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1. INTRODUCTION AND NOTATION

Let J, be the Bessel function of order u. For @ > —1, the formula

6}1 m

T 22n+a+1)
n,m=0,1,2,...

% dx
f Ja+2n+l(x)‘,a+2m+l(x)_
0 X

(see [15, Chap. XIII, 13.41 (7), p. 404; and 15, Chap. XIII, 13.42 (1), p.
405)), provides an orthonormal system {j¥:_; in L?((0, %), x* dx) [ L*(x®),
from now on], given by

() = Va T Zn ¥ Ty (e)e ™22 n=0,1,2,....

For each suitable function f, let S, f be the nth partial sum of its Fourier
series with respect to the system {jo}._,. Series of this kind are a
particular case of series X, . qa,/,,,, which are usually called Neumann
series, so that we refer to S, f as a Fourier—Neumann series. In [14], one
of the authors studied the mean convergence in L?(x“) of these Fourier
series. In this context, some operators and spaces were introduced. In this
paper we extend these results and also study the almost everywhere
convergence.
For @ > —1, let us define the integral operator .7, by

xfa/Z

Z(fx) = —

| H) I, (Va2 x>0,

0

for suitable functions f. This is a modified Hankel transform: the (non-
modified) Hankel transform is the integral operator with kernel
J,(xt)(xt)*/? and unweighted Lebesgue measure. See [3, 12, 8] for some
modified and non-modified Hankel transforms. In the case a > — 3, the
Hankel transform satisfies

|%f||ﬁ(x“) < C”f”Ll(x“), fe Ll(xa),
with some constant C independent of f. Moreover, /%, can be defined in

L*(x~) satisfying [J(Z fgx® dx = [§(Z,g)fx* dx, #* = Id, and
WZ, fllL2¢xey = Il fll L2¢xe. From these results and interpolation we obtain

VZ, fllLageey < ClFllLrcxey, feLr(x),

for 1 < p < 2, where g denotes, here and in the rest of the paper, the
conjugate of p, thatis,1/p + 1/q = 1.
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The Hankel transform of the function j¢ is
Z,(j5 x) =vVa+2n + 1Pn(a’0)(1 - 2X)X[0,1](x)v

where P(*#)(x) is the nth Jacobi polynomial of order (a, B8); see, for
instance, [5, Chap. 8.11, (5), p. 47] (a thorough description of Jacobi
polynomials can be found in [4, Chap. X; 13]).

Remark. There is a delicacy with this formula. Actually, .7, was de-
fined, as a first step, as a Lebesgue integral for suitably integrable
functions. Then, #Z, is extended to L” spaces where the integral represen-
tation is no longer valid for some functions. Now, the integrals from [5,
Chap. 8.11, (5), p. 47] are improper Riemann integrals. Hence, the proper
understanding of those integrals should be

x—a/Z
lim
N—> x

L)1, (e
0
Va2 TPEO(L - 2x) xo ().

Since ;' xpo, 7 1S @n integrable function, the integral form of .7 is valid
here and we can conclude that

lim %(j;X[O,N]’x) =vVa+2n+ 1P*9(1 - 2x) xp0.11( %),
N> x

where the limit holds in the almost everywhere sense. Finally, the L?
boundedness of the operator .7, for 4(a + 1)/(2a + 3) < p < 2 and the
fact that limy .. ;' Xpo, vy = Jn In L7 yields

Z(jyx) =Va+2n + 1LP{*O(1 = 2x) xpo,1(¥)

in L?. Similar comments apply to Lemma 3 below.

Since the Hankel transform of j& is supported on [0,1], not every
function fe L?(x*), 1 <p <2, can be approximated in norm by its
Fourier series S, f. As a first approach, any such function should, at least,
have its Hankel transform supported on [0, 1]. But we also deal with spaces
L?(x%), p > 2 where /Z, is not defined and so, we need to describe the
functions that we want to approximate in a different, but, in some sense,
similar way.

The main tool here is M, the multiplier for the Hankel transform. For
a>—jzand — ;< (a+ (G — ;) < ;, M, is a bounded operator from

a

LP(x%) into itself (this is known as Herz’s theorem, see [7]). Also,

%(Maf) z%(f)/\/[o,l]'
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for f € LP(x*) N LA (x*), M*f = M, f for f € L"(x*) and

fof(x)Ma<g,x>xadx=fog<x)Ma(f,x>x“dx (1)

for fe LP(x*) and g € LY(x?*).
DeriNITION 1. For each « and p with @ > — ; and — 1< (a + D(3
— ) < i, let us define the L7(x*) subspace

={felL?(x*):M,f=f}=M,(L"(x%)).

It is clear that, for f e E, , N L?(x*), the Hankel transform of f is
supported on [0,1] and so these spaces are suitable for our purposes. The
spaces E, , have some interesting properties: For s <r, £, CE, , and
the inclusion is continuous and dense. Besides, the dual space is (E, ,) =

E, ..
q, a
Let us also consider, for each @ > —1 and each suitable p (we go into

the details later), the L”(x“) subspace

B, ,= span{j®(x)}._,  (closurein L”(x®)).

In [14], one of us showed that S,f — f in the L”(x*)-norm for any
feB,,, if a= -3 and

4 4(a+1) ] 4(a+1)
max{ —, ———— <p < min{4, ——— };
3" 2a+3 2a+ 1

moreover, for this range of p, we showed that B, , = E, ,. Therefore,
{jx}.-o is a basis for the space E, ,. By the way, notice that for « > — 3,

4(a+1) 1 1 1
—————<p o ——<(a+l)|=-—],
20 + 3 4 p
4(a+1) 1 1 1
p<— e (at+t|-—-—]<~-.
20+ 1 2 p 4

Our purpose in this paper is to improve and extend these convergence
results, and show additional properties of the E, , spaces. In particular,
we find some conditions on «, B, and p under WhICh the functions j**#
(n=0,1,2,...) are a basis for E, .. Forinstance, g can be taken so that
a+ Bis haIf an integer, which makes the functions j**# better known.
The almost everywhere convergence of S, f is studied, as well.
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Also, we can interpret the convergence in the following way: changing
the parameters, we take {j’Y:_,, which is orthogonal in L?(x*), and we
study the convergence in L?(x*). This is a typical solution in the study of
mean convergence of Fourier series. For instance, in the case of Jacobi
polynomials {P{* #)(x)):_,, Pollard [10] studied the convergence in the
natural space L”((—1,1),(1 — x)“(1 + x)?) and, later, Muckenhoupt [9]
described the behavior in L7((—1,1),(1 — x)*(1 + x)?). Similar situations
occur with other orthogonal systems (Laguerre, Hermite, Freud weights,
Bessel and Dini).

We are interested in the approximation of functions in L?(x*) by
Fourier series in the system {j**#}°_,. So, our first target is to determine
the range of p, @, and B for which j**# € L?(x®) for all n € N. We do
this in Section 2.

In Section 3 we state some of the main results of this paper: the uniform
boundedness and convergence of the partial sum operator of
Fourier—Neumann series. The proofs are given in Sections 6 and 7. The
mean convergence can only hold for functions in the closure of the linear
combinations of the functions j**#. In Section 4 this space is shown to
coincide with £, , under some conditions on p, «, and 3. Some applica-
tions are given in Section 5.

Throughout this paper, unless otherwise stated, we use C (or C,) to
denote a positive constant independent of n (and all other variables),
which can assume different values in different occurrences. Also, in what
follows, a, ~ b,, for a,, b, > 0, means C < a,/b, < C,.

n

2. THE SPACES B, , ,

We use here the well-known estimates (see [4; 15, Chap. I11, 3.1 (8), p.
40; 15, Chap. VII, 7.21 (), p. 199)):
xﬂv

m-FO(X‘H—Z), x—>0+, (2)

Ju(x) =

and

J(x) = \/g[cos(x - g - ;) 4 O(x‘l)}, x> e (3)

LEMMA 1. Let a> —1, 1 <p <. Then, j* € L"(x") for all n =
0,1,2,... ifand only if b> —1 and — < (b + D& — 1) + 52, Fur-

P
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thermore, in this case,

n—(a+1)+2(b+1)/p’ lfp < 4,
||j,?||L”(x”) ~ n—(Zu—b+l)/2(|0g n)1/4, lfp _ 4,
n—(5/6+a)+(6b+4)/(3p)' lfp > 4,

Proof. Inequalities b > —1 and — < (b + 1)(3 — ) + “5* follow

from (2) and (3). Then, estimates such as (12) below (see [1 2D show that
ljallLec+y is bounded above by a constant times the right-hand side. The
lower bound follows from more precise estimates for the Bessel functions,
as shown in [1, 2]. For a similar expression, see [11]. |

As a consequence, the following definition makes sense.

DeriNnITION 2. For each «, B, and p with > -1, a+ 8> —1,
1 <p <o and

1

p

p
+ 5
2

1
—Z<(a—|—1)

let us define

B, o p= %{jﬁﬁ(x)}jzo (closure in L?(x%)).

Note that we assume a > —1in the definition of B, , 5; however, we
require « > — ; for E, .. Actually, the boundedness of M, can be
studied also for a> —1, so that the definition of E . can be extended to
the whole range a > —1. But in the case a < — 5, the% transform does
not have as good properties as in the case a>— 3 Asa consequence the
spaces E, , do not behave for o < — 3 2 like for a > — 5. Thus, some of
the results in this paper are establlshed for a > —1, but we require
a> — ; when E, , appears.

The following lemma proves that B, , < B, , , under some conditions
on a, B, and p.

LEMMA 2. Let a> —1, a+ B> —1,and 1 < p < 4 such that

Then,

= X it (4)
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pointwise and in L*(x“), where

_2Wa+2n+1ya+B+2k+1T(1-B)I(a+B+k+n+1)
ke = T1+k-mI(1-B—k+mI(atk+n+2)

(5)

Remark. 1f Be N, then T(1 — B)/T(1 — B — k + n) should be re-
placed by — (=8 — D)(—=B—2)--(1 — B — k + n) in formula (5).

Proof. The pointwise convergence and (5) follow from [15, Chap. V,
5.21 (1), p. 139] (conditions o > —1 and o + B> —1 are required).
Strictly speaking, condition 8 & N should also be assumed, following [15].
But this is only a formal requirement to get a, , in the form of (5).

For the L? convergence, we need only prove that the series converges:
that the sum is precisely j& then follows from the fact that this holds in the
almost everywhere sense.

If B is an integer, then there are only finitely many a, , # 0 and the
series in (4) is a finite sum. If B8 is not an integer, Stirling’s formula for the
gamma function gives, for each fixed n,

la, (|~ kP32 k- o,

Also, from Lemma 1, p < 4 and 7 < (a + )3 — 3) + £, we have
||j1?+B||LP(x“) ~ k—(a+B+1)+2(a+1)/p_

1

These estimates and ' < (a + 1)(; — ;) — 4 prove that

2o lay ( HEPllLreey < o
k=n

3. UNIFORM BOUNDEDNESS AND CONVERGENCE OF
FOURIER-NEUMANN SERIES

Let us consider the partial sums of the Fourier series with respect to the
system {joF Ay _,:

n

S.(f.x) = L el HETP(x),  elf) =f0wf(r)j,?+‘*(t)t“+ﬁdr.

k=0
We are interested in the study of the uniform boundedness of the partial
sum operators

S, LP(x*) =» L?(x*).
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Our result is

THEOREM 1. Let a > —1, a+ B> —1,and 1 < p < . There exists a
constant C > 0 such that

||Snf||LP(x“)SC”f”L”(x”‘)a feL?(x*),neN,

if and only if 5<p < 4 and

1
_ﬂ<(a+l)

2 2 p

(6)

1
- <(a+1)|=-=
4 (a ) 2 p
Proof. See Section 6. |
COROLLARY 2. Let a> —1, a4+ B> —1,3<p <4, and
a+pB+1

—T<(a+l)

+

l

R I
2 p 2
B 1
+ =< -
2 4

1
—Z<(a+l)

2 p

'I"hen7 Snf—)fll’l Lp(x“) for alle BP,GMB'

Proof. B, , g is the closure in L?(x®) of the orthogonal system, so this
is just a standard consequence of Theorem 1. |

Regarding the almost everywhere convergence of Fourier—Neumann
series, we have

THEOREM 3. Leta > —1, a+ B> —1,3<p < 4, and

a+B+1 11 B
- <(a+ |- — |+ =,
2 2 p 2

11 B 1

——<(a+ |z —-—|+=<-.

2 2 4

Then, S, f — [ almost everywhere for any f € B, , ;.
Proof. See Section 7. |
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4. THE HANKEL TRANSFORM OF ORDER « FOR j2*#
AND THE SPACES B, , ; AND E, ,

Theorem 1 and Corollary 2 are more interesting if we can describe the
space B, , 5. In this section, we find some conditions under which B, , ,
and E, , coincide.

As we pointed out, the Hankel transform of order « for j¢ can be
written in terms of the nth Jacobi polynomial of order («,0). It is not
difficult to obtain .Z,(j*#) from known results about integrals of products
of Bessel functions that can be expressed in terms of hypergeometric , F;
functions. But the relation between .#Z,(j**#) and the Jacobi polynomials
of order («, B8) is not easily found in the literature. For instance, it does
not appear in the standard references [4, 15, 5]. For the sake of complete-
ness, in this section we obtain Z,(j**#) explicitly in terms of P{*#),

LEmmA 3. For o, B> —1with a + B> —1,

Ve+ B +2n+1T(n+ 1) p
1-x)
r(p+n+1)

(jx) =2

X Pn(a’ﬁ)(l - 2x))([011](x).

In particular, supp(Z,(j**#)) c [0, 1.

Proof. We use the formula

/wt‘AJM( at)J,(bt) d

+v—-A+1
bva/\vlF(M _)
_ 2
N A+pu—v+1
2’\F(V—|— l)F(f)
pu+rrv—A+1 v—A—-—pu+1 b?
X, F, 5 , 5 jv+ 1;? . ()

valid when 0 < b <a, pu+ v—A> —1,and A > —1; here, ,F, denotes
the hypergeometric function (see [5, Chap. 8.11, (9), p. 48; 15, Chap. XIII,
13.4 (2), p. 401)).
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Taking a = 1 and x = b? in (7), and making the corresponding changes
of variable and parameters (v =a, u=a + B+ 2n + 1, A = B) we get

V2n+a+ B+ 1T (a+n + 1)
2PFT(B+n+ I (a+1)

X, Fila+n+1,-n—-8;a+1;x),

Zo(n P x) =

which is valid for « > —1and B> —1in the interval 0 < x < 1. Now, we
have

JFilatn+1,-n—B;a+1;x)
=(1—x)BZFl(—n,a+B+n+1;a+1;x),
where o, 8> —-1,n=0,1,2,..., and

pla.B) F(n+a+1) e . . 1-x
* = -n,a+pB+n+1 a+l;
) =t ar i e 2| Tet Bt Lia

a, B> —1.

Therefore,

Va+ B+2n+1T(n + 1)
2P0 (B+n+1)

7570 x) = (1 - x) Bl P(1 - 2x),

x € (0,1).

Now, let us calculate Z,(j>"#, x) for x > 1. To do that, let us take x = a?,
b=1v=a+B+2n+1 u=a,and A =g in (7). In this way, 3(1 +
w—v+1)=0-1-2,..., so the coefficient 1/T(G(A + u — v+ 1))
vanishes and we get Z,(j**#,x) =0. |

THEOREM 4. Let > — 3, B> — 3, 3<p, with

1 . 1
—~ <(a+ <.
; <(atD) 4

2 p

1.1y _ Al
2 p 2

If p < 2, assume further

1
—Z<(Ol+l)

Then B, , s =E
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Proof. Case p = 2. The spaces B, , , and E, , are well defined. Also
M, (ji*P) =jx*F. In other words, B, , ;€ E, ,. If they were not equal,
by the Hahn—Banach theorem there should exist some T € (E, ), T # 0,
such that T(j*#) = 0 Vn. But (E, ,) = E, ,, SO there exists ¢ € E
¢ # 0, such that [F¢j**Px*dx = 0 for every n. Then

2, a"

0_/ 0j T Px dx = /(%gp)(%}‘”ﬁ) @

=k [ (Z@) P2 = 20) (1~ ) d

for every nonnegative integer n. Now, the Jacobi polynomials P{* #)(x)
are a complete orthogonal system with respect to the measure (1 — x)*(1
+x)®dx on (—1,1). A change of variable proves that the polynomials
P{*P)X(1 — 2x) are a complete orthogonal system with respect to the
measure (1 — x)#x*dx on (0,1). Thus, Z, ¢ = 0 on (0, 1). Since ¢ € E, ,
we also have /Z, ¢ = 0 on (1, »). Therefore, .Z, ¢ = 0 and we arrive at the
contradiction ¢ = 0.

Case p > 2. Note that «, 8, and p meet the requirements of Defini-
tion 2. Also, by the preceding case, we have j<** € E, , CE, ,. Thus,
B, .,z CE,

Now, Iet fe E, .. Given &> 0, there exists a function g LA (x*) N
LP(x*) such that ||f glirey < &. let h =M, g; then h € L*(x*) N
L?(x*)and M,h = h,sothat h € E, ,NE, ,=B, , sNE,,.Since M,
is continuous, |f — AllLrey =IM, f — M, gllu(m < Ce. As h €B, . p
there exists 4’ € span{j**#);_, such that |[h — A'|l;2(,«) < &. The inclu-
sion E, ,CE,, gives [[h—HlLr« <C,e, so that, by the triangle

inequality, [If — A'llLrx«) < C,&. This gives the inclusion E, , € B, , 4.

Case p <2. By Lemmas 1 and 3, jo™# e L?(x®) and Z(j**#) is
supported on [0,1], so that M, j**# =j**E Since j**P e LP(x*) by
Lemma 1, it follows that ji*# € E, ,. Therefore, B, , ; CE, .

The equality follows if we prove that the only operator T' € (Epy ) such
that 7(f) = 0 for all f€ B, , 4 is T = 0. For such an operator, we have
T(j*) = 0 for every n > 0, since ]n € B, , z by Lemma 2. On the other
hand, by the duality (E, ,) = where 1/p + 1/q =1, there exists
some ¢ € E, , such that

‘LCV’

T(f) = /0°°<pﬁcadx, fEE, ..
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In particular,
| eigx=dx=0, n=z0 (8)
0

Under the present conditions on p and «, the preceding case gives
B, .o=E,, sothat ¢ € B, , . This, together with (8) and Corollary 2,

gives ¢ =0. |1

5. APPLICATIONS

Some properties of the spaces E, , can be obtained from Theorem 4.

Two examples are given here, after this preliminary result.

COROLLARY 5. Let > — 3, =0, and 5< p < 4 verifying

1

1
- — < + 1 < —.
; (et 4

2 p
Then, S,f = M, fin L?(x*) and almost everywhere for all f € L?(x®).

Proof. Let fe L?(x*),andso M,f € E, ,. Then, by Theorems 4 and
3,S,(M,f) > M,f in L*(x*) and almost everywhere. So, we only need to
show that S, (M, f) = S,(f), and this is clear because, by (1),

* M rat B adx: * M ot B adx: OO'a+B adx'
fo( of)in P fof( wJnTF)x fofjn x

COROLLARY 6. Let a> — 3, —3<B<1, 5<p <4 with a+ >
1
~ 1

1 . 1
——<(a+B+D|=-—-|<-

1 1 B a+1 1 1

max{ ——, -~ — —, — -Bl<(a+1)|=-=

4 4 2 2 2 p

(11 B

<mmn{—,— — —7.

{44 2}

If p < 2, assume further B < 3 and — 3 + 5 < (a + DG — ).
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Then, E, , N LP(x**P) CE, , ;.

Proof. Let f€E, , N LP(x*"F). By Theorems 4 and 3, §,f — f al-
most everywhere. Since f € L?(x“*#), Corollary 5 (with « + 8 instead of
a) gives S, f —> M, 5f almost everywhere. Then, f=M,, ,f almost ev-
erywhere, thatis, f€ E, .. 5. |

COROLLARY 7. Let a> — 3, BE(— 3,2, 5<p <4 with a+ >
1

27

1 1 B a+1 1 1
max{—z,—Z—E,— > —B}<(a+1)§—;)
(11 B
<min{—,— — —},
ez
1 1 1 1 1
max{——,——qLE,—aJr +E}<(a+ﬁ+l)———)
4 4 2 2 2 2 p
(11 B
<mmn{—,— + — ;.
{4 4 2}

If p < 2, assume further — 3 + §<(a+ G — ;) and — 7 — §<(a+
B+ DG — )

Then, E, , 0 LP(x**#) = E, , ; 0 LP(x").

Proof. The inclusion “C " is clear by Corollary 6. The inclusion *“> "
follows also by Corollary 6 with « + B instead of «, and B instead of — 8.

Theorem 4 gives different bases for £, , for different values of g. It

seems interesting to obtain the expressions for the change of basis between
{j:}ito=0 and {j;+6}3=0 in Ep, a*

COROLLARY 8. Let @ > — 3, —3< B <1, 5<p <4 with

1 1 B a+1 NEE
max{—z,—z—g,— > —B}<(a+)5—;)
(11 B

<mm{—,— — — .

{44 2}
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If p <2, assume further — § + 5§ <(a+ 105 — ;). Then, both {j};_
and {j**PY:_, are bases of the space E,, , and the change of basis is given by

p,a

]l‘lx = Z an kJISH—B jr(z)H—B = Z bn,kjl?’
k=n

k=n
where
28a+2n+1yJa+B+2k+1T(L—B)(a+B+k+n+1)
ke = TL+k-mI(1-B—k+m(atk+n+2) !
X 2 Pya+B+2n+1Va+2k+1T(L+B)[(a+k+n+1)
kT T+ k-mT(L+B—k+n)T(a+B+k+n+2)

(9)

Proof. By Theorem4, B, ,,=E, ,,sothat j; € E, ,. Also, by Theo-
remd4, E, , =B Then Corollary 2 gives Syjo —>]n in LP(x%) as

p.a, B’
N — oo, that is,
]r? = Z an k]l?JrB’
k
in L?(x%), where
o= [ i fxe e dx,

In a similar way, j**#e€B,,;=8B,,, and j P =X; b, ,jF in
LP(x®), where

= f g Pt d.
Finally, [15, Chap. XIII, 13.41 (2), p. 403] gives a,, , = b, , =0 for k <n
and 9) for k > n. 1

Similar expressions for the change of basis between different bases
{jerhy_, and {jo*FY¥:_, in E, , can be obtained. Details are left to the
reader.

6. PROOF OF THEOREM 1

6.1. Necessary conditions

Let us begin by showing that conditions (6) are necessary for the
uniform boundedness in Theorem 1. Assume S, is uniformly bounded.
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Then the operators given by

T(f.%) = S,(f2) = S, f.x) =) [ f(0 1B ()P

are uniformly bounded as well, i.e.,

1T, ey = ‘fo F(e)ja P P ljnPllieey < Cllfllece,

with a constant C independent of n and f. By duality, this means
||tB.yL:+B||L"(t"‘)||j,?+3”L1’(x"‘) <C,

where 1/p + 1/q = 1. Taking n fixed (it suffices n = 0) and applying the
first part of Lemma 1 gives (6). Now, provided (6) holds, the norm
estimates of Lemma 1 give

(et BrDT2a+/p if p < 4,
. _ 1/4 .

et BllLrny ~ { n= (@ 284D/2(log n)*, if p = 4,

p-6/6+at Byt Gath/3p) if > 4,

and

(e B+ 2(at /g ifg<d4(ie,p>
1B Pl gy ~ { =280/ 2(log n)™*, if g = 4 (i.e., p =
n=6/6+a=B)rGatd/Gn)  jf g > 4 (ie,p<

wWis wh Wl
~—~ —

~—

This implies 3 < p < 4.

6.2. Sufficient conditions

Let us now assume 3 < p < 4 and (6), and prove the uniform bounded-
ness of the partial sum operators S,. They can be written as

S,(fx) = [ K (xR,

where

K = i H (o).
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The next lemma gives a suitable decomposition of the kernel K, (x,t)
associated to §,. For a similar formula, with a different proof, see [14].

LEMMA 4. Letn € N and A > —1. Then
n

2 2(A+ 2k + 1)y pp s 1(X) Ty i (1)
k=0

Xt
= 2 _ /2 [xlul(x)JA(t) — th(x)J (1)
A3 on 2 () D ans2(2) = gy 2(X) T 010 (1)]

Proof. Using the equality J, (z) +J,, (z) = 22 (z) (see [15, Chap.
11, 3.2, p. 45]) to express J,_, and J, ., in terms of J, and J,,, yields the
formula

(1) — () ()
sV n(0) + x50
—2ul (x) (1)

This now gives
n

2 2(M + 2k + D)y apr1(0) s ana(2)
k=0

= xzx—_ttz [XI/\H(X)J/\(t) — th(x)Jy (1)

—Xy i o0 43(X) Nion40(8) + tJA+2n+2(x)JA+2n+3(t)]'

Finally, use the formula zJ,, ,(z) = vJ (z) — zJ/(z) (see [15, Chap. IlI, 3.2,
p. 45) to take out J,,,, .5 |

From the definition, we have

Sn(fl )C) — x—a/Z—B/Z—l/Z

<
0

% ta/2+3/2—1/2f(t) dt

Y. (a+B+2k+ 1)Ja+ﬁ+2k+1(\/;)Ja+ﬁ+2k+l(‘/;)
k=0
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so that Lemma 4 with A = a + B leads to
Snf= Wlf_ W2f+ WS,nf_ I/Vél,nf7
where
Wi(f, x) = 3" @/27B/2512] g (X2 H (192082 (£2) f(1), x),
Wo(fox) = 3x /27 B2 g (X2)H(14/2H B4 2] oo (82) f(1), x),
W (f,x) = gx= @27 B2 (X 2Y H (22 /2 B/2] (/%) f(1), x),
W, u(fox) = 5x" /27 B2 (XM2)H (1o /2FB/22 V210 (12 f(1), x),

and v=A+2n+2=a+ B+ 2n + 2. Here, H denotes the Hilbert
transform on (0, »), which is defined by

= g(1)
X —1

H(g, x) =j(; dt

(the integral must be considered as a principal value).

Thus, we can conclude that the partial sum operators S, are uniformly
bounded if we can prove that the operators W,, W, are bounded and the
operators W, ,, W, , are uniformly bounded for n > 0. We use good
estimates for the Bessel functions and the A, theory of weights to prove
the boundedness of the Hilbert transform.

Let us start with the bounds for the Bessel functions and their deriva-

tives.
From the estimates (2) and (3) it follows that, for u > —1,

|1(x)| < C,x*, x € (0,1], (10)
|J(x)| <C,x 2 xe[l,), (11)

with a C,, constant depending on .

Moreover, we need bounds for the Bessel functions J,, g.,,, (and
their derivatives) with constants independent of n. So, we make use of the
bounds

IL(x)| < Cx¥4(lx — vl + 073 Y xe(0,2),  (12)
|7(x)| < Cx34(Ix — vl + /%) xe(0,), (13)

with some constant C independent of v. They follow from those of [1, 2],
for instance, and were already used in [14].
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6.3. Some results on Hilbert transforms and A, theory

To analyze the boundedness of the Hilbert transform, some notation
and previous results are necessary. As usual, for 1 <p <o we write
qg=p/(p—1,ie,1/p+1/q =1 A weightis a nonnegative Lebesgue-
measurable function on (0, ). The class A4,(0,%) [A4,, for short] consists
of those weights w such that, for every subinterval I c (0, ),

(o) o) <

where C is a positive constant independent of 7, and |I| denotes the length
of 1. The A, constant of w is the least constant C verifying this inequality
and is denoted by A4 (w). We refer the reader to [6] for further details on
A, classes.

Fix 1 <p < =; then the Hilbert transform H is a bounded linear
operator on L”(w), for any weight w € A,. The norm of H: L?(w) —
L?(w) and the A, constant of w depend only on each other, in the sense
that given some constant C which verifies the 4, condition for w, another
constant C; depending only on C can be chosen so that [|H]| < C,, and
vice versa. Therefore, for a sequence {w,}, c uniformly in A,, ie., with
some constant C verifying the A, condition for every w,, the Hilbert
transform is uniformly bounded on L?(w,), n € N.

Let us see some auxiliary results related with 4, weights:

LEMMA 5. Let u,v,w be weights on (0,%) and y be a positive constant.
Then

(@ w(x) € A, if and only if w(yx) € A,,; both weights have the same
A, constant.

(b) weA, ifand only if yw € A,; both weights have also the same
A, constant.

© Ifu,v €A, thenu+veEA, andAp(u +0) sAp(u) +Ap(v).
(d IfuveAd,andl/w=1/u+1/v, thenw € A, and A, (w) <
ClA,(w) + 4,(v)].

Proof. Parts (a) and (b) are trivial. Part (c) follows easily from the
inequality

1

(%fl(u + v)_‘m’)p/q < min{(l—ﬂflu‘q/")p/q, (%flv“’/!’)[]/q}.

Part (d) is a consequence of (c) and the fact that u € 4, < ui’'r e A,
with A, (u=1/7) = [A,]*/7. 1
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The proof of the next lemma is not difficult, but cumbersome, so we
omit it. For the weight in (c), observe that x’|x%/2 — 1|> ~x" near 0,
x"|x2 —1° ~ |x — 1)° near 1 and x"|x'/? — 1|° ~ x"**/2 near =, whence
the three conditions follow.

LEMMA 6. Letr,s € R. We have

@ x"'€d,e -1<r<p-1

(b) Set ®(x) =x" if x€(0,1) and ®(x) =x* if x € (1,%). Then,
bed,ifandonlyif —1<r<p-1land —1<s<p—-1

(c) x’|x1/2—1|s€Ap©—l<r<p—1, —1<s<p-1, and
-1<r+s/2<p-1

To simplify the notation, in the rest of this section we write A = a + 8
and v=a+ B+ 2n+ 2.

6.4. Boundedness of the operators W, and W,

From the definition, it follows that
WL fllLeieey < ClFllLeeesy,
if and only if
IHgllLrxarerzerrzy, orzyey < ClgllLrceaerzgirayr.
Proving that there is a weight ® € 4, with
Ceo /20 2 g ()] < @(x) < Crt ()| (1)
are enough. According to the bounds (10) and (11), we have

Cx**r, if x € (0,1),

_ P
x® AP/HP/Z'JHl(xl/Z)' = {CxaAp/2+p/4 if x (1 oo)

xa—)‘p/2|J(x1/2)|’P > Cxa*/\P, if x e (0’1),
! T\ axe e/t if x e (1,).
Let us try

xrl if x € (0,1),
(I)(x) = xe~ p/2+p/4 i x e (1,00).
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By (b) in Lemma 6, conditions (14) and ® € 4, hold if
a—Ap <r<a-+p,
-1<r<p-1, (15)
-1<a—-Ap/2+p/4<p-—1.
The third line is equivalent to
-1

— < (a+1
g <(etD 2 S 1

1 1) B 3
—— =]+ =<-,
2 p

which follows from (6). For the inequalities in (15) involving r, it suffices to
show that

max{ —1, « — Ap} <min{p — 1, a + p}.

This follows from @ > —1, a + B> —1,1 < p < o, and (6), as well. The
case of W, is entirely similar.

6.5. Uniform boundedness of the operators W; ,
Here,
Wy fllLeey < ClfllLrees,
if and only if
| HgllLreererzenrygiairzyey < ClglLrceerrr, oy ry.

From the bounds (13) and (12),

xa—)\p/2+p/2|J;(xl/2)|p < Cxa—/\p/2+p/8[|xl/2 T V1/3]P/4’

xa—Ap/2|Jy(x1/2)|’p > Cxa—)\p/2+p/8[|xl/2 — o+ v1/3]p/4_

It suffices to prove that ¢, € 4, uniformly in n (recall that v=a + B +
2n + 2), with

QDV(X) =xa—/\p/2+p/8[|x1/2 _ V| + V1/3]P/4.
From Lemma 5, we have
¢,(x) €A, unif. = ¢ (v°x) €A, unif.
e xATAP/2TP/8[ |12 — ] + v‘2/3]p/4 € A, unif.
o xa—Ap/2+p/8|xl/2 _ 1|p/4

4y P/ByaAp/2%p/8 A, unif,,
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where the last equivalence follows from
[1x2/2 — 1] 4+ = 2/3]7% < |52 — q|P/% 4 /8,
Now, Lemmas 5 and 6 prove that those weights belong to 4, uniformly.

6.6. Uniform boundedness of the operators W, ,

Finally,
||I/V4'nf||Lf’(x“) < C”f”L”(x”‘)a
if and only if
WHg | Lrcxeror25,2y0) < ClgllLrea-r02-0r2 552202y r)
Also,

A A Iy e S (P P I

-p —p/4
xaf/\p/zfp/2|‘];(xl/2)| > Cxapr/pr/B[lxl/Z — o+ V1/3] r/ '
so let us put
—-p/4
U (x) = xR ) R
and show that ¢, € A, uniformly in n. Indeed,
. ) .
P, (x) €A, unif. < ¢ (vx) €A, unif.
o x 2B — 1]+ v 23] e 4, unif,
and
—p a1
(xzx—/\p/z—p/8[|xl/2 — 1+ V—z/a] P/)
~x—a+Ap/2+p/8[|xl/2 — 1P/t 4 V—p/ﬁ]

= [xa—Ap/Z—p/8|x1/2 _ 1|—p/4]71 + [,,p/ﬁxa—Ap/Z—p/i?]*l'

so that Lemmas 5 and 6 lead to the desired conclusion. The proof of
Theorem 1 is now complete.
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7. PROOF OF THEOREM 3

We only need to prove that S,(f, x) converges to some g(x) almost
everywhere. This, together with Corollary 2, gives g = f almost every-
where. Now, recall that S, f = X7 _,c,(f)j&"#, where

el f) = j:}xt)j§+ﬁ(t)ta+ﬁca.

It follows from Lemma 1 that x#j**# e L1(x*); moreover, |lx %> |l La¢ce)
< Cn® for some constant § = §(p, a, B). Thus,

|Cn(f)| < ||f||1,l’(x“)||xBj5+ﬁ||u(xﬂ) < C||f||u(x“)nﬁ-

Now, according to [15, Chap. 111, 3.31 (1), p. 49] we have

J 27 x"? 1
< —, > ——.
[7,(x)] T(v+1) YT
Therefore,
|j;1173(x)| = \/0‘ +B+2n+1 Ja+B+2n+l(‘/;)|x7(a+B+l)/2
Va+ B+ 2n + 127 (athr2ntDyn
< 1
- I'(a+pB+2n+2)
so that
n6+1/2(x/4)"

eIz PO = Al p s 72)

and the series X_,c,(f)j2"P(x) converges.
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