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We investigate the non-Abelian Aharonov–Bohm (AB) effect for time-dependent gauge fields. We prove 
that the non-Abelian AB phase shift related to time-dependent gauge fields, in which the electric and 
magnetic fields are written in the adjoint representation of SU(N) generators, vanishes up to the first 
order expansion of the phase factor. Therefore, the flux quantization in a superconductor ring does not 
appear in the time-dependent Abelian or non-Abelian AB effect.
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1. Introduction

In 1959, Y. Aharonov and D. Bohm proposed an experiment to 
test the effect of the electromagnetic gauge potential on the quan-
tum wave function [1]. Later, Chambers performed the proposed 
experiment and proved that the effect did exist [2]. The AB effect 
is indeed a quantum-mechanical phenomenon in which the wave 
function of a charged particle traveling around an extremely long 
solenoid undergoes a phase shift depending on the magnetic field 
between the paths albeit B = 0 along the paths themselves [1,2].

Over the past few years, considerable interest has been shown 
in the AB effect in Abelian gauge fields with a time-independent 
magnetic field. Recently, the AB effect with a time-dependent mag-
netic field has been investigated [3–7] to show that a cancellation
of phases occurs in the AB effect with a time-dependent magnetic 
field. Strictly speaking, an extra phase coming from the electric 
field, E = −∂t A, outside the solenoid cancels out the phase shift 
of the time-dependent magnetic field. The experimental results of 
Marton et al. [8], where the effect of the time variation of the 
magnetic field was not seen in the interference pattern, also con-

* Corresponding author at: Department of Physics, Isfahan University of Technol-
ogy, Isfahan 84756-83111, Iran.

E-mail addresses: shossein@bu.edu (S.A. Hosseini Mansoori), b.mirza@cc.iut.ac.ir
(B. Mirza).
http://dx.doi.org/10.1016/j.physletb.2016.02.004
0370-2693/© 2016 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
firm the theoretical prediction of [9], i.e., an exact cancellation of 
the AB phase shift by means of the phase shift coming from the 
direct Lorentz force. In this framework, the time-dependent AB ef-
fect can be considered as a type II AB effect. Indeed, the type I 
effects are in situations that a charged particle is moving through 
a region without magnetic and electric fields, while the type II AB 
effects are when the charged particle develops an AB phase pass-
ing through a region of space with non-zero fields [10]. Recently, 
in Ref. [11], authors have shown that type II AB effect due to elec-
tromagnetic plane waves vanishes under some conditions in terms 
of the parameters of the system like frequency of the electromag-
netic wave, the size of the space–time loop, and amplitude of the 
electromagnetic wave.

It is, therefore, interesting to study the non-Abelian AB effect 
[12] with a time-dependent magnetic field. Recently, the AB ef-
fect has been studied for time-dependent non-Abelian fields by 
using two specific, known time-dependent solutions [13] such as 
the Coleman plane wave solutions [14] and the time-dependent 
Wu–Yang monopole [15]. Here, we prove that when the non-
Abelian gauge field Aa is a function of space–time, the AB phase 
shift coming from the electric and magnetic non-Abelian fields will 
be canceled out up to the first order. Our results also show that 
the “single-valuedness of the wave function” does not constrain 
the flux of a time-dependent magnetic field to be quantized in a 
superconducting ring. It will be interesting to verify this result ex-
perimentally.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The outline of this paper is as follows. Section 2 presents a 
description of the AB phase shift. In Section 3, we study the quan-
tization of the magnetic flux in a superconducting ring. We will 
show that there is no “single-valuedness” condition for the wave 
function because the phase shift will be zero in a time-dependent 
AB effect. In Section 4, we generalize the Abelian AB effect to a 
time-dependent non-Abelian field configuration. We prove that the 
AB phase factor remains equal to zero up to the first order when 
considering the time-varying vector fields. Conclusions will be pre-
sented in the last section.

2. Time-dependent AB effect for Abelian gauge fields

The relativistic form of the AB phase factor can be written as 
follows:

β = exp

[
e

h̄

∮
Aμdxμ

]
= exp

[
e

h̄

∮
ϕdt − A.dx

]
(1)

where Aμ is the Abelian gauge field that might be transformed 
under the U (1) group as follows:

Aμ → Aμ′ = Aμ + ∂μξ (2)

where ξ is a transformation function of space–time coordinates 
[16,17]. We may rewrite the phase factor in a 2-form structure 
by making use of Stokes’ theorem, stating that the integral of a 
differential form ω over the boundary of some orientable manifold 
� is equal to the integral of its exterior derivative dω over the 
whole of �, which may be expressed as follows:∫
∂�

ω =
∫
�

dω (3)

where ω and dω are p-form and (p + 1)-form, respectively. One 
could also define the 1-form as ω = A = Aμdxμ and 2-form dω =
dA as the Faraday 2-form F by:

dA = F = 1

2
Fμνdxμ ∧ dxν

= (Exdx + E ydy + Ezdz) ∧ dt + Bxdy ∧ dz

+ B ydz ∧ dx + Bzdx ∧ dy (4)

where E and B are the electric and magnetic fields, respectively. 
Therefore, Eq. (1) can be rewritten as in (5) below:

β = exp

[
− e

2h̄

∫
Fμνdxμ ∧ dxν

]
(5)

This expression plays a key role in the study of the AB phase 
factor when considering the time-dependent Abelian gauge fields. 
Time-dependent AB effect is based on constructing a subspace in 
a space–time in which the four-vector potential depends on time 
[18,19]. Both the electric and the magnetic effects depend on the 
particle’s particular path in this subspace [4]. We assume that the 
magnetic field inside the solenoid is time-dependent so that the 
vector potential A will be time-dependent outside the solenoid. 
However, based on Maxwell’s equation, i.e., E = −∂t A, an electric 
field is also created outside the solenoid (we have assumed the 
scalar potential field ϕ to be zero). Thus, from Eqs. (4) and (5), the 
magnetic phase factor is obtained by:

e

h̄

∫ [
Bxdy ∧ dz + B ydz ∧ dx + Bzdx ∧ dy

] = e

h̄

∫
B(x, t).dS (6)

and the electric part of the phase is given by:

e

h̄

∫ [
Exdx ∧ dt + E ydy ∧ dt + Ezdz ∧ dt

] = − e

h̄

∮
A.dx

= − e
∫

B(x, t).dS (7)

h̄

where we have replaced the electric field by −∂t A. It is clear that 
the AB phase shift for a time-varying magnetic field vanishes. This 
means that the magnetic AB phase shift is canceled out by a phase 
shift coming from the Lorentz force associated with the electric 
field, E = −∂t A, outside the solenoid [3].

3. Non-flux quantization in superconducting rings for 
time-dependent magnetic fields

Let us now consider a superconducting ring with rigid walls 
which is exposed to an external uniform magnetic field. Assum-
ing a particle of charge e completely confined in the interior shell 
of the superconducting ring, one can obtain the relevant energy 
eigenvalues and wave functions [20–22]. However, care must be 
taken to ensure that the value of the wave function at any given 
point in the ring has the same value as the wave function obtained 
by traveling around the ring to return back to the original point. In 
other words, the wave function must have a single value at a given 
point in the ring.

In this case, the variation of the wave function phase is

δαB = 2e

h̄

∮
A.dl = 2e

h̄

∫
∇ × A.dS = 2e

h̄

∫
B.dS = 2e

h̄
� (8)

where � is the magnetic flux and the factor 2e shows that the 
Cooper pairs [23] in the superconductor have charges twice that of 
an electron. In order to maintain the single-valuedness of the wave 
function, this phase factor must be equal to 2πn (n = 1, 2, 3, ...), so 
that we can obtain the following quantum flux:

�n = h̄πn

e
= hn

2e
n = 1,2,3, ... (9)

Now, we consider a time-dependent magnetic field. According to 
Maxwell’s equation, there is an electric field (E = −∇ϕ − ∂t A)
which creates an additional phase factor. Moreover, for this case, 
the scalar potential is still zero and the vector potential is a func-
tion of time and space. Based on Eq. (4), the relativistic phase shift 
will be zero due to the cancellation of the magnetic phase shift 
due to a phase shift coming from the electric field, E = −∂t A. As 
a result, there is no constraint on the magnetic flux �. It will be 
interesting to design an experimental plan to examine this effect.

4. Time-dependent AB effect for non-Abelian gauge fields

In section 2, we investigated the time-dependent AB effect [3,
5,6], and showed that there is no phase shift in this case. In this 
section, we will verify the claim that the phase shift of the non-
Abelian AB effect is zero for time-dependent gauge fields. The con-
cept of the non-Abelian gauge field was first introduced in 1954 
by Yang and Mills [24]. The 4-vector gauge fields Aa were intro-
duced with N internal components labeled by a = 1, 2, 3, ..., N , 
corresponding to the N-generators of the gauge group closed un-
der the following commutation:

[La, Lb] = iCc
ab Lc (10)

where the constants Cc
ab are real numbers called structure con-

stants. For simplicity, we shall use the shorthand Aμ = Aμ
a La , 

which is a matrix. Moreover, Aμ
a under an infinitesimally local 

gauge transformation can be written in the following form:

Aμ
a (x) → Aμ

a (x) + 1

g
∂μωa(x) + Cabcωb(x)Aμ

c (x) (11)

where g and ω are the gauge coupling constant and arbitrary real 
functions, respectively. In Maxwell’s U (1) gauge theory, a gauge-
invariant field tensor Fμν = ∂μ Aν − ∂ν Aμ is defined, whose com-
ponents are the electric and magnetic fields; in the non-Abelian 
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case, however, such a field tensor is not gauge invariant or, in-
deed, there is no gauge-invariant field tensor. In order to define 
a gauge-invariant field tensor for the non-Abelian gauge fields, the 
representation must be the adjoint representation [25]. The follow-
ing equation satisfies our requirements:

F a
μν = ∂μ Aa

ν − ∂ν Aa
μ + gCabc Ab

μ Ac
ν (12)

where the antisymmetric constants Cabc = −i(Lb)ac are defined in 
the adjoint representation. Using the above equation, the electric 
and the magnetic fields can be written as in the following equa-
tions [16]:

Ea = −∇ A0
a − ∂t Aa − gCabc Ab A0

c (13)

Ba = ∇ × Aa + 1

2
gCabc Ab × Ac (14)

It is surprising that the AB experiment can also be used to examine 
the existence of non-Abelian gauge fields [26,27]. One can gener-
alize the phase factor of the Abelian AB effect to the non-Abelian 
AB one [12] using the following relation:

β = P

[
exp

[
g

h̄

∮
A

]]
(15)

where A = Aa
μLadxμ and P is the path-ordering operator. This 

phase factor is quite similar to Wilson loop [28,29]. Expanding this 
phase shift up to the second order, we will have:

β � 1 + g

h̄
La

∮
Aa

μdxμ +

P (
g

h̄
)2

∮ ∮
dxμ Aa

μ(x)dxν .Aν
b(x)La Lb + ... (16)

We will now go on to show that the time-dependent non-Abelian 
AB phase shift vanishes up to the first order, while the other or-
ders indicate a non-zero non-Abelian AB phase factor. Let us con-
sider a 4-vector potential in the non-Abelian AB effect as Aμ

a ≡
(A0

a , Ai
a) = (0, Ai

a(x, t)). Therefore, from Eq. (13), the electric field 
will be a non-zero term (Ea = −∂t Aa). Applying the Stokes theo-
rem (Eq. (3)), we will have:

dω = dA = dAa La =
(
∂μ Aa

ν − ∂ν Aa
μ

)
Ladxμ ∧ dxν (17)

Based on Eq. (12), the above equation can be rewritten as:

dAa = 1

2
F a
μνdxμ ∧ dxν − gCabc Ab

μ Ac
νdxμ ∧ dxν (18)

where the factor 1/2 comes from the anti-symmetry property of 
Fμν and dxμ ∧ dxν [25]. Therefore, the second term of the expan-
sion in Eq. (16) may be replaced with the following equation:

g

h̄
La

∮
Aa

μdxμ

= g

2h̄
La

∫
F a
μνdxμ ∧ dxν − g2

h̄
Cabc La

∫
Ab

μ Ac
νdxμ ∧ dxν (19)

where the 2-form tensor can be defined as

1

2
Fμν

adxμ ∧ dxν = (Ea
xdx + Ea

ydy + Ea
zdz) ∧ dt

+ Ba
xdy ∧ dz + Ba

ydz ∧ dx + Bazdx ∧ dy (20)

One can then divide up the above equation into the two magnetic 
and electric parts. In this way, the phase difference associated with 
the magnetic field terms is given by:

g

h̄

∫ [
Ba

xdy ∧ dz + Ba
ydz ∧ dx + Ba

zdx ∧ dy
] = g

h̄

∫
Ba(x, t).dS

(21)
Substituting Ba from Eq. (14) and using the Stokes theorem, we 
have:

g

h̄

∫
Ba(x, t).dS = g

h̄

∮
Aa.dl + g2

2h̄
Cabc

∫
(Ab × Ac).dS (22)

On the other hand, the electric field part is given by:

g

h̄

∫ [
Ea

xdx ∧ dt + Ea
ydy ∧ dt + Ea

zdz ∧ dt
] = − g

h̄

∮
Aa.dl (23)

where the electric field is Ea = −∂t Aa . Finally, one can obtain the 
phase shift from the 2-form tensor as follows:

g

2h̄
La

∫
F a
μνdxμ ∧ dxν = + g2

2h̄
Cabc La

∫
(Ab × Ac).dS (24)

Moreover, when considering the 4-vector potential Aμ
a ≡

(A0
a , Ai

a) = (0, Ai
a(x, t)), we can rewrite the second part of rela-

tion (19) as follows:

− g2

h̄
Cabc La

∫
Ab

μ Ac
νdxμ ∧ dxν

= − g2

h̄
Cabc La

∫
(Ab

j )(Ac
k)dx j ∧ dxk

= − g2

2h̄
Cabc La

∫
(Ab × Ac).dS (25)

in which the following wedge product is used:

dx j ∧ dxk = εi jk

2
dx j ⊗ dxk ≡ εi jk

2
dSi . (26)

Finally, using Eqs. (19), (24), and (25), we arrive at the following 
interesting result:

g

h̄
La

∮
Aa

μdxμ = 0 (27)

Therefore, the phase shift related to the time-dependent non-
Abelian AB effect vanishes up to the first order expansion of the 
phase factor. This is a generally valid result. For future research, it 
will be interesting to investigate the higher order terms of gauge 
fields. It may be anticipated that all higher order terms of gauge 
fields will also vanish. This conjecture cannot, however, be proved 
presently.

5. Conclusion

In this paper, we studied time-dependent Abelian and non-
Abelian AB effects. We showed that for a superconductor exposed 
to a time-varying magnetic field, there is no constraint on the 
magnetic flux due to the presence of zero phase factor in both 
Abelian and non-Abelian AB effects. We also investigated the non-
Abelian AB effect and proved that, for time-dependent non-Abelian 
magnetic fields, the AB phase disappears up to the first order in 
the expansion of the phase factor.
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