ANOSOV DIFFEOMORPHISMS ARE TOPOLOGICALLY STABLE

Peter Walters
(Received 21 May 1969)

$\$ 0$

Anosov [1] and Moser [3] have shown that an Anosov diffeomorphism f of a compact manifold M is structurally stable. This means that in the space of all C^{1} diffeomorphisms of M, with the C^{1} topology, there is a neighbourhood of f such that every member of this neighbourhood is topologically equivalent to f. We show in this paper that f is also topologically stable. This means that in the space of all homeomorphisms of M, with the C^{0} topology, there is a neighbourhood U of f in which f is the "simplest" map from a topological point of view, in the sense that if $g \in U$ then f is a continuous image of g. (See definition 2). The idea of the proof follows that of Moser [3].

§1

M will always denote a compact C^{∞} manifold without boundary.
Definition 1. A C^{1} diffcomorphism $f: M \rightarrow M$ is an Anosov diffeomorphism if there exists a Riemannian metric $\|$.$\| on M$ and constants $c>0,0<\lambda<1$ such that $T M=E^{s} \oplus E^{u}$ (Whitney bundle sum), $d f E^{s}=E^{s}, d f E^{u}=E^{u}$,

$$
\left\|d f^{n} w\right\| \leq c \lambda^{n}\|w\| \text { if } w \in E^{s}, \quad n>0
$$

and

$$
\left\|d f^{m} w\right\| \leq c \dot{\lambda}^{-m}\|w\| \text { if } w \in E^{u}, \quad m<0
$$

If a different Riemannian metric is chosen the same conditions hold with different constants c, λ. It is easily shown that the splitting $T M=E^{s} \oplus E^{u}$ is continuous.
$\mathfrak{X}^{0}(M)$, or \mathfrak{X}^{0}, will denote the real Banach space of continuous vector fields on M with

$$
\|v\|=\sup _{x \in M}\|v(x)\| \quad v \in \mathfrak{X}^{0} .
$$

(A continuous vector field on M is a continuous section of $\pi: T M \rightarrow M$ where π is the natural projection). If $f: M \rightarrow M$ is a diffeomorphism $F: \mathfrak{X}^{0} \rightarrow \mathfrak{X}^{0}$ will denote the linear transformation defined by $F v=d f v f^{-1}$. An equivalent way of defining an Anosov diffeomorphism is as follows: f is an Anosov diffeomorphism if there exists a Riemannian metric $\|$.$\| on M$ and constants $c>0,0<\lambda<1$, such that $\mathfrak{X}^{0}=\mathfrak{X}_{s}^{0} \oplus \mathfrak{X}_{u}^{0}$ (vector space direct sum), $F \mathfrak{X}_{s}^{0}=\mathfrak{X}_{s}^{0}, F \mathfrak{X}_{u}^{0}=\mathfrak{X}_{u}^{0}$,

$$
\left\|F^{n} v\right\| \leq c \lambda^{n}\|v\| \text { if } v \in \mathfrak{X}_{s}^{0}, \quad n>0
$$

and

$$
\left\|F^{m} t \leq c^{-m}\right\| v \| \text { if } r \leq x_{u}^{0} . \quad m<0 .
$$

We assume that we have some fixed Riemannian metric \|. \| on M. We denote by $d(x, y)$ the distance between $x, y \in M$ given by this Riemannian metric. $\rho>0$ will denote a fixed number with the property that for each $x \in M$ the exponential map at $x, \exp _{x}$, is a diffeomorphism of the open ρ-ball about the origin in $T M_{x}$ onto the open ρ-ball about x in M. Such a number exists by the compactness of M.

If f, g are continuous maps of M then $d(f, g)=\sup _{x \in M} d(f(x), g(x)$). id will denote the identity mapping of M. The following two definitions are meaningful for any homeomorphism f of a compact metric space (M, d).

Definition 2. $f: M \rightarrow M$ is topologically stable if $\exists \delta>0$ with the property that if g is a homeomorphism of M with $d(f, g)<\delta$ there exists a continuous map φ of M onto M with $\varphi g=f \varphi$.

We shall in fact prove that Anosov diffeomorphisms are topologically stable in a stronger sense:

Definition 3. $f: M \rightarrow M$ is topologically stable in the strong sense if $\exists \varepsilon_{0}>0$ such that if $0<\varepsilon<\varepsilon_{0} \exists \delta>0$ with the property that if g is a homeomorphism of M with $d(f, g)<\delta$ there exists a unique continuous map φ of M onto M with $\varphi g=f \varphi$ and $d(\varphi, i d)<\varepsilon$.
$\$ 2$
In this section we prove some lemmas which are used in the proof of the theorem.
If F^{1} and F^{2} are vector bundles over M with fibres F_{x}^{1} and F_{x}^{2} over $x \in M, L\left(F_{x}^{1}, F_{x}^{2}\right)$ denotes the collection of all linear transformations of F_{x}^{1} to $F_{x}^{2} . L\left(F^{1}, F^{2}\right)=\underset{x \in M}{U} L\left(F_{x}^{1}, F_{x}^{2}\right)$ is a vector bundle over M with charts induced in a natural way from those of F^{1} and F^{2}.

Lemma 1. Suppose TM is a continuous Whitney sum of two subbundles Es and Eu. Let \mathfrak{X}_{s}^{0} denote the space of continuous sections of E^{s} and \mathfrak{X}_{u}^{0} the space of continuous sections of E^{u}. There exist real members $\tau_{1}, \tau_{2}>0$ with the following properties:
(i) If h is a homeomorphism of M with $d(h, i d)<\tau_{1}$ there exists an invertible bounded linear transformation $J_{h}: \mathfrak{X}^{0} \rightarrow \mathfrak{X}^{0}$ such that $J_{h} \mathfrak{X}_{s}^{0}=\mathfrak{X}_{s}^{0}$ and $J_{h} \mathfrak{X}_{u}^{0}=\mathfrak{X}_{u}^{0}$
(ii) If $v \in \mathfrak{X}^{0}$ with $\|v\|<\tau_{2}$ and h is as above there exists $t(v, h) \in \mathfrak{X}^{0}$ such that

$$
\begin{aligned}
\exp _{h(x)} v(h(x))= & \exp _{x}\left[\left(J_{h} v\right)(x)+t(c, h)(x)\right], \quad x \in M \\
\exp _{x} t(o, h)(x)= & h(x) \\
\left\|J_{h} v+t(v, h)\right\|< & \rho \\
\left\|t(c, h)-t\left(v^{\prime}, h\right)\right\| \leq & K(h)\left\|v-v^{\prime}\right\| \quad \text { if }\|c\|,\left\|v^{\prime}\right\|<\tau_{2}, \\
& \text { where } K(h) \rightarrow 0 \text { as } d(h, i d) \rightarrow 0 .
\end{aligned}
$$

(iii) If $\|.\|_{1}$ is any continuous Riemannian metric on M then $\left\|J_{h}\right\|_{1} \rightarrow 1$ and $\left\|J_{h}^{-1}\right\|_{1} \rightarrow 1$ as $d(h, i d) \rightarrow 0$.

Proof. Let $p, q: M \times M \rightarrow M$ be defined by $p(x, y)=x, q(x, y)=y$. Let U be a neighbourhood of the diagonal in $M \times M$ so that $(x, y) \in U$ implies $d(x, y)<\rho / 2 \cdot p^{*}(T M)=$ $\{(x, y, v) \mid x=\pi(v)\}(\pi: T M \rightarrow M$ is the natural projection)will denote the pull-back of $T M$ by $p,\left.p^{*}(T M)\right|_{U}$ the restriction of $p^{*}(T M)$ to U and $\left.p^{*}(T M)\right|_{U, p: 2}$ will denote those elements of $\left.p^{*}(T M)\right|_{U}$ with length less than or equal to $\rho / 2$ in the pull back metric (which we also denote by $\|\|$.$) . We define a map \alpha:\left.\left.p^{*}(T M)\right|_{U, p / 2} \rightarrow q^{*}(T M)\right|_{U}$ by $\alpha(x, y, w)=\left(x, y, \exp _{y}^{-1} \exp _{x} w\right)$. α is well defined by the choice of U and is a "fibre map." The fibre derivative of x at the origin varies continuously in the following sense.

The map $U \rightarrow L\left(p^{*}(T M), q^{*}(T M)\right)$ given by $(x, y) \rightarrow\left[d\left(\left.\alpha\right|_{p^{*}(T M)(x, y)}\right)\right]_{0}$ is continuous. Let $G_{(x, y)}=\left[d\left(\alpha_{p^{*}(T M)(x, y)}\right)\right]_{0} \in L\left(p^{*}(T M)_{(x, y)}, q^{*}(T M)_{(x, y)}\right)$. By the definition of derivative

$$
x(x, y, v)=G_{(x, y)} v+\alpha(x, y, 0)+\|v\| \beta(x, y, v)
$$

if $(x, y, v) \in p^{*}(T M)_{(x, y)}$ and $\|c\|<\rho / 2$, where $\beta(x, y, v) \rightarrow 0$ as $v \rightarrow 0$. Also $\beta(x, x, v)=0$ since α is the identity over the diagonal of $M \times M$. Let $\pi_{1}: q^{*}(T M) \rightarrow q^{*}\left(E^{s}\right)$ and π_{2} : $q^{*}(T M) \rightarrow q^{*}\left(E^{u}\right)$ denote the natural projections. Define

$$
\begin{aligned}
& A: p^{*}\left(E^{s}\right) \rightarrow q^{*}\left(E^{s}\right) \text { by } A(x, y, v)=\pi_{1} G_{(x, y)^{l}}{ }^{i}, \\
& B: p^{*}\left(E^{u}\right) \rightarrow q^{*}\left(E^{s}\right) \text { by } B(x, y, w)=\pi_{1} G_{(x, y)^{\prime \prime},} \quad B: p^{*}\left(E^{s}\right) \rightarrow q^{*}\left(E^{u}\right) \text { by } C(x, y, v)=\pi_{2} G_{(x, y)^{v}, \text { and }}^{D: p^{*}\left(E^{u}\right) \rightarrow q^{*}\left(E^{u}\right) \text { by }} D(x, y, w)=\pi_{2} G_{(x, y)}{ }^{\prime \prime} .
\end{aligned}
$$

Then the map $U \rightarrow L\left(p^{*}\left(E^{s}\right), q^{*}\left(E^{s}\right)\right)$ given by $\left.(x, y) \rightarrow A\right|_{p^{*}\left(E^{s}\right)_{(x, y)}}$ is continuous, and similarly for B, C and D.

If $v \in T M_{x}$ let $v=v_{1}+v_{2} v_{1} \in E_{x}^{s} v_{2} \in E_{x}^{u}$. Then

$$
\alpha(x, y, v)=A\left(x, y, v_{1}\right)+D\left(x, y, v_{2}\right)+B\left(x, y, v_{2}\right)+C\left(x, y, v_{1}\right)+\alpha(x, y, 0)+\|v\| \beta(x, y, v)
$$

if $\|v\|<\rho / 2$, i.e.

$$
\alpha(x, y, v)=A\left(x, y, v_{1}\right)+D\left(x, y, v_{2}\right)+\gamma(x, y, v),
$$

and if $v, v^{1} \in T M_{x}$ and $\|v\|,\left\|v^{\prime}\right\| \leq \rho / 3$ then

$$
\begin{aligned}
& \left\|\gamma(x, y, v)-\gamma\left(x, y, v^{\prime}\right)\right\| \leq\left\|\left.B\right|_{p^{*}\left(E^{u}\right)(x, y)}\left(v_{2}-v_{2}{ }^{\prime}\right)\right\|+\left\|\left.C\right|_{p^{*}\left(E^{s}\right)(x, y)}\left(v_{1}-v_{1}{ }^{\prime}\right)\right\| \\
& +\left\|c-v^{\prime}\right\| \sup _{\substack{x \in T M_{x} \\
\|w\| \leq p / 3}}\left\|\beta\left(x, y, w^{\prime}\right)\right\| \leq K(x, y)\left\|c-v^{\prime}\right\|
\end{aligned}
$$

where $K(x, y) \rightarrow 0$ as $d(x, y) \rightarrow 0$ since $\left.B\right|_{p^{*}\left(E^{\prime \prime}\right)(x, x)}=0,\left.C\right|_{p_{\left(E^{s}\right)(x, x)}}=0$ and $\beta(x, x, v)=0$.
Let U_{0} be a neighbourhood of the diagonal in $M \times M$ so that $\left.A\right|_{p^{*}\left(E^{s}\right) u_{0}}$ and $\left.D\right|_{p^{*}\left(E^{u}\right)_{H_{0}}}$ are invertible. This is possible since $\left.A\right|_{p^{*}\left(E^{s}\right)_{(x, x)}}=I$ and $\left.D\right|_{p^{*}\left(E^{u}\right)_{(x, x)}}=I$. Choose $\tau_{1}>0$ so that $d(x, y)<\tau_{1}$ implies $(x, y) \in U_{0}$. Put $\tau_{2}=\rho / 3$. Suppose h is a homeomorphism of M with $d(h, i d)<\tau_{1}$. Then $(h(y), y) \in U_{0}, y \in M$. Let $v \in \mathfrak{X}^{0}$ and $\|v\|<\tau_{2}$. Then

$$
\begin{aligned}
\alpha(h(y), y, v(h(y))) & =A\left(h(y), y, v_{1}(h(y))\right)+D\left(h(y), y, v_{2}(h(y))\right)+\gamma(h(y), y, v(h(y))) \\
& =\left(h(y), y, \exp _{y}^{-1} \exp _{h(y)} v(h(y))\right) .
\end{aligned}
$$

Therefore $\exp _{y}^{-1} \exp _{h(y)} u(h(y))=L_{h, y} c(h(y))+t(v, h)(y)$ where $L_{h, y}: T M_{h(y)} \rightarrow T M_{y}$ is linear and sends $E_{h(y)}^{s}$ to $E_{y}^{s}, E_{h(y)}^{u}$ to E_{y}^{u}, and $(h(y), y, t(u, h)(y))=\gamma(h(y) . y, v(h(y)))$.

By the continuity of $L_{h, y}$ we can define $J_{h}: \mathfrak{X}^{0} \rightarrow \mathfrak{X}^{0}$ by $\left(J_{h} v\right)(y)=L_{h, y} v(h(y))$, and if $v \in \mathfrak{X}^{0}$ then $t(v, h) \in \mathfrak{X}^{0}$. Hence $\exp _{h(y)} t(h(y))=\exp _{y}\left[\left(J_{h} v\right)(y)+t(c, h)(y)\right]$. By construction $J_{h} \mathfrak{X}_{s}^{0}=\mathfrak{X}_{s}^{0}$ and $J_{h} \mathfrak{X}_{u}^{0}=\mathfrak{X}_{u}^{0}$. Also $\exp _{y} t(0, h)(v)=h(y)$ and $\left\|J_{h} v+t(c, h)\right\|<\rho$ if $c \|<\tau_{2}$. $v \in \mathfrak{Z}^{0}$. By the above estimate on $\gamma, \| t(v, h)-t\left(v^{\prime}, h\right) \leq K(h) v-v^{\prime}$ if $v, v^{\prime} \in \mathfrak{X}^{0}$ and $\left\|v^{\prime}\right\|$, $\left\|v^{\prime}\right\|<\tau$, where $K(h)=\sup _{y \in M} K(h(y), y)$. Hence $K(h) \rightarrow 0$ as $d(h . i d) \rightarrow 0$.

By the continuity of A and D and the fact that $\left.A\right|_{p^{*}\left(E^{s}\right)_{(x, x)}}=I$ and $\left.D\right|_{p^{*}\left(E^{4}\right)_{(x, x)}}=I$ it follows that $\left\|J_{h}\right\|_{1} \rightarrow 1$ and $\left\|J_{h}^{-1}\right\|_{1} \rightarrow 1$ as $d(h, i d) \rightarrow 0$ for any continuous Riemannian metric on M.

I would like to thank R. L. E. Schwarzenberger for valuable discussions on the ideas of the above proof.

COROLLARY. Let f be a Anosov diffeomorphism of M with splitting $T M=E^{5}+E^{u}$. Anosou constants c, λ and let $F: \mathfrak{\not}^{0} \rightarrow \mathfrak{Z}^{0}$ be defined by $(F v)(x)=d f t\left(f^{-1} x\right)$. Using this splitting in Lemma $1 \exists \tau_{1}>0$ such that J_{h} exists for each homeomorphism of M with d(h, id) $<\tau_{1}$. There exists $\tau_{3}>0$ such that if h is a homeomorphism of M with $d(h, i d)<\tau_{3}$ then $I-J_{h}^{-1} F$ is invertible, where I is the identity mapping of \mathfrak{X}^{0}. Also

$$
\left\|\left(I-J_{h}^{-1} F\right)^{-1}\right\| \leq \frac{c \sqrt{ } N}{1-\lambda_{1} \mu(h)}
$$

where $\mu(h) \rightarrow 1$ as $d(h, i d) \rightarrow 0,0<\lambda_{1}<1, N$ is an integer, and λ_{1} and N are constants depending only on the Anosov constants c and λ.

Proof. We define a new norm $\|$.$\| on \mathfrak{X}^{0}$ using a technique of Mather [2]. Choose an integer N so that $\lambda^{v}<\frac{1}{c}$. If $c_{1} \in \mathfrak{X}_{s}^{0}$ let $\left\|u_{1}\right\|_{1}{ }^{2}=\sum_{k=0}^{N-1}\left\|F_{v_{1}}^{u_{1}}\right\|^{2}$ and if $v_{2} \in \mathfrak{X}_{u}{ }^{0}$ let $\left\|v_{2}\right\|_{1}{ }^{2}=$ $\sum_{k=0}^{N-1}\left\|F^{-k_{2}} v_{2}\right\|^{2}$. For $v \in \mathfrak{X}^{0}, v=v_{1}+v_{2}, v_{1} \in \mathfrak{X}_{s}{ }^{0}, c_{2} \in \mathfrak{X}_{u}{ }^{0}$ put $\|c\|_{1}{ }^{2}=\left\|v_{1}\right\|_{1}{ }^{2}+\left\|c_{2}\right\|_{1}{ }^{2}$. If $v \in \mathfrak{Z}_{s}^{0}$ then $\|c\|_{1} \leq \sqrt{ } N c\|v\|$ and

$$
\begin{aligned}
\|F v\|_{1}^{2}=\sum_{k=1}^{v}\left\|F^{k} c\right\|^{2} & =\|c\|_{1}^{2}-\|v\|^{2}+\left\|F^{v} v\right\|^{2} \\
& \leq\|c\|_{1}^{2}-\left(1-c^{2} i^{2, v}\right) \| v^{2} \\
& \leq\left(1-\frac{\left(1-c^{2} \lambda^{2 N}\right)}{N c^{2}}\right) \| v_{1}^{2} .
\end{aligned}
$$

Hence $\|F v\|_{1} \leq \lambda_{1}\|v\|_{1}$ if $\lambda_{1}{ }^{2}=1-\frac{\left(1-c^{2} \dot{\lambda}^{2, v}\right)}{N c^{2}}<1$. Similarly $\left\|F^{-1} v\right\|_{1} \leq \lambda_{1}\|v\|_{1}$ if $v \in \tau_{u}{ }^{0}$. N and λ_{1} depend on c and λ only.

If $d(h, i d)<\tau_{1}$ let $\mu(h)=$ max, $\left\{\left\|J_{h}\right\|_{1},\left\|J_{h}^{-1}\right\|_{1}\right\}$. by lemma $1 \mu(h) \rightarrow 1$ as $d(h, i d) \rightarrow 0$. Choose $\tau_{3}>0$ so that $\tau_{3}<\tau_{1}$ and so that $d(h, i d l)<\tau_{3}$ implies $\mu(h) \dot{\gamma}_{1}<1$. Let $F_{s}=\Gamma \mid \mathfrak{7}_{s}^{\circ}$, $F_{u}=F\left|\mathfrak{X}_{u}^{0}, J_{h s}=J_{h}\right| \mathfrak{X}_{s}^{0}$ and $J_{h u}=J_{h} \mid \mathfrak{F}_{u}{ }^{0}$. Then

$$
\left\|\left(J_{h s}^{-1} F_{s}\right)^{k}\right\|_{1} \leq\left(\mu(h) \lambda_{1}\right)^{k} \quad k \geq 0
$$

and

$$
\left(I-J_{h s}^{-1} F_{s}\right)^{-1}=\sum_{k=0}^{\infty}\left(J_{h s}^{-1} F_{s}\right)^{k}
$$

exists. Also

$$
\left(F_{u}^{-1} J_{h u}\right)^{k} 1_{1} \leq\left(\mu(h) \lambda_{1}\right)^{k} \quad k \geq 0
$$

and

$$
\left(F_{u}^{-1} J_{h u}-I\right)^{-1}=-\sum_{k=0}^{\infty}\left(F_{u}^{-1} J_{h u}\right)^{k}
$$

exists. Hence

$$
\left(J_{h u}^{-1} F_{u}-I\right)^{-1}=-\left(F_{u}^{-1} J_{h u}-I\right)^{-1} F_{a u}^{-1} J_{h u}
$$

exists and therefore $I-J_{h}^{-1} F$ is invertible.
We have

$$
\left\|\left(I-J_{i}^{-1} F\right)^{-1}\right\|_{1} \leq \sum_{k=0}^{\infty}\left(\mu(h) \lambda_{1}\right)^{k}=\frac{1}{1-\mu(h) \lambda_{1}},
$$

and since $\frac{1}{\sqrt{N c}}\|v\|_{1} \leq\|v\| \leq\|c\|_{1}$ we have $\left\|\left(I-J_{h}^{-1} F\right)^{-1}\right\| \leq \frac{c \sqrt{ } N}{1-\lambda_{1} \mu(h)}$.
The following two lemmas are well-known.
Lemma 2. Let $f: M \rightarrow M$ be a C^{1} diffeomorphism. There exists τ_{+}such that if $v \in \mathfrak{X}^{0}$ and $\|v\|<\tau_{4}$ there exists $s(v) \in \mathfrak{X}^{0}$ with

$$
f \exp _{f^{-1}(x)} v\left(f_{x<}^{-1}\right)=\exp _{x}\left[d f v\left(f^{-1}(x)\right)+s(v)(x)\right], \quad s(0)=0
$$

$\left\|d f v f^{-1}+s(v)\right\|<\rho$ and $\left\|s(v) \cdots s\left(v^{\prime}\right)\right\|<C\left(\tau_{4}\right)\left\|v-v^{\prime}\right\|$ if $\|v\|,\left\|v^{\prime}\right\|<\tau_{4}$, where $C\left(\tau_{4}\right) \rightarrow 0$ as $\tau_{4} \rightarrow 0$.

Proof. Choose $\tau_{4}<\rho$ so that $d(x, y) \leq \tau_{4}$ implies $d(f(x), f(y))<\rho$. Let $x \in M$. If $T_{\tau_{4}} M_{f^{-1}(x)}$ denotes those elements $u \in T M_{f^{-1}(x)}$ with $\|u\| \leq \tau_{4}$ then the map $\beta_{x}: T_{\tau_{4}} M_{f^{-1}(x)}$ $\rightarrow T M_{x}$ defined by $\beta_{x}(u)=\exp _{x}^{-1} f \exp _{f^{-1}(x)} u$ is well defined and differentiable at $u=0$. The linear approximation of β_{x} at $u=0$ is $\left.d f\right|_{T M f^{-1}(x)}$ and hence $\exp _{x}^{-1} f \exp _{f^{-1}(x)} u=d f u+$ $\|u\| \sigma_{x}(u)$ where $\sigma_{x}(u) \rightarrow 0$ as $u \rightarrow 0$. Let $v=\mathfrak{X}^{0},\|u\|<\tau_{1}$. By the above

$$
\exp _{\boldsymbol{x}}^{-1} f \exp _{f^{-1}(x)} v\left(f^{-1}(x)\right)=d f v\left(f^{-1}(x)\right)+\left\|v\left(f^{-1}(x)\right)\right\| \sigma_{x}\left(v\left(f^{-1}(x)\right)\right.
$$

and if we put $s(v)(x)=\left\|c\left(f^{-1} x\right)\right\| \sigma_{x}\left(v\left(f^{-1}(x)\right)\right.$ then $s(v) \in \mathfrak{X}^{0}$ and

$$
f \exp _{f^{-1}(x)} v\left(f^{-1}(x)\right)=\exp _{x}\left[d f v\left(f^{-1}(x)\right)+s(v)(x)\right] .
$$

Moreover $s(0)=0,\left\|d f v f^{-1}+s(v)\right\|<\rho$ and if $v, v^{\prime} \in \mathfrak{X}^{0},\|v\|,\left\|v^{\prime}\right\|<\tau_{4}$ then

$$
\left\|s(v)-s\left(v^{\prime}\right)\right\| \leq \sup _{\substack{x \in M \\ u \in \in \mathcal{N}^{0} \\\left\|X^{*}\right\| S \tau_{4}}}\left\|\sigma_{x}\left(w\left(f^{-1(x)}\right)\right)\right\|\left\|v-v^{\prime}\right\|=C\left(\tau_{4}\right)\left\|v-v^{\prime}\right\| .
$$

and $C\left(\tau_{4}\right) \rightarrow 0$ as $\tau_{4} \rightarrow 0$.
Lemma 3. There exists $\tau_{5}>0$, depending only on the manifold M, with the property that if $\varphi: M \rightarrow M$ is continuous and $d(\varphi$, id $)<\tau_{5}$ then φ maps M onto M.

Proof. Choose $\tau_{5}>0$ so that $d(\varphi, i d)<\tau_{5}$ implies φ is homotopic to $i d$ and the result then follows by easy homology theory.

Theorem 1. An Anosov diffeomorphism f of a compact manifold M is topologically stable in the strong sense i.e. $\exists \varepsilon_{0}>0$ such that $\forall 0<\varepsilon<\varepsilon_{0} \exists \delta>0$ with the property $d(g, f)$ $<\delta, g$ a homeomorphism of $M, \Rightarrow \exists$ a unique continuous map φ of M onto M with $\varphi g=f \varphi$ and $d(\varphi, i d)<\varepsilon$.

Proof. c, λ will denote the Anosov constants of f (using our fixed Riemannian metric), $N, \lambda_{1}, \tau_{3}, \mu(h)$ denote the numbers obtained from the corollary of Lemma $1, \tau_{1}$ and τ_{2} those obtained from Lemma 1 using the given splitting of $T M, \tau_{4}$ and $C\left(\tau_{4}\right)$ those given by Lemma 2 applied to f and τ_{5} the number determined by Lemma 3 .

Choose $\varepsilon_{0}>0$ so that $\varepsilon_{0}<\min \left(\rho, \tau_{2}, \tau_{4}, \tau_{5}\right)$ and so that $0<\varepsilon<\varepsilon_{0}$ implies $c \sqrt{ } N \frac{3}{2}\left(\frac{1}{1-\lambda_{1}}\right) C(\varepsilon)<\frac{1}{4}$. Let $0<\varepsilon<\varepsilon_{0}$. Choose $\delta>0$ so that $\delta<\min \left(\tau_{1}, \tau_{3}, \rho\right)$, $c \sqrt{ } N \frac{3}{2}\left(\frac{1}{1-\lambda_{1}}\right) \delta<\frac{\varepsilon}{4}$ and so that $d(h, i d)<\delta$, where h is a homeomorphism of M, implies $c \sqrt{ } N \frac{3}{2}\left(\frac{1}{1-\lambda_{1}}\right) K(h)<\frac{1}{4}$ and $c \sqrt{ } N\left(\frac{1}{1-\lambda_{1} \mu(h)}\right) \mu(h)<c \sqrt{ } N \frac{3}{2}\left(\frac{1}{1-\lambda_{1}}\right)$.

Let g be a homeomorphism of M with $d(g, f)<\delta$. Put $h=g f^{-1}$, then $d(h, i d)<\delta$ and h is a homeomorphism of M. Since $\varepsilon<\rho$ we wish to show that the equation $\varphi g=f \varphi$ has a unique solution of the form $\varphi(x)=\exp _{x} v(x)$ with $v \in \mathfrak{X}^{0}$ and $\|v\|<\varepsilon$. Therefore we have to solve the following equation uniquely for $v \in \mathfrak{i}^{0}$ with $\|v\|<\varepsilon$:

$$
\exp _{h(x)} v(h(x))=f \exp _{f^{-1}(x)} v\left(f^{-1}(x)\right)
$$

i.e. $\exp _{x}\left[\left(J_{h} v\right)(x)+t(v, h)(x)\right]=\exp _{x}[(F v)(x)+s(v)(x)]$ by Lemmas 1 and 2. i.e. $J_{h} v+$ $t(v, h)=F v+s(v)$, since each side of this equation has length less than ρ. We now have an equation in the Banach space \mathfrak{X}^{0} and rearrangement gives $\left(I-J_{h}^{-1} F\right) v=J_{h}^{-1}(s(v)-$ $t(v, h))$. Since $\delta<\tau_{3}$ the corollary to Lemma 1 implies that $P=\left(I-J_{h}^{-1} F\right)^{-1}$ exists and

$$
\|P\| \leq c \sqrt{ } N\left(\frac{1}{1-\lambda_{1} \mu(h)}\right)
$$

We now have the equation

$$
v=P J_{h}^{-1}(s(v)-t(v, h))
$$

$\Phi(v)=P J_{h}^{-1}(s(v)-t(v, h))$ is defined on the open ε_{0}-ball around the origin in \mathfrak{X}^{0} and we wish to show that it has a unique fixed point in the open ε-ball. Let denote the closed $\frac{\varepsilon+\varepsilon_{0}}{2}$-ball about the origin in $\mathfrak{X}^{0} . B$ is a complete metric space. We shall show that Φ is a contraction of B and that the unique fixed point determined by the contraction mapping theorem lies in the open ε-ball. We first show that Φ maps B to itself. If $v \in B$ then

$$
\begin{aligned}
\|\Phi(v)\| & =\left\|P J_{h}^{-1}(s(v)-t(v, h))\right\| \\
& \leq\|P\|\left\|J_{h}^{-1}\right\|[\|s(v)\|+\|t(v, h)-t(0, h)\|+\|t(0, h)\|] \\
& \leq c \sqrt{ } N\left(\frac{1}{1-\lambda_{1} \mu(h)}\right) \mu(h)\left[C\left(\varepsilon_{0}\right)\|v\|+K(h)\|v\|+\delta\right]
\end{aligned}
$$

by lemmas 1 and 2

$$
\begin{aligned}
& \leq c \sqrt{ } N \frac{3}{2}\left(\frac{1}{1-\lambda_{1}}\right)\left[C\left(\varepsilon_{0}\right)\|c\|+K(h)\|c\|+\delta\right] \\
& \leq \frac{1}{4}\|c\|+\frac{1}{4}\|c\|+\frac{\varepsilon}{4} \leq \frac{\varepsilon+\varepsilon_{0}}{2} .
\end{aligned}
$$

Φ is a contraction of B, since if $v, v^{\prime} \in B$ then

$$
\begin{aligned}
\left\|\Phi(v)-\Phi\left(v^{\prime}\right)\right\| & \leq\|P\|\left\|J_{h}^{-1}\right\|\left[\left\|s(v)-s\left(v^{\prime}\right)\right\|+\left\|t(v, h)-t\left(v^{\prime}, h\right)\right\|\right] \\
& \leq c \sqrt{ } N\left(\frac{1}{1-\lambda_{1} \mu(h)}\right) \mu(h)\left[C\left(\varepsilon_{0}\right)\left\|v-v^{\prime}\right\|+K(h)\left\|v-v^{\prime}\right\|\right] \\
& \leq \frac{3}{2} c \sqrt{ } N\left(\frac{1}{1-\lambda_{1}}\right)\left[C\left(\varepsilon_{0}\right)\left\|v-v^{\prime}\right\|+K(h)\left\|v-v^{\prime}\right\|\right] \\
& \leq \frac{1}{2}\left\|v-v^{\prime}\right\| .
\end{aligned}
$$

By the contraction mapping theorem Φ has a unique fixed point $v_{0} \in B$. We have to show that $\left\|c_{0}\right\|<\varepsilon$.

$$
\left\|v_{0}-\Phi(0)\right\|=\left\|\Phi\left(v_{0}\right)-\Phi(0)\right\| \leq \frac{1}{2}\left\|v_{0}\right\|
$$

by the above, and therefore

$$
\left\|v_{0}\right\| \leq\left\|v_{0}-\Phi(0)\right\|+\|\Phi(0)\|<\frac{1}{2}\left\|v_{0}\right\|+\|\Phi(0)\|
$$

Hence

$$
\left\|v_{0}\right\|<2\|\Phi(0)\|=2 \| P J_{h}^{-1}\left(s(0)-t(0, h)\|\leq 2\| P\| \| J_{h}^{-1}\| \| t(0, h) \|\right.
$$

since $s(0)=0$

$$
<2 c \sqrt{ } N \frac{3}{2}\left(\frac{1}{1-\lambda_{1}}\right) \delta<\frac{\varepsilon}{2}<\varepsilon
$$

We have obtained a unique continuous map φ such that $\varphi g=f \varphi$ and $d(\varphi, i d)<\varepsilon$. φ maps M onto M by Lemma 3 .

One cannot always expect the continuous map φ constructed above to be a homeomorphism. A hyperbolic toral automorphism, which has only finitely many fixed points, can be C^{0}-perturbed into a homeomorphism with an increased number of fixed points. However, we can put a condition on the perturbation g of f to ensure φ is a homeomorphism.

Theorem 2. If in Theorem 1 the perturbationg of f has the property that $x \neq y$ implies $d\left(g^{n}(x), g^{n}(y)\right)>2 \varepsilon$ for some integer n, then φ is a homeomorphism.
(This condition says g is an expansive homeomorphism of the metric space (M, d) with expansive constant 2ε.)

Proof. For any integer $n, \varphi g^{n}=f^{n} \varphi$. Suppose $\varphi(x)=\varphi(y)$ and $x \neq y$. Then $\varphi g^{n}(x)=$ $\varphi g^{n}(y)$ for every integer n. But for some integer $n_{0} d\left(g^{n_{0}}(x), g^{n_{0}}(y)\right)>2 \varepsilon$ and this contradicts the fact that $\varphi(a)=\varphi(b)$ implies $d(a, b)<20$.

The following result is a generalisation of Theorem 1 .

Theorem 3. Let $f: M \rightarrow$ M be a Anosov diffeomorphism and suppose the homeomorphism $g_{1}: M \rightarrow M$ is topologically conjugate to f by a homeomorphism ψ i.e. $\psi g_{1}=f \psi . \exists \varepsilon_{0}>0$ such that $\forall 0<\varepsilon<\varepsilon_{0}, \exists \delta>0$ with the property that if g_{2} is a homeomorphism of M with $d\left(g_{1}, g_{2}\right)<\delta$ then there exists a umique continuous map φ of M onto M so that $\varphi g_{2}=f \varphi$ and $d(\varphi, \psi)<\varepsilon$.

Proof. We wish to solve $\varphi g_{2}=f \varphi$, or equivalently $\varphi g_{2} g_{1}^{-1}=f \varphi \psi^{-1} f \psi$. Rearrangement gives $\varphi \psi^{-1}\left(\psi g_{2} g_{1}^{-1} \psi^{-1}\right)=f \varphi \psi f^{-1}$. Putting $\pi=\varphi \psi^{-1}$ and $h=\psi g_{2} g_{1}^{-1} \psi^{-1}$ we have to solve $\pi h f=f \pi$, for π near $i d$, since $d(\pi, i d)=d(\varphi, \psi)$. Also $d(h f, f)=d\left(\psi g_{2}, \psi g_{1}\right)$. By Theorem $1 \exists \varepsilon_{0}>0$ such that $\forall 0<\varepsilon<\varepsilon_{0}, \exists \delta_{1}>0$ so that if l is a homeomorphism of M with $d(l, f)<\delta_{1}$ there exists a unique continuous map π of M onto M with $\pi l=f \pi$ and $d(\pi, i d)<\varepsilon$. Choose $\delta>0$ so that $d\left(g_{2}, g_{1}\right)<\delta$ implies $d\left(\psi g_{2}, \psi g_{1}\right)<\delta_{1}$. Then $d(h f, f)<\delta_{1}$ and so there is a unique solution of $\pi h f=f \pi$ with $d(\pi, i d)<\varepsilon$.
L. Zsido pointed out to me that Theorem 1 could be used to give a simple proof of the following known result. The previous proofs used either stable manifold theory or the (difficult to prove) C^{1}-closing lemma and structural stability.

Theorem 4. Let $f: M \rightarrow M$ be an Anosov diffeomorphism of a compact manifold. Then the periodic points are dense in the non-wandering set, $\Omega(f)$, of f.

Proof. Let $\varepsilon>0$ be given. Let $x_{0} \in \Omega(f)$. We shall produce a periodic point of f within 2ε of x_{0}.

By Theorem 1, assuming $\varepsilon<\varepsilon_{0}, \exists \delta>0$ with the property that $d(g, f)<\delta$ for g a homeomorphism of M implies the existence of a continuous map φ of M with $\varphi g=f \varphi$ and $d(\varphi, i d)<\varepsilon$. We suppose $\delta<\varepsilon$ and that δ is so small that the $\delta / 2$-ball, U, about x_{0} is a coordinate chart. Since $x_{0} \in \Omega(f) \exists n>0$ with $f^{-n}(U) \cap U \neq \varphi$ and we let n denote the least positive integer with this property. Let $y \in f^{-n}(U) \cap U$. Then $y \in U, f^{i}(y) \notin U$ for $0<i<n$ and $f^{n}\left(y^{\prime}\right) \in U$. Choose a homeomorphism h of M which is the identity outside U and maps $f^{-n}(y)$ to y. Then $h \circ f$ is a homeomorphism of M and $d(h \circ f, f)=d(h, i d)<\delta$. Hence \exists a continuous map φ of M with $\varphi(h \circ f)=f \varphi$ and $d(\varphi, i d)<\varepsilon$. But $(h \circ f)^{n}(y)=y$, by choice of n and h, and therefore $f^{n} \varphi(y)=\varphi(y)$ i.e. $\varphi(y)$ is a periodic point of f. Also $d\left(\varphi(y), x_{0}\right) \leq d(\varphi(y), y)+d\left(y, x_{0}\right)<\varepsilon+\delta / 2<2 \varepsilon$.

REFERENCES

1. D. V. Anosov: Geodesic flows on compact manifolds of negative curvature, Trudy mat. Inst. V.A Stekiova 90 (1967).
2. J. Mather: Characterisations of Anosov diffeomorphisms (to appear).
3. J. Moser: On a theorem of D. V. Anosov, J. Diff. Equations 5 (1969) 411-440.

Mathematics Institute, University of Warwick

