Topology Vol. 9, pp.71-78. Pergamon Press, 1970. Printed in Great Britain

ANOSOV DIFFEOMORPHISMS ARE TOPOLOGICALLY STABLE

PETER WALTERS

(Received 21 May 1969)

§0

ANOSOV [1] and Moser [3] have shown that an Anosov diffeomorphism f of a compact manifold M is structurally stable. This means that in the space of all C^1 diffeomorphisms of M, with the C^1 topology, there is a neighbourhood of f such that every member of this neighbourhood is topologically equivalent to f. We show in this paper that f is also topologically stable. This means that in the space of all homeomorphisms of M, with the C^0 topology, there is a neighbourhood U of f in which f is the "simplest" map from a topological point of view, in the sense that if $g \in U$ then f is a continuous image of g. (See definition 2). The idea of the proof follows that of Moser [3].

§1

M will always denote a compact C^{∞} manifold without boundary.

Definition 1. A C^1 diffeomorphism $f: M \to M$ is an Anosov diffeomorphism if there exists a Riemannian metric $|| \cdot ||$ on M and constants c > 0, $0 < \lambda < 1$ such that $TM = E^s \oplus E^u$ (Whitney bundle sum), $dfE^s = E^s$, $dfE^u = E^u$,

and

$$\|df^n w\| \le c\lambda^n \|w\| \text{ if } w \in E^s, \quad n > 0$$
$$\|df^m w\| \le c\lambda^{-m} \|w\| \text{ if } w \in E^u, \quad m < 0.$$

If a different Riemannian metric is chosen the same conditions hold with different constants c, λ . It is easily shown that the splitting $TM = E^s \oplus E^u$ is continuous.

 $\mathfrak{X}^{0}(M)$, or \mathfrak{X}^{0} , will denote the real Banach space of continuous vector fields on M with

$$||v|| = \sup_{x \in M} ||v(x)|| \quad v \in \mathfrak{X}^0$$

(A continuous vector field on M is a continuous section of $\pi: TM \to M$ where π is the natural projection). If $f: M \to M$ is a diffeomorphism $F: \mathfrak{X}^0 \to \mathfrak{X}^0$ will denote the linear transformation defined by $Fv = dfvf^{-1}$. An equivalent way of defining an Anosov diffeomorphism is as follows: f is an Anosov diffeomorphism if there exists a Riemannian metric $\| \cdot \|$ on M and constants c > 0, $0 < \lambda < 1$, such that $\mathfrak{X}^0 = \mathfrak{X}^0_s \oplus \mathfrak{X}^0_u$ (vector space direct sum), $F\mathfrak{X}^0_s = \mathfrak{X}^0_s, F\mathfrak{X}^0_u = \mathfrak{X}^0_u$,

$$||F^{n}v|| \le c\lambda^{n}||v|| \text{ if } v \in \mathfrak{X}_{s}^{0}, \quad n > 0$$

and

$$\|F^m v\| \le c\lambda^{-m} \|v\| \text{ if } v \in \mathfrak{X}^0_u, \quad m < 0.$$

We assume that we have some fixed Riemannian metric ||.|| on M. We denote by d(x, y) the distance between $x, y \in M$ given by this Riemannian metric. $\rho > 0$ will denote a fixed number with the property that for each $x \in M$ the exponential map at x, \exp_x , is a diffeomorphism of the open ρ -ball about the origin in TM_x onto the open ρ -ball about x in M. Such a number exists by the compactness of M.

If f, g are continuous maps of M then $d(f, g) = \sup_{x \in M} d(f(x), g(x))$. id will denote the identity mapping of M. The following two definitions are meaningful for any homeomorphism f of a compact metric space (M, d).

Definition 2. $f: M \to M$ is topologically stable if $\exists \delta > 0$ with the property that if g is a homeomorphism of M with $d(f,g) < \delta$ there exists a continuous map φ of M onto M with $\varphi g = f\varphi$.

We shall in fact prove that Anosov diffeomorphisms are topologically stable in a stronger sense:

Definition 3. $f: M \to M$ is topologically stable in the strong sense if $\exists \varepsilon_0 > 0$ such that if $0 < \varepsilon < \varepsilon_0 \exists \delta > 0$ with the property that if g is a homeomorphism of M with $d(f, g) < \delta$ there exists a unique continuous map φ of M onto M with $\varphi g = f\varphi$ and $d(\varphi, id) < \varepsilon$.

§2

In this section we prove some lemmas which are used in the proof of the theorem.

If F^1 and F^2 are vector bundles over M with fibres F_x^1 and F_x^2 over $x \in M$, $L(F_x^1, F_x^2)$ denotes the collection of all linear transformations of F_x^1 to F_x^2 . $L(F^1, F^2) = \bigcup_{x \in M} L(F_x^1, F_x^2)$ is a vector bundle over M with charts induced in a natural way from those of F^1 and F^2 .

LEMMA 1. Suppose TM is a continuous Whitney sum of two subbundles E^s and E^u . Let \mathfrak{X}_s^0 denote the space of continuous sections of E^s and \mathfrak{X}_u^0 the space of continuous sections of E^u . There exist real members τ_1 , $\tau_2 > 0$ with the following properties:

(i) If h is a homeomorphism of M with $d(h, id) < \tau_1$ there exists an invertible bounded linear transformation $J_h: \mathfrak{X}^0 \to \mathfrak{X}^0$ such that $J_h \mathfrak{X}^0_s = \mathfrak{X}^0_s$ and $J_h \mathfrak{X}^0_u = \mathfrak{X}^0_u$

(ii) If $v \in \mathfrak{X}^0$ with $||v|| < \tau_2$ and h is as above there exists $t(v, h) \in \mathfrak{X}^0$ such that

$$\begin{split} \exp_{h(x)}v(h(x)) &= \exp_{x}[(J_{h}v)(x) + t(v,h)(x)], \quad x \in M \\ \exp_{x}t(o,h)(x) &= h(x) \\ \|J_{h}v + t(v,h)\| < \rho \\ \|t(v,h) - t(v',h)\| &\leq K(h)\|v - v'\| \quad if \quad \|v\|, \|v'\| < \tau_{2}, \\ where \ K(h) \to 0 \ as \ d(h,id) \to 0. \end{split}$$

(iii) If $\|\cdot\|_1$ is any continuous Riemannian metric on M then $\|J_h\|_1 \to 1$ and $\|J_h^{-1}\|_1 \to 1$ as $d(h, id) \to 0$.

Proof. Let $p, q: M \times M \to M$ be defined by p(x, y) = x, q(x, y) = y. Let U be a neighbourhood of the diagonal in $M \times M$ so that $(x, y) \in U$ implies $d(x, y) < \rho/2 \cdot p^*(TM) = \{(x,y,v) \mid x = \pi(v)\}$ ($\pi: TM \to M$ is the natural projection)will denote the pull-back of TM by $p, p^*(TM)|_U$ the restriction of $p^*(TM)$ to U and $p^*(TM)|_{U, \rho/2}$ will denote those elements of $p^*(TM)|_U$ with length less than or equal to $\rho/2$ in the pull back metric (which we also denote by $\| . \|$). We define a map $\alpha: p^*(TM)|_{U, \rho/2} \to q^*(TM)|_U$ by $\alpha(x, y, w) = (x, y, \exp_y^{-1} \exp_x w)$. α is well defined by the choice of U and is a "fibre map." The fibre derivative of α at the origin varies continuously in the following sense.

The map
$$U \to L(p^*(TM), q^*(TM))$$
 given by $(x, y) \to [d(\alpha|_{p^*(TM)(x, y)})]_0$ is continuous. Let
 $G_{(x, y)} = [d(\alpha|_{p^*(TM)(x, y)})]_0 \in L(p^*(TM)_{(x, y)}, q^*(TM)_{(x, y)})$. By the definition of derivative
 $\alpha(x, y, v) = G_{(x, y)}v + \alpha(x, y, 0) + ||v||\beta(x, y, v)$

if $(x, y, v) \in p^*(TM)_{(x, y)}$ and $||v|| < \rho/2$, where $\beta(x, y, v) \to 0$ as $v \to 0$. Also $\beta(x, x, v) = 0$ since α is the identity over the diagonal of $M \times M$. Let $\pi_1 : q^*(TM) \to q^*(E^s)$ and $\pi_2 : q^*(TM) \to q^*(E^u)$ denote the natural projections. Define

$$A: p^{*}(E^{s}) \to q^{*}(E^{s}) \text{ by } A(x, y, v) = \pi_{1}G_{(x, y)}v,$$

$$B: p^{*}(E^{u}) \to q^{*}(E^{s}) \text{ by } B(x, y, w) = \pi_{1}G_{(x, y)}w,$$

$$C: p^{*}(E^{s}) \to q^{*}(E^{u}) \text{ by } C(x, y, v) = \pi_{2}G_{(x, y)}v, \text{ and }$$

$$D: p^{*}(E^{u}) \to q^{*}(E^{u}) \text{ by } D(x, y, w) = \pi_{2}G_{(x, y)}w.$$

Then the map $U \to L(p^*(E^s), q^*(E^s))$ given by $(x, y) \to A|_{p^*(E^s)(x, y)}$ is continuous, and similarly for B, C and D.

If $v \in TM_x$ let $v = v_1 + v_2$ $v_1 \in E_x^s$ $v_2 \in E_x^u$. Then

 $\alpha(x, y, v) = A(x, y, v_1) + D(x, y, v_2) + B(x, y, v_2) + C(x, y, v_1) + \alpha(x, y, 0) + ||v|| \beta(x, y, v)$ if $||v|| < \rho/2$, i.e.

$$\alpha(x, y, v) = A(x, y, v_1) + D(x, y, v_2) + \gamma(x, y, v),$$

and if $v, v^{1} \in TM_{x}$ and $||v||, ||v'|| \le \rho/3$ then $||\gamma(x, y, v) - \gamma(x, y, v')|| \le ||B|_{p^{\bullet}(E^{u})_{(x, y)}}(v_{2} - v_{2}')|| + ||C|_{p^{\bullet}(E^{s})_{(x, y)}}(v_{1} - v_{1}')||$ $+ ||v - v'|| \sup_{\substack{x \in TM_{x} \\ ||w|| \le \rho/3}} ||\beta(x, y, w)|| \le K(x, y) ||v - v'||$

where $K(x, y) \to 0$ as $d(x, y) \to 0$ since $B|_{p^{\bullet}(E^{u})(x, x)} = 0$, $C|_{p^{\bullet}(E^{s})(x, x)} = 0$ and $\beta(x, x, v) = 0$.

Let U_0 be a neighbourhood of the diagonal in $M \times M$ so that $A|_{p^*(E^s)_{U_0}}$ and $D|_{p^*(E^u)_{U_0}}$ are invertible. This is possible since $A|_{p^*(E^s)_{(x,x)}} = I$ and $D|_{p^*(E^u)_{(x,x)}} = I$. Choose $\tau_1 > 0$ so that $d(x,y) < \tau_1$ implies $(x, y) \in U_0$. Put $\tau_2 = p/3$. Suppose h is a homeomorphism of M with $d(h, id) < \tau_1$. Then $(h(y), y) \in U_0$, $y \in M$. Let $v \in \mathfrak{X}^0$ and $||v|| < \tau_2$. Then

$$\begin{aligned} \alpha(h(y), y, v(h(y))) &= A(h(y), y, v_1(h(y))) + D(h(y), y, v_2(h(y))) + \gamma(h(y), y, v(h(y))) \\ &= (h(y), y, \exp_y^{-1} \exp_{h(y)}v(h(y))). \end{aligned}$$

Therefore $\exp_y^{-1} \exp_{h(y)} v(h(y)) = L_{h,y} v(h(y)) + t(v,h)(y)$ where $L_{h,y} : TM_{h(y)} \to TM_y$ is linear and sends $E_{h(y)}^s$ to E_y^s , $E_{h(y)}^u$ to E_y^u , and $(h(y), y, t(v, h)(y)) = \gamma(h(y), y, v(h(y)))$.

By the continuity of $L_{h,v}$ we can define $J_h: \mathfrak{X}^0 \to \mathfrak{X}^0$ by $(J_h v)(v) = L_{h,v} v(h(y))$, and if $v \in \mathfrak{X}^0$ then $t(v, h) \in \mathfrak{X}^0$. Hence $\exp_{h(y)}v(h(y)) = \exp_y[(J_h v)(y) + t(v, h)(y)]$. By construction $J_h \mathfrak{X}_o^s = \mathfrak{X}_o^s$ and $J_h \mathfrak{X}_u^s = \mathfrak{X}_u^s$. Also $\exp_y t(0, h)(v) = h(y)$ and $||J_h v + t(v, h)|| < \rho$ if $||v|| < \tau_2$, $v \in \mathfrak{X}^0$. By the above estimate on γ , $||t(v, h) - t(v', h)|| \le K(h) ||v - v'||$ if $v, v' \in \mathfrak{X}^0$ and ||v||, $||v'|| < \tau_2$ where $K(h) = \sup_v K(h(y), y)$. Hence $K(h) \to 0$ as $d(h, id) \to 0$.

By the continuity of A and D and the fact that $A|_{p^*(E^*)(x,x)} = I$ and $D|_{p^*(E^*)(x,x)} = I$ it follows that $||J_h||_1 \to 1$ and $||J_h^{-1}||_1 \to 1$ as $d(h, id) \to 0$ for any continuous Riemannian metric on M.

I would like to thank R. L. E. Schwarzenberger for valuable discussions on the ideas of the above proof.

COROLLARY. Let f be a Anosov diffeomorphism of M with splitting $TM = E^s + E^u$, Anosov constants c, λ and let F: $\mathfrak{X}^0 \to \mathfrak{X}^0$ be defined by $(Fv)(x) = dfv(f^{-1}x)$. Using this splitting in Lemma 1 $\exists \tau_1 > 0$ such that J_h exists for each homeomorphism of M with $d(h, id) < \tau_1$. There exists $\tau_3 > 0$ such that if h is a homeomorphism of M with $d(h, id) < \tau_3$ then $I - J_h^{-1}F$ is invertible, where I is the identity mapping of \mathfrak{X}^0 . Also

$$\|(I - J_h^{-1}F)^{-1}\| \le \frac{c\sqrt{N}}{1 - \lambda_1\mu(h)}$$

where $\mu(h) \rightarrow 1$ as $d(h, id) \rightarrow 0$, $0 < \lambda_1 < 1$, N is an integer, and λ_1 and N are constants depending only on the Anosov constants c and λ .

Proof. We define a new norm $\| \cdot \|_{1}$ on \mathfrak{X}^{0} using a technique of Mather [2]. Choose an integer N so that $\lambda^{N} < \frac{1}{c}$. If $v_{1} \in \mathfrak{X}_{s}^{0}$ let $\|v_{1}\|_{1}^{2} = \sum_{k=0}^{N-1} \|F^{k}v_{1}\|^{2}$ and if $v_{2} \in \mathfrak{X}_{u}^{0}$ let $\|v_{2}\|_{1}^{2} = \sum_{k=0}^{N-1} \|F^{-k}v_{2}\|^{2}$. For $v \in \mathfrak{X}^{0}$, $v = v_{1} + v_{2}$, $v_{1} \in \mathfrak{X}_{s}^{0}$, $v_{2} \in \mathfrak{X}_{u}^{0}$ put $\|v\|_{1}^{2} = \|v_{1}\|_{1}^{2} + \|v_{2}\|_{1}^{2}$. If $v \in \mathfrak{X}_{s}^{0}$ then $\|v\|_{1} \le \sqrt{Nc}\|v\|$ and

$$\|Fv\|_{1}^{2} = \sum_{k=1}^{N} \|F^{k}v\|^{2} = \|v\|_{1}^{2} - \|v\|^{2} + \|F^{N}v\|^{2}$$

$$\leq \|v\|_{1}^{2} - (1 - c^{2}\lambda^{2N})\|v\|^{2}$$

$$\leq \left(1 - \frac{(1 - c^{2}\lambda^{2N})}{Nc^{2}}\right)\|v\|_{1}^{2}.$$

Hence $||Fv||_1 \le \lambda_1 ||v||_1$ if $\lambda_1^2 = 1 - \frac{(1 - c^2 \lambda^{2N})}{Nc^2} < 1$. Similarly $||F^{-1}v||_1 \le \lambda_1 ||v||_1$ if $v \in \mathfrak{T}_u^0$. N and λ_1 depend on c and λ only.

If $d(h, id) < \tau_1$ let $\mu(h) = \max$, $\{\|J_h\|_1, \|J_h^{-1}\|_1\}$, by lemma 1 $\mu(h) \to 1$ as $d(h, id) \to 0$. Choose $\tau_3 > 0$ so that $\tau_3 < \tau_1$ and so that $d(h, id) < \tau_3$ implies $\mu(h)\lambda_1 < 1$. Let $F_s = F|\mathfrak{X}_s^\circ$, $F_u = F|\mathfrak{X}_s^\circ$, $J_{hs} = J_h|\mathfrak{X}_s^\circ$ and $J_{hu} = J_h|\mathfrak{X}_u^\circ$. Then

$$\|(J_{hs}^{-1}F_s)^k\|_1 \le (\mu(h)\lambda_1)^k \quad k \ge 0$$

and

$$(I - J_{hs}^{-1}F_s)^{-1} = \sum_{k=0}^{\infty} (J_{hs}^{-1}F_s)^k$$

exists. Also

$$\|(F_u^{-1}J_{hu})^k\|_1 \le (\mu(h)\lambda_1)^k \quad k \ge 0$$

and

$$(F_u^{-1}J_{hu} - I)^{-1} = -\sum_{k=0}^{\infty} (F_u^{-1}J_{hu})^k$$

exists. Hence

$$(J_{hu}^{-1}F_u - I)^{-1} = -(F_u^{-1}J_{hu} - I)^{-1}F_u^{-1}J_{hu}$$

exists and therefore $I - J_h^{-1}F$ is invertible.

We have

$$\|(I - J_h^{-1}F)^{-1}\|_1 \le \sum_{k=0}^{\infty} (\mu(h)\lambda_1)^k = \frac{1}{1 - \mu(h)\lambda_1},$$

and since $\frac{1}{\sqrt{Nc}} \|v\|_1 \le \|v\| \le \|v\|_1$ we have $\|(I - J_h^{-1}F)^{-1}\| \le \frac{c\sqrt{N}}{1 - \lambda_1\mu(h)}$

The following two lemmas are well-known.

LEMMA 2. Let $f: M \to M$ be a C^1 diffeomorphism. There exists τ_4 such that if $v \in \mathfrak{X}^0$ and $||v|| < \tau_4$ there exists $s(v) \in \mathfrak{X}^0$ with

$$f \exp_{f^{-1}(x)} v(f_{(x)}^{-1}) = \exp_{x}[dfv(f^{-1}(x)) + s(v)(x)], \qquad s(0) = 0,$$

 $\|dfvf^{-1} + s(v)\| < \rho \text{ and } \|s(v) - s(v')\| < C(\tau_4)\|v - v'\| \text{ if } \|v\|, \|v'\| < \tau_4, \text{ where } C(\tau_4) \to 0 \text{ as } \tau_4 \to 0.$

Proof. Choose $\tau_4 < \rho$ so that $d(x, y) \le \tau_4$ implies $d(f(x), f(y)) < \rho$. Let $x \in M$. If $T_{\tau_4}M_{f^{-1}(x)}$ denotes those elements $u \in TM_{f^{-1}(x)}$ with $||u|| \le \tau_4$ then the map $\beta_x : T_{\tau_4}M_{f^{-1}(x)} \to TM_x$ defined by $\beta_x(u) = \exp_x^{-1} f \exp_{f^{-1}(x)} u$ is well defined and differentiable at u = 0. The linear approximation of β_x at u = 0 is $df|_{TMf^{-1}(x)}$ and hence $\exp_x^{-1} f \exp_{f^{-1}(x)} u = dfu + ||u||\sigma_x(u)$ where $\sigma_x(u) \to o \ as \ u \to 0$. Let $v = \mathfrak{X}^0$, $||v|| < \tau_4$. By the above

$$\exp_{x}^{-1}f\exp_{f^{-1}(x)}v(f^{-1}(x)) = dfv(f^{-1}(x)) + \|v(f^{-1}(x))\|\sigma_{x}(v(f^{-1}(x)))\|$$

and if we put $s(v)(x) = ||v(f^{-1}x)||\sigma_x(v(f^{-1}(x)))$ then $s(v) \in \mathfrak{X}^0$ and

$$f \exp_{f^{-1}(x)} v(f^{-1}(x)) = \exp_x[dfv(f^{-1}(x)) + s(v)(x)].$$

Moreover s(0) = 0, $||dfvf^{-1} + s(v)|| < \rho$ and if $v, v' \in \mathfrak{X}^0$, ||v||, $||v'|| < \tau_4$ then

$$\|s(v) - s(v')\| \le \sup_{\substack{x \in M \\ w \in \mathfrak{A}^0 \\ \|X\| \le \tau_4}} \|\sigma_x(w(f^{-1(x)}))\| \|v - v'\| = C(\tau_4) \|v - v'\|$$

and $C(\tau_4) \rightarrow 0$ as $\tau_4 \rightarrow 0$.

LEMMA 3. There exists $\tau_5 > 0$, depending only on the manifold M, with the property that if $\varphi : M \to M$ is continuous and $d(\varphi, id) < \tau_5$ then φ maps M onto M.

Proof. Choose $\tau_5 > 0$ so that $d(\varphi, id) < \tau_5$ implies φ is homotopic to *id* and the result then follows by easy homology theory.

THEOREM 1. An Anosov diffeomorphism f of a compact manifold M is topologically stable in the strong sense i.e. $\exists \varepsilon_0 > 0$ such that $\forall 0 < \varepsilon < \varepsilon_0 \exists \delta > 0$ with the property d(g, f) $< \delta, g$ a homeomorphism of $M, \Rightarrow \exists$ a unique continuous map φ of M onto M with $\varphi g = f\varphi$ and $d(\varphi, id) < \varepsilon$.

Proof. c, λ will denote the Anosov constants of f (using our fixed Riemannian metric), N, λ_1 , τ_3 , $\mu(h)$ denote the numbers obtained from the corollary of Lemma 1, τ_1 and τ_2 those obtained from Lemma 1 using the given splitting of TM, τ_4 and $C(\tau_4)$ those given by Lemma 2 applied to f and τ_5 the number determined by Lemma 3.

Choose $\varepsilon_0 > 0$ so that $\varepsilon_0 < \min(\rho, \tau_2, \tau_4, \tau_5)$ and so that $0 < \varepsilon < \varepsilon_0$ implies $c \sqrt{N} \frac{3}{2} \left(\frac{1}{1-\lambda_1}\right) C(\varepsilon) < \frac{1}{4}$. Let $0 < \varepsilon < \varepsilon_0$. Choose $\delta > 0$ so that $\delta < \min(\tau_1, \tau_3, \rho)$, $c \sqrt{N} \frac{3}{2} \left(\frac{1}{1-\lambda_1}\right) \delta < \frac{\varepsilon}{4}$ and so that $d(h, id) < \delta$, where h is a homeomorphism of M, implies

$$c\sqrt{N}\frac{3}{2}\left(\frac{1}{1-\lambda_1}\right)K(h) < \frac{1}{4} \text{ and } c\sqrt{N}\left(\frac{1}{1-\lambda_1\mu(h)}\right)\mu(h) < c\sqrt{N}\frac{3}{2}\left(\frac{1}{1-\lambda_1}\right).$$

Let g be a homeomorphism of M with $d(g, f) < \delta$. Put $h = gf^{-1}$, then $d(h, id) < \delta$ and h is a homeomorphism of M. Since $\varepsilon < \rho$ we wish to show that the equation $\varphi g = f\varphi$ has a unique solution of the form $\varphi(x) = \exp_x v(x)$ with $v \in \mathfrak{X}^0$ and $||v|| < \varepsilon$. Therefore we have to solve the following equation uniquely for $v \in \mathfrak{X}^0$ with $||v|| < \varepsilon$:

$$\exp_{h(x)} v(h(x)) = f \exp_{f^{-1}(x)} v(f^{-1}(x))$$

i.e. $\exp_x[(J_h v)(x) + t(v, h)(x)] = \exp_x[(Fv)(x) + s(v)(x)]$ by Lemmas 1 and 2. i.e. $J_h v + t(v, h) = Fv + s(v)$, since each side of this equation has length less than ρ . We now have an equation in the Banach space \mathfrak{X}^0 and rearrangement gives $(I - J_h^{-1}F)v = J_h^{-1}(s(v) - t(v, h))$. Since $\delta < \tau_3$ the corollary to Lemma 1 implies that $P = (I - J_h^{-1}F)^{-1}$ exists and

$$\|P\| \leq c \sqrt{N\left(\frac{1}{1-\lambda_1 \mu(h)}\right)}.$$

We now have the equation

$$v = PJ_{h}^{-1}(s(v) - t(v, h)).$$

 $\Phi(v) = PJ_h^{-1}(s(v) - t(v, h))$ is defined on the open ε_0 -ball around the origin in \mathfrak{X}^0 and we wish to show that it has a unique fixed point in the open ε -ball. Let denote the closed $\frac{\varepsilon + \varepsilon_0}{2}$ -ball about the origin in \mathfrak{X}^0 . B is a complete metric space. We shall show that Φ is a contraction of B and that the unique fixed point determined by the contraction mapping

theorem lies in the open ε -ball. We first show that Φ maps B to itself. If $v \in B$ then

$$\begin{aligned} \|\Phi(v)\| &= \|PJ_{h}^{-1}(s(v) - t(v, h))\| \\ &\leq \|P\| \|J_{h}^{-1}\|[\|s(v)\| + \|t(v, h) - t(0, h)\| + \|t(0, h)\|] \\ &\leq c \sqrt{N} \left(\frac{1}{1 - \lambda_{1}\mu(h)}\right) \mu(h)[C(\varepsilon_{0})\|v\| + K(h)\|v\| + \delta] \end{aligned}$$

by lemmas 1 and 2

$$\leq c \sqrt{N} \frac{3}{2} \left(\frac{1}{1 - \lambda_1} \right) [C(\varepsilon_0) \|v\| + K(h) \|v\| + \delta]$$

$$\leq \frac{1}{4} \|v\| + \frac{1}{4} \|v\| + \frac{\varepsilon}{4} \leq \frac{\varepsilon + \varepsilon_0}{2}.$$

 Φ is a contraction of *B*, since if $v, v' \in B$ then

$$\begin{split} \|\Phi(v) - \Phi(v')\| &\leq \|P\| \|J_h^{-1}\| [\|s(v) - s(v')\| + \|t(v, h) - t(v', h)\|] \\ &\leq c \sqrt{N} \left(\frac{1}{1 - \lambda_1 \mu(h)}\right) \mu(h) [C(\varepsilon_0) \|v - v'\| + K(h) \|v - v'\|] \\ &\leq \frac{3}{2} c \sqrt{N} \left(\frac{1}{1 - \lambda_1}\right) [C(\varepsilon_0) \|v - v'\| + K(h) \|v - v'\|] \\ &\leq \frac{1}{2} \|v - v'\|. \end{split}$$

By the contraction mapping theorem Φ has a unique fixed point $v_0 \in B$. We have to show that $||v_0|| < \varepsilon$.

$$\|v_0 - \Phi(0)\| = \|\Phi(v_0) - \Phi(0)\| \le \frac{1}{2} \|v_0\|$$

by the above, and therefore

$$\|v_0\| \le \|v_0 - \Phi(0)\| + \|\Phi(0)\| < \frac{1}{2} \|v_0\| + \|\Phi(0)\|.$$

Hence

$$||v_0|| < 2||\Phi(0)|| = 2||PJ_h^{-1}(s(0) - t(0, h)|| \le 2||P|| ||J_h^{-1}|| ||t(0, h)||$$

since s(0) = 0

$$< 2c\sqrt{N}\frac{3}{2}\left(\frac{1}{1-\lambda_1}\right)\delta < \frac{\varepsilon}{2} < \varepsilon.$$

We have obtained a unique continuous map φ such that $\varphi g = f\varphi$ and $d(\varphi, id) < \varepsilon$. φ maps M onto M by Lemma 3.

One cannot always expect the continuous map φ constructed above to be a homeomorphism. A hyperbolic toral automorphism, which has only finitely many fixed points, can be C^0 -perturbed into a homeomorphism with an increased number of fixed points. However, we can put a condition on the perturbation g of f to ensure φ is a homeomorphism.

THEOREM 2. If in Theorem 1 the perturbation g of f has the property that $x \neq y$ implies $d(g^n(x), g^n(y)) > 2\varepsilon$ for some integer n, then φ is a homeomorphism.

(This condition says g is an expansive homeomorphism of the metric space (M, d) with expansive constant 2ε .)

Proof. For any integer n, $\varphi g^n = f^n \varphi$. Suppose $\varphi(x) = \varphi(y)$ and $x \neq y$. Then $\varphi g^n(x) = \varphi g^n(y)$ for every integer n. But for some integer $n_0 d(g^{n_0}(x), g^{n_0}(y)) > 2\varepsilon$ and this contradicts the fact that $\varphi(a) = \varphi(b)$ implies d(a, b) < 20.

The following result is a generalisation of Theorem 1.

PETER WALTERS

THEOREM 3. Let $f: M \to M$ be a Anosov diffeomorphism and suppose the homeomorphism $g_1: M \to M$ is topologically conjugate to f by a homeomorphism ψ i.e. $\psi g_1 = f\psi$. $\exists \varepsilon_0 > 0$ such that $\forall 0 < \varepsilon < \varepsilon_0, \exists \delta > 0$ with the property that if g_2 is a homeomorphism of M with $d(g_1, g_2) < \delta$ then there exists a unique continuous map φ of M onto M so that $\varphi g_2 = f\varphi$ and $d(\varphi, \psi) < \varepsilon$.

Proof. We wish to solve $\varphi g_2 = f\varphi$, or equivalently $\varphi g_2 g_1^{-1} = f\varphi \psi^{-1} f\psi$. Rearrangement gives $\varphi \psi^{-1}(\psi g_2 g_1^{-1} \psi^{-1}) = f\varphi \psi f^{-1}$. Putting $\pi = \varphi \psi^{-1}$ and $h = \psi g_2 g_1^{-1} \psi^{-1}$ we have to solve $\pi h f = f\pi$, for π near *id*, since $d(\pi, id) = d(\varphi, \psi)$. Also $d(hf, f) = d(\psi g_2, \psi g_1)$. By Theorem 1 $\exists \varepsilon_0 > 0$ such that $\forall 0 < \varepsilon < \varepsilon_0, \exists \delta_1 > 0$ so that if *l* is a homeomorphism of *M* with $d(l, f) < \delta_1$ there exists a unique continuous map π of *M* onto *M* with $\pi l = f\pi$ and $d(\pi, id) < \varepsilon$. Choose $\delta > 0$ so that $d(g_2, g_1) < \delta$ implies $d(\psi g_2, \psi g_1) < \delta_1$. Then $d(hf, f) < \delta_1$ and so there is a unique solution of $\pi h f = f\pi$ with $d(\pi, id) < \varepsilon$.

L. Zsido pointed out to me that Theorem 1 could be used to give a simple proof of the following known result. The previous proofs used either stable manifold theory or the (difficult to prove) C^1 -closing lemma and structural stability.

THEOREM 4. Let $f: M \to M$ be an Anosov diffeomorphism of a compact manifold. Then the periodic points are dense in the non-wandering set, $\Omega(f)$, of f.

Proof. Let $\varepsilon > 0$ be given. Let $x_0 \in \Omega(f)$. We shall produce a periodic point of f within 2ε of x_0 .

By Theorem 1, assuming $\varepsilon < \varepsilon_0$, $\exists \delta > 0$ with the property that $d(g, f) < \delta$ for g a homeomorphism of M implies the existence of a continuous map φ of M with $\varphi g = f\varphi$ and $d(\varphi, id) < \varepsilon$. We suppose $\delta < \varepsilon$ and that δ is so small that the $\delta/2$ -ball, U, about x_0 is a coordinate chart. Since $x_0 \in \Omega(f) \exists n > 0$ with $f^{-n}(U) \cap U \neq \varphi$ and we let n denote the least positive integer with this property. Let $y \in f^{-n}(U) \cap U$. Then $y \in U$, $f^i(y) \notin U$ for 0 < i < n and $f^n(y) \in U$. Choose a homeomorphism h of M which is the identity outside U and maps $f^{-n}(y)$ to y. Then $h \circ f$ is a homeomorphism of M and $d(h \circ f, f) = d(h, id) < \delta$. Hence \exists a continuous map φ of M with $\varphi(h \circ f) = f\varphi$ and $d(\varphi, id) < \varepsilon$. But $(h \circ f)^n(y) = y$, by choice of n and h, and therefore $f^n \varphi(y) = \varphi(y)$ i.e. $\varphi(y)$ is a periodic point of f. Also $d(\varphi(y), x_0) \leq d(\varphi(y), y) + d(y, x_0) < \varepsilon + \delta/2 < 2\varepsilon$.

REFERENCES

- 1. D. V. ANOSOV: Geodesic flows on compact manifolds of negative curvature, Trudy mat. Inst. V.A Steklova 90 (1967).
- 2. J. MATHER: Characterisations of Anosov diffeomorphisms (to appear).
- 3. J. MOSER: On a theorem of D. V. Anosov, J. Diff. Equations 5 (1969) 411-440.

Mathematics Institute, University of Warwick