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Abstract

For any integers p,n > 2 necessary and sufficient conditions are given for scaling filters with p”
many terms to generate a p-multiresolution analysis in LZ(R4). A method for constructing orthogonal
compactly supported p-wavelets on R is described. Also, an adaptive p-wavelet approximation in L2 R4+)
is considered.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In the wavelet literature, there is some interest in the study of compactly supported
orthonormal scaling functions and wavelets with an arbitrary dilation factor p € N, p > 2
(see, e.g., [3, Section 10.2], [21, Section 2.4], [4, and references therein]). Such wavelets can
have very small support and multifractal structure, features which may be important in signal
processing and numerical applications. In this paper we study compactly supported orthogonal
p-wavelets related to the generalized Walsh functions {w;}. There are two ways of considering
these functions; either they may be defined on the positive half-line R, = [0, 00), or, following
Vilenkin [24], they may be identified with the characters of the locally compact Abelian group
G, which is a weak direct product of a countable set of the cyclic groups of order p. The classical
Walsh functions correspond to the case p = 2, while the group G is isomorphic to the Cantor
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dyadic group C (see [22,9]). Orthogonal compactly supported wavelets on the group C (and
relevant wavelets on R ) are studied in [15-17,8]. Decimation by an integer different from 2 is
discussed in [5,6], but construction for a general p is not completely treated. Here we review
some of the elements of that construction on R and give an approach to the p > 2 case in
a concrete fashion. An essential new element is the matrix extension in Section 4. Finally, in
Section 5, we describe an adaptive p-wavelet approximation in L>(R ).

Let us consider the half-line R, with the p-adic operations & and & (see Section 2 for the
definitions). We say that a compactly supported function ¢ € L>(R) is a p-refinable function if
it satisfies an equation of the type

n

pt—1
9(xX)=p Y aup(px S a) (1.1)
a=0

with complex coefficients a,. Further, the generalized Walsh polynomial

pt—1
m(w) = Z g We () (1.2)
a=0

is called the mask of Eq. (1.1) (or its solution ¢).

An interval I C Ry is a p-adic interval of range n if [ = IS(") = [sp7™, (s + DHp™") for
some s € Z4. Since wy, is constant on IX(") whenever 0 < «, s < p", it is clear that the mask m
is a p-adic step function. If by = m(sp™") are the values of m on p-adic intervals, i.e.,

—1
by =) dawa(sp™). 0<s<p"—1, (1.3)
a=0
then
1 pal
o = — stwa(s/p”), O<a<p'-—1, (1.4)
P

§=

and, conversely, equalities (1.3) follow from (1.4). These discrete transforms can be realized by
the fast Vilenkin—Chrestenson algorithm (see, for instance, [22, p.463], [19]). Thus, an arbitrary
choice of the values of the mask on p-adic intervals defines also the coefficients of Eq. (1.1).

It was claimed in [6] that if a p-refinable function ¢ satisfies the condition ¢(0) = 1 and the
system {@(- © k) | k € Z,} is orthonormal in L?(R_ ), then

p—1
m@O) =1 and Y |m@+I/p)*=1 forallwel[0,1/p).
=0

From this it follows that the equalities

b0=1, |bj|2+|bj+p"71|2+“.+|bj+(p—l)p"71|2=1’ ijfpn_l_l’ (15)

are necessary (but not sufficient, see Example 4) for the system {¢(- © k)|[k € Z4} to be
orthonormal in L?(R ).
Denote by 1 the characteristic function of a subset £ of R...
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Example 1. If ap = --- =a, 1 = 1/p and a, = O forall @ > p, then a solution of Eq. (1.1) is
@ = 1jg, pn-1). Therefore the Haar function ¢ = 1j9,1) satisfies this equation for n = 1 (compare
with [5, Remark 1.3] and [1, Section 5.1]).

Example 2. If we take p = n = 2 and put
bo = 1,b1 =a,b2 =0,b3 =b,
where |a|?> + |b|*> = 1, then by (1.4) we have

ao=(1+a+b)/4, ai={+a—>b)/4,
ap=(1—a—b)/4, az=({1—a+b)/4

In particular, for a = 1 and a = —1 the Haar function: ¢(x) = 1jo,1)(x) and the displaced Haar
function: ¢(x) = 1j0,1)(x © 1) are obtained. If 0 < |a| < 1, then

w(x)==(1/2)1wJ>cx/2)(1-+fzj{jbfu@jH_4(x/2>)

Jj=0
and

_ J(+a—5)/2+ be(2x), 0<x<l1,
O = V11 —atb)2—bp2x—2), l1<x=<2

(see [15,17]). Moreover, it was proved in [16] that, if |b| < 1/2, then the corresponding
wavelet system {y;;} is an unconditional basis in all spaces LY(Ry), 1 < g < oo. When
a = 0 the system {¢(- © k)|k € Z} is linear dependence (since ¢(x) = (1/2)1[9,1)(x/2) and
p(x 0 1) = p)).

We recall that a collection of closed subspaces V; C L2(R+), j € Z, is called a p-
multiresolution analysis (p-MRA) in L2(R+) if the following hold:

(i) V; C Vjyforall j € Z;
(i) JVj = L*Ry) and N V; = {0};
(i) f() eV f(p-)e Vi forall j € Z;
iv) f()e Vo = f(-6k)e VWforallk € Z4;
(v) there is a function ¢ € L2(R+) such that the system {¢(- © k)|k € Z,} is an orthonormal
basis of Vj.

The function ¢ in condition (v) is called a scaling function in L?(R..).
For any ¢ € L*(R,), we set

0jx(x) = pPo(p’x0k), jelkel,.

We say that ¢ generates a p-MRA in L>(R..) if the system {¢(- © k)|k € Z.} is orthonormal
in L2(R,) and, in addition, the family of subspaces

Vi =clospa, span{g; | k € 74}y, JeZ, (1.6)

is a p-MRA in L?(R,). Any p-refinable function ¢ which generates a p-MRA in L?(R,) can
be written as a sum of lacunary series by the generalized Walsh functions (see [5,6]).
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The results of this paper are concerned mainly with the following two problems:

1. Find necessary and sufficient conditions in order that a p-refinable function ¢ generates a
p-MRA in L>(R,).
2. Describe a method for constructing orthogonal compactly supported p-wavelets on R .

Note that similar problems can be considered in framework of the biorthogonal p-wavelet
theory (see [7] for the p = 2 case).

If a function ¢ generates a p-MRA, then it is a scaling function in L?(R, ). In this case, the
system {@; x| k € Z,} is an orthonormal basis of V; for each j € Z, and moreover, one can
define orthogonal p-wavelets V1, ..., ¥p_1 in such a way that the functions

Y1) = p!Py(p'xek), 1<l<p-1,jeZkely,

form an orthonormal basis of L>(R,.). If p = 2, only one wavelet 1 is obtained and the system
(2124 (2) - 6k)|j € Z,k € Z4} is an orthonormal basis of L2(R+). In Section 4 we give a
practical method to design orthogonal p-wavelets yr1, ..., ¥,_1, which is based on an algorithm
for matrix extension and on the following

Theorem. Suppose that equation (1.1) possesses a compactly supported L2-solution ¢ such that
its mask m satisfies conditions (1.5) and ¢(0) = 1. Then the following are equivalent:

(a) @ generates a p-MRA in Lz(R+),'
(b) m satisfies modified Cohen’s condition;
(c) m has no blocked sets.

We review some notation and terminology. Let M C [0, 1) and let

p—1
T,M =] {l/p+w/plwe M}.
=0

The set M is said to be blocked (for the mask m) if it is a union of p-adic intervals of range n — 1,
does not contain the interval [0, p‘"‘“), and satisfies the condition

T,M \ M C Nullm,

where Null m := {w € [0, 1)|m(w) = 0}. It is clear that each mask can have only a finite number
of blocked sets. In Section 3 we shall prove that if ¢ is a p-refinable function in LZ(R,) such
that (0) = 1, then the system {¢(- © k)|k € Z.} is linearly dependent if and only if its mask
possesses a blocked set. The notion of blocked set (in the case p = 2) was introduced in the
recent paper [8].

The family {[0, p~/)|j € Z)} forms a fundamental system of the p-adic topology on R,. A
subset E of R that is compact in the p-adic topology is said to be W-compact. It is easy to see
that the union of a finite family of p-adic intervals is W-compact.

A W-compact set E is said to be congruent to [0, 1) modulo R if its Lebesgue measure is
1 and, for each x € [0, 1), there is an element k € Z, such that x @ k € E. As before, let m
be the mask of refinable equation (1.1). We say that m satisfies the modified Cohen condition
if there exists a W-compact subset E of R congruent to [0, 1) modulo Z and containing a
neighbourhood of zero such that

P _j
}2{1522'"1(” w)| >0 (.7
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(cf. [3, Section 6.3], [16, Sect. 2]). Since E is W-compact, it is evident that if m(0) = 1 then
there exists a number j( such that m(p’ja)) = 1forall j > jg, w € E. Therefore (1.7) holds
if m does not vanish on the sets E/p, ..., E/p~/0. Moreover, one can choose jo < p" because
m is 1-periodic and completely defined by the values (1.3).

Now we illustrate the theorem with the following two examples.

Example 3. Let p = 3,n = 2 and

bo=1,by =a,by =a,b3=0,bs =b,bs =B,bs6 =0,b7 =c,bg =y,
where

lal? + 1617 + [el® = la* + B + |y|* = 1.
Then (1.4) implies precisely that

aozé(l+a+b+6'+a+,3+)/),

a1 =5 +atat b+ S+t e,
a2=é(l+a+a+<b+ﬂ)83+<c+y)s§),
a3=é(l+(a+b+c)8§+(a+,3+l/)53),
a4=é(l+c+,(3+(a+)/)8§+(b+a)83),
as = é(l+b+y+(a+,3)8§+(c+ot)83),
aﬁ=é(l+(a+b+c)83+(0l+,3+)/)8§),
a7=é(l+b+y+(a+,3)83+(c+a)8%),
a8=é(l+c+,8+(a+)/)83+(b+oc)£§),

where 3 = exp(2mi/3). Further, if

y(1,0)=a,y2,0) =a,y(1, ) =b,y2, D) =p,7y1,2)=c,y2,2) =y
and v; € {1, 2}, then we let

¢ =y, 0) forl=rvyg;

c; =y, 0y, vy) forl=vy+3vy;

k
=y, 0y (Wk—1,v) ... v (v, v1) forl = Zv,ﬁ”,k > 2.
=0

The solution of Eq. (1.1) can be decomposed (see [6]) as follows:

o(x) = (1/3)1j0,1)(x/3) (1 + ZCHUI(X/3)> :
1
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The blocked sets are: (1) [1/3,2/3) fora =c =0, (2)[2/3,1) fora = 8 =0, (3) [1/3, 1) for
a = a = 0. Hence, ¢ generates a MRA in L>(R..) in the following cases: (1) a # 0, o # 0, (2)
a=0,0d#0,c#0,3)a=0,a#0,8#0.

Example 4. Suppose that for some numbers by, 0 < s < p" — 1, equalities (1.5) are true. Using
(1.4), we find the mask

p'—1
m(w) = Z g Wy (W),
a=0

which takes the values by on the intervals Is(”), 0 < s < p"— 1. When b; # 0 for
1 < j < p" ! —1Eq. (1.1) has a solution, which generates a p-MRA in LZ(R+) (the modified
Cohen condition is fulfilled for £ = [0, 1)). The expansion of this solution in a lacunary series
by generalized Walsh functions is contained in [6].

2. Preliminaries

For the integer and the fractional parts of a number x we are using the standard notations, [x]
and {x}, respectively. For any s € Z let us denote by (s), the remainder upon dividing s by p.
Then for x € R, we set

xj=A{Ip'xlp, xoj=A{lp'Uxl)p jeN @1
For each x € R, these numbers are the digits of the p-ary expansion
x= xip Ty xip
j<0 j>0

(for a p-adic rational x we obtain an expansion with finitely many nonzero terms). It is clear that

0 . 0 .
1= x;p™' =D xp
=1 =

and there exists k = k(x) in N such that x_; = O forall j > k.
Consider the p-adic addition defined on R as follows: if z = x @ y, then

2= by T Y e
j<0 j>0
As usual, the equality z = x © y means that z & y = x. According to our notation
(x@yl=[x]®[y] and {x®y}={x}®{y}
Note that for p = 2 we have
x@y= Z lx; — yj|2_j_1 + Z |x; — yj|2_j.
j<0 j>0
Letting ¢, = exp(27i/p), we define a function wy on [0, 1) by

@) = I, xel[0,1/p),
witx) = 8;, xelp ™, d+DpHilefl,....p—1},
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and extend it to Ry by periodicity: wi(x + 1) = w(x) for all x € R. Then the generalized
Walsh system {w;|l € Z.} is defined by

k
wo) =1, wix) = [Jawi(p/~'x)", 1eNxeRy,
j=1

where the [_; are the digits of the p-ary expansion of /:

[=>"1pi™" 1je{0.1,....p—1}1 g #0.k=k().
j=1

For any x, y € R, let

o
x@oy) =™ty =Y g yoj +asy)), 2.2)
j=1

where x;, y; are given by (2.1). Note that
X, p7' D = x(px, ) = wi(pTx), Ls € Ly, x €0, pY),
and
X@ XD =x6c®y. 2. DX =x (xS y.2), 23)

ifx, y,z € Ry and x @ y is p-adic irrational. Thus, for fixed x and z, equalities (2.3) hold for all
y € Ry except countably many of them (see [9, Section 1.5]).

It is known also that Lebesgue measure is translation invariant on R4 with respect to p-adic
addition, and so we can write

/ Flx @ y)dx =/ Fdr, feL'®),
R, R,

for all y € R4 (see [22, Section 1.3], [9, Section 6.1]).
The Walsh—Fourier transform of a function f € L'(R,) is defined by

For= [ rwie o
where x (x, w) is given by (2.2). If f € L2(R+) and
Jaf () = /a F)x(x,w)dx, a=>0,
0

then fis the limit of J, f in L>(R) as a — oo. We say that a function f : Ry +— Cis W-
continuous at a point x € R if forevery ¢ > 0 there exists § > Osuch that | f(x®y)—f(x)| < &
for 0 < y < §. For example, each Walsh polynomial is W-continuous (see [22, Section 9.2], [9,
Section 2.3]).

Denote by (-, -) and || - || the inner product and the norm in L?(R.), respectively.

Proposition 1 (See [9, Chap. 6]). The following properties hold:

@) if f e L'(Ry), then fis a W-continuous function and f(a)) — 0asw — oo;
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(b) if both f and fbelong to LY(R}) and f is W-continuous, then
f(x) =/ flo)x(x, w)dw forall x € Ry;
R4

() if f,g € L*(Ry), then (f, g) = (f, ) (Parseval’s relation).

Let £,(R+) be the space of p-adic entire functions of order n on Ry, that is, the set of
functions which are constant on all p-adic intervals of range n. Then for every f € &£,(Ry)
we have

@) =Y f@p™ igpn @rnpn @), x € Ry

a=0

For example, the mask m of Eq. (1.1) belongs to &, (R4).

Proposition 2 (/9, Section 6.2]). The following properties hold:

(@) if f € L'(Ry) N & (Ry), then supp f C [0, p"];
() if f e L'Ry)andsupp f C [0, p"], then f € E,(R,).

Now we prove the following analogue of Theorem 1 in [8]:

Proposition 3. Let ¢ € L*>(R.) be a compactly supported solution of equation (1.1) such that
©(0) = 1. Then

p1171

Z ay =1 and suppy C [0, p"~'].
a=0

This solution is unique, is given by the formula
00 .
P) =[[mp o)
j=I

and possesses the following properties:

(1) (k) = 0 for all k € N (the modified Strang—Fix condition);
2) Zkez+ ¢ (x @ k) = 1 for almost all x € Ry (the partition of unity property).

Proof. Using the Walsh—Fourier transform, we have

P(w) = m(w/p)p(@/p). (2.4)
Observe that w, (0) = @(0) = 1. Hence, letting @ = 0 in (1.2) and (2.4), we obtain

-l
Z a, = 1.
a=0
Further, let s be the greatest integer such that
pix € [s — 1, s)[e(x) # 0} > 0,

where y is the Lebesgue measure on R . Suppose that s > p"~! + 1. Choose an arbitrary p-adic
irrational x € [s — 1, s). Applying (2.1), we have

k o0
x=[x]+{x}=2x,jpj_l+2xjp_j, 2.5
j=1 j=1
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where {x} > 0,x_; #0,k =k(x) >n.Foranya € {0, 1, ..., p" — 1} we sety("‘) =pxOSa.
Then
k+1

o0
NGRS S
j=1 j=1

where y(_oz)_l = x_j and among the digits yfa), yéa), ..., there is a nonzero one. Therefore,

px©a > p" forae x el[s—1,s). (2.6)

Now assume that s < p”. Then it is easy to see from (2.6) that p(px & @) = 0 for a.e.
x € [s — 1,s). Therefore by (1.1) we get ¢(x) = O for a.e. x € [s — 1, s), contrary to our
choice of s. Thus s > p" + 1. Hence, if x given by (2.5), then forany @ € {0, 1, ..., p" — 1} we
have

pxQa>ps—1D)—-@"'—-1)=22(s—1)— (s —2) =5,

where the first inequality is strong because {x} > 0. As above, we conclude that ¢ (x) = 0 for
ae.x € [s — 1, s). Consequently, s < p"~! and supp¢ C [0, p"~'].

Let us prove that
OO .
P) =[[mp~ o). 2.7)
j=1

We note that ¢ belongs to L' (R ) because it lies in L?(R,) and has a compact support. Since
suppg C [0, p"~ 1], by Proposition 2 we get @ € &,_1(Ry). Also, by virtue of $(0) = 1, we
obtain @(w) = 1 for all @ € [0, p'~"). On the other hand, m(w) = 1 for all w € [0, p'~").
Hence, for every positive integer /,

[+n 00
@) =9(p ") [[mpT o) =[[mpw), welo,p).
j=1 j=1

Therefore, (2.7) is valid and a solution ¢ is unique.
By Proposition 1, for any k € N we have

j—1
o) =) [[m(p’k) =@(p’k) > 0
s=0
as j — oo (since ¢ € L'(Ry) and m(p*k) = 1 because m(0) = 1 and m is 1-periodic). It
follows that
o(k) =0 forall k € N. 2.8)

By the Poisson summation formula we get

Y ox@k) =) glx(x. k.

keZ4 keZ4
Hence, since ¢(0) = 1, from (2.8) we obtain

Zkez+ px®dk)=1 forae. x eRy. O

The proposition is proved.
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A function f € L?(R, ) is said to be stable if there exist positive constants A and B such that

o 1/2 o 1/2
A (Z |aa|2> < <B (Z |aa|2>
a=0 a=0

for each sequence {ay} € £2. In other words, f is stable if functions f(- © k), k € Z,, form a
Riesz system in L2(R+). We note also, that a function f is stable in L2(R+) with constants A
and B if and only if

Y daf(oa)
a=0

A< Z |[flwok)><B forae weR, (2.9
keZy

(the proof of this fact is quite similar to that of Theorem 1.1.7 in [21]).
We say that a function g : Ry — C has a periodic zero at apoint w € Ry if g(w@® k) =0
forallk € Z,.

Proposition 4 (cf. [8, Theorem 2]). For a compactly supported function f € L*(Ry) the
following statements are equivalent:

(a) f is stable in LZ(R+);
(b) {/f(~ e k)|k € Z} is a linearly independent system in L>(R.);
(¢) f does not have periodic zeros.

Proof. The implication (a) = (b) follows from the well-known property of the Riesz systems
(see, e.g., [21, Theorem 1.1.2]). Our next claim is that f € L! (R4), since f has compact support
and f € L?>(Ry). Let us choose a positive integer n such that supp f° C [0, p"~ 1. Then by
Proposition 2 we have f € &,_1(R4). Besides, if k > p"~!, then

pdsupp f(-©k) N[0, p" '} =0

(as above, u denotes the Lebesgue measure on R ). Therefore, the linearly independence of the
system {f(- © k)|k € Z4} in L2(R+) is equivalent to that for the finite system {f (- © k) |k =

0,1,..., p”’1 — 1}. Further, if some vector (ao, ..., apn—lil) satisfies conditions
pn7171
Z auf(-©a)=0 and |ag|+---+|am-1_;| >0, (2.10)
a=0

then using the Walsh—Fourier transform we obtain

p)1717]
f(w) Z aqwe(@) =0 forae. w e R,.

a=0
The Walsh polynomial

P’li]*]

w(w) = Z g We ()
a=0

is not identically equal to zero; hence among I, Y("_l), 0< s < p"’1 — 1, there exists an interval
(denote it by I) for which w(I @& k) # 0,k € Z. Since f € £,—-1(Ry), it fgllows that (2.10)
holds if and only if there exists a p-adic interval I of range n — 1, such that f(I @ k) = 0 for
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all k € Z. Thus, (b)< (c). It remains to prove that (c) = (a). Suppose that fdoes not have
periodic zeros. Then

F@)= ) [f@ohP, ocRy,
kEZ+

is positive and 1-periodic function. Moreover, since fe En—1(R4), we see that F' is constant on
each Is("*l), 0 <s < p" ! —1.Hence (2.9) is satisfied and so Proposition 4 is established. [

The following two propositions are proved in [6]:
Proposition 5. Let ¢ € LZ(R+). Then the system {p(- © k) | k € Z4+} is orthonormal
in L*(Ry) if and only if

Z Gwe k=1 forae ocR,.
kel

Proposition 6. Let {V;} be the family of subspaces defined by (1.6) with given ¢ € L>(Ry). If
{o(- ©k) | k € Zy} is an orthonormal basis in Vy, then (| V; = {0}.

We shall use also the following

Proposition 7. Let

p't—1
m@) =Y ayWe(®)
a=0

be a polynomial such that

p—1
m@O) =1 and Y |m@®!l/p)?=1 foralweRy.
=0

Suppose ¢ is a function defined by the Walsh—Fourier transform
00 .
) =[] mp o).
j=1

Then the system {¢(- © k) | k € Zy} is orthonormal in L*>(R.) if and only if m satisfies the
modified Cohen condition.

The proof of this proposition is similar to that of Theorem 6.3.1 in [3] (cf. [15, Theorem 2.1],
[5, Proposition 3.3]).

3. Proof of the theorem
The next lemma gives a relation between stability and blocked sets.

Lemma 1. Let ¢ be a p-refinable function in L*>(R,.) such that $(0) = 1. Then ¢ is not stable
if and only if its mask m has a blocked set.

Proof. Using Propositions 2 and 3, we have suppp C [0, p"~!) and ¢ € &,_1(Ry). Suppose

that the function ¢ is not stable. As noted in the proof of Proposition 4, then there exists an

)

interval I = [ s("_l consisting entirely of periodic zeros of the Walsh—Fourier transform ¢ (and
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each periodic zero w € [0, 1) of ¢ lies in some such I). Thus, the set
My ={w e [0, 1)|g(w+k)=0 forallk € Z}

is a union of some intervals Is("_l), 0<s < p" ! —1.Since $(0) = 1, it follows that My does
not contain Ié"_l). Furthermore, if € M, then by (2.4)

m(w/p+k/p)o(w/p+k/p)=0 forallk € Z,

and hence w/p +1/p € Mo UNullm for! =0, 1, ..., p — 1. Thus, if ¢ is not stable, then M
is a blocked set for m.

Conversely, let m possess a blocked set M. Then we will show that each element of M is a
periodic zero for ¢ (and by Proposition 4 ¢ is not stable). Assume that there exist @ € M and
k € 7, such that $(w + k) # 0. Choose a positive integer j for which p~/(w + k) € [0, p!™™)
and, foreveryr € {0, 1, ..., j}, set

ur = [p~ (@ + k)], v =1{p @+ K}
Further, letu,/p = 1,/p + s, where [, € {0, 1,..., p — 1} and s, € Z. It is clear that for all
re{0,1,...,j—1}

Upt] + Vpp) = (p_lvr + p_llr) + s

and hence v, 41 = p’l(v, + I). From this it follows that if v, € M, then v, € T, M. Besides,
from the equalities

) J
Po+k) =p(p (@+) [[mp™ (@+k) =90) [ [m@)

J
r=1 r=1

we see that all v, ¢ Nullm. Thus, if v, € M, then v,y € M..Since vg = w € M, we
conclude that v; € M. But this is impossible because v; = p™/(w + k) € [0, p!™) and
M N [0, p'=") = @. This contradiction completes the proof of Lemma 1. [

Corollary. If ¢ is a p-refinable function in L*(Ry) such that $(0) = 1, then the system
{o(- ©k)|k € Z.} is linearly dependent if and only if the mask of ¢ possesses a blocked set.

Lemma 2. Suppose that the mask of refinable equation (1.1) satisfies

p—1
m@0)=1 and Z|m(w@l/p)|2= 1 forall w € R;. 3.1
=0

Then the function ¢ given by
OO .
) =]]mp o 3.2)
j=l1

is a solution of Eq. (1) and |l¢|| < 1.

Proof. The pointwise convergence of product in (3.2) follows from the fact that m is equal to 1
on [0, p'~) (and for any w € R only finitely many of the factors in (3.2) cannot be equal to
1). Denote by g(w) the right part of (3.2). From (3.1) we see that [m(w)| < 1 for all w € R;.
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Therefore, for any s € N we have
N
lg@) < [ Im(p~ w)I?
j=1

and hence

1s—1

! I
/p |g(a))|2da)§/p n|m(B_-/w)|2dw=25f l_[|m(Bja))|2da). (3.3)
0 0 o1 0 j=o

Further, from the equalities

p=r _
m@) =Y aqWe(@), we(@Wwp(®) = wasp(@),
a=0

it follows that

p'—1

Im@)? =" cqwa(®), (3.4)
a=0

where the coefficients ¢, may be expressed via ay. Now, we substitute (3.4) into the second
equality of (3.1) and observe that if « is multiply to p, then

p—1
> wa(/p) = p,

1=0
and this sum is equal to O for the rest «. As a result, we obtain ¢yo = 1/p and ¢, = 0 for nonzero
o, which are multiply to p. Hence,

pn—l_l p—1

1
M@ ==+ Y > cpuriWpati(®).
P a=0 I[=1

This gives

s—1 o(s)
[[mp/ ol =p=+) buw, (), o) <sp"'(p—1),
j=0 y=1

where each coefficient b, equals to the product of some coefficients c¢pg47, [ = 1,..., p — L.
Taking into account that

1
/ wy(w)do =0, yeN,
0

we have
1s—1 )
/ [[imp/o)Pdo=p~.
0 j=0

Substituting this into (3.3), we deduce

!

P
/ lg@*dw <1, [€eN,
0
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which is due to the inequality
/ g(@)dw < 1. (3.5)
Ry

Now, let ¢ € L*>(R,) and @ = g. Then from (3.2) it follows that

1

P =m(p~lo)p(p~ w),

and hence ¢ satisfies (1.1). Moreover, from (3.5), by Proposition 1, we get |¢|| < 1. O

Lemma 3. Let ¢ be a p-refinable function with a mask m and let 9(0) = 1. Then the system
{o(- ©k) | k € Z4} is orthonormal in L2(R+) if and only if the mask m has no blocked sets
and satisfies

p—1
Y im@e!l/p)P =1 forallweR,. (3.6)
=0

Proof. If the system {¢(- © k) | k € Z} is orthonormal in L%(R.), then (3.6) holds (see [6])
and a lack of blocked sets follows from Lemma 1 and Proposition 4. Conversely, suppose that m
has no blocked sets and (3.6) is fulfilled. Then we set

()= Y [Pkl (3.7)

keZy

Obviously, @ is nonnegative and 1-periodic function. According to Proposition 5, it suffices to
show that ¢(w) = 1. Let

a = inf{®(w)|w € [0, 1)}.

From Propositions 2 and 3 it follows that ¢ is constant on each IS("fw, 0<s<p -1
Moreover, if @ vanishes on one of these intervals, then @ has a periodic zero, and hence ¢ is
unstable. On account of Proposition 4 and Lemma 1, this assertion contradicts a lack of blocked
sets for m. Hence, a is positive. Also, by the modified Strang—Fix condition (see Proposition 3),
we have #(0) = 1. Thus, 0 < a < 1.

Further, by (2.4) and (3.7) we obtain

p—1
P =) Im(p~'we p ' D e(p~lwe p~lD). (3.8)
=0
Now, let M, = {®(w) = alw € [0, 1)}. In the case 0 < a < 1 from (3.6) and (3.8) we see
that for any w € M, the elements p_la) S) p_ll, Il =0,1,..., p — 1, belong either M, or
Null m. Therefore, M, is a blocked set, which contradicts the assumption. Thus, ¢(w) > 1 for
all w € [0, 1). Hence from the equalities

1 k+1
| pwdo=Y [ pwrd= [ @ekw= i
0 k R,

keZy
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by Lemma 2 we have

1
/ d(w)dw = 1.
0

Once again applying the inequality @(w) > 1 and using the fact that ¢ is constant on each
Is("_l), 0 <s < p" ' —1,weconclude that d(w) = 1. O

Proof of the theorem. Suppose that m satisfies condition (b) or (c). Then, by Proposition 7 and
Lemma 3, the system {¢(- ©k) | k € Z4} is orthonormal in L%(R,). Let us define the subspaces
Vi, j € Z4 by the formula (1.6). By Proposition 6 we have (| V; = {0}. The embeddings
V; C Vj41 follow from the fact that ¢ satisfies the Eq. (1.1). The equality

Yvi=r*®p

is proved in just the same way as (2.14) in [5] (cf. [3, Section 5.3]). Thus, the implications (b)
=> (a) and (c) = (a) are true. The inverse implications follow directly from Proposition 7 and
Lemma3. 0O

4. On matrix extension and p-wavelet construction

Following the standard approach (e.g., [11,18]), we reduce the problem of p-wavelet
decomposition to the problem of matrix extension. More precisely, we shall discuss the following
procedure to construct orthogonal p-wavelets in L>(R,.):

1. Choose numbers b; such that equalities (1.5) are true.

2. Compute a, by (1.4) and verify that the mask

p—1

mo(®) = Y aye(®)
a=0

has no blocked sets.
3. Find

p'=1
mi) =Y alwe(@), 1<l<p-—1,
a=0

such that (m;(w + k/p)); ]::10 is an unitary matrix.
4. Define ¥rq, ..., ¥p—1 by the formula

-l
i) =p Y ale(pxow), 1=<I<p-1. 4.1
a=0

In the p = 2 case, one can choose aél) = (—=1)%ayg) for 0 < o < 2" — 1 (and a(gl) = 0 for
the rest ). Then m(w) = —wi(w)mo(w & 1/2), the matrix

mo(w) mo(w @ 1/2)
mi(w) mi(w®1/2)
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is unitary and, as in [8], we obtain

2"—1

Y(x) =2 (—D)%ap192x O ).

a=0

In particular, if n = 1 and agp = a; = 1/2, then  is the classical Haar wavelet.
In the p > 2 case, we take the coefficients a, as in Step 2 (so that by satisfy (1.5) and mg has
no blocked sets). Then

7

> laal = L (4.2)
p

a=0

In fact, Parseval’s relation for the discrete transforms (1.3) and (1.4) can be written as
p—1 1 pi—1
2 2
D laelr == " [bal*
a=0 p a=0

Therefore (4.2) follows from (1.5). Now we define

pn7171

Aw@) = Y arypir, 0<k<p-—1,
=0

and introduce the polynomials A (z), deg Ajx < p"~! — 1, such that

pt
mi(@) =Y wi(@Axwy(@), 1<l<p-1 4.3)
k=0

It follows immediately that

M(w) = A(wp (@) W(w), 4.4
where M (@) = (my(@ + k/p)] 2o A@) = (A(@)] Lo» and W(w) = (wi(@ + k/p)]Lo-
The matrix p~'/2W () is unitary. Thus, by (4.4), unitarity of M () is equivalent to that of the
matrix p_l/ 2A(z) with z = w p(@). From this we claim that Step 3 of the procedure can be
realized by some modification of the algorithm for matrix extension suggested by Lawton, Lee
and Shen in [18] (see also [2, Theorem 2.1]).

We illustrate the described procedure by the following examples.

Example 5. Let
1
mo(@) = = Y wa()
p a=0
sothatag = --- =ap—1 = 1/p. Then, as in Example 1, we have ¢ = 1y ,»-1. Setting

1= —
mi) = — Y efwe), 1<l<p-—1,
pa:O
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we observe that (m;(w + k/ p))f k_:lo is unitary for all @ € [0, 1). Indeed, the constant matrix

p~ ()7 may be taken as A(2) in (4.4). Therefore we obtain from (4.1)
p—1
i) =) efp(pxoa), 1<i<p-1.
a=0

Note that the similar wavelets in the space L>(Q p) were introduced by Kozyrev in [13]; in
connection with these wavelets see also [1, p.450] and Example 4.1 in [12].

Example 6. Let p = 3, n = 2. As in Example 3, we take a, b, ¢, @, B8, y such that
lal> + 161 + le? = la? + 1B + Iy > = 1
and then define ao, ai, . . ., ag using (1.4). In this case we have
Ap(@) = a0+ a3z +asz’,  Aoi(2) = a1 +asz+ a1z’ Ap(2) = ax + asz + agz’.

Now, we require

a#0, a=a, aad+bB+cy=a. 4.5)
In particular, for 0 < a < 1 we can choose numbers 6, ¢ such that
@ —1) a—a?
cos(@ — 1) =
1 —a?

andthenseta =a,r =+/1—a? B=rcosf,y =rsinf,b=rcost,c=rsint.
Under our assumptions the mask mq has no blocked sets (see Example 3). Moreover, it follows
from (4.2) and (4.5) that

1
|A00(2) > + 401 (D) + A (2)]* = 3

for all z on the unit circle T. To see this, note that by a direct calculation

8
14002 + 1401 (D) + |42 * = Y laa|* + 2Re[(ao@s + a1@4 + axds)z]

a=0

+2Re [(aods + ar1ar + arag)z*] + 2Re [(a3as + asa7 + asag)zz>,
where
27(aoa@s + a1as + axas) = a + a + @ + a@ + bB + c¥)e3 + (@ + aa + b +¢y)e3,
27(agas + a1ar + axas) = a + a + @+ aa + b +cy)e; + (@ + a@ + b + cy)e3,
27(azae + asay + asag) = 2e3Rea + 2£§Reoc + 2Re (ax + bE + cy).

Further, if
ao = V3 (ap, a1, a), a1 =~3 (a3, a4,as), @ =~/3(as,a7,as),
then

laol? + loet > + laa> = 1, {ag, 1) = {0, @2) = {1, a2) = 0,
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where (-, -) is the inner product in C 3 Tt is clear that
a0 + a1z + @22” = V3 (A0 (2), Aoi (), A2 (2)).

Let P, be the orthogonal projection onto oy, i.e.,
Pow=-—""q, weC.

Then we have
(I — Py + 27 ' Py) (oo + a1z + 2z?)
= (I — Py)ag + Py + z(Praz + (I — Py)ay) =: fo + Piz.
One now verifies that
Bol> +1B11> = 1. (Bo. B1) = 0.
Furthermore, if Pj is the orthogonal projection onto f1, then
(I = Pi+ 27" P)(Bo+ B12) = (I = P)Bo + Pif1 = no.

By the Gram—Schmidt orthogonalization, we can find an unitary matrix I once the first row
of this matrix is the unit vector . Then we set

N@=U—-Pi+zP)Io and I2(z) = — Pr+zP)11(2).
The first row of I3(z) coincides with g + a1z + 222 Putting
1
V3

we see that m; and m, can be defined as follows:

(Ak@)} o = —= D2(2),

2 8
mi() =Y w@ A i) =Y alwe(@), [=1,2.
k=0 a=0

Finally, we find

8
i) =3Y al¢Bxow, =12

a=0

Note that for the space L2(Q p) the corresponding wavelets were introduced recently in [12].
5. Adapted p-wavelet approximation

Suppose that a p-refinable function ¢ generates a p-MRA in L?>(R,.) and subspaces V; are
given by (1.6). For each j € Z denote by P; the orthogonal projection of L>(R,) onto V.
Given f in L2(R.) it is naturally to choose parameters by in (1.5) such that the approximation
method f ~ P; f will be optimal. If f belongs to some class M in L*(R,) then it is possible
to seek the parameters by, which minimize for some fixed j the quantity

sup{llf — PifIl | f e M}
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and to study the behavior of this quantity as j — +o00o. Also, it is very interesting investigate
p-wavelet approximation in the p-adic Hardy spaces (cf. [10,14]).

By analogy with [23] we discuss here another approach to the problem on optimization of the
approximation method f ~ P; f. For every j € Z denote by W; the orthogonal complement
of V;in V;,1 and let Q; be the orthogonal projection of L*>(Ry) to W;.Since {V;}isa p-MRA,
for any f € L?(R,) we have

f=>_0;f=Pf+> 0,f
J

Jj=0
and
jiirfoo If—Pifll =0, jEIPOO 1P fll =0.
It is easily seen, that

Pif=Qj1f+Qj2f+ - +Qj—sf+Pi—sf, jeZselN

The equality V; = V;_; @ W;_1 means that W;_ contains the “details” which are necessary to
get over the (j — 1)th level of approximation to the more exact jth level. Since

1P FI2 = 1P FI2 4+ 11Q -1 FII%,

it is natural to choose the parameters by to maximize || Pj_ f|| (or, equivalently, to minimize
Q1 fID. To this end let us write Eq. (1.1) in the form

-l
0X) =P Y dup(px © ha),
a=0
where dy = /P aq. Putting ¢ (x) = p//2¢(p’x), we have
p-l

9j1(x) =Y aupj(x© p~la), .1
a=0

where ¢ (x © p~/k) = @; x(x). Further, given f € L>(R;) we set

FUK) = (fopja) = /Rf(x)(ﬂj(x S k) dx.

Applying (5.1), we obtain

FG - 1.0 =/R F9 1 8 pIHTR) d
+

p'=1

= Y [ e p Ik ea) i
a=0 +

and hence

p'—1

fG=1L0 =) auf(, pk®a), (5.2)

a=0
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Since

Pif= 3" fU.Rejk

kEZ+

we see from (5.2) that

1P fIP= D IfG-1LBF =)

keZ4 keZy

p=1 2

Y auf(, pk@a)

a=0

p=1 -
> < > aaa,sfu,pkeaa)f(j,pkeaﬂ)). (5.3)

keZs \o,p=0

ForO <a, B <p"—1welet

Fop():= ) fU,pk@a)f(j, pk®B).

kEZ+
Then Fg o (j) = Fop(j) and (5.3) implies

p'=1

IPi—1f1? =D Fup(jasdp. (54)
o,f=0

Denote by U(p, n) the set of vectors u = (ug, u1, ..., upr—_1) such that
uo = 1, uj =0 forje{p" L 2p" ... (p—Dp"},
and

p—1
Sl P =1 forje (1,2, pt =),
=0

For every u = (uo, u1, ..., upn_1) in U(p, n) we define ay (1) by the formulas
p'—1

1
ag(u) = — Z uswa(s/p"), 0<a <p'—1.
p

n
s=0
Fix a positive integer jo. If a vector u™ is a solution of the extremal problem
p'=1

Z Fop(jo)ag(u)ag(u) — max, u €U(p,n), 5.5)
o,f=0

then (p;.‘o_l is defined by
p-l

ol 1) = Y aaNej,(x © p~ioa).

a=0

It is seen from (5.4) and (5.5) that ||P/’.“f|| > ||P; f|l for j = jo — 1. Now, if the mask of <p;.‘071
has no blocked sets, then <p;‘0_2 is constructed by (p;fo_ 1 and so on. Finally, we fix s and for each
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je€ljo—1,...,jo—s}replace P;f by the orthogonal projection P/’.“f of f to the subspace

VJT“ = clos; 2, )Span {(p;‘f’k| keZy}.

The effectiveness of this method of adaptation can be illustrated by numerical examples in terms
(cf. [20]) of the entropy estimates.
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