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a b s t r a c t

Multivalent analytic functions that are starlike, convex, close-to-convex, and quasi-convex
with respect to n-ply points as well as multivalent functions with respect to symmetric
points, conjugate points and symmetric conjugate points are considered. These classes
of functions interestingly unify various known subclasses that have separately been
introduced and studied. Inclusion and convolution properties of these generalized classes
are investigated, and numerous known results could be obtained as special instances.
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1. Motivation and preliminaries

Let D = {z ∈ C : |z| < 1} be the unit disc and Ap be the class of analytic p-valent functions of the form

f (z) = zp +

∞−
n=p+1

anzn, (1.1)

where p ≥ 1, and let A := A1. The Hadamard product or convolution of two p-valent functions f given by (1.1) and
g(z) = zp +

∑
∞

n=p+1 bnz
n is defined by

(f ∗ g)(z) := zp +

∞−
n=p+1

anbnzn.

The function f is subordinate to F inD, written f (z) ≺ F(z), if there exists a Schwarz functionw, analytic inDwithw(0) = 0
and |w(z)| < 1, satisfying f (z) = F(w(z)). If the function F is univalent in D, then f (z) ≺ F(z) is equivalent to f (0) = F(0)
and f (D) ⊂ F(D).
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Two important subclasses ofA are the classes of convex and starlike functions of order α, 0 ≤ α < 1, denoted byCV(α)
andST (α) respectively. These classes and several other important subclasses in geometric function theory are characterized
by either

zf ′(z)
f (z)

≺ h(z) or 1 +
zf ′′(z)
f ′(z)

≺ h(z),

where h is a normalized univalent function with positive real part in D [1].
The well-known Alexander’s relation states that a function f is convex if and only if the function zf ′ is starlike. Since

zf ′(z) = f (z) ∗ (z/(1 − z)2), it follows that f is convex if and only if f ∗ g is starlike for g(z) = z/(1 − z)2. Clearly
f (z) = f (z) ∗ (z/(1 − z)), and so the investigation of the classes of convex and starlike functions can be given a unified
treatment by considering the class of functions f satisfying

z(f ∗ g)′(z)
(f ∗ g)(z)

≺ h(z),

where g is a given fixed function inA, and h a convex functionwith a positive real part. Denote the class of all such functions
by ST g(h), and byCVg(h) the corresponding class related to convex functions. Shanmugam [2] introduced these classes and
other related classes, and investigated inclusion and convolution properties by using the convex hull method [3,4] and the
method of differential subordination [5]. Ali et al. [6] investigated the subclasses of p-valent starlike and convex functions,
and obtained several subordination and convolution properties, as well as sharp distortion, growth and rotation estimates.
Theseworkswere recently extended by Supramaniam et al. [7]. Similar problems but for the class ofmeromorphic functions
were also recently investigated by Mohd et al. [8]. Related results can also be found in [9].

Recall that a function f ∈ A is starlike with respect to symmetric points in D if

Re


zf ′(z)
f (z)− f (−z)


> 0

for all z ∈ D. This class was introduced and studied by Sakaguchi [10]. Further investigations into the class of starlike
functions with respect to symmetric points can be found in [11–19]. El-Ashwah and Thomas [20] introduced and studied
the classes consisting of starlike functionswith respect to conjugate points, and starlike functionswith respect to symmetric
conjugate points defined respectively by the conditions

Re


zf ′(z)

f (z)+ f (z)


> 0, Re


zf ′(z)

f (z)− f (−z)


> 0.

In 2004, Ravichandran [21] introduced the classes of starlike, convex and close-to-convex functions with respect to n-ply
symmetric points, conjugate points and symmetric conjugate points, and obtained several convolution properties. Other
investigations into the classes defined by using conjugate and symmetric conjugate points can be found in [22–29].

All these many investigations can be unified, and it is the aim of this paper to show such a unified method. For this
purpose, we shall introduce general classes of p-valent starlike, convex, close-to-convex and quasi-convex functions with
respect to n-ply points, as well as p-valent starlike and convex functions with respect to symmetric points, conjugate points
and symmetric conjugate points respectively. Inclusion and convolution properties of these classes will be investigated, and
it would be evident that previous earlier works are special instances of our present work.

For α < 1, the class Rα of prestarlike functions of order α is defined by

Rα :=


f ∈ A

f ∗
z

(1 − z)2−2α
∈ ST (α)


,

while R1 consists of f ∈ A satisfying Re f (z)/z > 1/2.
The following theorems would be required.

Theorem 1.1 ([4, Theorem 2.4, p. 54]). Let α ≤ 1, f ∈ Rα and g ∈ ST (α). Then

f ∗ (Hg)
f ∗ g

(D) ⊂ co(H(D)),

for any analytic function H in D, where co(H(D)) denote the closed convex hull of H(D).

Theorem 1.1 due to Ruscheweyh [4] can easily be adapted to yield the following result.

Theorem 1.2. If f (z)/zp−1
∈ Rα and g(z)/zp−1

∈ ST (α), then

f ∗ (Hg)
f ∗ g

(D) ⊂ co (H (D))

for any analytic function H defined in D.



2928 R.M. Ali et al. / Computers and Mathematics with Applications 60 (2010) 2926–2935

Theorem 1.3 ([5, Corollary 4.1h.1, p. 200]). Let h be convex in D, and S and T be analytic functions in D with S(0) = T (0). If
Re


zS ′(z)/S(z)


> 0, then

T ′(z)
S ′(z)

≺ h(z) H⇒
T (z)
S(z)

≺ h(z).

2. Multivalent functions with respect to n-ply points

In the following sequel, the function g ∈ Ap is a fixed function and the function h is a convex univalent function with a
positive real part satisfying h(0) = 1. On certain occasions, we would additionally require that Re h(z) > 1 − (1 − α)/p,
where 0 ≤ α < 1. Multivalent functions starlike and convex with respect to n-ply points are given below:

Definition 2.1. Let n ≥ 1 be an integer, ϵn = 1, and ϵ ≠ 1. For f ∈ Ap of the form (1.1), let the function fn be defined by

fn(z) :=
1
n

n−1−
k=0

ϵn−pkf (ϵkz) = zp + ap+nzp+n
+ ap+2nzp+2n

+ · · · .

The class ST n
p(h) consists of functions f ∈ Ap satisfying fn(z)/zp ≠ 0 in D and the subordination

1
p
zf ′(z)
fn(z)

≺ h(z). (2.1)

For a fixed function g ∈ Ap, denote by ST n
p,g(h) the class

ST n
p,g(h) :=


f ∈ Ap : f ∗ g ∈ ST n

p(h)

.

Similarly, CVn
p(h) consists of functions f ∈ Ap satisfying f ′

n(z)/z
p−1

≠ 0 in D and the subordination

1
p


zf ′

′
(z)

f ′
n(z)

≺ h(z),

and for a fixed function g ∈ Ap, let

CVn
p,g(h) :=


f ∈ Ap : f ∗ g ∈ CVn

p(h)

.

Remark 2.2. If n = 1, the classes ST 1
p,g(h) and CV1

p,g(h)were studied by Supramaniam et al. [7].

Evidently when g(z) = zp/(1 − z), the classes ST n
p,g(h) and CVn

p,g(h) reduced respectively to the classes ST n
p(h) and

CVn
p(h). Thus these new classes of p-valent starlike and convex functions with respect to n-ply points unify the classes

ST n
p(h) and CVn

p(h). The notations ST 1
p(h) := ST p(h) and CV1

p(h) := CVp(h)will be used for n = 1.
It is clear thatST n

p,zg ′(h) = CVn
p,g(h). Interestingly the property that every convex function is necessarily starlike remains

valid even for multivalent functions with respect to n-ply points. Indeed the following result holds:

Lemma 2.3. Let g be a fixed function in Ap, and h be a convex univalent function having positive real part with h(0) = 1.

(i) If f ∈ ST n
p,g(h), then fn ∈ ST p,g(h).

(ii) The function f ∈ CVn
p,g(h) if and only if 1

p zf
′
∈ ST n

p,g(h).
(iii) The inclusion CVn

p,g(h) ⊂ ST n
p,g(h) holds.

Proof. It is sufficient to prove the result for g(z) = zp/(1 − z).
(i) Let f ∈ ST n

p(h). For any fixed z ∈ D,

1
p
zf ′(z)
fn(z)

∈ h(D). (2.2)

Replacing z by ϵkz in (2.2), it follows that

1
p
ϵkzf ′(ϵkz)
fn(ϵkz)

∈ h(D). (2.3)

In light of the fact that

fn(ϵkz) = ϵpkfn(z), (2.4)
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the containment (2.3) becomes

1
p
ϵk(1−p)zf ′(ϵkz)

fn(z)
∈ h(D).

Since h(D) is convex, it follows that

1
n

n−1−
k=0

1
p
ϵk(1−p)zf ′(ϵkz)

fn(z)
∈ h(D). (2.5)

Using the identity

f ′

n(z) =
1
n

n−1−
k=0

ϵk(1−p)f ′(ϵkz), (2.6)

it is seen that (2.5) becomes

1
p
zf ′

n(z)
fn(z)

∈ h(D).

Thus
1
p
zf ′

n(z)
fn(z)

≺ h(z),

that is, fn ∈ ST p(h).
(ii) Since


1
p zf

′


n
(z) =

1
p zf

′
n(z), it is evident that

1
p


zf ′

′
(z)

f ′
n(z)

=
1
p

z


1
p zf

′

′

(z)
1
p zf

′


n
(z)

.

Thus f ∈ CVn
p(h) if and only if 1

p zf
′
∈ ST n

p(h).

(iii) Let f ∈ CVn
p(h). Then part (ii) shows that 1

p zf
′
∈ ST n

p(h). We deduce from part (i) that


1
p zf

′


n

∈ ST p(h). From
1
p zf

′


n

=
1
p zf

′
n , part (ii) now shows that fn ∈ CVp(h). Since CVp(h) is subset of ST p(h) [7, Theorem 2.1], it follows that

fn ∈ ST p(h), and because h is a function with positive real part, the function fn is starlike.
Define the functions T and S by

T (z) :=
1
p
zf ′(z) and S(z) := fn(z).

Since the function S is starlike and

T ′(z)
S ′(z)

=
1
p


zf ′

′
(z)

f ′
n(z)

≺ h(z),

Theorem 1.3 implies that

1
p
zf ′(z)
fn(z)

=
T (z)
S(z)

≺ h(z),

whence f ∈ ST n
p(h). �

Ruscheweyh and Sheil-Small [3] proved the Polya–Schoenberg conjecture that the classes of convex functions, starlike
functions and close-to-convex functions are closed under convolution with convex functions. In the following theorem, this
result is extended for the convolution between prestarlike functions andmultivalent functions with respect to n-ply points.

Theorem 2.4. Let h be a convex univalent function satisfying the condition

Re h(z) > 1 −
1 − α

p
(0 ≤ α < 1),

and φ ∈ Ap with φ/zp−1
∈ Rα .

(i) If f ∈ ST n
p,g(h), then φ ∗ f ∈ ST n

p,g(h). Equivalently, ST n
p,g(h) ⊂ ST n

p,g∗φ(h).
(ii) If f ∈ CVn

p,g(h), then φ ∗ f ∈ CVn
p,g(h). Equivalently, CVn

p,g(h) ⊂ CVn
p,g∗φ(h).
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Proof. (i) Let f ∈ ST n
p(h). From Lemma 2.3(i), it follows that fn ∈ ST p(h). The function ψn defined by

ψn(z) :=
fn(z)
zp−1

is analytic and satisfies

zψ ′
n(z)

ψn(z)
=

zf ′
n(z)

fn(z)
− (p − 1) ≺ p h(z)− (p − 1).

Since Re h(z) > 1 − (1 − α)/p, it follows that

Re
zψ ′

n(z)
ψn(z)

> α,

and hence ψn ∈ ST (α). Define the function H by

H(z) :=
1
p
zf ′(z)
fn(z)

.

Since H ≺ h and h is convex, an application of Theorem 1.2 shows that

1
p
z(φ ∗ f )′(z)
(φ ∗ f )n(z)

=
φ(z) ∗

1
p zf

′(z)

φ(z) ∗ fn(z)
=
(φ ∗ Hfn)(z)
(φ ∗ fn)(z)

≺ h(z),

and thus φ ∗ f ∈ ST n
p(h).

The general result for f ∈ ST n
p,g(h) follows from the fact that

f ∈ ST n
p,g(h) ⇔ f ∗ g ∈ ST n

p(h).

(ii) Now let f ∈ CVn
p,g(h) so that 1

p zf
′
∈ ST n

p,g(h). The result of part (i) yields


1
p zf

′


∗ φ =

1
p z(f ∗ φ)′ ∈ ST n

p,g(h), and
thus φ ∗ f ∈ CVn

p,g(h). �

Close-to-convex and quasi-convex multivalent functions with respect to n-ply points are defined as follows:

Definition 2.5. The class CCn
p(h) consists of functions f ∈ Ap satisfying the subordination

1
p
zf ′(z)
φn(z)

≺ h(z)

for some φ ∈ ST n
p(h). The general class CCn

p,g(h) then consists of functions f ∈ Ap satisfying the subordination

1
p
z(g ∗ f )′(z)
(g ∗ φ)n(z)

≺ h(z)

for some φ ∈ ST n
p,g(h). The class QCn

p(h) consists of functions f ∈ Ap satisfying the subordination

1
p


zf ′

′
(z)

φ′
n(z)

≺ h(z)

for some φ ∈ CVn
p(h), while the class QCn

p,g(h) consists of f ∈ Ap such that

1
p


z(g ∗ f )′

′
(z)

(g ∗ φ)′n(z)
≺ h(z)

for some φ ∈ CVn
p,g(h).

Lemma 2.6. Let g be a fixed function in Ap, and h be a convex univalent function with positive real part satisfying h(0) = 1.
Then
(i) CVn

p,g(h) ⊂ QCn
p,g(h) ⊂ CCn

p,g(h),
(ii) f ∈ QCn

p,g(h) if and only if 1
p zf

′
∈ CCn

p,g(h).

Proof. (i) By taking φ = f , it is evident from the definition that CVn
p,g(h) ⊂ QCn

p,g(h). To prove the second inclusion,
suppose that f ∈ QCn

p,g(h). Then there exists φ ∈ CVn
p,g(h) such that

1
p


z(g ∗ f )′

′
(z)

(g ∗ φ)′n(z)
≺ h(z).
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Since φ ∈ CVn
p,g(h), it follows that (g ∗φ)n ∈ CVp(h)which is a subset of ST p(h) [7, Theorem 2.1]. Thus (g ∗φ)n ∈ ST p(h).

The result now follows from Theorem 1.3 with

T (z) =
1
p
z(g ∗ f )′(z) and S(z) = (g ∗ φ)n(z).

(ii) Here the proof follows from the identity

1
p


z(g ∗ f )′

′
(z)

(g ∗ φ)′n(z)
=

1
p

z


g ∗
1
p zf

′

′

(z)
g ∗

1
p zφ

′


n
(z)

,

and Lemma 2.3(ii). �

Theorem 2.7. Let h and φ satisfy the conditions of Theorem 2.4.
(i) If f ∈ CCn

p,g(h)with respect to a function f1 ∈ ST n
p,g(h), thenφ∗f ∈ CCn

p,g(h)with respect to the functionφ∗f1 ∈ ST n
p,g(h).

Also CCn
p,g(h) ⊂ CCn

p,g∗φ(h).
(ii) If f ∈ QCn

p,g(h) with respect to f1 ∈ CVn
p,g(h), then φ ∗ f ∈ QCn

p,g(h) with respect to φ ∗ f1 ∈ CVn
p,g(h). Also QCn

p,g(h)
⊂ QCn

p,g∗φ(h).

Proof. (i) It is sufficient to prove the result for the case g(z) = zp/(1 − z). Let f ∈ CCn
p(h) with respect to a function

f1 ∈ ST n
p(h). Theorem 2.4 yields φ ∗ f1 ∈ ST n

p(h), and Lemma 2.3(i) gives (f1)n is in ST p(h). Also it is easy to see that the
function (f1)n/zp−1

∈ ST (α). Now define the analytic function H by

H(z) :=
1
p

zf ′(z)
(f1)n(z)

.

Since H(z) ≺ h(z), an application of Theorem 1.2 shows that

1
p
z(φ ∗ f )′(z)
(φ ∗ f1)n(z)

=
φ(z) ∗

1
p zf

′(z)

φ(z) ∗ (f1)n(z)
=
(φ ∗ H(f1)n)(z)
(φ ∗ (f1)n)(z)

≺ h(z).

This completes the proof of part (i).
(ii) If f ∈ QCn

p,g(h), then Lemma 2.6(ii) gives 1
p zf

′
∈ CCn

p,g(h). Since

1
p
z(φ ∗ f )′(z) = φ(z) ∗

1
p
zf ′(z),

the result of part (i) shows that 1
p z(φ ∗ f )′ ∈ CCn

p,g(h). From Lemma 2.6(ii), φ ∗ f ∈ QCn
p,g(h). �

3. Multivalent functions with respect to n-ply symmetric, conjugate and symmetric conjugate points

In this section, it is assumed that p is an odd number. Also, the function g ∈ Ap is a fixed function and the function h is
convex univalent with a positive real part satisfying h(0) = 1. Here the classes of multivalent functions that are p-valent
starlike and p-valent convex with respect to n-ply symmetric, conjugate, and symmetric conjugate points are introduced,
and their convolution properties will be discussed. These classes are respectively defined below:

ST Sn
p(h) :=


f ∈ Ap :

1
p

2zf ′(z)
fn(z)− fn(−z)

≺ h(z),
fn(z)− fn(−z)

zp
≠ 0


,

CVSn
p(h) :=


f ∈ Ap :

1
p

2

zf ′

′
(z)

f ′
n(z)+ f ′

n(−z)
≺ h(z),

f ′
n(z)+ f ′

n(−z)
zp−1

≠ 0


,

ST Cn
p(h) :=


f ∈ Ap :

1
p

2zf ′(z)

fn(z)+ fn(z)
≺ h(z),

fn(z)+ fn(z)
zp

≠ 0


,

CVCn
p(h) :=


f ∈ Ap :

1
p

2

zf ′

′
(z)

f ′
n(z)+ f ′

n(z)
≺ h(z),

f ′
n(z)+ f ′

n(z)
zp−1

≠ 0


,

ST SCn
p(h) :=


f ∈ Ap :

1
p

2zf ′(z)

fn(z)− fn(−z)
≺ h(z),

fn(z)− fn(−z)
zp

≠ 0


,

CVSCn
p(h) :=


f ∈ Ap :

1
p

2

zf ′

′
(z)

f ′
n(z)+ f ′

n(−z)
≺ h(z),

f ′
n(z)+ f ′

n(−z)
zp−1

≠ 0


.
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The classes ST Sn
p,g(h), CVSn

p,g(h), ST Cn
p,g(h), CVCn

p,g(h), ST SCn
p,g(h) and CVSCn

p,g(h) consist of functions f ∈ Ap for
which f ∗ g belongs to the classes ST Sn

p(h),CVSn
p(h), ST Cn

p(h),CVCn
p(h), ST SCn

p(h) and CVSCn
p(h) respectively.

In the special case n = 1, we shall adopt the following usual notations: ST S1
p,g(h) =: ST Sp,g(h), CVS1

p,g(h) =:

CVSp,g(h), ST C1
p,g(h) =: ST Cp,g ,CVC1

p,g(h) =: CVCp,g(h), ST SC1
p,g(h) =: ST SCp,g(h) and CVSC1

p,g(h) =:

CVSCp,g(h).

Remark 3.1. When p = 1, these classes were investigated by Ravichandran [21]. We also took note that these classes
reduced to the classes studied in [30] when n = 1 and g(z) = z/(1 − z).

Lemma 3.2. Let g be a fixed function in Ap, and h be a convex univalent function with a positive real part satisfying h(0) = 1.

(i) If f ∈ ST Sn
p,g(h) and F(z) :=

1
2 [f (z)− f (−z)], then Fn ∈ ST p,g(h).

(ii) If f ∈ ST Sn
p,g(h), then fn ∈ ST Sp,g(h).

(iii) The function f ∈ CVSn
p,g(h) if and only if 1

p zf
′
∈ ST Sn

p,g(h).
(iv) The inclusion CVSn

p,g(h) ⊂ ST Sn
p,g(h) holds.

Proof. Again it is enough to prove the results for g(z) = zp/(1 − z).

(i) Let f ∈ ST Sn
p(h). For any fixed z ∈ D,

1
p
zf ′(z)
Fn(z)

∈ h(D).

Replacing z by −z and taking the convex combination of these two expressions, it readily follows that

1
2p

[
zf ′(z)
Fn(z)

+
(−z)f ′(−z)

Fn(−z)

]
=

1
p
zF ′(z)
Fn(z)

∈ h(D).

This shows that the function F ∈ ST n
p(h) and Lemma 2.3(i) now yields Fn ∈ ST p(h).

(ii) Replacing z by ϵkz in

1
p

2zf ′(z)
fn(z)− fn(−z)

∈ h(D),

and using (2.4) and (2.6), it follows from the convexity of h(D) that

1
n

n−1−
k=0

1
p

2ϵkzf ′(ϵkz)
fn(ϵkz)− fn(−ϵkz)

=
2
p

1
n

n−1∑
k=0
ϵk(1−p)zf ′(ϵkz)

fn(z)− fn(−z)
=

2
p

zf ′
n(z)

fn(z)− fn(−z)
∈ h(D).

Thus fn ∈ ST Sp(h).

(iii) Since


1
p zf

′


n
(−z) = −

1
p zf

′
n(−z), it is clear that

1
p

2

zf ′

′
(z)

f ′
n(z)+ f ′

n(−z)
=

1
p

2z


1
p zf

′

′

(z)
1
p zf

′


n
(z)−


1
p zf

′


n
(−z)

.

Thus f ∈ CVSn
p(h) if and only if 1

p zf
′
∈ ST Sn

p(h).
(iv) Let f ∈ CVSn

p(h) and F(z) :=
1
2 [f (z) − f (−z)]. The result in part (iii) shows that 1

p zf
′
∈ ST Sn

p(h). Hence, by part (i),
1
p zF

′


n

∈ ST p(h). Since


1
p zF

′


n

=
1
p zF

′
n, Lemma 2.3(ii) shows that Fn ∈ CVp(h). So it follows from Lemma 2.3(iii)

that Fn ∈ ST p(h). Since h is a function with a positive real part, we deduce that the function Fn is starlike.
Now let T (z) :=

1
p zf

′(z) and S(z) := [fn(z)− fn(−z)]/2 = Fn(z). Since f ∈ CVSn
p(h),

T ′(z)
S ′(z)

=
1
p

2

zf ′

′
(z)

f ′
n(z)+ f ′

n(−z)
≺ h(z).

Since S is starlike, the above subordination together with Theorem 1.3 implies that

1
p

2zf ′(z)
fn(z)− fn(−z)

=
T (z)
S(z)

≺ h(z),

and hence f ∈ ST Sn
p(h). �
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Theorem 3.3. Let h and φ satisfy the conditions of Theorem 2.4.

(i) If f ∈ ST Sn
p,g(h), then φ ∗ f ∈ ST Sn

p,g(h). Equivalently, ST Sn
p,g(h) ⊂ ST Sn

p,g∗φ(h).
(ii) If f ∈ CVSn

p,g(h), then φ ∗ f ∈ CVSn
p,g(h). Equivalently, CVSn

p,g(h) ⊂ CVSn
p,g∗φ(h).

Proof. It is enough to prove the results when g(z) = zp/(1 − z).
(i) Define the functions F and H by

F(z) :=
1
2
[f (z)− f (−z)] and H(z) :=

1
p
zf ′(z)
Fn(z)

.

Lemma 3.2(i) shows that Fn ∈ ST p(h). Since h is a convex function with Re h(z) > 1 − (1 − α)/p, it follows that

Re
zF ′

n(z)
Fn(z)

> p − 1 + α,

and whence the function Fn(z)/zp−1 is starlike of order α. Since H(z) ≺ h(z), Theorem 1.2 yields

1
p

2z(φ ∗ f )′(z)
(φ ∗ f )n(z)− (φ ∗ f )n(−z)

=
φ(z) ∗

1
p zf

′(z)

φ(z) ∗ [fn(z)− fn(−z)]/2
=
(φ ∗ HFn)(z)
(φ ∗ Fn)(z)

≺ h(z),

and thus φ ∗ f ∈ ST Sn
p(h).

(ii) If f ∈ CVSn
p(h), Lemma 3.2(iii) and the result of part (i) above yield

φ ∗
1
p
zf ′

=
1
p
z(φ ∗ f )′ ∈ ST Sn

p(h).

Hence φ ∗ f ∈ CVSn
p(h). �

Lemma 3.4. Let g be a fixed function in Ap, and h be a convex univalent function with positive real part satisfying h(0) = 1.

(i) If f ∈ ST Cn
p,g(h) and F(z) :=

1
2 [f (z)+ f (z)], then Fn ∈ ST p,g(h).

(ii) If f ∈ ST Cn
p,g(h), then fn ∈ ST Cp,g(h).

(iii) The function f ∈ CVCn
p,g(h) if and only if 1

p zf
′
∈ ST Cn

p,g(h).

(iv) The inclusion CVCn
p,g(h) ⊂ ST Cn

p,g(h) holds.

Proof. Again it is enough to prove the results when g(z) = zp/(1 − z).

(i) Since Fn(z) = [fn(z)+ fn(z)]/2, if f ∈ ST Cn
p(h), then

1
p
zf ′(z)
Fn(z)

∈ h(D)

for any fixed z ∈ D. Thus

1
2p


zf ′(z)
Fn(z)

+


zf ′(z)
Fn(z)


=

1
p
zF ′(z)
Fn(z)

∈ h(D).

This shows that the function F ∈ ST n
p(h) and by Lemma 2.3(i) it follows that Fn ∈ ST p(h).

(ii) Replacing z by ϵkz in

1
p

2zf ′(z)

fn(z)+ fn(z)
∈ h(D),

and using (2.4) and (2.6), it follows from the convexity of h(D) that

1
p

2zf ′
n(z)

fn(z)+ fn(z)
=

1
n

n−1−
k=0

1
p

2ϵkzf ′(ϵkz)

fn(ϵkz)+ fn(ϵ−kz)
∈ h(D).

Thus fn ∈ ST Cp(h).
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(iii) Since 
1
p
zf ′


n
(z) =

1
p
zf ′

n(z),

it follows that

1
p

2

zf ′

′
(z)

f ′
n(z)+ f ′

n(z)
=

1
p

2z


1
p zf

′

′

(z)
1
p zf

′


n
(z)+


1
p zf

′


n
(z)
.

Thus f ∈ CVCn
p,g(h) if and only if 1

p zf
′
∈ ST Cn

p,g(h).

(iv) If f ∈ CVCn
p(h), then part (iii) gives 1

p zf
′
∈ ST Cn

p(h). With F(z) = [f (z)+ f (z)]/2, it follows from part (i) that


1
p
zF ′


n

=


1
p zf

′


n
+


1
p zf

′


(z)


n

2

=

1
p zf

′
n +

1
p zf

′
n(z)

2

=
1
p
zF ′

n ∈ ST p(h).

Lemma 2.3(ii) now gives Fn ∈ CVp(h), and so Fn ∈ ST p(h). Thus Fn is starlike.
Next let T (z) :=

1
p zf

′(z) and S(z) := [fn(z)+ fn(z)]/2 = Fn(z). Since

T ′(z)
S ′(z)

=
1
p

2

zf ′

′
(z)

f ′
n(z)+ f ′

n(z)
≺ h(z),

and S is starlike, Theorem 1.3 shows that
1
p

2zf ′(z)

fn(z)+ f ′
n(z)

=
T (z)
S(z)

≺ h(z),

whence f ∈ ST Cn
p,g(h). �

Theorem 3.5. Let h and φ satisfy the conditions of Theorem 2.4 and φ has real coefficients.

(i) If f ∈ ST Cn
p,g , then φ ∗ f ∈ ST Cn

p,g(h). Equivalently, ST Cn
p,g(h) ⊂ ST Cn

p,g∗φ(h).
(ii) If f ∈ CVCn

p,g(h), then φ ∗ f ∈ CVCn
p,g(h), and CVCn

p,g(h) ⊂ CVCn
p,g∗φ(h).

Proof. (i) Let f ∈ ST Cn
p(h). Define the functions F(z) and H(z) by

F(z) =
f (z)+ f (z̄)

2
and H(z) =

1
p
zf ′(z)
Fn(z)

.

Using Lemma 3.4, and proceeding similarly as in the proof of Theorem 3.3, it can be shown that the function Fn(z)/zp−1 is
starlike of order α, where Fn(z) = [fn(z)+ fn(z̄)]/2.

Since H(z) ≺ h(z) and because φ has real coefficients, Theorem 1.2 yields

1
p

2z(φ ∗ f )′(z)

(φ ∗ f )n(z)+ (φ ∗ f )n(z)
=

φ(z) ∗
1
p zf

′(z)

φ(z) ∗


fn(z)+ fn(z)


/2

=
(φ ∗ HFn)(z)
(φ ∗ Fn)(z)

≺ h(z),

or φ ∗ f ∈ ST Cn
p(h).

(ii) If f ∈ CVCn
p,g(h), it follows from Lemma 3.4(iii) that 1

p zf
′
∈ ST Cn

p,g(h). By part (i), it is now evident that

φ ∗
1
p
zf ′

=
1
p
z(φ ∗ f )′ ∈ ST Cn

p,g(h),

and thus we deduce that φ ∗ f ∈ CVCn
p,g(h) from Lemma 3.4(iii). �

The following two results can readily be established by proceeding analogously as in the proofs of Lemmas 3.2 and 3.4,
and Theorems 3.3 and 3.5. We omit these proofs.
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Lemma 3.6. Let g be a fixed function in Ap, and h be a convex univalent function with positive real part satisfying h(0) = 1.

(i) If f ∈ ST SCn
p,g(h) and F(z) :=

1
2 [f (z)− f (−z)], then Fn ∈ ST p,g(h).

(ii) If f ∈ ST SCn
p,g(h), then fn ∈ ST SCp,g(h).

(iii) The function f ∈ CVSCn
p,g(h) if and only if 1

p zf
′
∈ ST SCn

p,g(h).
(iv) The inclusion CVSCn

p,g(h) ⊂ ST SCn
p,g(h) holds.

Theorem 3.7. Let h and φ satisfy the conditions of Theorem 2.4 and φ has real coefficients.

(i) If f ∈ ST SCn
p,g , then φ ∗ f ∈ ST SCn

p,g(h).
(ii) If f ∈ CVSCn

p,g(h), then φ ∗ f ∈ CVSCn
p,g(h).
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