On wavelets related to the Walsh series

Yu.A. Farkov

Higher Mathematics and Mathematical Modelling Department, Russian State Geological Prospecting University, 23, Ulitsa Miklukho - Maklaya, Moscow 117997, Russia

Received 16 September 2007; received in revised form 1 April 2008; accepted 11 October 2008
Available online 9 November 2008
Communicated by Amos Ron

Abstract

For any integers \(p, n \geq 2 \) necessary and sufficient conditions are given for scaling filters with \(p^n \) many terms to generate a \(p \)-multiresolution analysis in \(L^2(\mathbb{R}_+) \). A method for constructing orthogonal compactly supported \(p \)-wavelets on \(\mathbb{R}_+ \) is described. Also, an adaptive \(p \)-wavelet approximation in \(L^2(\mathbb{R}_+) \) is considered.

\(\text{c} \) 2008 Elsevier Inc. All rights reserved.

Keywords: Walsh–Fourier transform; Lacunary Walsh series; Orthogonal \(p \)-wavelets; Multifractals; Stability; Adapted wavelet analysis

1. Introduction

In the wavelet literature, there is some interest in the study of compactly supported orthonormal scaling functions and wavelets with an arbitrary dilation factor \(p \in \mathbb{N}, p \geq 2 \) (see, e.g., [3, Section 10.2], [21, Section 2.4], [4, and references therein]). Such wavelets can have very small support and multifractal structure, features which may be important in signal processing and numerical applications. In this paper we study compactly supported orthogonal \(p \)-wavelets related to the generalized Walsh functions \(\{w_l\} \). There are two ways of considering these functions; either they may be defined on the positive half-line \(\mathbb{R}_+ = [0, \infty) \), or, following Vilenkin [24], they may be identified with the characters of the locally compact Abelian group \(G_p \) which is a weak direct product of a countable set of the cyclic groups of order \(p \). The classical Walsh functions correspond to the case \(p = 2 \), while the group \(G_2 \) is isomorphic to the Cantor

E-mail address: farkov@list.ru.

0021-9045/S - see front matter \(\text{c} \) 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2008.10.003
dyadic group C (see [22,9]). Orthogonal compactly supported wavelets on the group C (and relevant wavelets on \mathbb{R}_+) are studied in [15–17,8]. Decimation by an integer different from 2 is discussed in [5,6], but construction for a general p is not completely treated. Here we review some of the elements of that construction on \mathbb{R}_+ and give an approach to the $p > 2$ case in a concrete fashion. An essential new element is the matrix extension in Section 4. Finally, in Section 5, we describe an adaptive p-wavelet approximation in $L^2(\mathbb{R}_+)$. Let us consider the half-line \mathbb{R}_+ with the p-adic operations \oplus and \ominus (see Section 2 for the definitions). We say that a compactly supported function $\varphi \in L^2(\mathbb{R}_+)$ is a p-refinable function if it satisfies an equation of the type

$$\varphi(x) = p \sum_{\alpha=0}^{p^n-1} a_{\alpha} \varphi(px \ominus \alpha)$$

with complex coefficients a_{α}. Further, the generalized Walsh polynomial

$$m(\omega) = \sum_{\alpha=0}^{p^n-1} a_{\alpha} w_{\alpha}(\omega)$$

is called the mask of Eq. (1.1) (or its solution φ).

An interval $I \subset \mathbb{R}_+$ is a p-adic interval of range n if $I = I_s^{(n)} = [s p^{-n}, (s + 1) p^{-n})$ for some $s \in \mathbb{Z}_+$. Since w_{α} is constant on $I_s^{(n)}$ whenever $0 \leq \alpha, s < p^n$, it is clear that the mask m is a p-adic step function. If $b_s = m(s p^{-n})$ are the values of m on p-adic intervals, i.e.,

$$b_s = \sum_{\alpha=0}^{p^n-1} a_{\alpha} w_{\alpha}(s p^{-n}), \quad 0 \leq s \leq p^n - 1,$$

then

$$a_{\alpha} = \frac{1}{p^n} \sum_{s=0}^{p^n-1} b_s w_{\alpha}(s/p^n), \quad 0 \leq \alpha \leq p^n - 1,$$

and, conversely, equalities (1.3) follow from (1.4). These discrete transforms can be realized by the fast Vilenkin–Chrestenson algorithm (see, for instance, [22, p.463], [19]). Thus, an arbitrary choice of the values of the mask on p-adic intervals defines also the coefficients of Eq. (1.1).

It was claimed in [6] that if a p-refinable function φ satisfies the condition $\hat{\varphi}(0) = 1$ and the system $\{\varphi(\cdot \ominus k) | k \in \mathbb{Z}_+\}$ is orthonormal in $L^2(\mathbb{R}_+)$, then

$$m(0) = 1 \quad \text{and} \quad \sum_{l=0}^{p-1} |m(\omega + l/p)|^2 = 1 \quad \text{for all} \ \omega \in [0, 1/p).$$

From this it follows that the equalities

$$b_0 = 1, \quad |b_j|^2 + |b_{j + p^{-1}j}|^2 + \cdots + |b_{j + (p-1)p^{n-1}}|^2 = 1, \quad 0 \leq j \leq p^{n-1} - 1,$$

are necessary (but not sufficient, see Example 4) for the system $\{\varphi(\cdot \ominus k) | k \in \mathbb{Z}_+\}$ to be orthonormal in $L^2(\mathbb{R}_+)$. Denote by 1_E the characteristic function of a subset E of \mathbb{R}_+.
Example 1. If \(a_0 = \cdots = a_{p-1} = 1/p \) and \(a_\alpha = 0 \) for all \(\alpha \geq p \), then a solution of Eq. (1.1) is \(\varphi = 1_{[0, p^{n-1}]} \). Therefore the Haar function \(\varphi = 1_{[0, 1]} \) satisfies this equation for \(n = 1 \) (compare with [5, Remark 1.3] and [1, Section 5.1]).

Example 2. If we take \(p = n = 2 \) and put
\[
b_0 = 1, b_1 = a, b_2 = 0, b_3 = b,
\]
where \(|a|^2 + |b|^2 = 1\), then by (1.4) we have
\[
a_0 = (1 + a + b)/4, \quad a_1 = (1 + a - b)/4, \\
a_2 = (1 - a - b)/4, \quad a_3 = (1 - a + b)/4.
\]
In particular, for \(a = 1 \) and \(a = -1 \) the Haar function: \(\varphi(x) = 1_{[0, 1]}(x) \) and the displaced Haar function: \(\varphi(x) = 1_{[0, 1]}(x \ominus 1) \) are obtained. If \(0 < |a| < 1, \) then
\[
\varphi(x) = (1/2)1_{[0, 1]}(x/2) \left(1 + a \sum_{j=0}^{\infty} b^j w_{2j+1-1}(x/2) \right)
\]
and
\[
\varphi(x) = \begin{cases}
(1 + a - b)/2 + b\varphi(2x), & 0 \leq x < 1, \\
(1 - a + b)/2 - b\varphi(2x - 2), & 1 \leq x < 2
\end{cases}
\]
(see [15,17]). Moreover, it was proved in [16] that, if \(|b| < 1/2\), then the corresponding wavelet system \(\{\psi_{jk}\} \) is an unconditional basis in all spaces \(L^q(\mathbb{R}_+), 1 < q < \infty \). When \(a = 0 \) the system \(\{\varphi(\cdot \ominus k)\mid k \in \mathbb{Z}_+\} \) is linear dependence (since \(\varphi(x) = (1/2)1_{[0, 1]}(x/2) \) and \(\varphi(x \ominus 1) = \varphi(x) \)).

We recall that a collection of closed subspaces \(V_j \subset L^2(\mathbb{R}_+) \), \(j \in \mathbb{Z} \), is called a \textit{p-multiresolution analysis} (p-MRA) in \(L^2(\mathbb{R}_+) \) if the following hold:

(i) \(V_j \subset V_{j+1} \) for all \(j \in \mathbb{Z} \);
(ii) \(\bigcup_{j} V_j = L^2(\mathbb{R}_+) \) and \(\bigcap_{j} V_j = \{0\} \);
(iii) \(f(\cdot) \in V_j \iff f(p\cdot) \in V_{j+1} \) for all \(j \in \mathbb{Z} \);
(iv) \(f(\cdot) \in V_0 \implies f(\cdot \ominus k) \in V_0 \) for all \(k \in \mathbb{Z}_+ \);
(v) there is a function \(\varphi \in L^2(\mathbb{R}_+) \) such that the system \(\{\varphi(\cdot \ominus k)\mid k \in \mathbb{Z}_+\} \) is an orthonormal basis of \(V_0 \).

The function \(\varphi \) in condition (v) is called a \textit{scaling function} in \(L^2(\mathbb{R}_+) \).

For any \(\varphi \in L^2(\mathbb{R}_+) \), we set
\[
\varphi_{j,k}(x) = p^{j/2} \varphi(p^j x \ominus k), \quad j \in \mathbb{Z}, k \in \mathbb{Z}_+.
\]

We say that \(\varphi \) \textit{generates a p-MRA in} \(L^2(\mathbb{R}_+) \) if the system \(\{\varphi(\cdot \ominus k)\mid k \in \mathbb{Z}_+\} \) is orthonormal in \(L^2(\mathbb{R}_+) \) and, in addition, the family of subspaces
\[
V_j = \text{clos}_{L^2(\mathbb{R}_+)} \text{span} \{\varphi_{j,k} \mid k \in \mathbb{Z}_+\}, \quad j \in \mathbb{Z},
\]
is a p-MRA in \(L^2(\mathbb{R}_+) \). Any \(p \)-refinable function \(\varphi \) which generates a p-MRA in \(L^2(\mathbb{R}_+) \) can be written as a sum of lacunary series by the generalized Walsh functions (see [5,6]).
The results of this paper are concerned mainly with the following two problems:

1. Find necessary and sufficient conditions in order that a \(p \)-refinable function \(\varphi \) generates a \(p \)-MRA in \(L^2(\mathbb{R}_+) \).

2. Describe a method for constructing orthogonal compactly supported \(p \)-wavelets on \(\mathbb{R}_+ \).

Note that similar problems can be considered in framework of the biorthogonal \(p \)-wavelet theory (see [7] for the \(p = 2 \) case).

If a function \(\varphi \) generates a \(p \)-MRA, then it is a scaling function in \(L^2(\mathbb{R}_+) \). In this case, the system \(\{ \varphi_{j,k} | k \in \mathbb{Z}_+ \} \) is an orthonormal basis of \(V_j \) for each \(j \in \mathbb{Z} \), and moreover, one can define orthogonal \(p \)-wavelets \(\psi_1, \ldots, \psi_{p-1} \) in such a way that the functions

\[
\psi_{l,j,k}(x) = p^{l/2} \varphi_l(p^j x \ominus k), \quad 1 \leq l \leq p-1, j \in \mathbb{Z}, k \in \mathbb{Z}_+,
\]

form an orthonormal basis of \(L^2(\mathbb{R}_+) \). If \(p = 2 \), only one wavelet \(\psi \) is obtained and the system \(\{ 2^{l/2} \varphi(2^j \cdot \ominus k) | j \in \mathbb{Z}, k \in \mathbb{Z}_+ \} \) is an orthonormal basis of \(L^2(\mathbb{R}_+) \). In Section 4 we give a practical method to design orthogonal \(p \)-wavelets \(\psi_1, \ldots, \psi_{p-1} \), which is based on an algorithm for matrix extension and on the following

Theorem. Suppose that equation (1.1) possesses a compactly supported \(L^2 \)-solution \(\varphi \) such that its mask \(m \) satisfies conditions (1.5) and \(\widehat{\varphi}(0) = 1 \). Then the following are equivalent:

(a) \(\varphi \) generates a \(p \)-MRA in \(L^2(\mathbb{R}_+) \);

(b) \(m \) satisfies modified Cohen’s condition;

(c) \(m \) has no blocked sets.

We review some notation and terminology. Let \(M \subset [0, 1) \) and let

\[
T_p M = \bigcup_{l=0}^{p-1} \{ l/p + \omega/p \omega \in M \}.
\]

The set \(M \) is said to be **blocked** (for the mask \(m \)) if it is a union of \(p \)-adic intervals of range \(n-1 \), does not contain the interval \([0, p^{-n+1})\), and satisfies the condition

\[
T_p M \setminus M \subset \text{Null } m,
\]

where \(\text{Null } m := \{ \omega \in [0, 1) | m(\omega) = 0 \} \). It is clear that each mask can have only a finite number of blocked sets. In Section 3 we shall prove that if \(\varphi \) is a \(p \)-refinable function in \(L^2(\mathbb{R}_+) \) such that \(\widehat{\varphi}(0) = 1 \), then the system \(\{ \varphi(\cdot \ominus k) | k \in \mathbb{Z}_+ \} \) is linearly dependent if and only if its mask possesses a blocked set. The notion of blocked set (in the case \(p = 2 \)) was introduced in the recent paper [8].

The family \(\{ [0, p^{-j}) | j \in \mathbb{Z} \} \) forms a fundamental system of the \(p \)-adic topology on \(\mathbb{R}_+ \). A subset \(E \) of \(\mathbb{R}_+ \) that is compact in the \(p \)-adic topology is said to be \(W \)-compact. It is easy to see that the union of a finite family of \(p \)-adic intervals is \(W \)-compact.

A \(W \)-compact set \(E \) is said to be **congruent to** \([0, 1)\) \(\text{modulo } \mathbb{R}_+ \) if its Lebesgue measure is 1 and, for each \(x \in [0, 1) \), there is an element \(k \in \mathbb{Z}_+ \) such that \(x \ominus k \in E \). As before, let \(m \) be the mask of refinable equation (1.1). We say that \(m \) satisfies the **modified Cohen condition** if there exists a \(W \)-compact subset \(E \) of \(\mathbb{R}_+ \) congruent to \([0, 1)\) \(\text{modulo } \mathbb{Z}_+ \) and containing a neighbourhood of zero such that

\[
\inf_{j \in \mathbb{N}} \inf_{\omega \in E} |m(p^{-j} \omega)| > 0 \quad (1.7)
\]
(cf. [3, Section 6.3], [16, Sect. 2]). Since \(E \) is \(W \)-compact, it is evident that if \(m(0) = 1 \) then there exists a number \(j_0 \) such that \(m(p^{-j_0} \omega) = 1 \) for all \(j > j_0, \omega \in E \). Therefore (1.7) holds if \(m \) does not vanish on the sets \(E/p, \ldots, E/p^{-j_0} \). Moreover, one can choose \(j_0 \leq p^n \) because \(m \) is \(1 \)-periodic and completely defined by the values (1.3).

Now we illustrate the theorem with the following two examples.

Example 3. Let \(p = 3, n = 2 \) and

\[
\begin{align*}
 b_0 &= 1, b_1 = a, b_2 = \alpha, b_3 = 0, b_4 = b, b_5 = \beta, b_6 = 0, b_7 = c, b_8 = \gamma,
\end{align*}
\]

where

\[
|a|^2 + |b|^2 + |c|^2 = |\alpha|^2 + |\beta|^2 + |\gamma|^2 = 1.
\]

Then (1.4) implies precisely that

\[
\begin{align*}
 a_0 &= \frac{1}{9}(1 + a + b + c + \alpha + \beta + \gamma), \\
 a_1 &= \frac{1}{9}(1 + a + \alpha + (b + \beta)\varepsilon_3^2 + (c + \gamma)\varepsilon_3), \\
 a_2 &= \frac{1}{9}(1 + a + \alpha + (b + \beta)\varepsilon_3 + (c + \gamma)\varepsilon_3^2), \\
 a_3 &= \frac{1}{9}(1 + (a + b + c)\varepsilon_3^2 + (\alpha + \beta + \gamma)\varepsilon_3), \\
 a_4 &= \frac{1}{9}(1 + c + \beta + (a + \gamma)\varepsilon_3^2 + (b + \alpha)\varepsilon_3), \\
 a_5 &= \frac{1}{9}(1 + b + \gamma + (a + \beta)\varepsilon_3^2 + (c + \alpha)\varepsilon_3), \\
 a_6 &= \frac{1}{9}(1 + (a + b + c)\varepsilon_3 + (\alpha + \beta + \gamma)\varepsilon_3^2), \\
 a_7 &= \frac{1}{9}(1 + b + \gamma + (a + \beta)\varepsilon_3 + (c + \alpha)\varepsilon_3^2), \\
 a_8 &= \frac{1}{9}(1 + c + \beta + (a + \gamma)\varepsilon_3 + (b + \alpha)\varepsilon_3^2),
\end{align*}
\]

where \(\varepsilon_3 = \exp(2\pi i/3) \). Further, if

\[
\gamma(1, 0) = a, \gamma(2, 0) = \alpha, \gamma(1, 1) = b, \gamma(2, 1) = \beta, \gamma(1, 2) = c, \gamma(2, 2) = \gamma
\]

and \(v_j \in \{1, 2\} \), then we let

\[
\begin{align*}
 c_l &= \gamma(v_0, 0) & \text{for } l = v_0; \\
 c_l &= \gamma(v_1, 0)\gamma(v_0, v_1) & \text{for } l = v_0 + 3v_1; \\
 \cdots \\
 c_l &= \gamma(v_k, 0)\gamma(v_{k-1}, v_k) \cdots \gamma(v_0, v_1) & \text{for } l = \sum_{j=0}^{k} v_j 3^j, k \geq 2.
\end{align*}
\]

The solution of Eq. (1.1) can be decomposed (see [6]) as follows:

\[
\varphi(x) = (1/3)1_{[0,1]}(x/3) \left(1 + \sum_l c_l w_l(x/3) \right).
\]
The blocked sets are: (1) \([1/3, 2/3]\) for \(a = c = 0\), (2) \([2/3, 1]\) for \(\alpha = \beta = 0\), (3) \([1/3, 1]\) for \(a = \alpha = 0\). Hence, \(\varphi\) generates a MRA in \(L^2(\mathbb{R}_+)\) in the following cases: (1) \(a \neq 0, \alpha \neq 0\), (2) \(a = 0, \alpha \neq 0, c \neq 0\), (3) \(\alpha = 0, a \neq 0, \beta \neq 0\).

Example 4. Suppose that for some numbers \(b_s, 0 \leq s \leq p^n - 1\), equalities (1.5) are true. Using (1.4), we find the mask

\[
m(\omega) = \sum_{a=0}^{2^n-1} a \cdot w_\alpha(\omega),
\]

which takes the values \(b_s\) on the intervals \(I_s^{(n)}, 0 \leq s \leq p^n - 1\). When \(b_j \neq 0\) for \(1 \leq j \leq p^{n-1} - 1\) Eq. (1.1) has a solution, which generates a \(p\)-MRA in \(L^2(\mathbb{R}_+)\) (the modified Cohen condition is fulfilled for \(E = [0, 1]\)). The expansion of this solution in a lacunary series by generalized Walsh functions is contained in [6].

2. Preliminaries

For the integer and the fractional parts of a number \(x\) we are using the standard notations, \([x]\) and \(\{x\}\), respectively. For any \(s \in \mathbb{Z}\) let us denote by \(\langle s \rangle_p\) the remainder upon dividing \(s\) by \(p\). Then for \(x \in \mathbb{R}_+\) we set

\[
x_j = \langle [p^j x] \rangle_p, \quad x_j = \langle [p^{1-j} x] \rangle_p, \quad j \in \mathbb{N}.
\]

For each \(x \in \mathbb{R}_+\), these numbers are the digits of the \(p\)-ary expansion

\[
x = \sum_{j<0} x_j p^{-j-1} + \sum_{j>0} x_j p^{-j}
\]

(for a \(p\)-adic rational \(x\) we obtain an expansion with finitely many nonzero terms). It is clear that

\[
[x] = \sum_{j=1}^\infty x_j p^{j-1}, \quad \{x\} = \sum_{j=1}^\infty x_j p^{-j},
\]

and there exists \(k = k(x)\) in \(\mathbb{N}\) such that \(x_j = 0\) for all \(j > k\).

Consider the \(p\)-adic addition defined on \(\mathbb{R}_+\) as follows: if \(z = x \oplus y\), then

\[
z = \sum_{j<0} (x_j + y_j) p^{j-1} + \sum_{j>0} (x_j + y_j) p^{-j}.
\]

As usual, the equality \(z = x \oplus y\) means that \(z \oplus y = x\). According to our notation

\[
[x \oplus y] = [x] \oplus [y] \quad \text{and} \quad \{x \oplus y\} = \{x\} \oplus \{y\}.
\]

Note that for \(p = 2\) we have

\[
x \oplus y = \sum_{j<0} |x_j - y_j| 2^{-j-1} + \sum_{j>0} |x_j - y_j| 2^{-j}.
\]

Letting \(\varepsilon_p = \exp(2\pi i/p)\), we define a function \(w_1\) on \([0, 1)\) by

\[
w_1(x) = \begin{cases} 1, & x \in [0, 1/p), \\ \varepsilon_p^l, & x \in (lp^{-1}, (l+1)p^{-1}), l \in \{1, \ldots, p-1\} \end{cases}
\]
and extend it to \mathbb{R}_+ by periodicity: $w_1(x + 1) = w_1(x)$ for all $x \in \mathbb{R}_+$. Then the generalized Walsh system $\{w_l|l \in \mathbb{Z}_+\}$ is defined by

$$w_0(x) \equiv 1, \quad w_l(x) = \prod_{j=1}^{k} (w_1(p^{j-1}x))^{l_j}, \quad l \in \mathbb{N}, \, x \in \mathbb{R}_+,$$

where the l_j are the digits of the p-ary expansion of l:

$$l = \sum_{j=1}^{k} l_j p^{j-1}, \quad l_j \in \{0, 1, \ldots, p-1\}, l_k \neq 0, k = k(l).$$

For any $x, y \in \mathbb{R}_+$, let

$$\chi(x, y) = \varepsilon_p^{t(x, y)}, \quad t(x, y) = \sum_{j=1}^{\infty} (x_j y_{-j} + x_{-j} y_j), \quad (2.2)$$

where x_j, y_j are given by (2.1). Note that

$$\chi(x, p^{-s}l) = \chi(p^{-s}x, l) = w_l(p^{-s}x), \quad l, s \in \mathbb{Z}_+, \, x \in [0, p^s),$$

and

$$\chi(x, z)\chi(y, z) = \chi(x \oplus y, z), \quad \chi(x, z)\overline{\chi(y, z)} = \chi(x \ominus y, z), \quad (2.3)$$

if $x, y, z \in \mathbb{R}_+$ and $x \oplus y$ is p-adic irrational. Thus, for fixed x and z, equalities (2.3) hold for all $y \in \mathbb{R}_+$ except countably many of them (see [9, Section 1.5]).

It is known also that Lebesgue measure is translation invariant on \mathbb{R}_+ with respect to p-adic addition, and so we can write

$$\int_{\mathbb{R}_+} f(x \oplus y) \, dx = \int_{\mathbb{R}_+} f(x) \, dx, \quad f \in L^1(\mathbb{R}_+),$$

for all $y \in \mathbb{R}_+$ (see [22, Section 1.3], [9, Section 6.1]).

The *Walsh–Fourier transform* of a function $f \in L^1(\mathbb{R}_+)$ is defined by

$$\widehat{f}(\omega) = \int_{\mathbb{R}_+} f(x) \overline{\chi(x, \omega)} \, dx,$$

where $\chi(x, \omega)$ is given by (2.2). If $f \in L^2(\mathbb{R}_+)$ and

$$J_a f(\omega) = \int_{0}^{a} f(x) \overline{\chi(x, \omega)} \, dx, \quad a > 0,$$

then \widehat{f} is the limit of $J_a f$ in $L^2(\mathbb{R}_+)$ as $a \to \infty$. We say that a function $f : \mathbb{R}_+ \mapsto \mathbb{C}$ is W-continuous at a point $x \in \mathbb{R}_+$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|f(x \oplus y) - f(x)| < \varepsilon$ for $0 < y < \delta$. For example, each Walsh polynomial is W-continuous (see [22, Section 9.2], [9, Section 2.3]).

Denote by (\cdot, \cdot) and $\| \cdot \|$ the inner product and the norm in $L^2(\mathbb{R}_+)$, respectively.

Proposition 1 (See [9, Chap. 6]). The following properties hold:

(a) if $f \in L^1(\mathbb{R}_+)$, then \widehat{f} is a W-continuous function and $\widehat{f}(\omega) \to 0$ as $\omega \to \infty$;
(b) if both f and \hat{f} belong to $L^1(\mathbb{R}_+)$ and f is W-continuous, then
\[
f(x) = \int_{\mathbb{R}_+} \hat{f}(\omega) \chi(x, \omega) \, d\omega \quad \text{for all } x \in \mathbb{R}_+;
\]

(c) if $f, g \in L^2(\mathbb{R}_+)$, then $\langle f, g \rangle = \langle \hat{f}, \hat{g} \rangle$ (Parseval’s relation).

Let $E_n(\mathbb{R}_+)$ be the space of p-adic entire functions of order n on \mathbb{R}_+, that is, the set of functions which are constant on all p-adic intervals of range n. Then for every $f \in E_n(\mathbb{R}_+)$ we have
\[
f(x) = \sum_{\alpha=0}^{\infty} f(\alpha p^{-n}) \mathbf{1}_{[\alpha p^{-n}, (\alpha+1)p^{-n})}(x), \quad x \in \mathbb{R}_+.
\]

For example, the mask m of Eq. (1.1) belongs to $E_n(\mathbb{R}_+)$.

Proposition 2 ([9, Section 6.2]). The following properties hold:
(a) if $f \in L^1(\mathbb{R}_+) \cap E_n(\mathbb{R}_+)$, then $\text{supp} \, \hat{f} \subset [0, p^n]$;
(b) if $f \in L^1(\mathbb{R}_+)$ and $\text{supp} \, f \subset [0, p^n]$, then $\hat{f} \in E_n(\mathbb{R}_+)$.

Now we prove the following analogue of Theorem 1 in [8]:

Proposition 3. Let $\varphi \in L^2(\mathbb{R}_+)$ be a compactly supported solution of equation (1.1) such that $\hat{\varphi}(0) = 1$. Then
\[
\sum_{\alpha=0}^{p^n-1} a_\alpha = 1 \quad \text{and} \quad \text{supp} \, \varphi \subset [0, p^{n-1}].
\]

This solution is unique, is given by the formula
\[
\hat{\varphi}(\omega) = \prod_{j=1}^{\infty} m(p^{-j} \omega)
\]
and possesses the following properties:
(1) $\hat{\varphi}(k) = 0$ for all $k \in \mathbb{N}$ (the modified Strang–Fix condition);
(2) $\sum_{k \in \mathbb{Z}_+} \varphi(x \oplus k) = 1$ for almost all $x \in \mathbb{R}_+$ (the partition of unity property).

Proof. Using the Walsh–Fourier transform, we have
\[
\hat{\varphi}(\omega) = m(\omega/p) \hat{\varphi}(\omega/p).
\] (2.4)

Observe that $w_\omega(0) = \hat{\varphi}(0) = 1$. Hence, letting $\omega = 0$ in (1.2) and (2.4), we obtain
\[
\sum_{\alpha=0}^{p^n-1} a_\alpha = 1.
\]

Further, let s be the greatest integer such that
\[
\mu\{x \in [s - 1, s) | \varphi(x) \neq 0\} > 0,
\]
where μ is the Lebesgue measure on \mathbb{R}_+. Suppose that $s \geq p^{n-1} + 1$. Choose an arbitrary p-adic irrational $x \in [s - 1, s)$. Applying (2.1), we have
\[
x = [x] + \{x\} = \sum_{j=1}^{k} x_{-j} p^{j-1} + \sum_{j=1}^{\infty} x_j p^{-j},
\] (2.5)
where \(\{x\} > 0, x_{-k} \neq 0, k = k(x) \geq n \). For any \(\alpha \in \{0, 1, \ldots, p^n - 1\} \) we set \(y^{(\alpha)} = px \ominus \alpha \). Then

\[
y^{(\alpha)} = \sum_{j=1}^{k+1} y^{(\alpha)}_{j-1} p^{j-1} + \sum_{j=1}^{\infty} y^{(\alpha)}_{j} p^{-j},
\]

where \(y^{(\alpha)}_{-k-1} = x_{-k} \) and among the digits \(y^{(\alpha)}_{1}, y^{(\alpha)}_{2}, \ldots \), there is a nonzero one. Therefore,

\[
px \ominus \alpha > p^n \quad \text{for a.e.} \; x \in [s - 1, s).
\] (2.6)

Now assume that \(s \leq p^n \). Then it is easy to see from (2.6) that \(\varphi(px \ominus \alpha) = 0 \) for a.e. \(x \in [s - 1, s) \). Therefore by (1.1) we get \(\varphi(x) = 0 \) for a.e. \(x \in [s - 1, s) \), contrary to our choice of \(s \). Thus \(s \geq p^n + 1 \). Hence, if \(x \) given by (2.5), then for any \(\alpha \in \{0, 1, \ldots, p^n - 1\} \) we have

\[
px \ominus \alpha > p(s - 1) - (p^n - 1) \geq 2(s - 1) - (s - 2) = s,
\]

where the first inequality is strong because \(\{x\} > 0 \). As above, we conclude that \(\varphi(x) = 0 \) for a.e. \(x \in [s - 1, s) \). Consequently, \(s \leq p^n - 1 \) and supp \(\varphi \subset [0, p^{n-1}] \).

Let us prove that

\[
\hat{\varphi}(\omega) = \prod_{j=1}^{\infty} m(p^{-j} \omega).
\] (2.7)

We note that \(\varphi \) belongs to \(L^1(\mathbb{R}_+) \) because it lies in \(L^2(\mathbb{R}_+) \) and has a compact support. Since supp \(\varphi \subset [0, p^{n-1}] \), by Proposition 2 we get \(\hat{\varphi} \in \mathcal{E}_{n-1}(\mathbb{R}_+) \). Also, by virtue of \(\hat{\varphi}(0) = 1 \), we obtain \(\hat{\varphi}(\omega) = 1 \) for all \(\omega \in [0, p^{1-n}] \). On the other hand, \(m(\omega) = 1 \) for all \(\omega \in [0, p^{1-n}] \). Hence, for every positive integer \(l \),

\[
\hat{\varphi}(\omega) = \hat{\varphi}(p^{-l-n} \omega) \prod_{j=1}^{l+n} m(p^{-j} \omega) = \prod_{j=1}^{\infty} m(p^{-j} \omega), \quad \omega \in [0, p^l).
\]

Therefore, (2.7) is valid and a solution \(\varphi \) is unique.

By Proposition 1, for any \(k \in \mathbb{N} \) we have

\[
\hat{\varphi}(k) = \hat{\varphi}(j) \prod_{s=0}^{j-1} m(p^s k) = \hat{\varphi}(p^j k) \to 0
\]

as \(j \to \infty \) (since \(\varphi \in L^1(\mathbb{R}_+) \) and \(m(p^s k) = 1 \) because \(m(0) = 1 \) and \(m \) is 1-periodic). It follows that

\[
\hat{\varphi}(k) = 0 \quad \text{for all} \; k \in \mathbb{N}.
\] (2.8)

By the Poisson summation formula we get

\[
\sum_{k \in \mathbb{Z}_+} \varphi(x \ominus k) = \sum_{k \in \mathbb{Z}_+} \hat{\varphi}(k) \chi(x, k).
\]

Hence, since \(\hat{\varphi}(0) = 1 \), from (2.8) we obtain

\[
\sum_{k \in \mathbb{Z}_+} \varphi(x \ominus k) = 1 \quad \text{for a.e.} \; x \in \mathbb{R}_+. \quad \Box
\]

The proposition is proved.
A function \(f \in L^2(\mathbb{R}_+) \) is said to be stable if there exist positive constants \(A \) and \(B \) such that
\[
A \left(\sum_{\alpha=0}^{\infty} |a_{\alpha}|^2 \right)^{1/2} \leq \left\| \sum_{\alpha=0}^{\infty} a_{\alpha} f(\cdot \ominus \alpha) \right\| \leq B \left(\sum_{\alpha=0}^{\infty} |a_{\alpha}|^2 \right)^{1/2}
\]
for each sequence \(\{a_{\alpha}\} \in \ell^2 \). In other words, \(f \) is stable if functions \(f(\cdot \ominus k), k \in \mathbb{Z}_+ \), form a Riesz system in \(L^2(\mathbb{R}_+) \). We note also, that a function \(f \) is stable in \(L^2(\mathbb{R}_+) \) with constants \(A \) and \(B \) if and only if
\[
A \leq \sum_{k \in \mathbb{Z}_+} |\hat{f}(\omega \ominus k)|^2 \leq B \quad \text{for a.e. } \omega \in \mathbb{R}_+
\]
(2.9)
(the proof of this fact is quite similar to that of Theorem 1.1.7 in [21]).

We say that a function \(g : \mathbb{R}_+ \to \mathbb{C} \) has a periodic zero at a point \(\omega \in \mathbb{R}_+ \) if \(g(\omega \oplus k) = 0 \) for all \(k \in \mathbb{Z}_+ \).

Proposition 4 (cf. [8, Theorem 2]). For a compactly supported function \(f \in L^2(\mathbb{R}_+) \) the following statements are equivalent:

(a) \(f \) is stable in \(L^2(\mathbb{R}_+) \);
(b) \(\{f(\cdot \ominus k) \mid k \in \mathbb{Z}_+\} \) is a linearly independent system in \(L^2(\mathbb{R}_+) \);
(c) \(\hat{f} \) does not have periodic zeros.

Proof. The implication (a) \(\Rightarrow \) (b) follows from the well-known property of the Riesz systems (see, e.g., [21, Theorem 1.1.2]). Our next claim is that \(f \in L^1(\mathbb{R}_+) \), since \(f \) has compact support and \(f \in L^2(\mathbb{R}_+) \). Let us choose a positive integer \(n \) such that \(\text{supp } f \subset [0, p^n-1] \). Then by **Proposition 2** we have \(\hat{f} \in \mathcal{E}_{n-1}(\mathbb{R}_+) \). Besides, if \(k > p^n-1 \), then
\[
\mu\{\text{supp } f(\cdot \ominus k) \cap [0, p^n-1]\} = 0
\]
(as above, \(\mu \) denotes the Lebesgue measure on \(\mathbb{R}_+ \)). Therefore, the linearly independence of the system \(\{f(\cdot \ominus k) \mid k \in \mathbb{Z}_+\} \) in \(L^2(\mathbb{R}_+) \) is equivalent to that for the finite system \(\{f(\cdot \ominus k) \mid k = 0, 1, \ldots, p^n-1 - 1\} \). Further, if some vector \((a_0, \ldots, a_{p^n-1-1}) \) satisfies conditions
\[
\sum_{\alpha=0}^{p^n-1-1} a_{\alpha} f(\cdot \ominus \alpha) = 0 \quad \text{and} \quad |a_0| + \cdots + |a_{2^{n-1}-1}| > 0,
\]
then using the Walsh–Fourier transform we obtain
\[
\hat{f}(\omega) \sum_{\alpha=0}^{p^n-1-1} a_{\alpha} w_{\alpha}(\omega) = 0 \quad \text{for a.e. } \omega \in \mathbb{R}_+.
\]
The Walsh polynomial
\[
w(\omega) = \sum_{\alpha=0}^{p^n-1-1} a_{\alpha} w_{\alpha}(\omega)
\]
is not identically equal to zero; hence among \(I_s^{(n-1)}, 0 \leq s \leq p^n-1 - 1 \), there exists an interval (denote it by \(I \)) for which \(w(I \oplus k) \neq 0, k \in \mathbb{Z}_+ \). Since \(f \in \mathcal{E}_{n-1}(\mathbb{R}_+) \), it follows that (2.10) holds if and only if there exists a \(p \)-adic interval \(I \) of range \(n - 1 \), such that \(\hat{f}(I \oplus k) = 0 \) for
all \(k \in \mathbb{Z}_+ \). Thus, (b) \(\iff \) (c). It remains to prove that (c) \(\implies \) (a). Suppose that \(\hat{f} \) does not have periodic zeros. Then

\[
F(\omega) := \sum_{k \in \mathbb{Z}_+} |\hat{f}(\omega \ominus k)|^2, \quad \omega \in \mathbb{R}_+.
\]

is positive and 1-periodic function. Moreover, since \(\hat{f} \in \mathcal{E}_{n-1}(\mathbb{R}_+) \), we see that \(F \) is constant on each \(I^{(n-1)}_s, 0 \leq s \leq p^n - 1 \). Hence (2.9) is satisfied and so Proposition 4 is established. \(\square \)

The following two propositions are proved in [6]:

Proposition 5. Let \(\varphi \in L^2(\mathbb{R}_+) \). Then the system \(\{ \varphi(\cdot \ominus k) \mid k \in \mathbb{Z}_+ \} \) is orthonormal in \(L^2(\mathbb{R}_+) \) if and only if

\[
\sum_{k \in \mathbb{Z}_+} |\hat{\varphi}(\omega \ominus k)|^2 = 1 \quad \text{for a.e.} \ \omega \in \mathbb{R}_+.
\]

Proposition 6. Let \(\{ V_j \} \) be the family of subspaces defined by (1.6) with given \(\varphi \in L^2(\mathbb{R}_+) \). If \(\{ \varphi(\cdot \ominus k) \mid k \in \mathbb{Z}_+ \} \) is an orthonormal basis in \(V_0 \), then \(\bigcap V_j = \{0\} \).

We shall use also the following

Proposition 7. Let

\[
m(\omega) = \sum_{\alpha=0}^{p^n - 1} a_\alpha w_\alpha(\omega)
\]

be a polynomial such that

\[
m(0) = 1 \quad \text{and} \quad \sum_{l=0}^{p-1} |m(\omega \oplus l/p)|^2 = 1 \quad \text{for all} \ \omega \in \mathbb{R}_+.
\]

Suppose \(\varphi \) is a function defined by the Walsh–Fourier transform

\[
\hat{\varphi}(\omega) = \prod_{j=1}^{\infty} m(p^{-j} \omega).
\]

Then the system \(\{ \varphi(\cdot \ominus k) \mid k \in \mathbb{Z}_+ \} \) is orthonormal in \(L^2(\mathbb{R}_+) \) if and only if \(m \) satisfies the modified Cohen condition.

The proof of this proposition is similar to that of Theorem 6.3.1 in [3] (cf. [15, Theorem 2.1], [5, Proposition 3.3]).

3. Proof of the theorem

The next lemma gives a relation between stability and blocked sets.

Lemma 1. Let \(\varphi \) be a \(p \)-refinable function in \(L^2(\mathbb{R}_+) \) such that \(\hat{\varphi}(0) = 1 \). Then \(\varphi \) is not stable if and only if its mask \(m \) has a blocked set.

Proof. Using Propositions 2 and 3, we have \(\text{supp} \ \varphi \subset [0, p^{n-1}] \) and \(\hat{\varphi} \in \mathcal{E}_{n-1}(\mathbb{R}_+) \). Suppose that the function \(\varphi \) is not stable. As noted in the proof of Proposition 4, then there exists an interval \(I = I^{(n-1)}_s \) consisting entirely of periodic zeros of the Walsh–Fourier transform \(\hat{\varphi} \) (and
each periodic zero \(\omega \in [0, 1) \) of \(\hat{\varphi} \) lies in some such \(I \). Thus, the set
\[
M_0 = \{ \omega \in [0, 1) | \hat{\varphi}(\omega + k) = 0 \text{ for all } k \in \mathbb{Z}_+ \}
\]
is a union of some intervals \(I_s^{(n-1)} \), \(0 \leq s \leq p^{n-1} - 1 \). Since \(\hat{\varphi}(0) = 1 \), it follows that \(M_0 \) does not contain \(I_0^{(n-1)} \). Furthermore, if \(\omega \in M_0 \), then by (2.4)
\[
m(\omega/p + k/p)\hat{\varphi}(\omega/p + k/p) = 0 \text{ for all } k \in \mathbb{Z}_+
\]
and hence \(\omega/p + l/p \in M_0 \cup \text{Null } m \) for \(l = 0, 1, \ldots, p - 1 \). Thus, if \(\varphi \) is not stable, then \(M_0 \) is a blocked set for \(m \).

Conversely, let \(m \) possess a blocked set \(M \). Then we will show that each element of \(M \) is a periodic zero for \(\hat{\varphi} \) (and by Proposition 4 \(\varphi \) is not stable). Assume that there exist \(\omega \in M \) and \(k \in \mathbb{Z}_+ \) such that \(\hat{\varphi}(\omega + k) \neq 0 \). Choose a positive integer \(j \) for which \(p^{-j}(\omega + k) \in [0, p^{1-n}) \) and, for every \(r \in \{0, 1, \ldots, j \} \), set
\[
u_r = [p^{-r}(\omega + k)], \quad v_r = [p^{-r}(\omega + k)].
\]
Further, let \(u_r/p = l_r/p + s_r \), where \(l_r \in \{0, 1, \ldots, p - 1 \} \) and \(s_r \in \mathbb{Z}_+ \). It is clear that for all \(r \in \{0, 1, \ldots, j - 1 \} \)
\[
u_{r+1} + v_{r+1} = (p^{-1}v_r + p^{-1}l_r) + s_r
\]
and hence \(v_{r+1} = p^{-1}(v_r + l_r) \). From this it follows that if \(v_r \in M \), then \(v_{r+1} \in T_p M \). Besides, from the equalities
\[
\hat{\varphi}(\omega + k) = \hat{\varphi}(\omega) \prod_{r=1}^{j} m(p^{-r}(\omega + k)) = \hat{\varphi}(v_j) \prod_{r=1}^{j} m(v_r)
\]
we see that all \(v_r \notin \text{Null } m \). Thus, if \(v_r \in M \), then \(v_{r+1} \in M \). Since \(v_0 = \omega \in M \), we conclude that \(v_j \in M \). But this is impossible because \(v_j = p^{-j}(\omega + k) \in [0, p^{1-n}) \) and \(M \cap [0, p^{1-n}) = \emptyset \). This contradiction completes the proof of Lemma 1. \(\square \)

Corollary. If \(\varphi \) is a \(p \)-refinable function in \(L^2(\mathbb{R}_+) \) such that \(\hat{\varphi}(0) = 1 \), then the system \(\{ \varphi(\cdot \oplus k) | k \in \mathbb{Z}_+ \} \) is linearly dependent if and only if the mask of \(\varphi \) possesses a blocked set.

Lemma 2. Suppose that the mask of refinable equation (1.1) satisfies
\[
m(0) = 1 \quad \text{and} \quad \sum_{l=0}^{p-1} |m(\omega \oplus l/p)|^2 = 1 \quad \text{for all } \omega \in \mathbb{R}_+.
\]
Then the function \(\varphi \) given by
\[
\hat{\varphi}(\omega) = \prod_{j=1}^{\infty} m(p^{-j}\omega)
\]
is a solution of Eq. (1) and \(\|\varphi\| \leq 1 \).

Proof. The pointwise convergence of product in (3.2) follows from the fact that \(m \) is equal to 1 on \([0, p^{1-n}) \) (and for any \(\omega \in \mathbb{R}_+ \) only finitely many of the factors in (3.2) cannot be equal to 1). Denote by \(g(\omega) \) the right part of (3.2). From (3.1) we see that \(|m(\omega)| \leq 1 \) for all \(\omega \in \mathbb{R}_+ \).
Therefore, for any $s \in \mathbb{N}$ we have
\[|g(\omega)|^2 \leq \prod_{j=1}^{s} |m(p^{-j}\omega)|^2 \]
and hence
\[\int_{0}^{p^l} |g(\omega)|^2 \, d\omega \leq \int_{0}^{p^l} \prod_{j=1}^{s} |m(B^{-j}\omega)|^2 \, d\omega = 2^s \int_{0}^{p^{s-1}} \prod_{j=0}^{s-1} |m(B^j\omega)|^2 \, d\omega. \tag{3.3} \]
Further, from the equalities
\[m(\omega) = \sum_{\alpha=0}^{p^n-1} a_\alpha w_\alpha(\omega), \quad w_\alpha(\omega)w_\beta(\omega) = w_{\alpha \oplus \beta}(\omega), \]
it follows that
\[|m(\omega)|^2 = \sum_{\alpha=0}^{p^n-1} c_\alpha w_\alpha(\omega), \tag{3.4} \]
where the coefficients c_α may be expressed via a_α. Now, we substitute (3.4) into the second equality of (3.1) and observe that if α is multiply to p, then
\[\sum_{l=0}^{p-1} w_\alpha(l/p) = p, \]
and this sum is equal to 0 for the rest α. As a result, we obtain $c_0 = 1/p$ and $c_\alpha = 0$ for nonzero α, which are multiply to p. Hence,
\[|m(\omega)|^2 = \frac{1}{p} + \sum_{\alpha=0}^{p^n-1} \sum_{l=1}^{p-1} c_{p\alpha+l} w_{p\alpha+l}(\omega). \]
This gives
\[\prod_{j=0}^{s-1} |m(p^j\omega)|^2 = p^{-s} + \sum_{\gamma=1}^{\sigma(s)} b_\gamma w_\gamma(\omega), \quad \sigma(s) \leq sp^{n-1}(p-1), \]
where each coefficient b_γ equals to the product of some coefficients $c_{p\alpha+l}, l = 1, \ldots, p-1$.
Taking into account that
\[\int_{0}^{1} w_\gamma(\omega) \, d\omega = 0, \quad \gamma \in \mathbb{N}, \]
we have
\[\int_{0}^{1} \prod_{j=0}^{s-1} |m(p^j\omega)|^2 \, d\omega = p^{-s}. \]
Substituting this into (3.3), we deduce
\[\int_{0}^{p^l} |g(\omega)|^2 \, d\omega \leq 1, \quad l \in \mathbb{N}, \]
which is due to the inequality
\[\int_{\mathbb{R}^+} |g(\omega)|^2 \, d\omega \leq 1. \tag{3.5} \]

Now, let \(\varphi \in L^2(\mathbb{R}_+) \) and \(\hat{\varphi} = g \). Then from (3.2) it follows that
\[\hat{\varphi}(\omega) = m(p^{-1}\omega)\hat{\varphi}(p^{-1}\omega), \]
and hence \(\varphi \) satisfies (1.1). Moreover, from (3.5), by Proposition 1, we get \(\|\varphi\| \leq 1. \)

Lemma 3. Let \(\varphi \) be a p-refinable function with a mask \(m \) and let \(\hat{\varphi}(0) = 1 \). Then the system \(\{ \varphi(\cdot \ominus k) | k \in \mathbb{Z}_+ \} \) is orthonormal in \(L^2(\mathbb{R}_+) \) if and only if the mask \(m \) has no blocked sets and satisfies
\[\sum_{l=0}^{p-1} |m(\omega \oplus l/p)|^2 = 1 \quad \text{for all } \omega \in \mathbb{R}_+. \tag{3.6} \]

Proof. If the system \(\{ \varphi(\cdot \ominus k) | k \in \mathbb{Z}_+ \} \) is orthonormal in \(L^2(\mathbb{R}_+) \), then (3.6) holds (see [6]) and a lack of blocked sets follows from Lemma 1 and Proposition 4. Conversely, suppose that \(m \) has no blocked sets and (3.6) is fulfilled. Then we set
\[\Phi(\omega) := \sum_{k \in \mathbb{Z}_+} |\hat{\varphi}(\omega \ominus k)|^2. \tag{3.7} \]
Obviously, \(\Phi \) is nonnegative and 1-periodic function. According to Proposition 5, it suffices to show that \(\Phi(\omega) \equiv 1 \). Let
\[a = \inf \{ \Phi(\omega) | \omega \in [0, 1) \}. \]
From Propositions 2 and 3 it follows that \(\Phi \) is constant on each \(I_s^{(n-1)}, 0 \leq s \leq p^{n-1} - 1 \). Moreover, if \(\Phi \) vanishes on one of these intervals, then \(\hat{\varphi} \) has a periodic zero, and hence \(\varphi \) is unstable. On account of Proposition 4 and Lemma 1, this assertion contradicts a lack of blocked sets for \(m \). Hence, \(a \) is positive. Also, by the modified Strang–Fix condition (see Proposition 3), we have \(\Phi(0) = 1 \). Thus, \(0 < a \leq 1 \).

Further, by (2.4) and (3.7) we obtain
\[\Phi(\omega) = \sum_{l=0}^{p-1} |m(p^{-1}\omega \ominus p^{-1}l)|^2 \Phi(p^{-1}\omega \ominus p^{-1}l). \tag{3.8} \]
Now, let \(M_a = \{ \Phi(\omega) = a | \omega \in [0, 1) \} \). In the case \(0 < a < 1 \) from (3.6) and (3.8) we see that for any \(\omega \in M_a \) the elements \(p^{-1}\omega \ominus p^{-1}l, l = 0, 1, \ldots, p - 1 \), belong either \(M_a \) or \(\text{Null } m \). Therefore, \(M_a \) is a blocked set, which contradicts the assumption. Thus, \(\Phi(\omega) \geq 1 \) for all \(\omega \in [0, 1) \). Hence from the equalities
\[\int_0^1 \Phi(\omega) \, d\omega = \sum_{k \in \mathbb{Z}_+} \int_k^{k+1} |\hat{\varphi}(\omega)|^2 \, d\omega = \int_{\mathbb{R}_+} |\hat{\varphi}(\omega)|^2 \, d\omega = \|\varphi\|^2 \]
by Lemma 2 we have

$$\int_0^1 \Phi(\omega) \, d\omega = 1.$$

Once again applying the inequality $\Phi(\omega) \geq 1$ and using the fact that Φ is constant on each $I_s^{(n-1)}$, $0 \leq s \leq p^{n-1} - 1$, we conclude that $\Phi(\omega) \equiv 1$. \qed

Proof of the theorem. Suppose that m satisfies condition (b) or (c). Then, by Proposition 7 and Lemma 3, the system $\{\phi(\cdot \ominus k) \mid k \in \mathbb{Z}_+\}$ is orthonormal in $L^2(\mathbb{R}_+)$. Let us define the subspaces V_j, $j \in \mathbb{Z}_+$ by the formula (1.6). By Proposition 6 we have $\bigcap V_j = \{0\}$. The embeddings $V_j \subset V_{j+1}$ follow from the fact that ϕ satisfies the Eq. (1.1). The equality

$$\bigcup V_j = L^2(\mathbb{R}_+)$$

is proved in just the same way as (2.14) in [5] (cf. [3, Section 5.3]). Thus, the implications (b) \Rightarrow (a) and (c) \Rightarrow (a) are true. The inverse implications follow directly from Proposition 7 and Lemma 3. \qed

4. **On matrix extension and p-wavelet construction**

Following the standard approach (e.g., [11,18]), we reduce the problem of p-wavelet decomposition to the problem of matrix extension. More precisely, we shall discuss the following procedure to construct orthogonal p-wavelets in $L^2(\mathbb{R}_+)$:

1. Choose numbers b_s such that equalities (1.5) are true.
2. Compute a_α by (1.4) and verify that the mask

$$m_0(\omega) = \sum_{\alpha=0}^{p^{n-1}} a_\alpha w_\alpha(\omega)$$

has no blocked sets.
3. Find

$$m_l(\omega) = \sum_{\alpha=0}^{p^{n-1}} a_\alpha^{(l)} w_\alpha(\omega), \quad 1 \leq l \leq p - 1,$$

such that $(m_l(\omega + k/p))_{l,k=0}^{p-1}$ is an unitary matrix.
4. Define $\psi_1, \ldots, \psi_{p-1}$ by the formula

$$\psi_l(x) = p \sum_{\alpha=0}^{p^{n-1}} a_\alpha^{(l)} \varphi(p \cdot \ominus \alpha), \quad 1 \leq l \leq p - 1. \quad (4.1)$$

In the $p = 2$ case, one can choose $a_\alpha^{(1)} = (-1)^\alpha a_{\alpha \ominus 1}$ for $0 \leq \alpha \leq 2^n - 1$ (and $a_\alpha^{(1)} = 0$ for the rest α). Then $m_1(\omega) = -w_1(\omega)m_0(\omega \oplus 1/2)$, the matrix

$$\begin{pmatrix}
m_0(\omega) & m_0(\omega \oplus 1/2) \\
m_1(\omega) & m_1(\omega \oplus 1/2)
\end{pmatrix}$$
is unitary and, as in [8], we obtain

$$\psi(x) = 2 \sum_{\alpha=0}^{2^n-1} (-1)^{\alpha} \tilde{a}_\alpha \phi(2x \oplus \alpha).$$

In particular, if $n = 1$ and $a_0 = a_1 = 1/2$, then ψ is the classical Haar wavelet.

In the $p > 2$ case, we take the coefficients a_α as in Step 2 (so that b_α satisfy (1.5) and m_0 has no blocked sets). Then

$$\sum_{\alpha=0}^{p^n-1} |a_\alpha|^2 = \frac{1}{p^n}.$$ \hspace{1cm} (4.2)

In fact, Parseval’s relation for the discrete transforms (1.3) and (1.4) can be written as

$$\sum_{\alpha=0}^{p^n-1} |a_\alpha|^2 = \frac{1}{p^n} \sum_{\alpha=0}^{p^n-1} |b_\alpha|^2.$$ \hspace{1cm} (4.3)

Therefore (4.2) follows from (1.5). Now we define

$$A_{0k}(z) = \sum_{l=0}^{p^n-1-1} a_{k+p/l} z^l, \quad 0 \leq k \leq p - 1,$$

and introduce the polynomials $A_{lk}(z)$, $\deg A_{lk} \leq p^n - 1$, such that

$$m_l(\omega) = \sum_{k=0}^{p-1} w_k(\omega) A_{lk}(\overline{w_p(\omega)}), \quad 1 \leq l \leq p - 1.$$ \hspace{1cm} (4.4)

It follows immediately that

$$M(\omega) = A(w_p(\omega)) W(\omega),$$

where $M(\omega) := (m_l(\omega + k/p))_{l,k=0}^{p-1}$, $A(z) := (A_{lk}(z))_{l,k=0}^{p-1}$, and $W(\omega) := (w_l(\omega + k/p))_{l,k=0}^{p-1}$. The matrix $p^{-1/2} W(\omega)$ is unitary. Thus, by (4.4), unitarity of $M(\omega)$ is equivalent to that of the matrix $p^{-1/2} A(z)$ with $z = w_p(\omega)$. From this we claim that Step 3 of the procedure can be realized by some modification of the algorithm for matrix extension suggested by Lawton, Lee and Shen in [18] (see also [2, Theorem 2.1]).

We illustrate the described procedure by the following examples.

Example 5. Let

$$m_0(\omega) = \frac{1}{p} \sum_{\alpha=0}^{p-1} w_\alpha(\omega)$$

so that $a_0 = \cdots = a_{p-1} = 1/p$. Then, as in Example 1, we have $\varphi = 1_{[0, p^n-1)}$. Setting

$$m_l(\omega) = \frac{1}{p} \sum_{\alpha=0}^{p-1} \varepsilon_{l\alpha} w_\alpha(\omega), \quad 1 \leq l \leq p - 1,$$
we observe that \((m_1(\omega + k/p))_{|k|=0}^{p-1}\) is unitary for all \(\omega \in [0, 1)\). Indeed, the constant matrix
\[
(p^{-1}(e^{ik}_p))_{|k|=0}^{p-1}
\]
may be taken as \(A(z)\) in (4.4). Therefore we obtain from (4.1)
\[
\psi_1(x) = \sum_{\alpha=0}^{p-1} e^{ik}_p \varphi(p x \ominus \alpha), \quad 1 \leq l \leq p - 1.
\]

Note that the similar wavelets in the space \(L^2(\mathbb{Q}_p)\) were introduced by Kozyrev in [13]; in connection with these wavelets see also [1, p.450] and Example 4.1 in [12].

Example 6. Let \(p = 3, n = 2\). As in Example 3, we take \(a, b, c, \alpha, \beta, \gamma\) such that
\[
|a|^2 + |b|^2 + |c|^2 = |\alpha|^2 + |\beta|^2 + |\gamma|^2 = 1
\]
and then define \(a_0, a_1, \ldots, a_8\) using (1.4). In this case we have
\[
A_{00}(z) = a_0 + a_3z + a_6z^2, \quad A_{01}(z) = a_1 + a_4z + a_7z^2, \quad A_{02}(z) = a_2 + a_5z + a_8z^2.
\]
Now, we require
\[
a \neq 0, \quad \alpha = \overline{\alpha}, \quad a\overline{\alpha} + b\overline{\beta} + c\overline{\gamma} = \overline{a}.
\]
In particular, for \(0 < a < 1\) we can choose numbers \(\theta, t\) such that
\[
\cos(\theta - t) = \frac{a - a^2}{1 - a^2}
\]
and then set \(\alpha = a, r = \sqrt{1 - a^2}, \beta = r \cos \theta, \gamma = r \sin \theta, b = r \cos t, c = r \sin t\).

Under our assumptions the mask \(m_0\) has no blocked sets (see Example 3). Moreover, it follows from (4.2) and (4.5) that
\[
|A_{00}(z)|^2 + |A_{01}(z)|^2 + |A_{02}(z)|^2 = \frac{1}{3}
\]
for all \(z\) on the unit circle \(\mathbb{T}\). To see this, note that by a direct calculation
\[
|A_{00}(z)|^2 + |A_{01}(z)|^2 + |A_{02}(z)|^2 = \sum_{\alpha=0}^{8} |a_\alpha|^2 + 2\mathcal{R} \left[(a_0\alpha_3 + a_1\alpha_4 + a_2\alpha_5)z \right] \\
+ 2\mathcal{R} \left[(a_0\alpha_6 + a_1\alpha_7 + a_2\alpha_8)z^2 \right] + 2\mathcal{R} \left[(a_3\alpha_6 + a_4\alpha_7 + a_5\alpha_8)z^2 \right],
\]
where
\[
27(a_0\alpha_3 + a_1\alpha_4 + a_2\alpha_5) = a + \alpha + (\alpha + a\alpha + b\beta + c\gamma)\epsilon_3 + (\alpha + a\alpha + b\beta + c\gamma)\epsilon_3^2, \\
27(a_0\alpha_6 + a_1\alpha_7 + a_2\alpha_8) = a + \alpha + (\alpha + a\alpha + b\beta + c\gamma)\epsilon_3 + (\alpha + a\alpha + b\beta + c\gamma)\epsilon_3^2, \\
27(a_0\alpha_6 + a_1\alpha_7 + a_2\alpha_8) = 2\epsilon_3 \mathcal{R} a + 2\epsilon_3^2 \mathcal{R} \alpha + 2\mathcal{R} (a\alpha + b\beta + c\gamma).
\]

Further, if
\[
\alpha_0 = \sqrt{3} (a_0, a_1, a_2), \quad \alpha_1 = \sqrt{3} (a_3, a_4, a_5), \quad \alpha_2 = \sqrt{3} (a_6, a_7, a_8),
\]
then
\[
|\alpha_0|^2 + |\alpha_1|^2 + |\alpha_2|^2 = 1, \quad \langle \alpha_0, \alpha_1 \rangle = \langle \alpha_0, \alpha_2 \rangle = \langle \alpha_1, \alpha_2 \rangle = 0,
\]
where $\langle \cdot, \cdot \rangle$ is the inner product in \mathbb{C}^3. It is clear that
\[
\alpha_0 + \alpha_1 z + \alpha_2 z^2 = \sqrt{3} \left(A_{00}(z), A_{01}(z), A_{02}(z) \right).
\]

Let P_2 be the orthogonal projection onto α_2, i.e.,
\[
P_2 w = \frac{\langle w, \alpha_2 \rangle}{\langle \alpha_2, \alpha_2 \rangle} \alpha_2, \quad w \in \mathbb{C}^3.
\]

Then we have
\[
\left(I - P_2 + z^{-1} P_2 \right) \left(\alpha_0 + \alpha_1 z + \alpha_2 z^2 \right)
= \left(I - P_2 \right) \alpha_0 + P_2 \alpha_1 + z \left(P_2 \alpha_2 + (I - P_2) \alpha_1 \right) =: \beta_0 + \beta_1 z.
\]

One now verifies that
\[
|\beta_0|^2 + |\beta_1|^2 = 1, \quad (\beta_0, \beta_1) = 0.
\]

Furthermore, if P_1 is the orthogonal projection onto β_1, then
\[
\left(I - P_1 + z^{-1} P_1 \right) (\beta_0 + \beta_1 z) = (I - P_1) \beta_0 + P_1 \beta_1 =: \gamma_0.
\]

By the Gram–Schmidt orthogonalization, we can find an unitary matrix I_0 once the first row of this matrix is the unit vector γ_0. Then we set
\[
I'_1(z) = (I - P_1 + z P_1) I_0 \quad \text{and} \quad I'_2(z) = (I - P_2 + z P_2) I'_1(z).
\]

The first row of $I'_2(z)$ coincides with $\alpha_0 + \alpha_1 z + \alpha_2 z^2$. Putting
\[
(A_{l k}(z))_{l, k = 0}^2 = \frac{1}{\sqrt{3}} I'_2(z),
\]
we see that m_1 and m_2 can be defined as follows:
\[
m_1(\omega) = \sum_{k=0}^{2} w_k(\omega) A_{l k}(w_3(\omega)) = \sum_{a=0}^{8} a^{(l)}_a w_a(\omega), \quad l = 1, 2.
\]

Finally, we find
\[
\psi_l(x) = 3 \sum_{a=0}^{8} a^{(l)}_a \varphi(3 x \ominus \alpha), \quad l = 1, 2.
\]

Note that for the space $L^2(\mathbb{Q}_p)$ the corresponding wavelets were introduced recently in [12].

5. Adapted p-wavelet approximation

Suppose that a p-refinable function φ generates a p-MRA in $L^2(\mathbb{R}_+)$ and subspaces V_j are given by (1.6). For each $j \in \mathbb{Z}$ denote by P_j the orthogonal projection of $L^2(\mathbb{R}_+)$ onto V_j. Given f in $L^2(\mathbb{R}_+)$ it is naturally to choose parameters b_s in (1.5) such that the approximation method $f \approx P_j f$ will be optimal. If f belongs to some class \mathcal{M} in $L^2(\mathbb{R}_+)$ then it is possible to seek the parameters b_s, which minimize for some fixed j the quantity
\[
\sup \{ \| f - P_j f \| \mid f \in \mathcal{M} \}
\]
and to study the behavior of this quantity as \(j \to +\infty \). Also, it is very interesting investigate \(p \)-wavelet approximation in the \(p \)-adic Hardy spaces (cf. \([10,14]\)).

By analogy with \([23]\) we discuss here another approach to the problem on optimization of the approximation method \(f \approx P_j f \). For every \(j \in \mathbb{Z} \) denote by \(W_j \) the orthogonal complement of \(V_j \) in \(V_{j+1} \) and let \(Q_j \) be the orthogonal projection of \(L^2(\mathbb{R}_+) \) to \(W_j \). Since \(\{V_j\} \) is a \(p \)-MRA, for any \(f \in L^2(\mathbb{R}_+) \) we have

\[
 f = \sum_j Q_j f = P_0 f + \sum_{j \geq 0} Q_j f
\]

and

\[
 \lim_{j \to +\infty} \| f - P_j f \| = 0, \quad \lim_{j \to -\infty} \| P_j f \| = 0.
\]

It is easily seen, that

\[
 P_j f = Q_{j-1} f + Q_{j-2} f + \cdots + Q_{j-s} f + P_{j-s} f, \quad j \in \mathbb{Z}, \ s \in \mathbb{N}.
\]

The equality \(V_j = V_{j-1} \oplus W_{j-1} \) means that \(W_{j-1} \) contains the “details” which are necessary to get over the \((j-1)\)th level of approximation to the more exact \(j \)th level. Since

\[
 \| P_j f \|^2 = \| P_{j-1} f \|^2 + \| Q_{j-1} f \|^2,
\]

it is natural to choose the parameters \(b_s \) to maximize \(\| P_{j-1} f \| \) (or, equivalently, to minimize \(\| Q_{j-1} f \| \)). To this end let us write Eq. (1.1) in the form

\[
 \varphi(x) = \sqrt{p} \sum_{\alpha=0}^{p^n-1} \tilde{a}_\alpha \varphi(p x \ominus h_\alpha),
\]

where \(\tilde{a}_\alpha = \sqrt{p} \ a_\alpha \). Putting \(\varphi_j(x) = p^{j/2} \varphi(p^j x) \), we have

\[
 \varphi_{j-1}(x) = \sum_{\alpha=0}^{p^{n-1}} \tilde{a}_\alpha \varphi_j(x \ominus p^{-j} \alpha), \quad \text{(5.1)}
\]

where \(\varphi_j(x \ominus p^{-j} \alpha) = \varphi_{j,k}(x) \). Further, given \(f \in L^2(\mathbb{R}_+) \) we set

\[
 f(j,k) := \langle f, \varphi_{j,k} \rangle = \int_{\mathbb{R}_+} f(x) \varphi_j(x \ominus p^{-j} k) \, dx.
\]

Applying (5.1), we obtain

\[
 f(j-1,k) = \int_{\mathbb{R}_+} \varphi_{j-1}(x \ominus p^{-j+1} k) \, dx
 = \sum_{\alpha=0}^{p^{n-1}} \tilde{a}_\alpha \int_{\mathbb{R}_+} f(x) \varphi_j(x \ominus p^{-j}(p k \oplus \alpha)) \, dx
\]

and hence

\[
 f(j-1,k) = \sum_{\alpha=0}^{p^{n-1}} \tilde{a}_\alpha f(j, p k \oplus \alpha). \quad \text{(5.2)}
\]
Since
\[P_j f = \sum_{k \in \mathbb{Z}_+} f(j, k)\varphi_{j,k} , \]
we see from (5.2) that
\[\| P_{j-1} f \|^2 = \sum_{k \in \mathbb{Z}_+} |f(j - 1, k)|^2 = \sum_{k \in \mathbb{Z}_+} \left| \sum_{\alpha = 0}^{p^n - 1} \bar{a}_\alpha f(j, p k \oplus \alpha) \right|^2 = \sum_{k \in \mathbb{Z}_+} \left(\sum_{\alpha, \beta = 0}^{p^n - 1} \bar{a}_\alpha \bar{a}_\beta f(j, p k \oplus \alpha) f(j, p k \oplus \beta) \right) . \]
(5.3)

For \(0 \leq \alpha, \beta \leq p^n - 1 \) we let
\[F_{\alpha, \beta}(j) := \sum_{k \in \mathbb{Z}_+} f(j, p k \oplus \alpha) f(j, p k \oplus \beta) . \]
Then \(F_{\beta, \alpha}(j) = \overline{F_{\alpha, \beta}(j)} \) and (5.3) implies
\[\| P_{j-1} f \|^2 = \sum_{\alpha, \beta = 0}^{p^n - 1} F_{\alpha, \beta}(j) \bar{a}_\alpha \bar{a}_\beta . \]
(5.4)

Denote by \(\mathcal{U}(p, n) \) the set of vectors \(u = (u_0, u_1, \ldots, u_{p^n - 1}) \) such that
\[u_0 = 1, \quad u_j = 0 \quad \text{for} \quad j \in \{p^n - 1, 2p^n - 1, \ldots, (p - 1)p^n - 1\} , \]
and
\[\sum_{l=0}^{p^n - 1} |u_{(p^n - 1) + l}|^2 = 1 \quad \text{for} \quad j \in \{1, 2, \ldots, p^n - 1\} . \]
For every \(u = (u_0, u_1, \ldots, u_{p^n - 1}) \) in \(\mathcal{U}(p, n) \) we define \(a_\alpha(u) \) by the formulas
\[a_\alpha(u) = \frac{1}{p^n} \sum_{s=0}^{p^n - 1} u_s w_\alpha(s/p^n) , \quad 0 \leq \alpha \leq p^n - 1 . \]

Fix a positive integer \(j_0 \). If a vector \(u^* \) is a solution of the extremal problem
\[\sum_{\alpha, \beta = 0}^{p^n - 1} F_{\alpha, \beta}(j_0) \bar{a}_\alpha(u^*) \bar{a}_\beta(u^*) \rightarrow \max, \quad u \in \mathcal{U}(p, n) , \]
(5.5)
then \(\varphi_{j_0 - 1}^* \) is defined by
\[\varphi_{j_0 - 1}^*(x) = \sum_{\alpha = 0}^{p^n - 1} a_\alpha(u^*) \varphi_{j_0}(x \ominus p^{-j_0} \alpha) . \]

It is seen from (5.4) and (5.5) that \(\| P_{j_0}^* f \| \geq \| P_j f \| \) for \(j = j_0 - 1 \). Now, if the mask of \(\varphi_{j_0 - 1}^* \) has no blocked sets, then \(\varphi_{j_0 - 2}^* \) is constructed by \(\varphi_{j_0 - 1}^* \) and so on. Finally, we fix \(s \) and for each
j ∈ {j_0 − 1, . . . , j_0 − s} replace P_j f by the orthogonal projection P^*_j f of f to the subspace
\[V^*_j = \text{clos}_{L^2(\mathbb{R}^+)} \text{span} \{ \varphi^*_j k | k ∈ \mathbb{Z}^+ \}. \]

The effectiveness of this method of adaptation can be illustrated by numerical examples in terms (cf. [20]) of the entropy estimates.

References