# On wavelets related to the Walsh series 

Yu.A. Farkov<br>Higher Mathematics and Mathematical Modelling Department, Russian State Geological Prospecting University, 23, Ulitsa Miklukho - Maklaya, Moscow 117997, Russia

Received 16 September 2007; received in revised form 1 April 2008; accepted 11 October 2008
Available online 9 November 2008
Communicated by Amos Ron


#### Abstract

For any integers $p, n \geq 2$ necessary and sufficient conditions are given for scaling filters with $p^{n}$ many terms to generate a $p$-multiresolution analysis in $L^{2}\left(\mathbb{R}_{+}\right)$. A method for constructing orthogonal compactly supported $p$-wavelets on $\mathbb{R}_{+}$is described. Also, an adaptive $p$-wavelet approximation in $L^{2}\left(\mathbb{R}_{+}\right)$ is considered. © 2008 Elsevier Inc. All rights reserved. Keywords: Walsh-Fourier transform; Lacunary Walsh series; Orthogonal p-wavelets; Multifractals; Stability; Adapted wavelet analysis


## 1. Introduction

In the wavelet literature, there is some interest in the study of compactly supported orthonormal scaling functions and wavelets with an arbitrary dilation factor $p \in \mathbb{N}, p \geq 2$ (see, e.g., [3, Section 10.2], [21, Section 2.4], [4, and references therein]). Such wavelets can have very small support and multifractal structure, features which may be important in signal processing and numerical applications. In this paper we study compactly supported orthogonal $p$-wavelets related to the generalized Walsh functions $\left\{w_{l}\right\}$. There are two ways of considering these functions; either they may be defined on the positive half-line $\mathbb{R}_{+}=[0, \infty)$, or, following Vilenkin [24], they may be identified with the characters of the locally compact Abelian group $G_{p}$ which is a weak direct product of a countable set of the cyclic groups of order $p$. The classical Walsh functions correspond to the case $p=2$, while the group $G_{2}$ is isomorphic to the Cantor

[^0]dyadic group $\mathcal{C}$ (see [22,9]). Orthogonal compactly supported wavelets on the group $\mathcal{C}$ (and relevant wavelets on $\mathbb{R}_{+}$) are studied in [15-17,8]. Decimation by an integer different from 2 is discussed in [5,6], but construction for a general $p$ is not completely treated. Here we review some of the elements of that construction on $\mathbb{R}_{+}$and give an approach to the $p>2$ case in a concrete fashion. An essential new element is the matrix extension in Section 4. Finally, in Section 5, we describe an adaptive $p$-wavelet approximation in $L^{2}\left(\mathbb{R}_{+}\right)$.

Let us consider the half-line $\mathbb{R}_{+}$with the $p$-adic operations $\oplus$ and $\ominus$ (see Section 2 for the definitions). We say that a compactly supported function $\varphi \in L^{2}\left(\mathbb{R}_{+}\right)$is a $p$-refinable function if it satisfies an equation of the type

$$
\begin{equation*}
\varphi(x)=p \sum_{\alpha=0}^{p^{n}-1} a_{\alpha} \varphi(p x \ominus \alpha) \tag{1.1}
\end{equation*}
$$

with complex coefficients $a_{\alpha}$. Further, the generalized Walsh polynomial

$$
\begin{equation*}
m(\omega)=\sum_{\alpha=0}^{p^{n}-1} a_{\alpha} \overline{w_{\alpha}(\omega)} \tag{1.2}
\end{equation*}
$$

is called the mask of Eq. (1.1) (or its solution $\varphi$ ).
An interval $I \subset \mathbb{R}_{+}$is a $p$-adic interval of range $n$ if $I=I_{s}^{(n)}=\left[s p^{-n},(s+1) p^{-n}\right)$ for some $s \in \mathbb{Z}_{+}$. Since $w_{\alpha}$ is constant on $I_{s}^{(n)}$ whenever $0 \leq \alpha, s<p^{n}$, it is clear that the mask $m$ is a $p$-adic step function. If $b_{s}=m\left(s p^{-n}\right)$ are the values of $m$ on $p$-adic intervals, i.e.,

$$
\begin{equation*}
b_{s}=\sum_{\alpha=0}^{p^{n}-1} a_{\alpha} \overline{w_{\alpha}\left(s p^{-n}\right)}, \quad 0 \leq s \leq p^{n}-1, \tag{1.3}
\end{equation*}
$$

then

$$
\begin{equation*}
a_{\alpha}=\frac{1}{p^{n}} \sum_{s=0}^{p^{n}-1} b_{s} w_{\alpha}\left(s / p^{n}\right), \quad 0 \leq \alpha \leq p^{n}-1 \tag{1.4}
\end{equation*}
$$

and, conversely, equalities (1.3) follow from (1.4). These discrete transforms can be realized by the fast Vilenkin-Chrestenson algorithm (see, for instance, [22, p.463], [19]). Thus, an arbitrary choice of the values of the mask on $p$-adic intervals defines also the coefficients of Eq. (1.1).

It was claimed in [6] that if a $p$-refinable function $\varphi$ satisfies the condition $\widehat{\varphi}(0)=1$ and the system $\left\{\varphi(\cdot \ominus k) \mid k \in \mathbb{Z}_{+}\right\}$is orthonormal in $L^{2}\left(\mathbb{R}_{+}\right)$, then

$$
m(0)=1 \quad \text { and } \quad \sum_{l=0}^{p-1}|m(\omega+l / p)|^{2}=1 \quad \text { for all } \omega \in[0,1 / p)
$$

From this it follows that the equalities

$$
\begin{equation*}
b_{0}=1, \quad\left|b_{j}\right|^{2}+\left|b_{j+p^{n-1}}\right|^{2}+\cdots+\left|b_{j+(p-1) p^{n-1}}\right|^{2}=1, \quad 0 \leq j \leq p^{n-1}-1, \tag{1.5}
\end{equation*}
$$

are necessary (but not sufficient, see Example 4) for the system $\left\{\varphi(\cdot \ominus k) \mid k \in \mathbb{Z}_{+}\right\}$to be orthonormal in $L^{2}\left(\mathbb{R}_{+}\right)$.

Denote by $\mathbf{1}_{E}$ the characteristic function of a subset $E$ of $\mathbb{R}_{+}$.

Example 1. If $a_{0}=\cdots=a_{p-1}=1 / p$ and $a_{\alpha}=0$ for all $\alpha \geq p$, then a solution of Eq. (1.1) is $\varphi=\mathbf{1}_{\left[0, p^{n-1}\right)}$. Therefore the Haar function $\varphi=\mathbf{1}_{[0,1)}$ satisfies this equation for $n=1$ (compare with [5, Remark 1.3] and [1, Section 5.1]).

Example 2. If we take $p=n=2$ and put

$$
b_{0}=1, b_{1}=a, b_{2}=0, b_{3}=b,
$$

where $|a|^{2}+|b|^{2}=1$, then by (1.4) we have

$$
\begin{array}{ll}
a_{0}=(1+a+b) / 4, & a_{1}=(1+a-b) / 4 \\
a_{2}=(1-a-b) / 4, & a_{3}=(1-a+b) / 4
\end{array}
$$

In particular, for $a=1$ and $a=-1$ the Haar function: $\varphi(x)=\mathbf{1}_{[0,1)}(x)$ and the displaced Haar function: $\varphi(x)=\mathbf{1}_{[0,1)}(x \ominus 1)$ are obtained. If $0<|a|<1$, then

$$
\varphi(x)=(1 / 2) \mathbf{1}_{[0,1)}(x / 2)\left(1+a \sum_{j=0}^{\infty} b^{j} w_{2^{j+1}-1}(x / 2)\right)
$$

and

$$
\varphi(x)= \begin{cases}(1+a-b) / 2+b \varphi(2 x), & 0 \leq x<1 \\ (1-a+b) / 2-b \varphi(2 x-2), & 1 \leq x \leq 2\end{cases}
$$

(see [15,17]). Moreover, it was proved in [16] that, if $|b|<1 / 2$, then the corresponding wavelet system $\left\{\psi_{j k}\right\}$ is an unconditional basis in all spaces $L^{q}\left(\mathbb{R}_{+}\right), 1<q<\infty$. When $a=0$ the system $\left\{\varphi(\cdot \ominus k) \mid k \in \mathbb{Z}_{+}\right\}$is linear dependence (since $\varphi(x)=(1 / 2) \mathbf{1}_{[0,1)}(x / 2)$ and $\varphi(x \ominus 1)=\varphi(x))$.

We recall that a collection of closed subspaces $V_{j} \subset L^{2}\left(\mathbb{R}_{+}\right), j \in \mathbb{Z}$, is called a $p$ multiresolution analysis $(p-M R A)$ in $L^{2}\left(\mathbb{R}_{+}\right)$if the following hold:
(i) $V_{j} \subset V_{j+1}$ for all $j \in \mathbb{Z}$;
(ii) $\overline{\bigcup V_{j}}=L^{2}\left(\mathbb{R}_{+}\right)$and $\bigcap V_{j}=\{0\}$;
(iii) $f(\cdot) \in V_{j} \Longleftrightarrow f(p \cdot) \in V_{j+1}$ for all $j \in \mathbb{Z}$;
(iv) $f(\cdot) \in V_{0} \Longrightarrow f(\cdot \ominus k) \in V_{0}$ for all $k \in \mathbb{Z}_{+}$;
(v) there is a function $\varphi \in L^{2}\left(\mathbb{R}_{+}\right)$such that the system $\left\{\varphi(\cdot \ominus k) \mid k \in \mathbb{Z}_{+}\right\}$is an orthonormal basis of $V_{0}$.

The function $\varphi$ in condition (v) is called a scaling function in $L^{2}\left(\mathbb{R}_{+}\right)$.
For any $\varphi \in L^{2}\left(\mathbb{R}_{+}\right)$, we set

$$
\varphi_{j, k}(x)=p^{j / 2} \varphi\left(p^{j} x \ominus k\right), \quad j \in \mathbb{Z}, k \in \mathbb{Z}_{+}
$$

We say that $\varphi$ generates a p-MRA in $L^{2}\left(\mathbb{R}_{+}\right)$if the system $\left\{\varphi(\cdot \ominus k) \mid k \in \mathbb{Z}_{+}\right\}$is orthonormal in $L^{2}\left(\mathbb{R}_{+}\right)$and, in addition, the family of subspaces

$$
\begin{equation*}
V_{j}=\operatorname{clos}_{L^{2}\left(\mathbb{R}_{+}\right)} \operatorname{span}\left\{\varphi_{j, k} \mid k \in \mathbb{Z}_{+}\right\}, \quad j \in \mathbb{Z} \tag{1.6}
\end{equation*}
$$

is a $p$-MRA in $L^{2}\left(\mathbb{R}_{+}\right)$. Any $p$-refinable function $\varphi$ which generates a $p$-MRA in $L^{2}\left(\mathbb{R}_{+}\right)$can be written as a sum of lacunary series by the generalized Walsh functions (see [5,6]).

The results of this paper are concerned mainly with the following two problems:

1. Find necessary and sufficient conditions in order that a $p$-refinable function $\varphi$ generates a $p$-MRA in $L^{2}\left(\mathbb{R}_{+}\right)$.
2. Describe a method for constructing orthogonal compactly supported $p$-wavelets on $\mathbb{R}_{+}$.

Note that similar problems can be considered in framework of the biorthogonal $p$-wavelet theory (see [7] for the $p=2$ case).

If a function $\varphi$ generates a $p$-MRA, then it is a scaling function in $L^{2}\left(\mathbb{R}_{+}\right)$. In this case, the system $\left\{\varphi_{j, k} \mid k \in \mathbb{Z}_{+}\right\}$is an orthonormal basis of $V_{j}$ for each $j \in \mathbb{Z}$, and moreover, one can define orthogonal $p$-wavelets $\psi_{1}, \ldots, \psi_{p-1}$ in such a way that the functions

$$
\psi_{l, j, k}(x)=p^{j / 2} \psi_{l}\left(p^{j} x \ominus k\right), \quad 1 \leq l \leq p-1, j \in \mathbb{Z}, k \in \mathbb{Z}_{+},
$$

form an orthonormal basis of $L^{2}\left(\mathbb{R}_{+}\right)$. If $p=2$, only one wavelet $\psi$ is obtained and the system $\left\{2^{j / 2} \psi\left(2^{j} \cdot \ominus k\right) \mid j \in \mathbb{Z}, k \in \mathbb{Z}_{+}\right\}$is an orthonormal basis of $L^{2}\left(\mathbb{R}_{+}\right)$. In Section 4 we give a practical method to design orthogonal $p$-wavelets $\psi_{1}, \ldots, \psi_{p-1}$, which is based on an algorithm for matrix extension and on the following

Theorem. Suppose that equation (1.1) possesses a compactly supported $L^{2}$-solution $\varphi$ such that its mask $m$ satisfies conditions $(1.5)$ and $\widehat{\varphi}(0)=1$. Then the following are equivalent:
(a) $\varphi$ generates a $p-M R A$ in $L^{2}\left(\mathbb{R}_{+}\right)$;
(b) $m$ satisfies modified Cohen's condition;
(c) m has no blocked sets.

We review some notation and terminology. Let $M \subset[0,1)$ and let

$$
T_{p} M=\bigcup_{l=0}^{p-1}\{l / p+\omega / p \mid \omega \in M\} .
$$

The set $M$ is said to be blocked (for the mask $m$ ) if it is a union of $p$-adic intervals of range $n-1$, does not contain the interval $\left[0, p^{-n+1}\right.$ ), and satisfies the condition

$$
T_{p} M \backslash M \subset \operatorname{Null} m
$$

where Null $m:=\{\omega \in[0,1) \mid m(\omega)=0\}$. It is clear that each mask can have only a finite number of blocked sets. In Section 3 we shall prove that if $\varphi$ is a $p$-refinable function in $L^{2}\left(\mathbb{R}_{+}\right)$such that $\widehat{\varphi}(0)=1$, then the system $\left\{\varphi(\cdot \ominus k) \mid k \in \mathbb{Z}_{+}\right\}$is linearly dependent if and only if its mask possesses a blocked set. The notion of blocked set (in the case $p=2$ ) was introduced in the recent paper [8].

The family $\left\{\left[0, p^{-j}\right) \mid j \in \mathbb{Z}\right\}$ forms a fundamental system of the $p$-adic topology on $\mathbb{R}_{+}$. A subset $E$ of $\mathbb{R}_{+}$that is compact in the $p$-adic topology is said to be $W$-compact. It is easy to see that the union of a finite family of $p$-adic intervals is $W$-compact.

A $W$-compact set $E$ is said to be congruent to $[0,1)$ modulo $\mathbb{R}_{+}$if its Lebesgue measure is 1 and, for each $x \in[0,1)$, there is an element $k \in \mathbb{Z}_{+}$such that $x \oplus k \in E$. As before, let $m$ be the mask of refinable equation (1.1). We say that $m$ satisfies the modified Cohen condition if there exists a $W$-compact subset $E$ of $\mathbb{R}_{+}$congruent to $[0,1)$ modulo $\mathbb{Z}_{+}$and containing a neighbourhood of zero such that

$$
\begin{equation*}
\inf _{j \in \mathbf{N}} \inf _{\omega \in E}\left|m\left(p^{-j} \omega\right)\right|>0 \tag{1.7}
\end{equation*}
$$

(cf. [3, Section 6.3], [16, Sect. 2]). Since $E$ is $W$-compact, it is evident that if $m(0)=1$ then there exists a number $j_{0}$ such that $m\left(p^{-j} \omega\right)=1$ for all $j>j_{0}, \omega \in E$. Therefore (1.7) holds if $m$ does not vanish on the sets $E / p, \ldots, E / p^{-j_{0}}$. Moreover, one can choose $j_{0} \leq p^{n}$ because $m$ is 1-periodic and completely defined by the values (1.3).

Now we illustrate the theorem with the following two examples.
Example 3. Let $p=3, n=2$ and

$$
b_{0}=1, b_{1}=a, b_{2}=\alpha, b_{3}=0, b_{4}=b, b_{5}=\beta, b_{6}=0, b_{7}=c, b_{8}=\gamma
$$

where

$$
|a|^{2}+|b|^{2}+|c|^{2}=|\alpha|^{2}+|\beta|^{2}+|\gamma|^{2}=1
$$

Then (1.4) implies precisely that

$$
\begin{aligned}
& a_{0}=\frac{1}{9}(1+a+b+c+\alpha+\beta+\gamma), \\
& a_{1}=\frac{1}{9}\left(1+a+\alpha+(b+\beta) \varepsilon_{3}^{2}+(c+\gamma) \varepsilon_{3}\right), \\
& a_{2}=\frac{1}{9}\left(1+a+\alpha+(b+\beta) \varepsilon_{3}+(c+\gamma) \varepsilon_{3}^{2}\right), \\
& a_{3}=\frac{1}{9}\left(1+(a+b+c) \varepsilon_{3}^{2}+(\alpha+\beta+\gamma) \varepsilon_{3}\right), \\
& a_{4}=\frac{1}{9}\left(1+c+\beta+(a+\gamma) \varepsilon_{3}^{2}+(b+\alpha) \varepsilon_{3}\right), \\
& a_{5}=\frac{1}{9}\left(1+b+\gamma+(a+\beta) \varepsilon_{3}^{2}+(c+\alpha) \varepsilon_{3}\right), \\
& a_{6}=\frac{1}{9}\left(1+(a+b+c) \varepsilon_{3}+(\alpha+\beta+\gamma) \varepsilon_{3}^{2}\right), \\
& a_{7}=\frac{1}{9}\left(1+b+\gamma+(a+\beta) \varepsilon_{3}+(c+\alpha) \varepsilon_{3}^{2}\right), \\
& a_{8}=\frac{1}{9}\left(1+c+\beta+(a+\gamma) \varepsilon_{3}+(b+\alpha) \varepsilon_{3}^{2}\right),
\end{aligned}
$$

where $\varepsilon_{3}=\exp (2 \pi i / 3)$. Further, if

$$
\gamma(1,0)=a, \gamma(2,0)=\alpha, \gamma(1,1)=b, \gamma(2,1)=\beta, \gamma(1,2)=c, \gamma(2,2)=\gamma
$$

and $v_{j} \in\{1,2\}$, then we let

$$
\begin{aligned}
& c_{l}=\gamma\left(\nu_{0}, 0\right) \text { for } l=v_{0} ; \\
& c_{l}=\gamma\left(v_{1}, 0\right) \gamma\left(v_{0}, \nu_{1}\right) \text { for } l=v_{0}+3 v_{1} ; \\
& \ldots \\
& c_{l}=\gamma\left(v_{k}, 0\right) \gamma\left(v_{k-1}, v_{k}\right) \ldots \gamma\left(v_{0}, v_{1}\right) \quad \text { for } l=\sum_{j=0}^{k} v_{j} 3^{j}, k \geq 2 .
\end{aligned}
$$

The solution of Eq. (1.1) can be decomposed (see [6]) as follows:

$$
\varphi(x)=(1 / 3) \mathbf{1}_{[0,1)}(x / 3)\left(1+\sum_{l} c_{l} w_{l}(x / 3)\right)
$$

The blocked sets are: (1) $[1 / 3,2 / 3)$ for $a=c=0$, (2) [2/3, 1) for $\alpha=\beta=0,(3)[1 / 3,1)$ for $a=\alpha=0$. Hence, $\varphi$ generates a MRA in $L^{2}\left(\mathbb{R}_{+}\right)$in the following cases: $(1) a \neq 0, \alpha \neq 0$, (2) $a=0, \alpha \neq 0, c \neq 0,(3) \alpha=0, a \neq 0, \beta \neq 0$.

Example 4. Suppose that for some numbers $b_{s}, 0 \leq s \leq p^{n}-1$, equalities (1.5) are true. Using (1.4), we find the mask

$$
m(\omega)=\sum_{\alpha=0}^{p^{n}-1} a_{\alpha} \overline{w_{\alpha}(\omega)}
$$

which takes the values $b_{s}$ on the intervals $I_{s}^{(n)}, 0 \leq s \leq p^{n}-1$. When $b_{j} \neq 0$ for $1 \leq j \leq p^{n-1}-1$ Eq. (1.1) has a solution, which generates a $p$-MRA in $L^{2}\left(\mathbb{R}_{+}\right)$(the modified Cohen condition is fulfilled for $E=[0,1)$ ). The expansion of this solution in a lacunary series by generalized Walsh functions is contained in [6].

## 2. Preliminaries

For the integer and the fractional parts of a number $x$ we are using the standard notations, $[x]$ and $\{x\}$, respectively. For any $s \in \mathbb{Z}$ let us denote by $\langle s\rangle_{p}$ the remainder upon dividing $s$ by $p$. Then for $x \in \mathbb{R}_{+}$we set

$$
\begin{equation*}
x_{j}=\left\langle\left[p^{j} x\right]\right\rangle_{p}, \quad x_{-j}=\left\langle\left[p^{1-j} x\right]\right\rangle_{p}, \quad j \in \mathbb{N} \tag{2.1}
\end{equation*}
$$

For each $x \in \mathbb{R}_{+}$, these numbers are the digits of the $p$-ary expansion

$$
x=\sum_{j<0} x_{j} p^{-j-1}+\sum_{j>0} x_{j} p^{-j}
$$

(for a $p$-adic rational $x$ we obtain an expansion with finitely many nonzero terms). It is clear that

$$
[x]=\sum_{j=1}^{\infty} x_{-j} p^{j-1}, \quad\{x\}=\sum_{j=1}^{\infty} x_{j} p^{-j}
$$

and there exists $k=k(x)$ in $\mathbb{N}$ such that $x_{-j}=0$ for all $j>k$.
Consider the $p$-adic addition defined on $\mathbb{R}_{+}$as follows: if $z=x \oplus y$, then

$$
z=\sum_{j<0}\left\langle x_{j}+y_{j}\right\rangle_{p} p^{-j-1}+\sum_{j>0}\left\langle x_{j}+y_{j}\right\rangle_{p} p^{-j}
$$

As usual, the equality $z=x \ominus y$ means that $z \oplus y=x$. According to our notation

$$
[x \oplus y]=[x] \oplus[y] \quad \text { and } \quad\{x \oplus y\}=\{x\} \oplus\{y\}
$$

Note that for $p=2$ we have

$$
x \oplus y=\sum_{j<0}\left|x_{j}-y_{j}\right| 2^{-j-1}+\sum_{j>0}\left|x_{j}-y_{j}\right| 2^{-j}
$$

Letting $\varepsilon_{p}=\exp (2 \pi \mathrm{i} / p)$, we define a function $w_{1}$ on $[0,1)$ by

$$
w_{1}(x)= \begin{cases}1, & x \in[0,1 / p) \\ \varepsilon_{p}^{l}, & x \in\left[l p^{-1},(l+1) p^{-1}\right), l \in\{1, \ldots, p-1\},\end{cases}
$$

and extend it to $\mathbb{R}_{+}$by periodicity: $w_{1}(x+1)=w_{1}(x)$ for all $x \in \mathbb{R}_{+}$. Then the generalized Walsh system $\left\{w_{l} \mid l \in \mathbb{Z}_{+}\right\}$is defined by

$$
w_{0}(x) \equiv 1, \quad w_{l}(x)=\prod_{j=1}^{k}\left(w_{1}\left(p^{j-1} x\right)\right)^{l_{-j}}, \quad l \in \mathbb{N}, x \in \mathbb{R}_{+}
$$

where the $l_{-j}$ are the digits of the $p$-ary expansion of $l$ :

$$
l=\sum_{j=1}^{k} l_{-j} p^{j-1}, \quad l_{-j} \in\{0,1, \ldots, p-1\}, l_{-k} \neq 0, k=k(l) .
$$

For any $x, y \in \mathbb{R}_{+}$, let

$$
\begin{equation*}
\chi(x, y)=\varepsilon_{p}^{t(x, y)}, \quad t(x, y)=\sum_{j=1}^{\infty}\left(x_{j} y_{-j}+x_{-j} y_{j}\right) \tag{2.2}
\end{equation*}
$$

where $x_{j}, y_{j}$ are given by (2.1). Note that

$$
\chi\left(x, p^{-s} l\right)=\chi\left(p^{-s} x, l\right)=w_{l}\left(p^{-s} x\right), \quad l, s \in \mathbb{Z}_{+}, x \in\left[0, p^{s}\right)
$$

and

$$
\begin{equation*}
\chi(x, z) \chi(y, z)=\chi(x \oplus y, z), \quad \chi(x, z) \overline{\chi(y, z)}=\chi(x \ominus y, z), \tag{2.3}
\end{equation*}
$$

if $x, y, z \in \mathbb{R}_{+}$and $x \oplus y$ is $p$-adic irrational. Thus, for fixed $x$ and $z$, equalities (2.3) hold for all $y \in \mathbb{R}_{+}$except countably many of them (see [9, Section 1.5]).

It is known also that Lebesgue measure is translation invariant on $\mathbb{R}_{+}$with respect to $p$-adic addition, and so we can write

$$
\int_{\mathbb{R}_{+}} f(x \oplus y) \mathrm{d} x=\int_{\mathbb{R}_{+}} f(x) \mathrm{d} x, \quad f \in L^{1}\left(\mathbb{R}_{+}\right)
$$

for all $y \in \mathbb{R}_{+}$(see [22, Section 1.3], [9, Section 6.1]).
The Walsh-Fourier transform of a function $f \in L^{1}\left(\mathbb{R}_{+}\right)$is defined by

$$
\widehat{f}(\omega)=\int_{\mathbb{R}_{+}} f(x) \overline{\chi(x, \omega)} \mathrm{d} x
$$

where $\chi(x, \omega)$ is given by (2.2). If $f \in L^{2}\left(\mathbb{R}_{+}\right)$and

$$
J_{a} f(\omega)=\int_{0}^{a} f(x) \overline{\chi(x, \omega)} \mathrm{d} x, \quad a>0
$$

then $\widehat{f}$ is the limit of $J_{a} f$ in $L^{2}\left(\mathbb{R}_{+}\right)$as $a \rightarrow \infty$. We say that a function $f: \mathbb{R}_{+} \mapsto \mathbb{C}$ is $W$ continuous at a point $x \in \mathbb{R}_{+}$if for every $\varepsilon>0$ there exists $\delta>0$ such that $|f(x \oplus y)-f(x)|<\varepsilon$ for $0<y<\delta$. For example, each Walsh polynomial is $W$-continuous (see [22, Section 9.2], [9, Section 2.3]).

Denote by $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ the inner product and the norm in $L^{2}\left(\mathbb{R}_{+}\right)$, respectively.
Proposition 1 (See [9, Chap. 6]). The following properties hold:
(a) if $f \in L^{1}\left(\mathbb{R}_{+}\right)$, then $\widehat{f}$ is a $W$-continuous function and $\widehat{f}(\omega) \rightarrow 0$ as $\omega \rightarrow \infty$;
(b) if both $f$ and $\widehat{f}$ belong to $L^{1}\left(\mathbb{R}_{+}\right)$and $f$ is $W$-continuous, then

$$
f(x)=\int_{\mathbb{R}_{+}} \widehat{f}(\omega) \chi(x, \omega) \mathrm{d} \omega \quad \text { for all } x \in \mathbb{R}_{+}
$$

(c) if $f, g \in L^{2}\left(\mathbb{R}_{+}\right)$, then $\langle f, g\rangle=\langle\widehat{f}, \widehat{g}\rangle$ (Parseval's relation).

Let $\mathcal{E}_{n}\left(\mathbb{R}_{+}\right)$be the space of $p$-adic entire functions of order $n$ on $\mathbb{R}_{+}$, that is, the set of functions which are constant on all $p$-adic intervals of range $n$. Then for every $f \in \mathcal{E}_{n}\left(\mathbb{R}_{+}\right)$ we have

$$
f(x)=\sum_{\alpha=0}^{\infty} f\left(\alpha p^{-n}\right) \mathbf{1}_{\left[\alpha p^{-n},(\alpha+1) p^{-n}\right)}(x), \quad x \in \mathbb{R}_{+}
$$

For example, the mask $m$ of Eq. (1.1) belongs to $\mathcal{E}_{n}\left(\mathbb{R}_{+}\right)$.
Proposition 2 ([9, Section 6.2]). The following properties hold:
(a) if $f \in L^{1}\left(\mathbb{R}_{+}\right) \cap \mathcal{E}_{n}\left(\mathbb{R}_{+}\right)$, then supp $\widehat{f} \subset\left[0, p^{n}\right]$;
(b) if $f \in L^{1}\left(\mathbb{R}_{+}\right)$and $\operatorname{supp} f \subset\left[0, p^{n}\right]$, then $\widehat{f} \in \mathcal{E}_{n}\left(\mathbb{R}_{+}\right)$.

Now we prove the following analogue of Theorem 1 in [8]:
Proposition 3. Let $\varphi \in L^{2}\left(\mathbb{R}_{+}\right)$be a compactly supported solution of equation (1.1) such that $\widehat{\varphi}(0)=1$. Then

$$
\sum_{\alpha=0}^{p^{n}-1} a_{\alpha}=1 \quad \text { and } \quad \operatorname{supp} \varphi \subset\left[0, p^{n-1}\right] .
$$

This solution is unique, is given by the formula

$$
\widehat{\varphi}(\omega)=\prod_{j=1}^{\infty} m\left(p^{-j} \omega\right)
$$

and possesses the following properties:
(1) $\widehat{\varphi}(k)=0$ for all $k \in \mathbb{N}$ (the modified Strang-Fix condition);
(2) $\sum_{k \in \mathbb{Z}_{+}} \varphi(x \oplus k)=1$ for almost all $x \in \mathbb{R}_{+}$(the partition of unity property).

Proof. Using the Walsh-Fourier transform, we have

$$
\begin{equation*}
\widehat{\varphi}(\omega)=m(\omega / p) \widehat{\varphi}(\omega / p) \tag{2.4}
\end{equation*}
$$

Observe that $w_{\alpha}(0)=\widehat{\varphi}(0)=1$. Hence, letting $\omega=0$ in (1.2) and (2.4), we obtain

$$
\sum_{\alpha=0}^{p^{n}-1} a_{\alpha}=1
$$

Further, let $s$ be the greatest integer such that

$$
\mu\{x \in[s-1, s) \mid \varphi(x) \neq 0\}>0,
$$

where $\mu$ is the Lebesgue measure on $\mathbb{R}_{+}$. Suppose that $s \geq p^{n-1}+1$. Choose an arbitrary $p$-adic irrational $x \in[s-1, s)$. Applying (2.1), we have

$$
\begin{equation*}
x=[x]+\{x\}=\sum_{j=1}^{k} x_{-j} p^{j-1}+\sum_{j=1}^{\infty} x_{j} p^{-j}, \tag{2.5}
\end{equation*}
$$

where $\{x\}>0, x_{-k} \neq 0, k=k(x) \geq n$. For any $\alpha \in\left\{0,1, \ldots, p^{n}-1\right\}$ we set $y^{(\alpha)}=p x \ominus \alpha$. Then

$$
y^{(\alpha)}=\sum_{j=1}^{k+1} y_{-j}^{(\alpha)} p^{j-1}+\sum_{j=1}^{\infty} y_{j}^{(\alpha)} p^{-j}
$$

where $y_{-k-1}^{(\alpha)}=x_{-k}$ and among the digits $y_{1}^{(\alpha)}, y_{2}^{(\alpha)}, \ldots$, there is a nonzero one. Therefore,

$$
\begin{equation*}
p x \ominus \alpha>p^{n} \quad \text { for a.e. } x \in[s-1, s) . \tag{2.6}
\end{equation*}
$$

Now assume that $s \leq p^{n}$. Then it is easy to see from (2.6) that $\varphi(p x \ominus \alpha)=0$ for a.e. $x \in[s-1, s)$. Therefore by (1.1) we get $\varphi(x)=0$ for a.e. $x \in[s-1, s)$, contrary to our choice of $s$. Thus $s \geq p^{n}+1$. Hence, if $x$ given by (2.5), then for any $\alpha \in\left\{0,1, \ldots, p^{n}-1\right\}$ we have

$$
p x \ominus \alpha>p(s-1)-\left(p^{n}-1\right) \geq 2(s-1)-(s-2)=s,
$$

where the first inequality is strong because $\{x\}>0$. As above, we conclude that $\varphi(x)=0$ for a.e. $x \in[s-1, s)$. Consequently, $s \leq p^{n-1}$ and $\operatorname{supp} \varphi \subset\left[0, p^{n-1}\right]$.

Let us prove that

$$
\begin{equation*}
\widehat{\varphi}(\omega)=\prod_{j=1}^{\infty} m\left(p^{-j} \omega\right) . \tag{2.7}
\end{equation*}
$$

We note that $\varphi$ belongs to $L^{1}\left(\mathbb{R}_{+}\right)$because it lies in $L^{2}\left(\mathbb{R}_{+}\right)$and has a compact support. Since $\operatorname{supp} \varphi \subset\left[0, p^{n-1}\right]$, by Proposition 2 we get $\widehat{\varphi} \in \mathcal{E}_{n-1}\left(\mathbb{R}_{+}\right)$. Also, by virtue of $\widehat{\varphi}(0)=1$, we obtain $\widehat{\varphi}(\omega)=1$ for all $\omega \in\left[0, p^{1-n}\right)$. On the other hand, $m(\omega)=1$ for all $\omega \in\left[0, p^{1-n}\right)$. Hence, for every positive integer $l$,

$$
\widehat{\varphi}(\omega)=\widehat{\varphi}\left(p^{-l-n} \omega\right) \prod_{j=1}^{l+n} m\left(p^{-j} \omega\right)=\prod_{j=1}^{\infty} m\left(p^{-j} \omega\right), \quad \omega \in\left[0, p^{l}\right) .
$$

Therefore, (2.7) is valid and a solution $\varphi$ is unique.
By Proposition 1, for any $k \in \mathbb{N}$ we have

$$
\widehat{\varphi}(k)=\widehat{\varphi}(k) \prod_{s=0}^{j-1} m\left(p^{s} k\right)=\widehat{\varphi}\left(p^{j} k\right) \rightarrow 0
$$

as $j \rightarrow \infty$ (since $\varphi \in L^{1}\left(\mathbb{R}_{+}\right)$and $m\left(p^{s} k\right)=1$ because $m(0)=1$ and $m$ is 1 -periodic). It follows that

$$
\begin{equation*}
\widehat{\varphi}(k)=0 \quad \text { for all } k \in \mathbb{N} . \tag{2.8}
\end{equation*}
$$

By the Poisson summation formula we get

$$
\sum_{k \in \mathbb{Z}_{+}} \varphi(x \oplus k)=\sum_{k \in \mathbb{Z}_{+}} \widehat{\varphi}(k) \chi(x, k) .
$$

Hence, since $\widehat{\varphi}(0)=1$, from (2.8) we obtain

$$
\sum_{k \in \mathbb{Z}_{+}} \varphi(x \oplus k)=1 \quad \text { for a.e. } x \in \mathbb{R}_{+}
$$

The proposition is proved.

A function $f \in L^{2}\left(\mathbb{R}_{+}\right)$is said to be stable if there exist positive constants $A$ and $B$ such that

$$
A\left(\sum_{\alpha=0}^{\infty}\left|a_{\alpha}\right|^{2}\right)^{1 / 2} \leq\left\|\sum_{\alpha=0}^{\infty} a_{\alpha} f(\cdot \ominus \alpha)\right\| \leq B\left(\sum_{\alpha=0}^{\infty}\left|a_{\alpha}\right|^{2}\right)^{1 / 2}
$$

for each sequence $\left\{a_{\alpha}\right\} \in \ell^{2}$. In other words, $f$ is stable if functions $f(\cdot \ominus k), k \in \mathbb{Z}_{+}$, form a Riesz system in $L^{2}\left(\mathbb{R}_{+}\right)$. We note also, that a function $f$ is stable in $L^{2}\left(\mathbb{R}_{+}\right)$with constants $A$ and $B$ if and only if

$$
\begin{equation*}
A \leq \sum_{k \in \mathbb{Z}_{+}}|\widehat{f}(\omega \ominus k)|^{2} \leq B \quad \text { for a.e. } \omega \in \mathbb{R}_{+} \tag{2.9}
\end{equation*}
$$

(the proof of this fact is quite similar to that of Theorem 1.1.7 in [21]).
We say that a function $g: \mathbb{R}_{+} \rightarrow \mathbf{C}$ has a periodic zero at a point $\omega \in \mathbb{R}_{+}$if $g(\omega \oplus k)=0$ for all $k \in \mathbb{Z}_{+}$.

Proposition 4 (cf. [8, Theorem 2]). For a compactly supported function $f \in L^{2}\left(\mathbb{R}_{+}\right)$the following statements are equivalent:
(a) $f$ is stable in $L^{2}\left(\mathbb{R}_{+}\right)$;
(b) $\left\{f(\cdot \ominus k) \mid k \in \mathbb{Z}_{+}\right\}$is a linearly independent system in $L^{2}\left(\mathbb{R}_{+}\right)$;
(c) $\widehat{f}$ does not have periodic zeros.

Proof. The implication (a) $\Rightarrow$ (b) follows from the well-known property of the Riesz systems (see, e.g., [21, Theorem 1.1.2]). Our next claim is that $f \in L^{1}\left(\mathbb{R}_{+}\right)$, since $f$ has compact support and $f \in L^{2}\left(\mathbb{R}_{+}\right)$. Let us choose a positive integer $n$ such that $\operatorname{supp} f \subset\left[0, p^{n-1}\right]$. Then by Proposition 2 we have $\widehat{f} \in \mathcal{E}_{n-1}\left(\mathbb{R}_{+}\right)$. Besides, if $k>p^{n-1}$, then

$$
\mu\left\{\operatorname{supp} f(\cdot \ominus k) \cap\left[0, p^{n-1}\right]\right\}=0
$$

(as above, $\mu$ denotes the Lebesgue measure on $\mathbb{R}_{+}$). Therefore, the linearly independence of the system $\left\{f(\cdot \ominus k) \mid k \in \mathbb{Z}_{+}\right\}$in $L^{2}\left(\mathbb{R}_{+}\right)$is equivalent to that for the finite system $\{f(\cdot \ominus k) \mid k=$ $\left.0,1, \ldots, p^{n-1}-1\right\}$. Further, if some vector $\left(a_{0}, \ldots, a_{p^{n-1}-1}\right)$ satisfies conditions

$$
\begin{equation*}
\sum_{\alpha=0}^{p^{n-1}-1} a_{\alpha} f(\cdot \ominus \alpha)=0 \quad \text { and } \quad\left|a_{0}\right|+\cdots+\left|a_{2^{n-1}-1}\right|>0 \tag{2.10}
\end{equation*}
$$

then using the Walsh-Fourier transform we obtain

$$
\widehat{f}(\omega) \sum_{\alpha=0}^{p^{n-1}-1} a_{\alpha} \overline{w_{\alpha}(\omega)}=0 \quad \text { for a.e. } \omega \in \mathbb{R}_{+}
$$

The Walsh polynomial

$$
w(\omega)=\sum_{\alpha=0}^{p^{n-1}-1} a_{\alpha} \overline{w_{\alpha}(\omega)}
$$

is not identically equal to zero; hence among $I_{s}^{(n-1)}, 0 \leq s^{\leq} \leq p^{n-1}-1$, there exists an interval (denote it by $I$ ) for which $w(I \oplus k) \neq 0, k \in \mathbb{Z}_{+}$. Since $\widehat{f} \in \mathcal{E}_{n-1}\left(\mathbb{R}_{+}\right)$, it follows that (2.10) holds if and only if there exists a $p$-adic interval $I$ of range $n-1$, such that $\widehat{f}(I \oplus k)=0$ for
all $k \in \mathbb{Z}_{+}$. Thus, (b) $\Leftrightarrow$ (c). It remains to prove that (c) $\Rightarrow$ (a). Suppose that $\widehat{f}$ does not have periodic zeros. Then

$$
F(\omega):=\sum_{k \in \mathbb{Z}_{+}}|\widehat{f}(\omega \ominus k)|^{2}, \quad \omega \in \mathbb{R}_{+}
$$

is positive and 1-periodic function. Moreover, since $\widehat{f} \in \mathcal{E}_{n-1}\left(\mathbb{R}_{+}\right)$, we see that $F$ is constant on each $I_{s}^{(n-1)}, 0 \leq s \leq p^{n-1}-1$. Hence (2.9) is satisfied and so Proposition 4 is established.

The following two propositions are proved in [6]:
Proposition 5. Let $\varphi \in L^{2}\left(\mathbb{R}_{+}\right)$. Then the system $\left\{\varphi(\cdot \ominus k) \mid k \in \mathbb{Z}_{+}\right\}$is orthonormal in $L^{2}\left(\mathbb{R}_{+}\right)$if and only if

$$
\sum_{k \in \mathbb{Z}_{+}}|\widehat{\varphi}(\omega \ominus k)|^{2}=1 \quad \text { for a.e. } \omega \in \mathbb{R}_{+} \text {. }
$$

Proposition 6. Let $\left\{V_{j}\right\}$ be the family of subspaces defined by (1.6) with given $\varphi \in L^{2}\left(\mathbb{R}_{+}\right)$. If $\left\{\varphi(\cdot \ominus k) \mid k \in \mathbb{Z}_{+}\right\}$is an orthonormal basis in $V_{0}$, then $\bigcap V_{j}=\{0\}$.

We shall use also the following
Proposition 7. Let

$$
m(\omega)=\sum_{\alpha=0}^{p^{n}-1} a_{\alpha} \overline{w_{\alpha}(\omega)}
$$

be a polynomial such that

$$
m(0)=1 \quad \text { and } \quad \sum_{l=0}^{p-1}|m(\omega \oplus l / p)|^{2}=1 \quad \text { for all } \omega \in \mathbb{R}_{+}
$$

Suppose $\varphi$ is a function defined by the Walsh-Fourier transform

$$
\widehat{\varphi}(\omega)=\prod_{j=1}^{\infty} m\left(p^{-j} \omega\right)
$$

Then the system $\left\{\varphi(\cdot \ominus k) \mid k \in \mathbb{Z}_{+}\right\}$is orthonormal in $L^{2}\left(\mathbb{R}_{+}\right)$if and only if $m$ satisfies the modified Cohen condition.

The proof of this proposition is similar to that of Theorem 6.3.1 in [3] (cf. [15, Theorem 2.1], [5, Proposition 3.3]).

## 3. Proof of the theorem

The next lemma gives a relation between stability and blocked sets.
Lemma 1. Let $\varphi$ be a p-refinable function in $L^{2}\left(\mathbb{R}_{+}\right)$such that $\widehat{\varphi}(0)=1$. Then $\varphi$ is not stable if and only if its mask $m$ has a blocked set.
Proof. Using Propositions 2 and 3, we have $\operatorname{supp} \varphi \subset\left[0, p^{n-1}\right)$ and $\widehat{\varphi} \in \mathcal{E}_{n-1}\left(\mathbb{R}_{+}\right)$. Suppose that the function $\varphi$ is not stable. As noted in the proof of Proposition 4, then there exists an interval $I=I_{s}^{(n-1)}$ consisting entirely of periodic zeros of the Walsh-Fourier transform $\widehat{\varphi}$ (and
each periodic zero $\omega \in[0,1)$ of $\widehat{\varphi}$ lies in some such $I)$. Thus, the set

$$
M_{0}=\left\{\omega \in[0,1) \mid \widehat{\varphi}(\omega+k)=0 \quad \text { for all } k \in \mathbb{Z}_{+}\right\}
$$

is a union of some intervals $I_{s}^{(n-1)}, 0 \leq s \leq p^{n-1}-1$. Since $\widehat{\varphi}(0)=1$, it follows that $M_{0}$ does not contain $I_{0}^{(n-1)}$. Furthermore, if $\omega \in M_{0}$, then by (2.4)

$$
m(\omega / p+k / p) \widehat{\varphi}(\omega / p+k / p)=0 \quad \text { for all } k \in \mathbb{Z}_{+}
$$

and hence $\omega / p+l / p \in M_{0} \cup$ Null $m$ for $l=0,1, \ldots, p-1$. Thus, if $\varphi$ is not stable, then $M_{0}$ is a blocked set for $m$.

Conversely, let $m$ possess a blocked set $M$. Then we will show that each element of $M$ is a periodic zero for $\widehat{\varphi}$ (and by Proposition $4 \varphi$ is not stable). Assume that there exist $\omega \in M$ and $k \in \mathbb{Z}_{+}$such that $\widehat{\varphi}(\omega+k) \neq 0$. Choose a positive integer $j$ for which $p^{-j}(\omega+k) \in\left[0, p^{1-n}\right)$ and, for every $r \in\{0,1, \ldots, j\}$, set

$$
u_{r}=\left[p^{-r}(\omega+k)\right], \quad v_{r}=\left\{p^{-r}(\omega+k)\right\}
$$

Further, let $u_{r} / p=l_{r} / p+s_{r}$, where $l_{r} \in\{0,1, \ldots, p-1\}$ and $s_{r} \in \mathbb{Z}_{+}$. It is clear that for all $r \in\{0,1, \ldots, j-1\}$

$$
u_{r+1}+v_{r+1}=\left(p^{-1} v_{r}+p^{-1} l_{r}\right)+s_{r}
$$

and hence $v_{r+1}=p^{-1}\left(v_{r}+l_{r}\right)$. From this it follows that if $v_{r} \in M$, then $v_{r+1} \in T_{p} M$. Besides, from the equalities

$$
\widehat{\varphi}(\omega+k)=\widehat{\varphi}\left(p^{-j}(\omega+k)\right) \prod_{r=1}^{j} m\left(p^{-r}(\omega+k)\right)=\widehat{\varphi}\left(v_{j}\right) \prod_{r=1}^{j} m\left(v_{r}\right)
$$

we see that all $v_{r} \notin$ Null $m$. Thus, if $v_{r} \in M$, then $v_{r+1} \in M$. Since $v_{0}=\omega \in M$, we conclude that $v_{j} \in M$. But this is impossible because $v_{j}=p^{-j}(\omega+k) \in\left[0, p^{1-n}\right)$ and $M \cap\left[0, p^{1-n}\right)=\emptyset$. This contradiction completes the proof of Lemma 1.

Corollary. If $\varphi$ is a p-refinable function in $L^{2}\left(\mathbb{R}_{+}\right)$such that $\widehat{\varphi}(0)=1$, then the system $\left\{\varphi(\cdot \ominus k) \mid k \in \mathbb{Z}_{+}\right\}$is linearly dependent if and only if the mask of $\varphi$ possesses a blocked set.

Lemma 2. Suppose that the mask of refinable equation (1.1) satisfies

$$
\begin{equation*}
m(0)=1 \quad \text { and } \quad \sum_{l=0}^{p-1}|m(\omega \oplus l / p)|^{2}=1 \quad \text { for all } \omega \in \mathbb{R}_{+} \tag{3.1}
\end{equation*}
$$

Then the function $\varphi$ given by

$$
\begin{equation*}
\widehat{\varphi}(\omega)=\prod_{j=1}^{\infty} m\left(p^{-j} \omega\right) \tag{3.2}
\end{equation*}
$$

is a solution of Eq. (1) and $\|\varphi\| \leq 1$.
Proof. The pointwise convergence of product in (3.2) follows from the fact that $m$ is equal to 1 on $\left[0, p^{1-n}\right.$ ) (and for any $\omega \in \mathbb{R}_{+}$only finitely many of the factors in (3.2) cannot be equal to 1). Denote by $g(\omega)$ the right part of (3.2). From (3.1) we see that $|m(\omega)| \leq 1$ for all $\omega \in \mathbb{R}_{+}$.

Therefore, for any $s \in \mathbb{N}$ we have

$$
|g(\omega)|^{2} \leq \prod_{j=1}^{s}\left|m\left(p^{-j} \omega\right)\right|^{2}
$$

and hence

$$
\begin{equation*}
\int_{0}^{p^{l}}|g(\omega)|^{2} \mathrm{~d} \omega \leq \int_{0}^{p^{l}} \prod_{j=1}^{s}\left|m\left(B^{-j} \omega\right)\right|^{2} \mathrm{~d} \omega=2^{s} \int_{0}^{1} \prod_{j=0}^{s-1}\left|m\left(B^{j} \omega\right)\right|^{2} \mathrm{~d} \omega \tag{3.3}
\end{equation*}
$$

Further, from the equalities

$$
m(\omega)=\sum_{\alpha=0}^{p^{n}-1} a_{\alpha} \overline{w_{\alpha}(\omega)}, \quad w_{\alpha}(\omega) \overline{w_{\beta}(\omega)}=w_{\alpha \ominus \beta}(\omega)
$$

it follows that

$$
\begin{equation*}
|m(\omega)|^{2}=\sum_{\alpha=0}^{p^{n}-1} c_{\alpha} w_{\alpha}(\omega) \tag{3.4}
\end{equation*}
$$

where the coefficients $c_{\alpha}$ may be expressed via $a_{\alpha}$. Now, we substitute (3.4) into the second equality of (3.1) and observe that if $\alpha$ is multiply to $p$, then

$$
\sum_{l=0}^{p-1} w_{\alpha}(l / p)=p
$$

and this sum is equal to 0 for the rest $\alpha$. As a result, we obtain $c_{0}=1 / p$ and $c_{\alpha}=0$ for nonzero $\alpha$, which are multiply to $p$. Hence,

$$
|m(\omega)|^{2}=\frac{1}{p}+\sum_{\alpha=0}^{p^{n-1}-1} \sum_{l=1}^{p-1} c_{p \alpha+l} w_{p \alpha+l}(\omega) .
$$

This gives

$$
\prod_{j=0}^{s-1}\left|m\left(p^{j} \omega\right)\right|^{2}=p^{-s}+\sum_{\gamma=1}^{\sigma(s)} b_{\gamma} w_{\gamma}(\omega), \quad \sigma(s) \leq s p^{n-1}(p-1)
$$

where each coefficient $b_{\gamma}$ equals to the product of some coefficients $c_{p \alpha+l}, l=1, \ldots, p-1$. Taking into account that

$$
\int_{0}^{1} w_{\gamma}(\omega) \mathrm{d} \omega=0, \quad \gamma \in \mathbb{N}
$$

we have

$$
\int_{0}^{1} \prod_{j=0}^{s-1}\left|m\left(p^{j} \omega\right)\right|^{2} \mathrm{~d} \omega=p^{-s}
$$

Substituting this into (3.3), we deduce

$$
\int_{0}^{p^{l}}|g(\omega)|^{2} \mathrm{~d} \omega \leq 1, \quad l \in \mathbb{N}
$$

which is due to the inequality

$$
\begin{equation*}
\int_{\mathbb{R}_{+}}|g(\omega)|^{2} \mathrm{~d} \omega \leq 1 \tag{3.5}
\end{equation*}
$$

Now, let $\varphi \in L^{2}\left(\mathbb{R}_{+}\right)$and $\widehat{\varphi}=g$. Then from (3.2) it follows that

$$
\widehat{\varphi}(\omega)=m\left(p^{-1} \omega\right) \widehat{\varphi}\left(p^{-1} \omega\right)
$$

and hence $\varphi$ satisfies (1.1). Moreover, from (3.5), by Proposition 1, we get $\|\varphi\| \leq 1$.
Lemma 3. Let $\varphi$ be a p-refinable function with a mask $m$ and let $\widehat{\varphi}(0)=1$. Then the system $\left\{\varphi(\cdot \ominus k) \mid k \in \mathbb{Z}_{+}\right\}$is orthonormal in $L^{2}\left(\mathbb{R}_{+}\right)$if and only if the mask $m$ has no blocked sets and satisfies

$$
\begin{equation*}
\sum_{l=0}^{p-1}|m(\omega \oplus l / p)|^{2}=1 \quad \text { for all } \omega \in \mathbb{R}_{+} \tag{3.6}
\end{equation*}
$$

Proof. If the system $\left\{\varphi(\cdot \ominus k) \mid k \in \mathbb{Z}_{+}\right\}$is orthonormal in $L^{2}\left(\mathbb{R}_{+}\right)$, then (3.6) holds (see [6]) and a lack of blocked sets follows from Lemma 1 and Proposition 4. Conversely, suppose that $m$ has no blocked sets and (3.6) is fulfilled. Then we set

$$
\begin{equation*}
\Phi(\omega):=\sum_{k \in \mathbb{Z}_{+}}|\widehat{\varphi}(\omega \ominus k)|^{2} \tag{3.7}
\end{equation*}
$$

Obviously, $\Phi$ is nonnegative and 1-periodic function. According to Proposition 5, it suffices to show that $\Phi(\omega) \equiv 1$. Let

$$
a=\inf \{\Phi(\omega) \mid \omega \in[0,1)\}
$$

From Propositions 2 and 3 it follows that $\Phi$ is constant on each $I_{s}^{(n-1)}, 0 \leq s \leq p^{n-1}-1$. Moreover, if $\Phi$ vanishes on one of these intervals, then $\widehat{\varphi}$ has a periodic zero, and hence $\varphi$ is unstable. On account of Proposition 4 and Lemma 1, this assertion contradicts a lack of blocked sets for $m$. Hence, $a$ is positive. Also, by the modified Strang-Fix condition (see Proposition 3), we have $\Phi(0)=1$. Thus, $0<a \leq 1$.

Further, by (2.4) and (3.7) we obtain

$$
\begin{equation*}
\Phi(\omega)=\sum_{l=0}^{p-1}\left|m\left(p^{-1} \omega \ominus p^{-1} l\right)\right|^{2} \Phi\left(p^{-1} \omega \ominus p^{-1} l\right) \tag{3.8}
\end{equation*}
$$

Now, let $M_{a}=\{\Phi(\omega)=a \mid \omega \in[0,1)\}$. In the case $0<a<1$ from (3.6) and (3.8) we see that for any $\omega \in M_{a}$ the elements $p^{-1} \omega \ominus p^{-1} l, l=0,1, \ldots, p-1$, belong either $M_{a}$ or Null $m$. Therefore, $M_{a}$ is a blocked set, which contradicts the assumption. Thus, $\Phi(\omega) \geq 1$ for all $\omega \in[0,1)$. Hence from the equalities

$$
\int_{0}^{1} \Phi(\omega) \mathrm{d} \omega=\sum_{k \in \mathbb{Z}_{+}} \int_{k}^{k+1}|\widehat{\varphi}(\omega)|^{2} \mathrm{~d} \omega=\int_{\mathbb{R}_{+}}|\widehat{\varphi}(\omega)|^{2} \mathrm{~d} \omega=\|\varphi\|^{2}
$$

by Lemma 2 we have

$$
\int_{0}^{1} \Phi(\omega) \mathrm{d} \omega=1
$$

Once again applying the inequality $\Phi(\omega) \geq 1$ and using the fact that $\Phi$ is constant on each $I_{s}^{(n-1)}, 0 \leq s \leq p^{n-1}-1$, we conclude that $\Phi(\omega) \equiv 1$.

Proof of the theorem. Suppose that $m$ satisfies condition (b) or (c). Then, by Proposition 7 and Lemma 3, the system $\left\{\varphi(\cdot \ominus k) \mid k \in \mathbb{Z}_{+}\right\}$is orthonormal in $L^{2}\left(\mathbb{R}_{+}\right)$. Let us define the subspaces $V_{j}, j \in \mathbb{Z}_{+}$by the formula (1.6). By Proposition 6 we have $\bigcap V_{j}=\{0\}$. The embeddings $V_{j} \subset V_{j+1}$ follow from the fact that $\varphi$ satisfies the Eq. (1.1). The equality

$$
\overline{\bigcup V_{j}}=L^{2}\left(\mathbb{R}_{+}\right)
$$

is proved in just the same way as (2.14) in [5] (cf. [3, Section 5.3]). Thus, the implications (b) $\Rightarrow$ (a) and (c) $\Rightarrow$ (a) are true. The inverse implications follow directly from Proposition 7 and Lemma 3.

## 4. On matrix extension and $\boldsymbol{p}$-wavelet construction

Following the standard approach (e.g., $[11,18]$ ), we reduce the problem of $p$-wavelet decomposition to the problem of matrix extension. More precisely, we shall discuss the following procedure to construct orthogonal p-wavelets in $L^{2}\left(\mathbb{R}_{+}\right)$:

1. Choose numbers $b_{s}$ such that equalities (1.5) are true.
2. Compute $a_{\alpha}$ by (1.4) and verify that the mask

$$
m_{0}(\omega)=\sum_{\alpha=0}^{p^{n}-1} a_{\alpha} \overline{w_{\alpha}(\omega)}
$$

has no blocked sets.
3. Find

$$
m_{l}(\omega)=\sum_{\alpha=0}^{p^{n}-1} a_{\alpha}^{(l)} \overline{w_{\alpha}(\omega)}, \quad 1 \leq l \leq p-1
$$

such that $\left(m_{l}(\omega+k / p)\right)_{l, k=0}^{p-1}$ is an unitary matrix.
4. Define $\psi_{1}, \ldots, \psi_{p-1}$ by the formula

$$
\begin{equation*}
\psi_{l}(x)=p \sum_{\alpha=0}^{p^{n}-1} a_{\alpha}^{(l)} \varphi(p x \ominus \alpha), \quad 1 \leq l \leq p-1 \tag{4.1}
\end{equation*}
$$

In the $p=2$ case, one can choose $a_{\alpha}^{(1)}=(-1)^{\alpha} a_{\alpha \oplus 1}$ for $0 \leq \alpha \leq 2^{n}-1$ (and $a_{\alpha}^{(1)}=0$ for the rest $\alpha$ ). Then $m_{1}(\omega)=-w_{1}(\omega) \overline{m_{0}(\omega \oplus 1 / 2)}$, the matrix

$$
\left(\begin{array}{ll}
m_{0}(\omega) & m_{0}(\omega \oplus 1 / 2) \\
m_{1}(\omega) & m_{1}(\omega \oplus 1 / 2)
\end{array}\right)
$$

is unitary and, as in [8], we obtain

$$
\psi(x)=2 \sum_{\alpha=0}^{2^{n}-1}(-1)^{\alpha} \bar{a}_{\alpha \oplus 1} \varphi(2 x \ominus \alpha)
$$

In particular, if $n=1$ and $a_{0}=a_{1}=1 / 2$, then $\psi$ is the classical Haar wavelet.
In the $p>2$ case, we take the coefficients $a_{\alpha}$ as in Step 2 (so that $b_{s}$ satisfy (1.5) and $m_{0}$ has no blocked sets). Then

$$
\begin{equation*}
\sum_{\alpha=0}^{p^{n}-1}\left|a_{\alpha}\right|^{2}=\frac{1}{p} \tag{4.2}
\end{equation*}
$$

In fact, Parseval's relation for the discrete transforms (1.3) and (1.4) can be written as

$$
\sum_{\alpha=0}^{p^{n}-1}\left|a_{\alpha}\right|^{2}=\frac{1}{p^{n}} \sum_{\alpha=0}^{p^{n}-1}\left|b_{\alpha}\right|^{2}
$$

Therefore (4.2) follows from (1.5). Now we define

$$
A_{0 k}(z)=\sum_{l=0}^{p^{n-1}-1} a_{k+p} z^{l}, \quad 0 \leq k \leq p-1,
$$

and introduce the polynomials $A_{l k}(z), \operatorname{deg} A_{l k} \leq p^{n-1}-1$, such that

$$
\begin{equation*}
m_{l}(\omega)=\sum_{k=0}^{p-1} \overline{w_{k}(\omega)} A_{l k}\left(\overline{w_{p}(\omega)}\right), \quad 1 \leq l \leq p-1 \tag{4.3}
\end{equation*}
$$

It follows immediately that

$$
\begin{equation*}
M(\omega)=A\left(\overline{w_{p}(\omega)}\right) W(\omega) \tag{4.4}
\end{equation*}
$$

where $M(\omega):=\left(m_{l}(\omega+k / p)\right)_{l, k=0}^{p-1}, A(z):=\left(A_{l k}(z)\right)_{l, k=0}^{p-1}$, and $W(\omega):=\left(\overline{w_{l}(\omega+k / p)}\right)_{l, k=0}^{p-1}$. The matrix $p^{-1 / 2} W(\omega)$ is unitary. Thus, by (4.4), unitarity of $M(\omega)$ is equivalent to that of the matrix $p^{-1 / 2} A(z)$ with $z=\overline{w_{p}(\omega)}$. From this we claim that Step 3 of the procedure can be realized by some modification of the algorithm for matrix extension suggested by Lawton, Lee and Shen in [18] (see also [2, Theorem 2.1]).

We illustrate the described procedure by the following examples.

## Example 5. Let

$$
m_{0}(\omega)=\frac{1}{p} \sum_{\alpha=0}^{p-1} \overline{w_{\alpha}(\omega)}
$$

so that $a_{0}=\cdots=a_{p-1}=1 / p$. Then, as in Example 1, we have $\varphi=\mathbf{1}_{\left[0, p^{n-1}\right)}$. Setting

$$
m_{l}(\omega)=\frac{1}{p} \sum_{\alpha=0}^{p-1} \varepsilon_{p}^{l \alpha} \overline{w_{\alpha}(\omega)}, \quad 1 \leq l \leq p-1
$$

we observe that $\left(m_{l}(\omega+k / p)\right)_{l, k=0}^{p-1}$ is unitary for all $\omega \in[0,1)$. Indeed, the constant matrix $p^{-1}\left(\varepsilon_{p}^{l k}\right)_{l, k=0}^{p-1}$ may be taken as $A(z)$ in (4.4). Therefore we obtain from (4.1)

$$
\psi_{l}(x)=\sum_{\alpha=0}^{p-1} \varepsilon_{p}^{l \alpha} \varphi(p x \ominus \alpha), \quad 1 \leq l \leq p-1
$$

Note that the similar wavelets in the space $L^{2}\left(\mathbb{Q}_{p}\right)$ were introduced by Kozyrev in [13]; in connection with these wavelets see also [1, p.450] and Example 4.1 in [12].

Example 6. Let $p=3, n=2$. As in Example 3, we take $a, b, c, \alpha, \beta, \gamma$ such that

$$
|a|^{2}+|b|^{2}+|c|^{2}=|\alpha|^{2}+|\beta|^{2}+|\gamma|^{2}=1
$$

and then define $a_{0}, a_{1}, \ldots, a_{8}$ using (1.4). In this case we have

$$
A_{00}(z)=a_{0}+a_{3} z+a_{6} z^{2}, \quad A_{01}(z)=a_{1}+a_{4} z+a_{7} z^{2}, \quad A_{02}(z)=a_{2}+a_{5} z+a_{8} z^{2}
$$

Now, we require

$$
\begin{equation*}
a \neq 0, \quad \alpha=\bar{a}, \quad a \bar{\alpha}+b \bar{\beta}+c \bar{\gamma}=\bar{a} . \tag{4.5}
\end{equation*}
$$

In particular, for $0<a<1$ we can choose numbers $\theta$, $t$ such that

$$
\cos (\theta-t)=\frac{a-a^{2}}{1-a^{2}}
$$

and then set $\alpha=a, r=\sqrt{1-a^{2}}, \beta=r \cos \theta, \gamma=r \sin \theta, b=r \cos t, c=r \sin t$.
Under our assumptions the mask $m_{0}$ has no blocked sets (see Example 3). Moreover, it follows from (4.2) and (4.5) that

$$
\left|A_{00}(z)\right|^{2}+\left|A_{01}(z)\right|^{2}+\left|A_{02}(z)\right|^{2}=\frac{1}{3}
$$

for all $z$ on the unit circle $\mathbb{T}$. To see this, note that by a direct calculation

$$
\begin{aligned}
& \left|A_{00}(z)\right|^{2}+\left|A_{01}(z)\right|^{2}+\left|A_{02}(z)\right|^{2}=\sum_{\alpha=0}^{8}\left|a_{\alpha}\right|^{2}+2 \operatorname{Re}\left[\left(a_{0} \bar{a}_{3}+a_{1} \bar{a}_{4}+a_{2} \bar{a}_{5}\right) z\right] \\
& \quad+2 \operatorname{Re}\left[\left(a_{0} \bar{a}_{6}+a_{1} \bar{a}_{7}+a_{2} \bar{a}_{8}\right) z^{2}\right]+2 \operatorname{Re}\left[\left(a_{3} \bar{a}_{6}+a_{4} \bar{a}_{7}+a_{5} \bar{a}_{8}\right) z \bar{z}^{2}\right.
\end{aligned}
$$

where

$$
\begin{aligned}
& 27\left(a_{0} \bar{a}_{3}+a_{1} \bar{a}_{4}+a_{2} \bar{a}_{5}\right)=a+\alpha+(\bar{\alpha}+a \bar{\alpha}+b \bar{\beta}+c \bar{\gamma}) \varepsilon_{3}+(\bar{a}+\bar{a} \alpha+\bar{b} \beta+\bar{c} \gamma) \varepsilon_{3}^{2}, \\
& 27\left(a_{0} \bar{a}_{6}+a_{1} \bar{a}_{7}+a_{2} \bar{a}_{8}\right)=a+\alpha+(\bar{a}+\bar{a} \alpha+\bar{b} \beta+\bar{c} \gamma) \varepsilon_{3}+(\bar{\alpha}+a \bar{\alpha}+b \bar{\beta}+c \bar{\gamma}) \varepsilon_{3}^{2}, \\
& 27\left(a_{3} \bar{a}_{6}+a_{4} \bar{a}_{7}+a_{5} \bar{a}_{8}\right)=2 \varepsilon_{3} \operatorname{Re} a+2 \varepsilon_{3}^{2} \operatorname{Re} \alpha+2 \operatorname{Re}(a \bar{\alpha}+b \bar{\beta}+c \bar{\gamma}) .
\end{aligned}
$$

Further, if

$$
\alpha_{0}=\sqrt{3}\left(a_{0}, a_{1}, a_{2}\right), \quad \alpha_{1}=\sqrt{3}\left(a_{3}, a_{4}, a_{5}\right), \quad \alpha_{2}=\sqrt{3}\left(a_{6}, a_{7}, a_{8}\right)
$$

then

$$
\left|\alpha_{0}\right|^{2}+\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}=1, \quad\left\langle\alpha_{0}, \alpha_{1}\right\rangle=\left\langle\alpha_{0}, \alpha_{2}\right\rangle=\left\langle\alpha_{1}, \alpha_{2}\right\rangle=0
$$

where $\langle\cdot, \cdot\rangle$ is the inner product in $\mathbb{C}^{3}$. It is clear that

$$
\alpha_{0}+\alpha_{1} z+\alpha_{2} z^{2}=\sqrt{3}\left(A_{00}(z), A_{01}(z), A_{02}(z)\right)
$$

Let $P_{2}$ be the orthogonal projection onto $\alpha_{2}$, i.e.,

$$
P_{2} w=\frac{\left\langle w, \alpha_{2}\right\rangle}{\left\langle\alpha_{2}, \alpha_{2}\right\rangle} \alpha_{2}, \quad w \in \mathbb{C}^{3}
$$

Then we have

$$
\begin{aligned}
& \left(I-P_{2}+z^{-1} P_{2}\right)\left(\alpha_{0}+\alpha_{1} z+\alpha_{2} z^{2}\right) \\
& \quad=\left(I-P_{2}\right) \alpha_{0}+P_{2} \alpha_{1}+z\left(P_{2} \alpha_{2}+\left(I-P_{2}\right) \alpha_{1}\right)=: \beta_{0}+\beta_{1} z
\end{aligned}
$$

One now verifies that

$$
\left|\beta_{0}\right|^{2}+\left|\beta_{1}\right|^{2}=1, \quad\left\langle\beta_{0}, \beta_{1}\right\rangle=0
$$

Furthermore, if $P_{1}$ is the orthogonal projection onto $\beta_{1}$, then

$$
\left(I-P_{1}+z^{-1} P_{1}\right)\left(\beta_{0}+\beta_{1} z\right)=\left(I-P_{1}\right) \beta_{0}+P_{1} \beta_{1}=: \gamma_{0}
$$

By the Gram-Schmidt orthogonalization, we can find an unitary matrix $\Gamma_{0}$ once the first row of this matrix is the unit vector $\gamma_{0}$. Then we set

$$
\Gamma_{1}(z)=\left(I-P_{1}+z P_{1}\right) \Gamma_{0} \quad \text { and } \quad \Gamma_{2}(z)=\left(I-P_{2}+z P_{2}\right) \Gamma_{1}(z)
$$

The first row of $\Gamma_{2}(z)$ coincides with $\alpha_{0}+\alpha_{1} z+\alpha_{2} z^{2}$. Putting

$$
\left(A_{l k}(z)\right)_{l, k=0}^{2}=\frac{1}{\sqrt{3}} \Gamma_{2}(z)
$$

we see that $m_{1}$ and $m_{2}$ can be defined as follows:

$$
m_{l}(\omega)=\sum_{k=0}^{2} \overline{w_{k}(\omega)} A_{l k}\left(\overline{w_{3}(\omega)}\right)=\sum_{\alpha=0}^{8} a_{\alpha}^{(l)} \overline{w_{\alpha}(\omega)}, \quad l=1,2 .
$$

Finally, we find

$$
\psi_{l}(x)=3 \sum_{\alpha=0}^{8} a_{\alpha}^{(l)} \varphi(3 x \ominus \alpha), \quad l=1,2 .
$$

Note that for the space $L^{2}\left(\mathbb{Q}_{p}\right)$ the corresponding wavelets were introduced recently in [12].

## 5. Adapted $p$-wavelet approximation

Suppose that a $p$-refinable function $\varphi$ generates a $p$-MRA in $L^{2}\left(\mathbb{R}_{+}\right)$and subspaces $V_{j}$ are given by (1.6). For each $j \in \mathbb{Z}$ denote by $P_{j}$ the orthogonal projection of $L^{2}\left(\mathbb{R}_{+}\right)$onto $V_{j}$. Given $f$ in $L^{2}\left(\mathbb{R}_{+}\right)$it is naturally to choose parameters $b_{s}$ in (1.5) such that the approximation method $f \approx P_{j} f$ will be optimal. If $f$ belongs to some class $\mathcal{M}$ in $L^{2}\left(\mathbb{R}_{+}\right)$then it is possible to seek the parameters $b_{s}$, which minimize for some fixed $j$ the quantity

$$
\sup \left\{\left\|f-P_{j} f\right\| \mid f \in \mathcal{M}\right\}
$$

and to study the behavior of this quantity as $j \rightarrow+\infty$. Also, it is very interesting investigate $p$-wavelet approximation in the $p$-adic Hardy spaces (cf. [10,14]).

By analogy with [23] we discuss here another approach to the problem on optimization of the approximation method $f \approx P_{j} f$. For every $j \in \mathbb{Z}$ denote by $W_{j}$ the orthogonal complement of $V_{j}$ in $V_{j+1}$ and let $Q_{j}$ be the orthogonal projection of $L^{2}\left(\mathbb{R}_{+}\right)$to $W_{j}$. Since $\left\{V_{j}\right\}$ is a $p$-MRA, for any $f \in L^{2}\left(\mathbb{R}_{+}\right)$we have

$$
f=\sum_{j} Q_{j} f=P_{0} f+\sum_{j \geq 0} Q_{j} f
$$

and

$$
\lim _{j \rightarrow+\infty}\left\|f-P_{j} f\right\|=0, \quad \lim _{j \rightarrow-\infty}\left\|P_{j} f\right\|=0
$$

It is easily seen, that

$$
P_{j} f=Q_{j-1} f+Q_{j-2} f+\cdots+Q_{j-s} f+P_{j-s} f, \quad j \in \mathbb{Z}, s \in \mathbb{N}
$$

The equality $V_{j}=V_{j-1} \oplus W_{j-1}$ means that $W_{j-1}$ contains the "details" which are necessary to get over the $(j-1)$ th level of approximation to the more exact $j$ th level. Since

$$
\left\|P_{j} f\right\|^{2}=\left\|P_{j-1} f\right\|^{2}+\left\|Q_{j-1} f\right\|^{2}
$$

it is natural to choose the parameters $b_{s}$ to maximize $\left\|P_{j-1} f\right\|$ (or, equivalently, to minimize $\left\|Q_{j-1} f\right\|$ ). To this end let us write Eq. (1.1) in the form

$$
\varphi(x)=\sqrt{p} \sum_{\alpha=0}^{p^{n}-1} \tilde{a}_{\alpha} \varphi\left(p x \ominus h_{\alpha}\right)
$$

where $\tilde{a}_{\alpha}=\sqrt{p} a_{\alpha}$. Putting $\varphi_{j}(x)=p^{j / 2} \varphi\left(p^{j} x\right)$, we have

$$
\begin{equation*}
\varphi_{j-1}(x)=\sum_{\alpha=0}^{p^{n}-1} \tilde{a}_{\alpha} \varphi_{j}\left(x \ominus p^{-j} \alpha\right) \tag{5.1}
\end{equation*}
$$

where $\varphi_{j}\left(x \ominus p^{-j} k\right)=\varphi_{j, k}(x)$. Further, given $f \in L^{2}\left(\mathbb{R}_{+}\right)$we set

$$
f(j, k):=\left\langle f, \varphi_{j, k}\right\rangle=\int_{\mathbb{R}} f(x) \overline{\varphi_{j}\left(x \ominus p^{-j} k\right)} \mathrm{d} x
$$

Applying (5.1), we obtain

$$
\begin{aligned}
f(j-1, k) & =\int_{\mathbb{R}_{+}} f(x) \overline{\varphi_{j-1}\left(x \ominus p^{-j+1} k\right)} \mathrm{d} x \\
& =\sum_{\alpha=0}^{p^{n}-1} \overline{\tilde{a}}_{\alpha} \int_{\mathbb{R}_{+}} f(x) \overline{\varphi_{j}\left(x \ominus p^{-j}(p k \oplus \alpha)\right)} \mathrm{d} x
\end{aligned}
$$

and hence

$$
\begin{equation*}
f(j-1, k)=\sum_{\alpha=0}^{p^{n}-1} \overline{\tilde{a}}_{\alpha} f(j, p k \oplus \alpha) \tag{5.2}
\end{equation*}
$$

Since

$$
P_{j} f=\sum_{k \in \mathbb{Z}_{+}} f(j, k) \varphi_{j, k},
$$

we see from (5.2) that

$$
\begin{align*}
\left\|P_{j-1} f\right\|^{2} & =\sum_{k \in \mathbb{Z}_{+}}|f(j-1, k)|^{2}=\sum_{k \in \mathbb{Z}_{+}}\left|\sum_{\alpha=0}^{p^{n}-1} \overline{\tilde{a}}_{\alpha} f(j, p k \oplus \alpha)\right|^{2} \\
& =\sum_{k \in \mathbb{Z}_{+}}\left(\sum_{\alpha, \beta=0}^{p^{n}-1} \overline{\tilde{a}}_{\alpha} \tilde{a}_{\beta} f(j, p k \oplus \alpha) \overline{f(j, p k \oplus \beta)}\right) \tag{5.3}
\end{align*}
$$

For $0 \leq \alpha, \beta \leq p^{n}-1$ we let

$$
F_{\alpha, \beta}(j):=\sum_{k \in \mathbb{Z}_{+}} f(j, p k \oplus \alpha) \overline{f(j, p k \oplus \beta)}
$$

Then $F_{\beta, \alpha}(j)=\bar{F}_{\alpha, \beta}(j)$ and (5.3) implies

$$
\begin{equation*}
\left\|P_{j-1} f\right\|^{2}=\sum_{\alpha, \beta=0}^{p^{n}-1} F_{\alpha, \beta}(j) \overline{\tilde{a}}_{\alpha} \tilde{a}_{\beta} \tag{5.4}
\end{equation*}
$$

Denote by $\mathcal{U}(p, n)$ the set of vectors $u=\left(u_{0}, u_{1}, \ldots, u_{p^{n}-1}\right)$ such that

$$
u_{0}=1, \quad u_{j}=0 \quad \text { for } j \in\left\{p^{n-1}, 2 p^{n-1}, \ldots,(p-1) p^{n-1}\right\}
$$

and

$$
\sum_{l=0}^{p-1}\left|u_{l p^{n-1}+j}\right|^{2}=1 \quad \text { for } j \in\left\{1,2, \ldots, p^{n-1}-1\right\}
$$

For every $u=\left(u_{0}, u_{1}, \ldots, u_{p^{n}-1}\right)$ in $\mathcal{U}(p, n)$ we define $a_{\alpha}(u)$ by the formulas

$$
a_{\alpha}(u)=\frac{1}{p^{n}} \sum_{s=0}^{p^{n}-1} u_{s} w_{\alpha}\left(s / p^{n}\right), \quad 0 \leq \alpha \leq p^{n}-1
$$

Fix a positive integer $j_{0}$. If a vector $u^{*}$ is a solution of the extremal problem

$$
\begin{equation*}
\sum_{\alpha, \beta=0}^{p^{n}-1} F_{\alpha, \beta}\left(j_{0}\right) \overline{a_{\alpha}(u)} a_{\beta}(u) \rightarrow \max , \quad u \in \mathcal{U}(p, n) \tag{5.5}
\end{equation*}
$$

then $\varphi_{j_{0}-1}^{*}$ is defined by

$$
\varphi_{j_{0}-1}^{*}(x)=\sum_{\alpha=0}^{p^{n}-1} a_{\alpha}\left(u^{*}\right) \varphi_{j_{0}}\left(x \ominus p^{-j_{0}} \alpha\right)
$$

It is seen from (5.4) and (5.5) that $\left\|P_{j}^{*} f\right\| \geq\left\|P_{j} f\right\|$ for $j=j_{0}-1$. Now, if the mask of $\varphi_{j_{0}-1}^{*}$ has no blocked sets, then $\varphi_{j_{0}-2}^{*}$ is constructed by $\varphi_{j_{0}-1}^{*}$ and so on. Finally, we fix $s$ and for each
$j \in\left\{j_{0}-1, \ldots, j_{0}-s\right\}$ replace $P_{j} f$ by the orthogonal projection $P_{j}^{*} f$ of $f$ to the subspace

$$
V_{j}^{*}=\operatorname{clos}_{L^{2}\left(\mathbb{R}_{+}\right)} \operatorname{span}\left\{\varphi_{j, k}^{*} \mid k \in \mathbb{Z}_{+}\right\}
$$

The effectiveness of this method of adaptation can be illustrated by numerical examples in terms (cf. [20]) of the entropy estimates.

## References

[1] J.J. Benedetto, R.L. Benedetto, A wavelet theory for local fields and related groups, J. Geom. Anal. 14 (2004) 423-456.
[2] O. Bratteli, P.E.T. Jorgensen, Wavelet filters and infinite-dimensional unitary groups, in: Deng Donggao, et al. (Eds.), Wavelet Analysis and Its Applications, Proc. Int. Conf., Guangzhou, China, November 15-20, 1999, AMS/IP Stud. Adv. Math. 25 (2002) 35-65.
[3] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
[4] S. Durand, $N$-band filtering and nonredundant directional wavelets, Appl. Comput. Harmon. Anal. 22 (2007) 124-139.
[5] Yu.A. Farkov, Orthogonal wavelets with compact support on locally compact Abelian groups, Izv. Ross. Akad. Nauk. Ser. Mat. 69 (3) (2005) 193-220; English transl.; Izv. Math. 69 (3) (2005) 623-650.
[6] Yu.A. Farkov, Orthogonal p-wavelets on $\mathbb{R}_{+}$, in: Wavelets and Splines, St. Petersburg University Press, St. Petersburg, 2005, pp. 4-26.
[7] Yu.A. Farkov, Biorthogonal dyadic wavelets on $\mathbb{R}_{+}$, Uspekhi Math. Nauk 52 (6) (2007) 189-190; English transl.; Russian Math. Surveys 52 (6) (2007).
[8] Yu.A. Farkov, V.Yu. Protasov, Dyadic wavelets and refinable functions on a half-line, Mat. Sb. 197 (10) (2006) 129-160; English transl.; Sb. Math. 197 (2006) 1529-1558.
[9] B.I. Golubov, A.V. Efimov, V.A. Skvortsov, Walsh Series Transforms, Nauka, Moscow, 1987; English transl., Kluwer, Dordrecht, 1991.
[10] T. Hytönen, Vector-valued wavelets and the Hardy space $H^{1}\left(\mathbb{R}^{n}, X\right)$, Studia Math. 172 (2006) 125-147.
[11] R.Q. Jia, Z.W. Shen,Multiresolution,wavelets, Proc. Edinb. Math. Soc. 37 (1994) 271-300.
[12] A.Yu. Khrennikov, V.M. Shelkovich, M. Skopina, p-adic refinable functions and MRA-based wavelets, J. Approx. Theory (accepted for publication); arXiv:0711.2820v1 [math.GM] 18 Nov 2007.
[13] S.V. Kozyrev, Wavelet theory as $p$-adic spectral analysis, Izvestiya RAN : Ser. Mat. 66 (2) (2002) 149-158; English transl.; Izv. Math. 66 (2) (2002).
[14] G. Kyriazis, Wavelet coefficients measuring smoothness in $H^{p}\left(\mathbb{R}^{d}\right)$, Appl. Comput. Harmon. Anal. 3 (1996) 100-119.
[15] W.C. Lang, Orthogonal wavelets on the Cantor dyadic group, SIAM J. Math. Anal. 27 (1996) 305-312.
[16] W.C. Lang, Wavelet analysis on the Cantor dyadic group, Houston J. Math. 24 (1998) 533-544.
[17] W.C. Lang, Fractal multiwavelets related to the Cantor dyadic group, Int. J. Math. Math. Sci. 21 (1998) 307-317.
[18] W. Lawton, S.L. Lee, Zuowei Shen, An algorithm for matrix extension and wavelet construction, Math. Comput. 65 (1996) 723-737.
[19] V.N. Malozemov, S.M. Masharskii, Generalized wavelet bases related to the discrete Vilenkin-Chrestenson transform, Algebra i Analiz 13 (2001) 111-157. English transl.; St. Petersburg Math. J. 13 (2002) 75-106.
[20] M. Nielsen, D.-X. Zhou, Mean size of wavelet packets, Appl. Comput. Harmon. Anal. 13 (2002) 22-34.
[21] I.Ya. Novikov, V.Yu. Protasov, M.A. Skopina, Wavelet Theory, FIZMATLIT, Moscow, 2006 (in Russian).
[22] F. Schipp, W.R. Wade, P. Simon, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol/New York, 1990.
[23] Bl. Sendov, Adapted multiresolution analysis, in: L. Leindler, F. Schipp, J. Szabados (Eds.) Function, Series, Operators, Budapest, 2002, pp. 23-38.
[24] N.Ya. Vilenkin, A class of complete orthonormal series, Izv. Akad. Nauk SSSR, Ser. Mat. 11 (1947) 363-400; English transl.; Amer. Math. Soc. Transl. Ser. 228 (1963) 1-35.


[^0]:    E-mail address: farkov@list.ru.

    0021-9045/\$ - see front matter © 2008 Elsevier Inc. All rights reserved.
    doi:10.1016/j.jat.2008.10.003

