approximation algorithm already obtained for the PFS, achieving the same approximation factor as in [9] in linear
time complexity. A novel technique for performance guarantee analysis of PFS solutions is also developed, exploring the
correlation between weighted monotone subsequence problems and the PFS. We prove that a job permutation reaching
the claimed approximation guarantee has the cells representing the longest operation of each job constituting a specific
path on the processing time matrix. Furthermore, a permutation with this property can be obtained by a simple job
sorting algorithm. Its approximation factor analysis is based on deterministic combinatorial arguments related to Erdös–
Szekeres theorem extensions. The results presented on these extensions are further used to provide the lower bounds on the
optimal value.

Themain idea of thiswork involves the exploration of the PFS by anewperspective related tomatrix games andmonotone
subsequences. The PFS is viewed as an equivalent, but more intuitive, matrix game problem between two players. In this
game, the first player selects a permutation over the columns of an original matrix, creating a new matrix, and the second
player tries to select a sequence of cells in such modified matrix with the maximum sum possible. The sequence of cells
selected by player 2 must follow a specific property, composing what we call a path. The objective of player 1 is to find a
permutation that makes the task of player 2 difficult. We argue that this game, with the objective of acting as player 1, is
equivalent to that of the PFS.

Once the problem is defined, a natural strategy for player 1 is to choose a permutation that makes the choice of path
of player 2 avoid as much as possible the cells of high weight. An approximation algorithm with such property, based on
a simple ordering of jobs, is therefore presented. One of the main contributions in this work comes from the technique
used to analyze the approximation guarantee of this algorithm. We prove that it is possible to obtain upper bounds on
the approximation factor of the presented algorithm by a reduction of the matrix game problem into the minimum double
weighted sequence problem. This new problem is a generalization of the classical problem considered by Erdös and Szekeres
[2], in which every sequence element has two associated weights, one if it is considered in increasing subsequences and
another if it is considered in decreasing ones. The objective is to define a sequence that minimizes the maximum weight of
its increasing or decreasing subsequences. We provide extensions of the Erdös–Szekeres theorem to the case of weighted
sequences, first considering the case in which every element has the same weight in increasing or decreasing subsequences
and then generalizing it to the case of distinct weights.

This paper is organized as follows. In Section 2, we introduce the notion of weighted and double weighted sequences,
proving an extension of the Erdös–Szekeres theorem applied to these concepts. Section 3 first presents the PFS by a ma-
trix game perspective. This new approach is used on the development of a new technique to obtain upper bounds on the
approximation guarantee of a PFS specific solution by its transformation into a minimum double weighted sequence problem
corresponding solution. In Section 4, the greedy avoided path approximation algorithm is proposed and analyzed. Conclu-
sions are drawn in Section 5. Finally, an Appendix gives a lower bound for the algorithm of Nagarajan and Sviridenko [9].

M. Poggi, D. Sotelo / Theoretical Computer Science 416 (2012) 87–94 89

2. Weighted sequences

2.1. Weighted monotone sequences

Definition 1. Let S = ⟨s1, s2, . . . , sn⟩ be a sequence of distinct real elements. A monotone subsequence of S is a sequence
R =


sϕ1 , sϕ2 , . . . , sϕm


such that 1 ≤ ϕ1 < ϕ2 < · · · < ϕm ≤ n and sϕ1 ≤ sϕ2 ≤ · · · ≤ sϕm or sϕ1 ≥ sϕ2 ≥ · · · ≥ sϕm .

Definition 2. A set R1, R2, . . . , Rk of monotone subsequences of a sequence S is said to be an S-monotone partition of size k
if
k

i=1 Ri = S and Ri ∩ Rj = ∅, ∀i, j ∈ {1, . . . , k}.

The classical theorem of Erdös and Szekeres [2] states that from a sequence of n2
+ 1 distinct real elements it is always

possible to extract a monotone subsequence of cardinality at least n + 1. In fact, the maximum cardinality monotone
subsequence problem can be solved in polynomial time. However, finding a minimum size monotone partition of a given
sequence is a NP-hard problem [21]. Bar-Yehuda and Fogel [1] presented an approximation algorithm for this latter problem
based on the following lemma.

Lemma 1 ([1]). Let S = ⟨s1, s2, . . . , sn⟩ be a sequence. There is an S-monotone partition of size at most 2
√
n.

The proof is obtained directly by the successive removal of maximum cardinality monotone subsequences. At this point,
we define the notion of a weighted monotone subsequence and extend the Erdös–Szekeres theorem to this new concept.

Definition 3. Let w : S → ℜ
+ be a weight function over a sequence S. The weight of a subsequence R =


sϕ1 , sϕ2 , . . . ,

sϕl

of S, denoted byw(R), is

∑l
i=1w


sϕi

. Denote byw(Rmax) the maximum weight of a monotone subsequence of S.

Corollary 1. w(Rmax) ≥
w(S)
2
√
n .

Proof. From Lemma 1, there is an S-monotone partition in at most 2
√
nmonotone subsequences. Let R1, R2, . . . , Rk be such

subsequences and R⋆ that of maximum weight. By the concept of monotone partition of a sequence,
∑k

i=1w(Ri) = w(S).
So,w(R⋆) ≥

w(S)
k . Since k ≤ 2

√
n, it follows thatw(R⋆) ≥

w(S)
2
√
n . Since w(R

⋆) ≤ w(Rmax), the result is proved. �

The result of the previous corollary states a weighted version of the maximum cardinality monotone subsequence
problem, studied by Erdös and Szekeres. Basically, it was proved that there will always be a monotone subsequence whose
weights sum is at least the sum of all elements weights divided by the square root of the number of elements.

A survey of the Erdös–Szekeres theorem and its variations was presented by Steele [19]. As far as we know, the weighted
monotone subsequence concept has not yet been explored.

2.2. Double weighted sequences

Definition 4. A double weighted set, denoted by (Γ , α, β), is composed by a set Γ = {γ1, γ2, . . . , γn} ⊂ ℜ of distinct
elements and two weight functions α : Γ → ℜ

+ and β : Γ → ℜ
+.

Definition 5. Let (Γ , α, β) be a double weighted set. A permutation π : {1, 2, . . . , n} → Γ defines a sequence S =
γπ(1), γπ(2), . . . , γπ(n)


, named a double weighted sequence of (Γ , α, β).

Definition 6. Given a doubleweighted set (Γ , α, β) and a doubleweighted sequence S defined over it, let Sα be amaximum
weighted increasing subsequence of S consideringα as theweight function,whereC (Sα)denotes theweight of Sα . Similarly,
let Sβ be a maximum weighted decreasing subsequence of S considering β as the weight function, where C


Sβ

denotes

the weight of Sβ . The weight of the double weighted sequence S, denoted by C (S), is defined as max{C (Sα) , C

Sβ

}.

In order to illustrate these definitions, consider the following example: let (Γ , α, β) be a double weighted set with
Γ = {1, 2, 3}, α = (α(1), α(2), α(3)) = (10, 7, 8), and β = (β(1), β(2), β(3)) = (6, 11, 9). Consider that the
permutation π is the identity function, defining the sequence S = ⟨1, 2, 3⟩. Clearly, the maximum weighted increasing
subsequence of S is Sα = S, and C(Sα) = α(1) + α(2) + α(3) = 25. Furthermore, the maximum weighted decreasing
subsequence of S is Sβ = ⟨2⟩, and C(Sβ) = β(2) = 11. Therefore, the weight of the double weighted sequence S is
C(S) = max{C (Sα) , C


Sβ

} = 25.

The minimum double weighted sequence problem (MDWS) can be defined as follows: given a double weighted set
(Γ , α, β), construct a double weighted sequence S⋆ such that C (S⋆) is minimum. In this case, S⋆ is said to be an optimal
double weighted sequence for (Γ , α, β).

Example. Considering the instance (Γ , α, β) given in the previous example, the sequence S⋆ = ⟨2, 3, 1⟩ is the unique
optimal solution for the MDWS problem. In particular, S⋆α = ⟨2, 3⟩, S⋆β = ⟨2, 1⟩, C(S⋆α) = 15 and C(S⋆β) = C(S⋆) = 17.

Definition 7. Let D1 = (Γ1, α1, β1) and D2 = (Γ2, α2, β2) be double weighted sets. Assume, without loss of generality, that
elements Γ1 = {γ1, γ2, . . . , γn} are given in increasing order. Consider that D2 was constructed from D1 by removal of an

90 M. Poggi, D. Sotelo / Theoretical Computer Science 416 (2012) 87–94

element γi ∈ Γ1 and insertion of two new elements γ ′

j and γ ′

j+1 in Γ2 such that γi = γ ′

j < γ ′

j+1, γ
′

j+1 < γi+1 if γi+1 exists,
α1 (γi) = α2


γ ′

j


+ α2


γ ′

j+1


, and β1 (γi) = β2


γ ′

j


= β2


γ ′

j+1


. It is said that D2 is a split of D1 and that element γi was

split into γ ′

j and γ ′

j+1.

To illustrate the splitting process, consider the following example. Γ1 = {2, 4, 7, 12}, α1 = (α1(2), α1(4), α1(7), α1(12)) =

(12, 7, 4, 8), β1 = (β1(2), β1(4), β1(7), β1(12)) = (7, 10, 9, 11). Element γ3 = 7 can be split into two elements, γ ′

3 = 7
and γ ′

4 = 10, with weights α2

γ ′

3


= 3, α2


γ ′

4


= 1, and β1 (γ3) = β2


γ ′

3


= β2


γ ′

4


= 9, creating a double weighted set

(Γ2 = {2, 4, 7, 10, 12}, α2 = (12, 7, 3, 1, 8), β2 = (7, 10, 9, 9, 11)).

Lemma 2. Let D1 = (Γ , α, β) be a double weighted set, D2 a split of D1, andΦ1 andΦ2 optimal double weighted sequences for
D1 and D2, respectively. Then, C (Φ2) ≤ C (Φ1).

Proof. Consider that Φ1 =

γφ1(1), γφ1(2), . . . , γφ1(n)


. Construct a solution Ψ to D2 from Φ1 as follows: let γi = γφ1(k) be

the element from D1 split into γ ′

j and γ ′

j+1 in D2. For all k′ < k, do γψ(k′) = γφ1(k′). Let γψ(k) = γ ′

j and γψ(k+1) = γ ′

j+1.
For k′

= k + 2 to n + 1, let γψ(k′) = γφ1(k′−1). Since, by split definition, α (γi) = α

γ ′

j


+ α


γ ′

j+1


, every increasing

subsequence of Ψ can be transformed into an increasing subsequence of Φ1, with a not smaller weight. When elements
γ ′

j and γ ′

j+1 belong to such an increasing sequence, they can be both substituted by γi. All other elements are identical. An
equivalent transformation is valid for decreasing subsequences of Ψ , in which only one of γ ′

j or γ
′

j+1 can be present, and, by
split definition, β (γi) = β


γ ′

j


= β


γ ′

j+1


. Hence, C(Ψ) ≤ C(Φ1). Since C (Φ2) ≤ C (Ψ), the result follows. �

The use of the split concept in conjunction with Corollary 1 permits obtaining a lower bound on optimal solutions of an
MDWS instance.

Theorem 1. LetΦ1 be an optimal solution of an MDWS instance D1 = (Γ1, α1, β1), |Γ1| = n. Then,

C(Φ1) ≥

∑n
i=1 α1(i)

4

n +

∑n
i=1 ⌈α1(i)/β1(i)⌉

 .
Proof. Consider a succession of splits that converts D1 into a double weighted set D2 = (Γ2, α2, β2) such that α2(i) ≤ β2(i),
for all i ∈ {1, . . . , |Γ2|}. Clearly,

∑n
i=1 ⌈α1(i)/β1(i)⌉ splits are sufficient, which implies that |Γ2| ≤ n +

∑n
i=1 ⌈α1(i)/β1(i)⌉.

LetΦ2 be an optimal sequence for D2. By Lemma 2, C(Φ1) ≥ C(Φ2). Consider now a double weighted set D3 = (Γ3, α3, β3)
such that Γ3 = Γ2 and α3 = β3 = α2. LetΦ3 be an optimal sequence for D3. Since Γ2 = Γ3, α3(i) ≤ α2(i), and β3(i) ≤ β2(i)
for all i ∈ {1, . . . , |Γ2|}, it is true that C(Φ2) ≥ C(Φ3). Furthermore, since α3 = β3, α3 and β3 can be viewed as an unique
weight function. Then, by Corollary 1,

C(Φ3) ≥

|Γ3|−
i=1

α3(i)/(2


|Γ3|).

Since α3 = α2 and D2 is a split of D1, it follows that

|Γ3|−
i=1

α3(i) =

|Γ2|−
i=1

α2(i) =

n−
i=1

α1(i).

Finally, since |Γ3| = |Γ2| ≤ n +
∑n

i=1 ⌈α1(i)/β1(i)⌉, it is true that

C(Φ3) ≥

|Γ3|−
i=1

α3(i)/(2


|Γ3|) ≥

n−
i=1

α1(i)/

4


n +

n−
i=1

⌈α1(i)/β1(i)⌉


.

Hence, C(Φ1) ≥ C(Φ2) ≥ C(Φ3), and the result follows. �

3. Lower bounds for a matrix game

This section introduces the matrix minimum maximum path game, which is exactly the PFS viewed from a game
perspective. A technique to construct lower bounds on matrix minimum maximum path game optimal solutions based on
its transformation into theminimum double weighted sequence problem is presented.

3.1. Paths and anti-paths

Let T ∈ ℜ
+

m×n be a matrix and T1, T2, . . . , Tn its columns. A permutation π : {1, 2, . . . , n} → {T1, T2, . . . , Tn} over T
defines a new matrix Tπ , named the permutated matrix.

M. Poggi, D. Sotelo / Theoretical Computer Science 416 (2012) 87–94 91

Table 3.1
A path and an anti-path on a permutated matrix.

1 2 3 4 5 1 2 3 4 5
1 5 2 4 6 9 1 5 2 4 6 9
2 1 3 7 8 2 2 1 3 7 8 2
3 6 5 2 4 8 3 6 5 2 4 8
4 3 9 1 7 5 4 3 9 1 7 5

Path Anti-Path

Table 3.2
Maximum weight path shown over the completion times.

1 2 3 4 5
1 5 5+2=7 7+4=11 11+6=17 17+9=26
2 5+1=6 7+3=10 11+7=18 18+8=26 26+2=28
3 6+6=12 12+5=17 18+2=20 26+4=30 30+8=38
4 12+3=15 17+9=26 26+1=27 30+7=37 38+5=43

Completion Times

Definition 8. A path, defined over a permutated matrix Tπ , is a sequence P = ⟨p1, p2, . . . , pn+m−1⟩ of distinct cells in Tπ
such that p1 = tπ1,1, pn+m−1 = tπm,n, and pk = tπik,jk is the successor of pk−1 = tπik−1,jk−1

on P if and only if one of the two
relations below is valid:

(1) ik = ik−1 and jk = jk−1 + 1, or
(2) ik = ik−1 + 1 and jk = jk−1.

The weight of P , W (P), is defined as
∑n+m−1

i=1 pi. P is said to be a maximum weight path if W (P) ≥ W (P ′) for every path P ′

over Tπ .

Definition 9. An anti-path, defined over a permutated matrix Tπ , is a sequence A = ⟨a1, a2, . . . , an+m−1⟩ of distinct cells
in Tπ such that a1 = tπm,1, an+m−1 = tπ1,n, and ak = tπik,jk is the successor of ak−1 = tπik−1,jk−1

on A if and only if one of the two
relations below is valid:

(1) ik = ik−1 and jk = jk−1 + 1, or
(2) ik = ik−1 − 1 and jk = jk−1.

The weight of A, W (A), is defined as
∑n+m−1

i=1 ai.

Example. In order to illustrate the concepts of path and anti-path, consider the following example. Let π = {1, 2, 3, 4, 5}
be a permutation and Tπ the corresponding permutated matrix, as represented by Table 3.1. Here, the sequence P =

⟨(1, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)⟩ constitutes a path on Tπ of weight 43, while the sequence A =

⟨(4, 1), (4, 2), (3, 2), (3, 3), (2, 3), (2, 4), (1, 4), (1, 5)⟩ represents an anti-path on Tπ of weight 49. In particular, P is a
maximum weight path on Tπ .

Observe that the computation of the completion time Cm,π(n) through the recurrence in Section 1.1 has the cells that give
themaximumvalue at each step of the calculation defining a path. In particular, this path is amaximumweight path, and the
sum of its cells give exactly themakespan associated to permutation π . This is presented for the example above in Table 3.2.
So, when P is a maximum path,W (P) is the makespan associated to the permutation of the jobs associated to matrix Tπ .

3.2. The PFS and matrix games

The PFS can be viewed as a two-person matrix game. Given a matrix T ∈ ℜm×n with positive elements, player 1 acts
first, selecting a permutation π over the columns of T that creates a newmatrix Tπ . Then, player 2 selects a path P onmatrix
Tπ , that is, a sequence of cells on Tπ , starting from tπ1,1 such that the cell after tπi,j on P can only be tπi+1,j or t

π
i,j+1 respecting

the matrix limits, i.e., i + 1 ≤ n and j + 1 ≤ m. At the end of game, player 1 pays to player 2 the sum of cells on P . Let us
name this game the matrix minimum maximum path game, denoting it by MMP. The equivalence between PFS and MMP is
clear. A schedule on PFS corresponds to a permutation on MMP and the makespan of such a schedule is exactly the cost of a
maximum path chosen by player 2 given player 1’s permutation. Therefore, player 2’s objective of maximizing such a sum
can be accomplished by an O(nm) dynamic-programming algorithm based on the recursive makespan definition presented
in Section 1. It computes a maximum path over Tπ , i.e., the makespan of a selected schedule. The cost of a solution π for
MMP is denoted by W (Tπ). From this point, the PFS is analyzed as the MMP, by considering that our objective is to act as
player 1, paying theminimum possible value to player 2. Furthermore, due to the polynomial time algorithm that calculates
the maximum path on a permutated matrix, player 1 always knows, after selecting a permutation, the maximum path that
will be chosen by player 2.

92 M. Poggi, D. Sotelo / Theoretical Computer Science 416 (2012) 87–94

3.3. Approximation guarantees of PFS solutions

Let T ∈ ℜm×n be a processing time matrix from a PFS instance composed by n jobs and m machines and Tπ be a
permutated matrix corresponding to a schedule π , as defined in Section 3.2.

In this section, we are interested in techniques to obtain an upper bound on the approximation factor of the permutation
schedule resulting from π . In particular, it will be proved that the approximation factor obtained by π , when applied as
solution to an equivalent instance of theminimumdoubleweighted sequence problem, is anupper boundon the approximation
factor of schedule π when applied to the processing time matrix T .

We proceed now by showing how to construct an equivalent instance of theminimum double weighted sequence problem.
Assume, without loss of generality, and for the remainder of this section, that π does not change the matrix T ; i.e.,
π = {1, 2, . . . , n} and Tπ = ⟨T1, T2, . . . , Tn⟩ (this is true since it is always possible to rearrange the columns of the original
processing time matrix T in such a way that π follows this definition). Furthermore, let Pπ denote a maximumweight path
on Tπ and let Aπ represent an arbitrary anti-path on Tπ .

Now, let us construct a double weighted set (Γ , απ , βπ) from Tπ , Pπ and Aπ . First, make Sπ = {1, 2, . . . , n}, following
π . Second, let απ (i) be the sum of all cells on the path Pπ that belong to the column i of the matrix Tπ . Finally, let βπ (i) be
the sum of all cells on the anti-path Aπ that belong to the column i of the matrix Tπ .

Example. Let Pπ be amaximum path, Aπ an arbitrary anti-path, and Tπ a permutatedmatrix as represented in the example
of Section 3.1. Since n = 5, Γ = {1, 2, 3, 4, 5}. Furthermore, the weight function απ is defined as απ (1) = (1, 1) = 5,
απ (2) = (1, 2) = 2, απ (3) = (1, 3)+ (2, 3) = 11, απ (4) = (2, 4)+ (3, 4) = 12, and απ (5) = (3, 5)+ (4, 5) = 13. Finally,
the weight function βπ is defined as βπ (1) = (4, 1) = 3, βπ (2) = (4, 2) + (3, 2) = 14, βπ (3) = (3, 3) + (2, 3) = 9,
βπ (4) = (2, 4)+ (1, 4) = 14, and βπ (5) = (1, 5) = 9.

Lemma 3. C(Sπ) = W (Tπ).

Proof. Since Sπ = ⟨1, 2, . . . , n⟩, and all the weights are non-negative, the maximum weight monotone subsequence of Sπ
is either the increasing subsequence Sπ itself or a decreasing subsequence that can have at most one element. No coefficient
β(i) can have a value larger than the maximum path, since it would then be part of the maximum path. Hence, C(Sπ) is
given by the increasing subsequence Sπ itself, and we have C(Sπ) =

∑n
i=1 α(i) = W (Pπ) = W (Tπ), as the makespan is

given by the maximum path and each α(i) is the sum of the cells in the maximum path in each column. �

Now, we establish the relation between C(S) and W (T) for all sequences with respect to the path and the anti-path
obtained for the initial permutation π .

Theorem 2. Let σ be an arbitrary permutation over Γ and Sσ = {σ1, . . . , σn}, T σ the permutated matrix obtained applying σ
to T and the double weighted set (Γ , απ , βπ). Then C(Sσ) ≤ W (T σ).

Proof. Every weighted increasing subsequence of Sσ , taking απ as weight function, is equivalent to a subsequence of a path
in T σ whose cells belong only to Pπ . Similarly, every weighted decreasing subsequence of Sσ , taking βπ as weight function,
is equivalent to a subsequence of a path in T σ whose cells belong only to Aπ . Consequently, themaximumweight monotone
subsequence of Sσ is equivalent to a subsequence of a path in T σ whose cells belong exclusively to Pπ or Aπ . This can
be seen observing that for any permutation an increasing subsequence will only have n elements when it is {1, 2, . . . , n};
otherwise, it will have fewer elements and its value, C(Sσα), will be strictly less thanW (Pπ). In a symmetricway, a decreasing
subsequence will only have n elements when it is {n, n − 1, . . . , 1}; otherwise, it will have fewer elements and its value,
C(Sσβ), will be strictly less than W (Aπ). Finally, observe that the maximum path on T σ will be able to choose the cells that
lead to the largest sum from Aπ and Pπ . In particular, if Sσ = {n, n − 1, . . . , 1} it will be at least W (Aπ), since Aπ will be a
possible path. Therefore,W (T σ) ≥ C(Sσ). �

Let S⋆ represent an optimal solution of theminimum double weighted sequence problem for (Γ , α, β).

Corollary 2. C(S⋆) ≤ W (TOPT).

Proof. By Theorem 2, C(SOPT) ≤ W (TOPT). By optimal solution definition, C(S⋆) ≤ C(SOPT). Consequently, C(S⋆) ≤

W (TOPT). �

By previous results we have the following.

Theorem 3. W (Tπ)
W (TOPT)

≤
C(Sπ)
C(S⋆) .

Proof. W (Tπ)
W (TOPT)

≤
W (Tπ)
C(SOPT)

≤
W (Tπ)
C(S∗)

=
C(Sπ)
C(S∗)

. �

As consequence of the last theorem it is possible to obtain an upper bound on the approximation guarantee of a PFS
specific solution π by constructing an equivalent MDWS instance (Γ , απ , βπ), as described in this section, and analyzing
the approximation factor of any permutation π applied as a solution to such instance.

M. Poggi, D. Sotelo / Theoretical Computer Science 416 (2012) 87–94 93

4. The greedy avoided path algorithm

This section presents a polynomial time deterministic algorithm which constructs a solution for the PFS based on
weighted monotone subsequences properties previously explored. The time complexity and approximation guarantee of
the algorithm are also analyzed. We prove that a job permutation, in which cells representing the longest operation of
each job constitute an avoided path on processing timematrix, reach the claimed approximation guarantee. Furthermore, a
permutation with this property can be obtained by a simple job sorting algorithm. Its approximation factor analysis is based
on deterministic combinatorial arguments based on Erdös–Szekeres theorem extensions.

We next present the greedy avoided path algorithm. The main concept is to construct a permutation π in which the
maximum path avoids as much as possible the large coefficients in the Tπ . We propose to do this in a greedy way. This
amounts to, first, determining for each job themachine in which the corresponding operation processing time is maximum.
Next, the jobs are ordered in such a way that those cells are as close as possible to an anti-path. This order is the one in
which the first job has the largest machine index for its longest operation. The second job is the one with the second largest
machine index for its longest operation, and so on. The algorithm follows.

Greedy Avoided Path Algorithm(J,M, T)
✄ J = {J1, J2, . . . , Jn}, the set of jobs.
✄ M = {M1,M2, . . . ,Mm}, the set of machines.
✄ T ∈ ℜ

+

M×J , the processing time matrix.

1 For each j ∈ J: SetMaxMachinej as the index of the machine
with the longest operation of job j.

2 Construct a permutation π : {1, . . . , n} → J
sorting the jobs in non-increasing order of the values ofMaxMachinej.

3 Return permutation π .

Theorem 4. The Greedy Avoided Path Algorithm returns a permutation that is a 2
√
2n + m-approximation for the PFS.

Proof. Let π be the solution returned by the greedy avoided path algorithm, Tπ the permutated matrix of T , and
Pπ a maximum path in Tπ . Consider that Aπ is an anti-path in Tπ with the following property: all cells on positions
(MaxMachinej, j), for j = 1, . . . , n, in Tπ belong to Aπ . Once π is obtained by application of the greedy avoided path
algorithm, the construction of such an anti-path in Tπ is possible, since the indices MaxMachinej, for j = 1, . . . , n, are in
non-increasing order. Let TOPT be an optimal permutatedmatrix of T . The approximation factor of solutionπ is, by definition,
W (Tπ)/W (TOPT).

Following the steps in Section 3.3, without loss of generality, we can have π = {1, 2, . . . , n}. Then, let Sπ = π be a
solution for the instance (Γ , απ , βπ) of the MDWS problem. Therefore, by Lemma 3, C(Sπ) = W (Tπ). Let now C(S⋆) be

an optimal solution for (Γ , απ , βπ). By Theorem 1, C(S⋆) ≥
∑n

i=1 α(i)/

4

n +

∑n
i=1 ⌈α(i)/β(i)⌉


. Since Aπ was chosen

in such a way that the longest operation of each job belongs to it, a ratio ⌈α(i)/β(i)⌉ can only be greater than one for jobs,
columns of Tπ , where the maximum path Pπ chooses two or more cells. On all others this ratio must be one. As there are
exactly n+m− 1 cells on Pπ and Aπ , we have

∑n
i=1 ⌈α(i)/β(i)⌉ ≤ n+m− 1. Observe that this upper bound is tight when

one job has all its cells in the maximum path and all operations with the same processing time, or all jobs and all operations
have the same processing time.

Consequently, C(S⋆) ≥
∑n

i=1 α(i)/2
√
2n + m).

Since Sπ = π and all α(i) and β(i) are non-negative, a largest subsequence is the increasing subsequence 1, 2, . . . , n,
and therefore C(Sπ) =

∑n
i=1 α(i). So, we can state that C(S⋆) ≥ C(Sπ)/2

√
2n + m.

Finally, by Theorem 3, C(Sπ)/C(S⋆) ≥ W (Tπ)/W (TOPT). Hence, W (Tπ)/W (TOPT) ≤ 2
√
2n + m. �

Example. Consider matrix T of Table 3.1. The MaxMachine vector is (3, 4, 2, 2, 1). Therefore, the greedy avoided path
algorithm would produce a permutation in which the second column is the first one, while the first appears second and
all remaining ones keep their positions. The resulting Tπ matrix is presented in Table 4 with the (MaxMachinej, j) cells for
j = 1, 2, . . . , n in bold. An anti-path containing all these cells is represented by the underlined cells.

The time complexity analysis for the greedy avoided path algorithm is straightforward. First, observe that the sorting
phase can be done in linear time using, for example, counting sort. Line 1 can be executed in Θ(nm) time. Permutation
construction on line 2 can be achieved sorting jobs inΘ(n + m) time usingMaxMachine variables as key. Line 3 costsΘ(n)
steps. Hence, the greedy avoided path algorithm is a polynomial timeΘ(nm) algorithm.

5. Conclusion

This work presents a deterministic approximation algorithm for the PFS with performance ratio 2
√
2n + m and time

complexity Θ(nm). In the case that n = Θ(m) this is the best approximation algorithm already obtained for the PFS

94 M. Poggi, D. Sotelo / Theoretical Computer Science 416 (2012) 87–94

Table 4
Permutation matrix generated by the
Greedy Avoided Path Algorithm.

1 2 3 4 5
1 2 5 4 6 9
2 3 1 7 8 2
3 5 6 2 4 8
4 9 3 1 7 5

achieving the same approximation factor found by Nagarajan and Sviridenko [9] in linear time, reducing its complexity
fromΩ(n4.m). The Erdös–Szekeres theoremwas extended, considering a weighted version in which elements of monotone
subsequences can have different weights. As a consequence, a novel technique to obtain upper bounds on approximation
guarantees of PFS solutions using double weighted sequences was introduced, exploring the connection between weighted
monotone subsequence problems and the PFS.

Acknowledgements

We are grateful to an anonymous referee for several suggestions and comments. We thank the partial support of CNPq
to MP and of Petrobras to DS.

Appendix

The algorithm from Nagarajan and Sviridenko [9] has two phases. The first phase comprises decomposing the original
processing time matrix into k ≤ n.m permutation matrices. Such decomposition can be achieved by applying an algorithm
for minimum edge-coloring on bipartite multigraphs. To the best of our knowledge, the current most efficient algorithm
to solve this problem depends on a log factor of the maximum degree of a vertex [17]. In particular, the well-performing
algorithm from Gabow and Kariv [5] with a time complexity of O(|V |.|Ẽ|. logµ) could be applied here, where |V | = n + m,
|Ẽ| = n.m and µ = max{maxi

∑
j tij,maxj

∑
i tij}. Disregarding the µ factor, a lower bound on the time complexity of the

first phase of the algorithmwould beΩ(n2.m). The second phase of the algorithm constructs the permutation schedule and
is composed by n steps. Each step 1 ≤ i ≤ n selects a job to be inserted at position i of the schedule. Once a job is selected to
be inserted on step i, its position cannot be changed. The selection of the job to be inserted at position i comprises testing all
n− i remaining jobs, calculating the insertion cost of each one (estimated by an upper bound function Ui), and selecting that
ofminimum insertion cost at position i. The functionUi is defined as theweighted sum of k ≤ n.m functionsUk

i . The calculus
of each function Uk

i cannot take less than Ω(n). Hence, a (possibly far from tight) lower bound on the time complexity of
the second phase of the algorithm would be Ω(n4.m). Therefore, the time complexity of the deterministic algorithm from
[9] is lower bounded byΩ(n4.m).

References

[1] R. Bar-Yehuda, S. Fogel, Partitioning a sequence into few monotone subsequences, Acta Inform. 35 (1998) 421–440.
[2] P. Erdös, G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935) 463–470.
[3] J. Gupta, C. Koulamas, G. Kyparisis, Performance guarantees for flowshop heuristics tominimizemakespan, European J. Oper. Res. 169 (2006) 865–872.
[4] M.R. Garey, D.S. Johnson, R. Sethi, The complexity of flowshop and jobshop scheduling, Math. Oper. Res. 1 (1976) 117–129.
[5] H.N. Gabow, O. Kariv, Algorithms for edge coloring bipartite graphs and multigraphs, SIAM J. Comput. 11 (1982) 117–129.
[6] T. Gonzalez, S. Sahni, Flowshop and jobshop schedules: complexity and approximation, Oper. Res. 26 (1978) 36–52.
[7] L.A. Hall, Approximability of flow shop scheduling, Math. Program. 82 (1998) 175–190.
[8] S.M. Johnson, Optimal two- and three-stage production schedules with setup times included, Naval Res. Logist. Quart. 1 (1954) 61–68.
[9] V. Nagarajan, M. Sviridenko, Tight bounds for permutation flow shop scheduling, in: Proceedings of IPCO 2008, pp. 154–168.

[10] V. Nagarajan, M. Sviridenko, Tight bounds for permutation flow shop scheduling, Math. Oper. Res. 34 (2009) 417–427.
[11] E. Nowicki, C. Smutnicki, Worst-case analysis of an approximation algorithm for flow-shop scheduling, Oper. Res. Lett. 8 (1989) 171–177.
[12] E. Nowicki, C. Smutnicki, Worst-case analysis of Dannenbring’s algorithm for flow-shop scheduling, Oper. Res. Lett. 10 (1991) 473–480.
[13] E. Nowicki, C. Smutnicki, New results in the worst-case analysis for flow-shop scheduling, Discrete Appl. Math. 46 (1993) 21–41.
[14] C. Potts, D. Shmoys, D. Williamson, Permutation vs. nonpermutation flow shop schedules, Oper. Res. Lett. 10 (1991) 281–284.
[15] P. Raghavan, Probabilistic construction of deterministic algorithms: approximating packing integer programs, J. Comput. System Sci. 37 (1988)

130–143.
[16] D. Sotelo, M. Poggi, An approximation algorithm for the permutation flow shop scheduling problem via Erdös–Szekeres theorem extensions,

Monografias em Ciência da Computação, Departamento de Informática, PUC-Rio, 28 (2007).
[17] A. Schrijver, Combinatorial Optimization. Polyhedra and Efficiency. Algorithms and Combinatorics, Springer-Verlag, Berlin, 2003.
[18] S. Sevast’janov, On some geometric methods in scheduling theory: a survey, Discrete Appl. Math. 55 (1994) 59–82.
[19] J.M. Steele, Variations on the monotone subsequence theme of Erdös and Szekeres, IMA Vol. Math. Appl. 72 (1995) 111–131.
[20] M. Sviridenko, A note on permutation flow shop problem, Ann. Oper. Res. 129 (2004) 247–252.
[21] K. Wagner, Monotonic coverings of finite sets, Elektron. Informationsverarb. Kybernetes 20 (1984) 633–639.

	A linear time approximation algorithm for permutation flow shop scheduling
	Introduction
	Problem definition
	Previous results
	This paper's contribution and organization

	Weighted sequences
	Weighted monotone sequences
	Double weighted sequences

	Lower bounds for a matrix game
	Paths and anti-paths
	The PFS and matrix games
	Approximation guarantees of PFS solutions

	The greedy avoided path algorithm
	Conclusion
	Acknowledgements
	Appendix
	References

