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$0

AN0sov [1] and Moser [3] have shown that an Anosov diffeomorphism f of a compact
manifold M is structurally stable. This means that in the space of all C' diffeomorphisms
of M, with the C! topology, there is a neighbourhood of fsuch that every member of this
neighbourhood is topologically equivalent to f. We show in this paper that f is also topo-
logically stable. This means that in the space of all homeomorphisms of M, with the C°
topology, there is a neighbourhood U of fin which fis the “simplest” map from a topo-
logical point of view, in the sense that if ¢ € U then fis a continuous image of g. (See
definition 2). The idea of the proof follows that of Moser [3].

1
M will always denote a compact C* manifold without boundary.

Definition 1. A C' diffeomorphism f: M - M is an Anosov diffeomorphism if there
exists a Riemannian metric || . | on M and constants ¢ >0, 0< /<1 suchthat TM = E°@ E*
(Whitney bundle sum), dfE® = E°, dfE* = E*,

ldf'wll < callw| ifwe E5, n>0
and
Hdf™wil < ci™™w] if weEY, m<O.

It a different Riemannian metric is chosen the same conditions hold with different
constants ¢, A. It is easily shown that the splitting TM = E*@® E* is continuous.

X%(M), orX°, will denote the real Banach space of continuous vector fields on M with

] = sup (0l ve X,
xsM
(A continuous vector field on M is a continuous section of n: TM — M where n is the
natural projection). If f: M — M is a diffeomorphism F: X° »X° will denote the linear
transformation defined by Fv=dftf "'. An equivalent way of defining an Anosov
diffeomorphism is as follows: fis an Anosov diffeomorphism if there exists a Riemannian
metric ||.]| on M and constants ¢ >0, 0 < A < 1, such that X° = X% @® X2 (vector space
direct sum), FX2 = X2, FX? = X2,
[Fref < cA'fv] ifre X2, n>0
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and
JFmel < i o] ifr € X2 m <.
We assume that we have some fixed Riemannian metric {| .} on M. We denote by
d(x, y) the distance between x, y € M given by this Riemannian metric. p > 0 will denote a
fixed number with the property that for each x € M the exponential map at x, exp,, is a

difftomorphism of the open p-ball about the origin in 7M. onto the open p-ball about
x in M. Such a number exists by the compactness of M.

If f, g are continuous maps of M then d(f, g) = sup d(f(x), g(x)). id will denote the
xsM

identity mapping of M. The following two definitions are meaningful for any homeomor-
phism f of a compact metric space (M, d).

Definition 2. f: M — M is topologically stable if 36 > 0 with the property that if g is
a homeomorphism of M with d(f, g) < & there exists a continuous map ¢ of M onto M
with @g = fo.

We shall in fact prove that Anosov diffeomorphisms are topologically stable in a
stronger sense:

Definition 3. f: M — M is topologically stable in the strong sense if 3g; > O such that

if 0 < & < g 39 > 0 with the property that if g is 2 homeomorphism of M with d(f, g) < 3
there exists a unique continuous map ¢ of M onto M with @g = fp and d(gp, id) < &.

§2
In this section we prove some lemmas which are used in the proof of the theorem.

If F' and F? are vector bundles over M with fibres F! and F2 over x e M, L(F}, F2)
denotes the collection of all linear transformations of F! to F2. L(F!, F*)= U L(F!, F})

xeM

is a vector bundle over M with charts induced in a natural way from those of F' and F*.

LEmMMA 1. Suppose TM is a continuous Whitney sum of two subbundles E* and E". Let
X2 denote the space of continuous sections of E* and X0 the space of continuous sections of
E¥. There exist real members 1, v, > 0 with the following properties:
(1) If h is a homeomorphism of M with d(h, id) < 1, there exists an invertible bounded linear
transformation J, : X° — X° such that J, X0 = X2 and J, %0 = X0
(ii) If v € X° with vl < 1, and h is as above there exists t(v, h) € X° such that

eXPrr)U(A(X)) = exp[(J4 t)(x) + t(r, ()], xeM
expy (o, h)(x) = h(x)
e + 1, Dl < p
lt(e, by — 10", W < KWl — o' i el o'l <1,
where K(h) — 0 as d(h, id) — 0.

(iiiy If ||. ||, is any continuous Riemannian metric on M then ||J,}|, = | and ||[J; ], — | as
d(h, id) — 0.
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Proof. Let p,q: M x M — M be defined by p(x, v) = x, g(x. y) = v. Let U be a neigh-
bourhood of the diagonal in M x M so that (x, ¥) € U implies d(x, y) < p/2 . p*(IM) =
{(x,y,0) | x = 2(t)} (=: TM — M is the natural projection)will denote the pull-back of TM
by p, p*(TM)|y the restriction of p*(TM) to Uand p*(TM)|, , . will denote those elements
of p*(TM)|, with length less than or equal to p/2 inthe pull back metric(which we alsodenote
by Il ). We define a map «: p*(TM)ly /2 = q*(TM)ly by a(x, y, w) = (x, ¥, exp;, ' exp,w).
« is well defined by the choice of U/ and is a ““fibre map.” The fibre derivative of x at the
origin varies continuously in the following sense.

The map U — L(p*(TM), g*(TM)) given by (x, y) — [d(2],+1ar)... )]0 IS continuous. Let
Gie, yy = Al yeiranyio. W]o € LIP*(TM )1, 1y, §(TM)(4, ;). By the definition of derivative
%(x, ¥, ) = G, v + 2x, , 0) + el Blx, 5, 0)
if (x, y,v) € p*(TM)(, ,, and |[lv]f < p/2, where f(x, y,v) >0 as ¢ —0. Also B(x, x,v) =0
since « is the identity over the diagonal of M x M. Let xn, : ¢*(TM) —» ¢*(E*) and =, :
g*(TM) — q*(E") denote the natural projections. Define

A p*(E) > q*(E°) by A(x,y,v)=m G nt.

B p*(E") »q*(E) by B(x,y,w) =Gy,
C:p*E) »q*(E") by Cl(x,y,v)=nr,G ;. and
D p*(E") »g*(E") by D(x,y.w)=1:G 0.

Then the map U — L(p*(E%), q*(E%)) given by (x,p) = Al .
similarly for B, C and D.

)ex, sy 18 continuous, and
IfeeTM,letv=1v, +v, t,€E5r, e EY Then
wx, y, v) = A(x, y, v;) + D(x,p,v3) + B(x,y,05) + Clx, y,vy) + x(x,,0) + [[vil B(x, v, v)
if fleff < pf2, Le.

o(x, y,v) = A(x, y, v]) + D(x, y, vy) + y(x, ¥, v),
and if v, ' e TM, and v}, ')l < p/3 then
fv(x, y, 0) = 2(x, y, VI < 'iBlp%Eu)(x,,,(Uz =)+ [icl,ms:)(x,y,(b'i =)l
+ e — v sup 18Cx, y, W)l < K(x, %) It — ¢}
xeTMx

llwll =p/3

where K(x, y) = 0 as d(x, y) = 0 since Bl,uguy. ., =0, Clpagsy. =0 and B(x, x,v) = 0.

Let U, be a neighbourhood of the diagonal in M x M so that Al «gs),, and D|,ezu,,
are invertible. This is possible since Al gy =7 and D,y ., =1 Choose 1, >0
so that d(x,y) < t, implies (x, y) € Uy . Put 1, = p/3. Suppose h is a homeomorphism of M
with d(h, id) < t,. Then (h(y), ) e Uy, y e M. Let r € X% and |¢]| < 1,. Then

x(h(y), y, t(h(y)) = A(A(Y), », v, (RO)) + D{A(Y), 3, v2(A(YD)) + (AR, 3, t(A(V)))

= (h(), y, exp; " exPuyyt(A(Y)).
Therefore exp, ' expa,,o(h(¥)) = L, ,t(h(»)) + t{v, h)(y) where L, , : TM,,, — TM, is linear
and sends Ej,, to E;, Ej,, to E}. and (h(y), y, t(v, ))(¥)) = y(h(¥). y, v(A(¥))).
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By the continuity of L, , we can define J,: ¥°—X° by (J,0)(») =L, ,v(h(3)), and if
ve X° then t(r, h) € X°. Hence expy,,r(A(y)) = exp,{(J,1)(3) + t(r, H)(1)]. By construction
JoX) = X7 and J, X = X0, Also exp, (0, (v} = A(y) and 1J, v + 1. )| < pif el <1,
v € X% By the above estimate on 7, [ (v, ) — t(v', h)i < K(h) 'v — "7 if v, o’ € X% and juf,
o'l < t, where K(#1) = sup K(A(y), y). Hence K(h) - 0 as d(h. id) — 0.

yeM

By the continuity of 4 and D and the fact that Al ., . ., =7 and Dlpupuy, =71
it follows that }|J,ll, - 1 and §J; |, = 1 as d(h, id) -0 for any continuous Riemannian
metric on M.

I would like to thank R. L. E. Schwarzenberger for valuable discussions on the ideas
of the above proof.

COROLLARY. Let f be a Anosou diffeomorphismof Mwvith splitting TM = E° + E*, Anosov
constants ¢, A and let F: X° — X° be defined by (Fv)(x) = dfe(f~'x). Using this
splitting in Lemima | v, > 0 such that J, exists for each homeomorphism of M with d(h, id)
< 1,. There exists T3 > 0 such that if h is a homeomorphism of M with d(h, id) < t3 then
[ — J;'F is invertible, where I is the identity mapping of X°. Also

cyN
= L — Ak
where u(hy — 1 as d(h, id) >0, 0 < 2, < |, N is an integer, and i, and N are constants de-
pending only on the Anosov constants ¢ and /.

W= J )

Proof. We define a new norm | . !f; on X° using a technique of Mather [2]. Choose an

i - 1 . R ‘ yY-1 ) . ) N ) ,
integer NV so that AV <~ If r; e X0 let Ju, 2 = Y IF*%)i* and if v; € X,° let jjv, ]2 =
C k=0

N-—

Z |[F~*0,||% For v e X%, v =1, + ts, v, € 0, v, € X0 put [ell,? = ol + el I
:—e?cs then Jjvfl < /Nclivl and
1Felly? = i Foel? = fie)? = loll? + 1P
_ < el = (1 = e
s(l - (——1\%;—)) i
(1 — c24%Y)

Hence |Fo)l, < i lv), if A% = Ty <Ayl freTl

7% < 1. Simtilarly §F
N and 4, depend on c and 4 only.

If d(h, idy < 7, let u(h) = max, {{[J4ll;, /5 ;). by lemma [ p(h) — [ as d(h, id) — 0.
Choose 7; > 0 so that 1y < 7, and so that d(#, id) < t5 implies p()i, < 1. Let F; = F[X?,
Fu = F!%?. » Jlxs = Jhlzso and Jhu = Jh];{uo' Then

I FY L < (w2 k=0
and

(1—' ‘]lx—sll:‘s)_1 = Z (JII—;IFS)k
=0
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exists. Also
FS M) < (u)i)* k>0
and
z A
(Fu—l‘]hu - 1)—1 = - Z (Fu— thu)k
k=0
exists. Hence
(‘]h—ulFu - I)—l = _(Fu—l‘]hu - ])—lFu—thu
exists and therefore /— J; 'F is invertible.

We have

WI—J-tFhy~ 4 <m NI ———
i B —k;)(#( 141) 1 ﬁ‘(/’)'ll,

v
ol < 1l < el we have 17— Ji 1)1 <« —Y Y

and since < -
VNe I — 2 ulh)

The following two lemmas are well-known.

Lemma 2. Let f: M - M be a C' diffeomorphism. There exists t, such that if v € X°
and vl <t there exists s(v) e X° with
fexpf‘l(x) U(.f(:(l) = expx[dfv(f_l(x)) + S(U)(x)]’ S(O) = 07
Idfif =t + (o)l < p and {s(t) = s < Clrlv — &'} if lle], [’ <7y, where C(ty) -0
as ty —0.
Proof. Choose 1, < p so that d(x,y) <1, implies d(f(x),f(»)) <p. Let xe M. If
T. M ;-1 denotes those elements u € TM -1, with [[u] < 14 then the map f, : T My
—TM, defined by f,(u) = exp; ' fexp,-iu is well defined and differentiable at u = 0.
The linear approximation of B at u = Oisdf |y -1(s) and hence exp; 1fexp,_x(x) u = dfu +
lullo(u) where o (1) -0 as u—0. Let v = X°, |lv]| < 7,. By the above
expy L €XPy- 1 U(f T (X)) = dfe(f THX) + Ie(f T ) o L(e(f T (x))
and if we put s(e)(x) = [e(f ' x) o (e(f T (x)) then s(v) € X° and
Fexpy- i t(f (X)) = expLldfe(f (%)) + s(v)(x)].
Moreover s(0) = 0, lldfef ™" + s(v)| < p and if v, v" € X°, v, |v'l| < 14 then
Is(@) = s()l < sup Jo . 0e(f T NI o = v} = Clxllv — v’}
xeM

weX0
[IRSIES S

and C(ty) -0 as 7, — 0.

LEMMA 3. There exists t5 > 0, depending only on the manifold M, with the property
that if @ : M — M is continuous and d(p, id) < t5 then @ maps M onto M.

Proof. Choose t5 > 0 so that d{¢, id) < t5 implies ¢ is homotopic to id and the result
then follows by easy homology theory.
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33
THEOREM |. An Anosov diffeomorphism f of a compact manifold M is topologically
stable in the strong sense i.e. 3eq > 0 such that ¥ 0 < ¢ < &g 35 > 0 with the property d(g, f)

< 3, g a homeomorphism of M, => 3 q unique continwous map @ of M onto M with g = fo
and d(p, id) < &.

Proof. ¢, /. will denote the Anosov constants of / (using our fixed Riemannian metric),
N, 4y, 13, p(h) denote the numbers obtained from the corollary of Lemma 1, 7; and 7,
those obtained from Lemma 1 using the given splitting of 7M, 7, and C(z,) those given
by Lemma 2 applied to f and t5 the number determined by Lemma 3.

Choose ¢, >0 so that g <min (p,t,,74,7s) and so that 0 < e< g, implies
¢ /N = ( )C(s) <-. Let 0<e<egy. Choose 0>0 so that § < min(ry, 73, p),

3 1
cJN 3 (1 3 )5 < —and so that d(h, id) < §, where h is a homeomorphism of M, implies

N )K(h)<land c\/N(m)u(thJN;(l—_lg).

Let g be a homeomorphism of M with d(g,f) < 6. Put h=gf™!, then d(h,id)< S
and £ is a homeomorphism of M. Since ¢ < p we wish to show that the equation pg = fo
has a unique solution of the form @(x) = exp, v(x) with v € X% and {v|| < &. Therefore we
have to solve the following equation uniquely for v € ¥° with {|v]| < &:

€XPhxy LX) = fexpy-1yv(f ™ '(x)
ie. expl(J,v)(x) + t(v, h)(x)] = exp[(Fv)(x) + s(v)(x)] by Lemmas 1 and 2. ie. J,v+
t(v, h) = Fv + s(v), since each side of this equation has length less than p. We now have
an equation in the Banach space X° and rearrangement gives (I ~ J; 'Fyv = J; ' (s(v) —
i(v, h)). Since § < 15 the corollary to Lemma 1 implies that P = (I — J; 1F)™! exists and
1
1P| < C\/N<I — Wl)).
We now have the equation
= PJ; (s(v) — t(v, I)).
O(v) = PJ; '(s(v) — (v, b)) is defined on the open ,-ball around the origin in X° and we
wish to show that it has a unique fixed point in the open e-ball. Let denote the closed

£t % -ball about the origin in X°. B is a complete metric space. We shall show that & is

a contraction of B and that the unique fixed point determined by the contraction mapping
theorem lies in the open e-ball. We first show that ® maps B to itself. If v € B then
2@ = 1PJy (s(@) — o, W)
< IPHIIE HIs@I + N1, B) = (0, B + {0, A)]]

< C\/N( )u(h)[C(Eo) lell + K(h)ilel + 4]

1
I = Zu(®
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by lemmas 1 and 2

. .
= C\"N—( - )[C(eo)iivn + K(llel + 0]
2\l -4,
R T bl
=y -y + =
_4\\1“ 3" ..-1-4_ 3

® is a contraction of B, since if v, v’ € B then

1®(r) — OHI < 1P TG HHls) = s@HIE + e, by — 17, )

SC\/N(

Ju(hICen v — 'l + KUyl = o'l

1
L= 2pu(h)

<3 eyt = 1 + Kbt - 1)

<o -2

By the contraction mapping theorem @ has a unique fixed point v4 € B. We have to
show that |egll < &
v = PO = [B(rg) — D(O)] < Hliwol|
by the above, and therefore
ool < llvg — @O) + PO < livoll + [DO)].
Hence
ool < 20@(0) = 2[PJ; *(s(0) — 1(0, W] < 21 PY| |, 11| 110, A

since s(0) =0

3 1
< 2c\/N§ <1 — ).1)5 < g <&

We have obtained a unique continuous map ¢ such that ¢g = fp and d(g, id) < e.
¢ maps M onto M by Lemma 3.

One cannot always expect the continuous map ¢ constructed above to be a homeo-
morphism. A hyperbolic toral automorphism, which has only finitely many fixed points,
can be C%perturbed into a homeomorphism with an increased number of fixed points.
However, we can put a condition on the perturbation g of f'to ensure ¢ is a homeomorphism.

THEOREM 2. If in Theorem | the perturbation g of f has the property that x # y implies
d(g"(x), g"(») > 2& for some integer n, then @ is a homeomorphism.

(This condition says g is an expansive homeomorphism of the metric space (M, d) with
expansive constant 2¢.)

Proof. For any integer n, @g" = f"p. Suppose ¢(x) = ¢(y) and x # y. Then ¢g"(x) =
@g"(y) for every integer n. But for some integer n, d(g™°(x), g"°(y)) > 2¢ and this contradicts
the fact that ¢(a) = @(b) implies d(a, b) < 20.

The following result is a generalisation of Theorem 1.
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THEOREM 3. Let f: M — M be a Anosov diffeomorphism and suppose the homeomorphism
gy M — M is topologically conjugate to f by a homeomorphism i i.e. g, = . g5 > 0
such that Y0 < ¢ < gy, 30 > 0 with the property that if g, is a homeomorphism of M with
d(gy, g1) < O then there exists a unique continuous map @ of M onto M so that g, = fo
and d(p, Y) < e.

Proof. We wish to solve ¢g, = fi, or equivalently g, g7 = fo  ~ /. Rearrangement
gives @ N Yg, 97 v = foyf . Putting n =@y ' and h = Yg,g7 ¥ ! we have
to solve mhf = fr, for = near id, since d(n, id) = d(p, ¥). Also d{hf,f) = d(Vg,, ¥g,). By
Theorem 1 Jgy > 0 such that V0 < ¢ < ¢4, 30, > 0 so that if / is a homeomorphism of M
with d(/, f) < , there exists a unique continuous map = of M onto M with =/ = fr and
d(n, id) <e. Choose 0 > 0 so that d(y,, g,) < d implies d(¥g,, ¥g,) < J,. Then d(hf,f) < &,
and so there is a unique solution of nhf = fr with d(n, id) < .

L. Zsido pointed out to me that Theorem 1 could be used to give a simple proof of
the following known result. The previous proofs used either stable manifold theory or
the (difficult to prove) C'-closing lemma and structural stability.

THeoreM 4. Let f: M — M be an Anosov diffeomorphism of a compact manifold. Then
the periodic points are dense in the non-wandering set, Q(f), of f.

Proof. Let ¢ >0 be given. Let x4 € Q(f). We shall produce a periodic point of f
within 2¢e of x,.

By Theorem 1, assuming & < g,, 36 > 0 with the property that d(g,f) < J for g a
homeomorphism of M implies the existence of a continuous map ¢ of M with @g = fop
and d(o, id) < &. We suppose d < ¢ and that § is so small that the §/2-ball, U, about x, is
a coordinate chart. Since x, € Q(f) In > 0 with f~"(U) n U # ¢ and we let n denote the
least positive integer with this property. Let y ef~"(U) n U. Then y e U, fi(y) ¢ U for
0 <i<nand f(y) € U. Choose a homeomorphism /4 of M which is the identity outside
U and maps f ~"(y) to y. Then A o fisahomeomorphismof M and d(h o f, /) = d(h, id) < é.
Hence 3 a continuous map ¢ of M with ¢(#f) = fp and d(¢, id) < &. But (ho fy"(y) = y,
by choice of n and A, and therefore f"o(y) = @(y) i.e. @(y) is a periodic point of f. Also
dp(y), xo) < dle(y), ¥) + d(y, xo) < € + §/2 < 2e.
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