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The Cauchy problem for a class of nonlinear diffusion-reaction equations is
studied. The equations may be classified as being of degenerate parabolic type. It is
shown that under certain conditions solutions of the problem exhibit instantaneous
shrinking. This is to say, at any positive time the spatial support of the solution is
bounded above, although the support of the initial data function is not. We also
provide some estimates of the behavior of the free boundary. © 1996 Academic
Press, Inc.

0. INTRODUCTION

This paper is devoted to the study of some inner properties of solutions
of a large class of nonlinear partial differential equations. Methods used
here can be called “energy methods’; they are based on getting integral
estimates and have nothing in common with the maximum principle.

Our main results will be formulated in terms of the Cauchy problem
(Problem P)

tood du
u, = Z—(IVuI"lg) —Jul*'u; xeR", >0 (0.1)

i—1 0%;

u(x,0) = uy(x), x e R", (0.2)
where p and A are positive real numbers, Vu = grad ,u.
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We note that this is only for the sake of simplicity: analogously we can
study more general equations, for instance the equation

u, + (—1)m Y D“(ID“qule“u) +ul* tu=0, (0.3)

lal=m

where p, A > 0 and

&Ialf
Df = ————— lal=a; + - +a
axfl cee ax,‘l)‘;t

with the corresponding changes only in formulations but not in the essence
of proofs.

We are interested in a phenomenon called “the instantaneous shrinking
of the support of solution u(x, ¢)” (briefly, the (IS) property).

Let

supp u(x,t) = clos{x € R": u(x,t) # 0}

DeriNnITION 1. The problems (0.1), (0.2) (or (0.3), (0.2)) have the (IS)
property if for any ¢ > 0 the support of solution u(x, ¢) is bounded even if
it is unbounded for ¢ = 0.

Remark 1. The equality u(x,7) =0 has to be understood in corre-
sponding functional spaces. For the second order case (m = 1), in view of
the well-known regularity results (see, e.g., [12]), u = 0 as a continuous
function. As for the notion of solution, see Definition 2.

Remark 2. The paper [15] must be considered as the first one where
the (IS) property was systematically investigated for the equation

u,=Au —g(x)B(u). (0.4)

In the case of g(x) = 1 it has been shown that if uy(x) positive, continu-
ous, bounded, uniformly goes to zero when |x| — o function, B8(s) > 0
nondecreasing for s > 0, B(0) = 0 and [J[sB(s)]"/?ds <0, & > 0, then
(0.4), (0.2) has the (1S) property. As was mentioned in [15], for 8(u) = u?,
A € (0,1), the same result was obtained earlier [28]. For variational in-
equalities the (IS) property was investigated in [11].

The method used in [15] was based on the construction of a special
comparison function of the form w = F(¢) + G(x) and on the application
of the maximum principle in the “far” cylinders B,(x,) X (0, t,), |x,l large.
Later this method was perfected and applied first to Eq. (1.4) with n = 1,
g(x) =1 +x)7Y2% Bw) =u* A (0,1 [17], then to (0.4) with a more
general g(x) [18]. See also [20], where for the arising free boundary
two-sides estimates were given.
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In the papers [21, 19] another method, still based on the comparison
principle, was applied to one-dimensional equations such as

w, = (u") o = g(x)u’. (0.5)

It was established for instance that if

ug(x) <co(L+1xl)7, g(x) =c,(1+ |x|)7B,
m=>1, pe (0,1, B>0, y>0, and ¢ >0,

then the problem (0.5), (0.2) has the (IS) property iff 8 < y(1 — p). In
these articles global supersolutions have been used giving some informa-
tion about free boundary Z(¢) = sup{x: u(x, ) > 0} of type Z(¢) < const -
t=%, &> 0. See also [10] for the case 0 < m < 1.

This striking behavior of solutions in the above examples was the result
of strong (with respect to diffusion) absorption (0 < A < 1). We have to
remark that analogous phenomenon can arise in other physically impor-
tant models. Thus, in [16] for the equation

u, = (u™),, + (u"),; 0<n<l1l m=1,

the following theorem was proved: if uy(x) ~ cx /=" as x — o, then
u(x,t) >0 for t € (0,(1/n)c*™"), x >x,>0 and u(x,r) has compact
support in x (£(¢) < ) for t > (1/n)c*™". From this the (IS) property
follows provided u, = o(x~*/@~"),

Analogous results were obtained in [22] for the first order hyperbolic
equation

u, = (un)x’

where 0 < n < 1. Here, the (IS) property indicates also the instantaneous
loss of continuity (u,(x) > 0 was smooth).

Remark 3. All of the results mentioned have been obtained for second
order equations, for non-negative solutions, and with the assumption that
uy(x) is monotonous, goes to zero as |x| — oo, or has such a majorant. The
main tool in getting the results was the maximum principle.

If the initial distribution u,(x) has no monotone majorant, for example
u(+k) =1,k e 7 uyx) >0, x €R, then for the simplest equation
= Uy, —u’, 0<p<1, (0.6)
we cannot tell anything about the solution’s behavior, as the comparison
principle here is inadequate. For higher order equations we have no such
principles.
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The method we will use in this paper is the result of a long evolution of
ideas coming from the theory of linear elliptic and parabolic equations. It
can be applied for different purposes and different equations.

The essence of this method consists in getting special (non-differential)
inequalities linking different energy norms of solution. The analysis of
these inequalities leads to the needed results. As to the origin of this
method, first we have to mention the book [24] (growth lemmas) and the
paper [25] (“‘method of parameter’s introduction™).

For the nonlinear degenerate parabolic equations in [2, 3] and later in
[13, 14] results were obtained on the existence of free boundaries and their
properties, by using some local energy estimates. For integral norms of
solutions differential inequalities were obtained from which the results
follow by integration.

Important contributions in developing the theory of energy solutions for
elliptic and parabolic degenerate equations have been made in [5-9].

In [26, 27] some additional ideas have been introduced; we shall use
some of them. From the above papers (see also references therein) one
can form a good idea about the “energy method” and the results obtained
by this method.

When this work was completed, we were informed of the paper [4],
wherein the authors investigated similar questions with the help of the
local energy method. We have also recently received the paper [10].

1. MAIN RESULTS

Let uy(x) € L,(R"). Define function 7(s) by

h(s) = [

[x|>

Sué(x)'dx. (1.1)

Obviously, /(s) — 0 as s > +=.
Let u(x, t) be any energy solution of the problme (0.1), (0.2).

THEOREM 1.  In both of the cases

) p=1,0<A<1,

(i) 0<A<p,1>p>n—-2/(n+2) forn>2 1>p>0 for
n < 2, the support of u(x,t) is bounded for t > 0, e.g., the problem (0.1),
(0.2) has the (1S) property.

The method we use gives information on diam{supp u(x, t)} in terms of
the function A(s).
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Let A(s) > h(s) be any nonincreasing continuous function such that
h(s) > 0 as s — « and satisfies the condition

h(s + A"~ V/G=0P*D(g)) > wh(s) (1.2)
for s > s,, where A, w < 1 are positive numbers depending on p, n, A;

L ena-w
2(p+1)+n(p—A)

We note that for 7(s) one can always choose /(s) with (1.2). Actually, let

H(s) = h*(s),
where
vip—N p—A
L-MN(p+1) 2p+1)+n(p-—2)

Condition (1.2) is now equivalent to

H(s + AH(s)) = w, H(s), w, = 0 (1.2a)

However, in order to ensure that any nonincreasing differentiable function
H(s) satisfies (1.2a) it is sufficient that H'(s) > —A"*(1 — w,) for s > s,.
This follows from the mean-value theorem

H(s + AH(s)) = H(s) — (H(s) —H(s + AH(s)))
=H(s)[1 = (—H'(Os)A)] = w,H(s).

A majorant of 7 can be chosen in the set of nonincreasing differentiable
functions H such that H'(s) > 0as s - < and H'(s) > —A"*(1 — w,)
for s > s,. For example, if h(s) =(1+s)"7, y> 0, then we can take
h = h. Let R(t) = inf{r: supp u(x, t) € B, = {x: |x| < r}}.

THEOREM 2.  Suppose that the conditions of Theorem 1 are fulfilled. Then,
one has the following upper estimate for the free boundary:

R(t) <h™*(DytY") + Qe+ forp = 1,
R(t) < h (Dt~ V/v®= V) 4 Q,H/(P+D forp <1; (1.3)
where D; > 0 and Q; < « depend on known parameters only,

h=t(t) = inf{s: h(s) <t}.



734 KERSNER AND SHISHKOV

Remark 4. 1f h(s) is strictly decreasing, A~* is the usual inverse
function of 4. For instance if A(s) = (1 + s)~7, then the inequality (1.3)
has the form (for ¢+ — 0)

R(t) <Dt Y,  forp>1.

The next step toward understanding the (IS) property is the case when
up(x) € L (R"). If up(x) € L(R") then Problem P has no (IS) property in
general (take u, = 1). In the case of ¢ = 1, where we do not know the
answer, it would be interesting to understand the situation for example for
n=1and uy(x) =X __c;8(x+1)+f(x), X7 __ el <o, f>0,feL,.
So, let uy(x) € L (R"), 1 < g < . Analogously to (1.1), we introduce the
function

Eq(s) :=/ >S|u0|qu

x|

and h,(s) > Tzq(s) satisfying condition (1.2) with

o (p+na-w
oglp+r D) +n(p-2)]

THEOREM 3. Let uy € L, (R") and assumptions (i), (i) of Theorem 1
hold; u(x, t) is a solution in the sense of Definition 3. Then, Problem P has
the (1S) property. Moreover,

R(t) < h ' (Dgt*/ ") + Qqur/ D for p>1,

R(t) < h (Dt~ M/ =0y 4+ 0,/ #* Y for p < 1, (1.4)

where D; > 0 and Q; > 0 depend only on known parameters.

If A > 1 then Problem P has no (IS) property so the necessity of
conditions (i), (ii) follows from our next result:

THEOREM 4. Let 0 < p < A < 1. Then Problem P has no (I1S) property
in general.

When m > 1, Eq. (0.3) may be treated by the technique used in the
proofs of Theorem 1 and 2. Here we state only the result; the proof will be
given elsewhere.

THEOREM 5. Let u(x,t) be any energy solution of (0.3), (0.2), u, €
LR, 0<A<p,A<landp > (n—2m)/(n + 2m) forn > 2m. Then,
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this problem has the (1S) property. Moreover, one has the upper estimates
R(t) <h ' (DytY") + Qu/™#*D  for p > 1,
R(t) < h (Dt ") + Q /™Y for p <1,

for the free boundary, where

m(p +1)(1 - 1) _ p—A
n(p—A)+2m(p+1)’

and h(s) is a monotonous majorant for h(s) = Jx)> su5(x) dx.

2. (1S) PROPERTY FOR u, € L,
First we introduce some notations and definitions. For any given num-
bers0 <7, <7, <T7T,0<s, <5, <,
Q(sy) = {x e R": x| > s}
G:f(sl) = Q(sy) X (74,7,)
K72(sq,8, = s1) = G72(s1) \ G72(s).

Let us fix 7> 0, s > 0, A7> 0, and As > 0.

The cutoff functions n(x, t) and n,(x) are such that n,7, > 0, n =1 in
GL (s + As), p=01in R" X (0,T)\ GI(s), and , = 1 in Q(s + As),
1, = 0in R"\ Q(s). We shall assume that

0 C ol <~
< < ~ . < N . < —
”’h AS nx‘ AS nlx, AS

m=0ifr+Ar<t<T and Vn=0 if|x[>s+ As. (2.1)
Below we denote constants depending only on problem’s parameters by c.

DeriNnITION 2. We call u(x, t) the energy solution of (0.1) if u(x,1) €
VRS AR" X (0, 7)) N Ly, (R" X (0,7) == CO,T; L(R") N Ly, ,0,T;
Wl AR N L, (R" X (0, 7)), ulx, 1) satisfies for T, < T integral iden-
tity

[ u(e To)o(x, Ty de = [ [ u(x,1)v,(x,1) dvdr

R” 0 R”

[ IVl g, ] dede = [ ug(x)o(x,0) d
(22)
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when the test function v is from L, ,(R" x (0, 7)) N W1} ,(R" X (0,T));
here Whi ,(R" X (0,T)) == (w € Ly, 0, T; WL (R™), 'w, € LyR" X
O, 7N}

Remark 5. The existence of solutions in the above sense is well known
if L<por0<A\<p,see eg,[238,1]

In what follows we shall often use the Gagliardo—Nirenberg interpola-
tion inequality

c) 1-0©
||U||a,0(s) < d]_”VU”B,Q(s)”U'y,Q(s)y (2-3)

where

1/a
o) € WHO) AL (), ollaa = ([lol"as]

and

n

1 (1 1
— =0 = - -
B

1
+(1-0)=, y>1, B>1,
Y

and it is important that ¢, does not depend on s > 0.
Let u(x, t) be any energy solution to (0.1). We set

Er(7,5) =f u? dxdt, I(7,5) =f lulP ™t dxdt.
GI(s) GI(s)
If we show that for any 7 > 0 there exists s(7) < o such that
H=Hy(7,s) =E;(7,5) + I;(7,s) =0, (2.4)

then Theorem 1 follows. In order to prove (2.4), as it follows from Lemma
1 of the Appendix, it is sufficient to show that

H;(0,5) -0, whens — oo, (2.5)
and
H(T—i—H“,S—!-HB)S,u,H, (2.6)

where «, 8> 0,0 < u < 1.
First we prove (2.6). We obtain by substituting v = un?*! into (2.2) and
integrating by parts formally

2*1fRnu2(XaT)nP+l(x,T)dx + j;TfRn[lvu|p+l + |u|/\+l]np+ldxdt

=(p+ 1)fo (2’1u2nt + IVul”_luxiunxi)nP dxdt. (2.7)
o
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Remark 6. If u is not smooth in ¢, we can use approximation by smooth
functions {u,}, integrating by part and passing to the limit.

For the right-hand side of (2.7) we apply Young’s inequality with £ and
use (2.1

fm win?de )(IVqu“ + ul* Y nPtt dede
N

GI(s
< c[(As)_(p+l)f lul?** dedr + (Ar) 7 [ uzdxdt}
K1(s, As) GIt47(s)
= cR; = cR,(s,As, 7,AT). (2.8)

On the right-hand side of (2.8) one can recognize an ‘“H-like” function (cf.
(2.4)). We would like to have H also on the left-hand side (cf. (2.6)). For
this purpose, we write the Gagliardo—Nirenberg inequality (2.3) with
a=2, B=p+1 y=A+1and use Young's inequality ((2.3) can be
applied because 0 < A <land p > (n —2)/(n + 2) for n > 2)

1-v
(f uzdx) SC[ (IVuI”+1+|u|A+l)dx, §>s,>0,
Q) Q@G)

where v=(p + 11 — 1) /Q(p + 1) +n(p — A) < 1. Integration gives
us

wa-v) =

1-v
(/ u2dx) drscf (IVul”** + |ul***) dxdt.
Q) GI(®
(2.9)

In order to get new information about H, we return to the integral identity
with test function

v =un"Y (1), [>0,

1
t
x:() =f0 (fﬂ(s)uznf’“dx) dt, t>0.

Substituting v into (2.2), we obtain

T) = T unPttdx +
X1+1( ) Xl( )'[Q(s) n fGI(s)

[2|Vu|p71ux‘(unp“)xi
+2|u|A+1nP+l _ MZ(T’P-FI)I] X](t) dxdt,
from which and (2.8) we have

Xi+1(T) < cx(T)R;. (2.10)
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Now we will estimate E, in terms of Ri™” (see (2.8)).
By the Hdlder inequality, we have

x(T) < x(T)xi, “(T),  0<Ily<I<I<w, (2.11)

where w =, =D/, = 1).
We iterate (2.10) and use (2.11) with suitable /,

x(T) <cxs(T)R™®,  forany />8> 0. (2.12)
By definition of n(x,?) we have
Vs (1) < (T) < 7 (1). (2.13)
From (2.9) with 7= 7 and § = s and (2.8) we have
VI (1 - v) <cRy(s, As, 7, AT). (2.14a)
From 2.12)with [ =1, § =1 — v,
x(T) <cx,_,(T)R{(s,As,7,AT). (2.14b)
From (2.13)
xi-.,(T) <¥' (1 -v). (2.14c)
Again from (2.13) and the definition of E,

UL o ooas(1) = Ep(m+ A7,s + As) < xo(T).  (2.14d)

T

Inserting (2.14b) into (2.14d) and using (2.14c) and (2.14a) it follows that
E;(7+ A7,s + As) < cR""(s,As, 7, AT). (2.15)

Now we have to estimate the second term in H, i.e, I, (see (2.4)). We
separate the cases of p > 1 and p < 1. (For p =1, E; = I, and from
(2.15) we can conclude the proof.)

Suppose first that p > 1. Take a=p + 1, B=p + 1, y=2 in (2.3).
After integration in ¢ and using the Hdlder inequality we obtain

I(t+ A7, s + As)

1-0,
<c

o +1
|Vu|p+l dth) ("I’TY:FAT,S‘FAS(pT)

( . (2.16)
GL . (s+As)
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where

o — n(p—1)
! 2(p+ 1) +n(p—-1)

Inequality (2.12) with I = (1 + p)/2 and 6§ = 1 — v gives us

< 1.

T p +1 T 1+p)/2—-1+v
\II7+AT,s+As T =< C\I,T,S(l - V)Rl .

Applying (2.15) one obtains

p+1

T 1+ 2+
\I,T+AT,5+AS( ) < CRg. »/ "

Using this in (2.16) we come to

I:(T+ A7, s + As) < cR}™™,

P2, )=M>u. (2.17)

V1=(1—ol)( —

This v, is different from the », in Theorem 3. Now we add (2.15) and
(2.17) and use the definition of R, (see (2.8)),

Hy(7+ A7, s + As)

< oA Ep(7,5)

(8. Er(r.9)" (ATEm,s))W
(AT)1+V (AT)1+V1

(ASIT(T’S))V (ASIT(T'S))V1
(AS)(1+p)(l+ v) (As)(l+p)(l+ vy)

+ COASIT(T,S)[ w (2.18)

where A_f(r,s) = f(r,s5) — f(r + A7, 5), A f(t,5) = f(7,5) — f(r,5 +
As). Now—and this is one of the key points of our method—we fix As
and A7 in the following way:

As = (IT(T: s))V/(P+l)(V+1), Ar = (ET(’T, s))V/(l‘FV).
In virtue of monotonicity of £ and I one gets

Hp(1+ Ef/C 0 (7,8), s + I/ 0(1,5)) < uyHy(7,8) (2.19)
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forany 7> 0, s > s, > 0 and

col + (Er(0,50) + (0, 50))°]

0O< = - < 1,
1+ ¢o|1+ (E(0.50) + Ir(0,5)) "]
vV, — V
a= ! > 0.
1+v

Increasing the arguments in the left-hand side of (2.19) we come to our
final inequality

Hy(7+ HY/“ ) (7,5), s + HY/OP0)(25) < i Hp(7,5)). (2.20)

In case of 0 < p < 1 we can obtain an inequality analogous to (2.20) with
v, = v(p — A /(1 — A) < v instead of ». Only the starting point is differ-
ent from the proof above: instead of the Gagliardo—Nirenberg inequality
we use the Holder inequality in the form

/ |u|p+1 dx
Q(s+As)

(p—1/A—-1)
$c(f uzdx) (f lul* ™" dx
Q(s+As) Q(s+As)

As we mentioned before, Theorem 1 follows from (2.20) and Lemma 1 of
the Appendix provided (2.5), i.e., H;(0,s) — 0 when s — «. This last
result can be shown directly by using (2.2) with v = un(x), getting a
(2.17)-type inequality. However, in the proof of our next theorem we show
a much stronger estimation for H,(0, s).

)(lp)/(l)\)

Proof of Theorem 2. The equality

1
Hp(7,s) =0, Y(7,8): 7> W[_];/(Hw(o,so),

5280+ (1 — /@y g/ aenaen gy, (2.21)

for any s, < o, is a direct consequence of (2.20) and Lemma 1. Suppose
for the moment that the inequality

H:(0,s) <BA' 7 (s), Vs >sy, (2.22)

holds, where B, < », and recall that A(s) is monotone majorant of
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h(s) = [y s45(x) dx. From (2.21) and (2.22) one has

Blv/(lJrV)
HT(T,S) =0, V(’T,S):T> Why(so)y

BlV/(p+l)(V+ 1)

s> 8+ h"/A*P)(s4). (2.23)

1— MI/(HP)(H v)

We define now s, by

5o =so(t) =h"1

(1 _ MI/(1+ V))[l/l/
BY/ @Y :

From (2.23) one can see that for t > 0
Hy(7,5) =0, V(7,5):7>1,5>s5,(t) +cyt/t*P,  (2.24)

and Theorem 2 is proved for p > 1. When p <1, we have the same
inequality (2.21) with v, = ((p — A /(1 — A)v instead of v. With the
same change in definition of s,(¢), we can conclude the proof as above.
Inequality (2.22) remains to be shown.

From integral identity (2.2), using v = un?**(x) as a test function, we
can get in the same way as before (2.8) the inequality

/ uz(x,T)nf“(x)dx+f (IVul”** + ul* )np L dedt
Q(s) Gl

< c((As)_(p+1)f lul”*t dxdt + h(s)| = cR,(s,As) = cR,.
K{(s,As)

(2.25)

Similarly, as we derived (2.15), (2.17) from (2.8), from (2.25) we can obtain

E; (0,5 +As) = [ u2dxdi < cRY*?, 0 <p <o, (2.26)
Gl(s+As)

1(0,s + As) = [ lulP* P dedt < cRS* ™, p> 1. (2.27)
Gl(s+As)

In the case of p > 1, we set As = [}1/3*PA+r)(Q ) in (2.27) and after
simple calculation we have

Ar(s + Ap(s)) < E47(5) + ¢ h/EFP(s), (2.28)
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where

< 1.

c Vl/(l+p)(1+ 1/1)

A = [/ApPAtr) Q) and
r(s) T (0,5) 1+oc

Now we apply Lemma 2 (Appendix): for any k such that 0 < k <1 — &
there exists a sequence s; — o« such that

1 (p+l)(v1+v)/1/1~ -
I7(0, ;) < (;) RY7(s;) = Nt (s) o (2.29)
with

€1

~ vy/(1+p)
s < — |n(s.
Sit1 S; = k(l _ é_—l _ k) [ (Sz)]

= Kh"/Ap)(s,).

From the monotonicity of (s) and Lemma 3 of the Appendix it follows
that from {s;} one can choose a subsequence {s,} for which

K 3 -
Ehul/(l+p)(5i) SAsi=8, 785 < EKth/(Hp)(si)- (2.30)

Setting As = As; in (2.26), using the left-hand side inequality from (2.30)
and (2.29), we obtain

Er(0,5:,1) < NP7 (s,). (2.31)
Adding (2.29) and (2.31) we obtain
Hp(0,5,,,) < (N, + Ny)ht*72(s))  foranyieN, (2.32)

where v, = min(v, v,). Consider first the case p > 1. Plainly, v, = v. Set
in (1.2), A = 3K. Then from (2.32) for any s € [s,, s, ;] we obtain (& < h)

Hp(0,5) < Hp(0,5;) < (Ny + Np)RY72(s;) < (Ny + Np) R 7 (s;)

N+ N, 1+ vy /(p+1) N+ N, 1+
- 1+v, h z(si + Ah ! (Si)) = 1+v h (si+1)
® w
N, + N, .
< —5——h"*"(s), foranyieN, (2.33)
2}

from which (2.22) follows. For p <1 we proceed in the same way,
obtaining inequalities analogous to (2.29), (2.31). Theorem 2 is proved. |
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3. (IS) PROPERTY FOR u, € L (R") AND
COUNTEREXAMPLE

DeriniTION 3. In the case of uy(x) € L (R"), ¢ > 1 we call the func-
tion u(x,t) € C(O,T; L, (R") N L,_,,,(R" X (0,T)) an energy solution
of (0.1), (0.2), if the hypotheses

=2/ Dy e L, (R % (0,T)) (3.1)

and

[ Jule(x, Ty dx = [ lugle(x,0) dx
R R"

= [ [l = gl
R"x(0,T)

—qIVuIPilUxi(Iqufzugo(x, t))x,] dxdt  (3.2)

are satisfied for any o(x,t) € CY(R" x (0,7)), such that ¢ and ¢, are
bounded and V¢ has compact support.

Remark 7. With regard to existence theorems in the sense of Defini-
tion 3, we cannot give exact references. However, let u{(x) € L (R") N
L,(R"), ug(x) € L, R"), u{® - uy(x) in L, (R"). If u’(x,1) is a solution
from Theorem 1, then Theorem 3 gives a uniform in i estimate for the (IS)
property. We think that on the basis of corresponding integral estimates
for u'”(x, t) it is possible to show the existence of a solution in the sense of
Definition 3.

We start proving Theorem 3 by setting ¢(x,t) = n”*(x, t) in integral
identity (3.2), where 7 is the same as the cutoff function in Section 2:

a(q—1)(p+1)"""
(¢g+p-1)""

f lul?*(x,T) dxedt +
Q(s)
+1
[ Sl ) dea
(s

+qf A P+ e de
GI(s)

2+p

_a(p+1
(p+q-1"

p+1

v uhdw—ZVP+l
/K,T(S,As)| ( )|
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.(u|u|(q*2)/(p+ 1))Xiu|u|(q*2)/(p+ 1)npnxj dxdt + (p + 1)
Xf lul"nPn, dxdt.
G
(3.3)

To the first term on the right-hand side of (3.3) we apply Young's
inequality and after some standard calculation for the function

w(x, t) — u|u|(qf2)/(p+l)’

we obtain

f |w|“np+1(x,T)dx+/ (IVwl?* + ]2 )mP L drd
Q(s) GI(s)

1 1
<c|l——— P ddt + — “ dxdt
c( (As)?™! fKZ(s,As)M A‘r/cgﬂf(s)lw|

= cR; = cR4(s,As, 7, AT), (3.4)
where
+1 + 1)(1— A
=M, 8=(p )( ), 0< A<
ptqg-1 ptqg-1

Now, we can proceed with the proof as in Theorem 1 by taking the new
values of parameters into account. Let us denote

I « e p+1
E;(7,s) = fGT(S)IWI dxdt, I (7,s) = fGT(S)|W| dxdt.

Interpolation inequality (2.3) is to be applied to w with B=p + 1,
v = a — §, using Young’s inequality and integrating in ¢,

1-v,
T
V(1= vg) = [ (fm)lw|“dx) dt

< CfG,T(s)('VW'M +wl*?) dxdt, (3.5)

where

(p+1)(1 -2
(p+Llg+n(p—2r)

V3 =
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Notice that v, is v, of Theorem 3. Substitute into (3.2) the function
o = 9P (1) with
!

t o
w0 = ([ oo @) ao
0 \7Q(s)
Repeating practically identical calculations which led to (2.15), using (3.4),
we obtain
W s seas(1) = Ep(7+ A1, s + As) < Ry ™. (3.6)

In the case of p > 1, we write Gagliardo—Nirenberg for w with a =p + 1
=B, vy=q(p+1)/(p+q — 1), use Holder, and integrate in ¢,

Ir(7+ A7, s + As)

p+q—1»1®

(€]
SC([ |Vw|p+1dth) \IITT+AT s+As
GL A (s+As) Y

q
(3.7)
where
n -1
_ (p-1 1
g(p+1) +n(p—-1)
Acting as in (2.17), we will have
I(7+ A7, s + As) < cR}" ™, (3.8)
where
(p+1(p—12) p—A

p+1
v, =(1-0) T—1+V3

T (p+Dg+n(p-n  C1-a
We add (3.6) and (3.8):
Hy(m+ At,s + As) < c(N'*7s + Nt )

A (7,5) A E (7,5)
( (As)"" At

) (cf.(218)).  (3.9)

In the case of p < 1 we start applying Holder in the form

j |mﬁﬂms(] lw|® dx
Q(s+As) Q(s+As)

(f |w|af5dx
Q(s+As)

)(P—)\)/(l—/\)

)(lp)/(l/\)
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Integration in ¢ gives

I(7+ A7, s + As) < (E;(7+ A7, s + As))(p_’\)/(l_)‘)

(1-p)/@-1)
: lw|*~° dxdt
GL o (s+As)

If we estimate the first term on the right-hand side by (3.6) and the second
term by (3.4), we obtain

I (7+ A7, s + As) < cR}*™ ™. (3.10)

The addition of (3.6) and (3.10) gives (3.9).

Now, we can conclude the proof of Theorem 3 exactly as in Theorems 1
and 2. In order to prove Theorem 4 it is sufficient to give a counterexam-
ple. Consider the equation

Lu =u, — (qulpflux)x +u*=0

in the half-strip S = {(x,1): x> 0,0 <t < &}, £ > 0.
Define (in S) the function v by

(e —1)

v(x,t) = Gt

First, we calculate Lv. We have
Lv=—(x+1)"7 = yPp(y+ 1)(x + 1) """V (g —1)"
+(e—t)"(x+21) "
<yP(e—t)'(x+1) 70
X[—p('y D) +yP(e—0)""(x+ 1)”’“”’“].
The quantity enclosed in square brackets is negative when

p+1
A—p’

A>p, v > and e* P <p(y+1)yr. (3.11)

If uy(x) > 0 for x > 0, we choose, by continuity of u(x,?), € > 0 so small
that we have v(0,1) = (¢ — 1) < &£ < u(0,¢) for t € (0, &). If we choose y
and ¢ in correspondence with (3.11) and uq(x) > e(x + 1)~ for x > 0,
then, by the comparison principle, we have u(x, ) > v(x,¢) > 0in S.
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APPENDIX

The three lemmas below were often used in the article. They appeared
in different forms also in [26, 27].

LEmMMA 1. If f(7,s) is a non-negative, nonincreasing or > 74, s > $,
function satisfying

f(r+fe(r.8), s +fP(7,5)) < 8f(7,5) (4.1)
foreach 7> 14, s > 5y, 6 <1, a>0, B> 0, then,

f(r,s) =0  forevery (7,s) such that

1 1
T/ (T0:50) 5> 50+ Wfﬁ(folso)-

T> Ty +
Proof. Define the sequences {7;} and {s;} recursively by
Toor = T+ f(78), 800 =8 T [P(7,8), i=12,....
From (4.1), one has
f(7iv1siv1) < 0f(7,8:).
After iteration, we obtain
f(741,8741) < 8f(79,5,)  foreach j € N,

Now,

T = T Hf(108) = 10 F (T 0080) = f(7.8)

j j
c=10t X (T s) S o+ f(70,8) 0 X 8
i=0 i=0

IA

1
To +fa(70150)m-

In an analogous way,

Sir1 = 8o +fB(To!so)W-

Because Iim,amf(q-j, s,) = 0 and our sequences are uniformly bounded, the
lemma is proved. |
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LEMMA 2. Let f(s), g(s) be monotone non-negative nonincreasing func-
tions, satisfying

f(s +1(s)) < 8f(s) +8(s) (4.2)
foralls >s,>0;0<6<1

Then, for any number K > 1/(1 — 8) there exists a sequence s; = © such
that

f(s;) < Kg(s;), i=1,2,..., (4.3)
and
K .
Siy1 =8 < Wg(si)’ i=1,2,.... (4.4)

Proof.  If there is no sequence with (4.3), then

f(s) > Kg(s), forall s> s,. (4.5)

From (4.2) it follows that

5 + &) < (84K 1Y) f(s) = 6,f(s). (4.6)

Fs 410 =F@)| 0+ 73

By Lemma 1, f(s) =0 for all s > s, + (1/(1 — §,))f(s,), which contra-
dicts (4.5).
If (4.4) is not true, then there exists i € N such that

f(s) > Kg(s), Vs € (5150,1). (4.7)

Moreover f(s;) = Kg(s,), f(s,,,) = Kg(s,, ), and

Sivr =8> T 5~ -18(81)-

(4.8)
In this case (s,, s; + Kg(s,) /(1 — § — K™1)) c (s;, s, 1); thus, on the inter-
val (s;,s; + Kg(s)/(L — 86— K1) = (s, 5, + f(s)/L — 6§ — K1) in-
equality (4.6) is satisfied. By Lemma 1, f(s; + f(s)/(1 — 8§ — K1) =
f(s; + Kg(s;))/(1 — 8 — K~1)) = 0 in contradiction with (4.7) (see (4.8)).
Lemma 2 is proved. |
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LEMMA 3. From {s;} in (2.29) one can choose a subsequence {5;} for
which

K_ 3 -
Sh/AD(T) < AT, =5, =5, < SKRW/O(F),

Proof. Let
Eﬁvl/wu) = g(s)
> .

Arguing by contradiction, let i < o such that

Siv1 — 8 < g(s;)-

We have, using the monotonicity of A(s),

Sivo 8= Sivo — Sip1 TS — 8 < 28(5;41) +8(s;) < 38(s;).

If now s,,, —s; > g(s,), then we take 5, , = s, ,.

If not, then ;.5 — 8, =8;,3 —Sipp + 8., =5 <2g8(s;,,) +g(s;) <
3g(s;) and we can take 5; = s, 5.

If s, 5 —s; <g(s,), we pass to s, ,. Because s, = © when k — oo, there
exists j < o such that g(s,) <s,,; —s; < 3g(s,). This s, ; we take for 5,
in the subsequence {s~j}. ]
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