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XNOSOV [I] and Moser [3] have shown that an Anosov diEeomorphism f of a compact 

manifold M is structurally stable. This means that in the space of all C’ diffeomorphisms 

of M, with the C’ topology, there is a neighbourhood off such that every member of this 

neighbourhood is topologically equivalent to f. We show in this paper that f is also topo- 

logically stable. This means that in the space of all homeomorphisms of M, with the Co 

topology, there is a neighbourhood U off in which f is the “ simplest ” map from a topo- 

logical point of view, in the sense that if g E U then f is a continuous image of 9. (See 

definition 2). The idea of the proof follows that of Moser [3]. 

.tl will always denote a compact C” manifold without boundary. 

Definition 1. A C’ difieomorphism f: M +,Vf is an Anosov diffeomorphism if there 

exists a Riemannian metric jj . I/ on M and constants c > 0, 0 <L < 1 such that TM = E” @ E” 

(Whitney bundle sum), o!fE” = E’, CifE” = E”, 

jldfn+vij 5 cj//j~v/j if 1~ fz E”, II > 0 
and 

jjQ”m~~~/ I ci.-“jj \(*[I if IL’ E E”, HZ < 0. 

If a different Riemannian metric is chosen the same conditions hold with different 

constants c, 1. It is easily shown that the splitting TM = E” @ E” is continuous. 

X”(M), orX”, will denote the real Banach space of continuous vector fields on hl with 

(A continuous vector field on M is a continuous section of ;I : TM --t Al where z is the 

natural projection). If f: M -+ hf is a diffeomorphism F: .X0 -+-X0 will denote the linear 

transformation defined by Fc = dfcf -‘. An equivalent way of defining an Anosov 

diffeomorphism is as follows: f is an Anosov diffeomorphism if there exists a Riemannian 

metric Ij .]I on M and constants c > 0, 0 < i. < 1, such that So = X,” @ Xi (vector space 

direct sum), FXz = X,“, FXz = Xi, 

lIF”~.ll _< &“i[cII if I’ E ZE,“, n > 0 
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and 

ijF”Cil < Ci.-"iil'/j if L’ C Sz. 171 < 0. 

We assume that we have some fixed Riemannian metric ij . ;j on ,\I. We denote by 

d(x, y) the distance between X, J E M given by this Riemannian metric. p > 0 will denote a 

fixed number with the property that for each x E M the exponential map at X, expx, is a 

diffeomorphism of the open p-ball about the origin in TM, onto the open p-ball about 

x in M. Such a number exists by the compactness of ,\I. 

IfJ g are continuous maps of M then I!(L g) = sup d(f(s). g(.r)). in Lvill denote the 
x c %I 

identity mapping of &I. The following two definitions are meaningful for any homeomor- 

phismfof a compact metric space (M, rl). 

Definition 2. f: ,bf -+ M is topologically stable if 36 > 0 with the property that if g is 

a homeomorphism of M with n(f, g) < 6 there exists a continuous map 43 of hl onto M 

with (pg =j@. 

We shall in fact prove that Anosov diffeomorphisms are topologically stable in a 

stronger sense : 

Definition 3. f: M -+ M is topologically stable in the strong sense if Ck,, > 0 such that 

if 0 < E c Ed 36 > 0 with the property that if g is a homeomorphism of M with d(f, g) < (5 

there exists a unique continuous map cp of M onto M with (pg = fop and d(cp, id) < E. 

In this section we prove some lemmas which are used in the proof of the theorem. 

If F’ and F2 are vector bundles over M with fibres FJ and cz over I E M, L(Fi, F:) 

de&es the collection of all linear transformations of Fi to Fz. L(F’, F’) = U L(FJ, Fj?) 
x E .w 

is a vector bundle over M with charts induced in a natural way from those of F’ and F’. 

LEMMA 1. Suppose TM is a continuous Whitney sum of tbro subbunclles E’ and E”. Let 

X,” denote the space of continuous sections of E” and X,0 the space of continuous sections of 

E”. There exist real members rI, 52 > 0 with the follon,ing properties: 

(i) If h is a homeomorphism of M n?tiz d(h, id) < 51 there exists an inrertible bounded linear 

transformation J, : X0 -+ .X0 such that J, 3,” = X,0 and J, _Xe = X,0 

(ii) If L: E So with jlcl\ < TV and h is as aboce there e.xists t(r, h) E .X0 such that 

exp,&hW) = exp,KJ, c>(x) + t(c., k)Wl, .K E Xl 
exp, t(o, h)(x) = h(x) 

jl J, D + t(r, /I)[\ < p 

iit(c., h) - t(d, h)/I 2 K(h)jlr - C/l $ jjrjj, /c’ll < TV, 

lchere K(h) -+ 0 as d(h, icf) + 0. 

(iii) If jj . 11, is any continuous Aiemnnniun metric on M then lj J,,jj, -+ 1 nntf !jJh’ /I1 -+ 1 OS 

r&h, id) + 0. 
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Proof. Let p, q : Jf x hi + M be defined by p(x, y) = x, q(x. y) = .v. Let U be a neigh- 

bourhood of the diagonal in M x M so that (x, y) E U implies d(.r. y) < p/2 . p*(TM) = 

{(.u,y,c) 1 x = X(C)} (n : TM -+ M is the natural projection)will denote the pull-back of TM 

by p, p*(TM)I, the restriction of p*(TM) to U and p*(??f)(a, P!z will denote those elements 

of p*(TM)I, with length less than or equal to p/2 in the pull back metric (which we also denote 

by jl . 11). We define a map 2: p*(.TNf)lr;,,,2 +q*(T&J)IL, by Y(.Y, ,r, IV) = (x, y, exp;’ exp, IV). 

TX is well defined by the choice of U and is a “fibre map.” The fibre derivative of r at the 

origin varies continuously in the following sense. 

The map U -L(p*@V), q*(TM)) given by (x, y) -+ [lf(21,.,rjr,c,,,,)]o is continuous. Let 

G (.Y. y) = [44,Yi-.~,,(.~. y Jlo E L(p*(TWcx, j-1’ q*(TWcx, yj ). By the definition of derivative 

4% y, I.) = G,,, y) c -t ‘A(x, y, 0) + j\ ri\j?(x, J, L.) 

if (x, y, c) E p*(TM)c,, ,,) and I/ cl/ < p/2, where p(x, y, P) -+ 0 as L‘ -+ 0. Also /I(x, s, u) = 0 

since ‘1 is the identity over the diagonal of M x M. Let rr, : q”(TM) -q*(E”) and rrz : 

q*(TM) + q*(F) denote the natural projections. Define 

A : p*(E’) -q*(F) by x4(x, y, c) = TC~G~~,~~L.. 

B : p*(E”) -q*(E’) by B(x, y, 1~) = rrIG(r.B~l\., 

C : p*(E”) -+ q*(E”) by C(X, y, c) = TC~ G,,. Yj~, and 

D : p’(E”) -q*(E”) by D(x, y, w) = ~1~ Gcx,yju.. 

Then the map ti-+L(p*(E’), q*(E”)) given by (s, y) --t AIp.(r,)(,,,) is 

similarly for 8, C and D. 

continuous, and 

4x, y, u) = .4(x, y, 1.1) + D(-r,y, l.2) + B(x,y, u2) + C(x,y, cl) + r(x,y,O) + ll~:il/?(x,y, c) 

if /]c(/ < p/2, i.e. 

where K(x, y) --f 0 as 4x, J’) + 0 since B(p.(E.LI(,, _~) = 0, C]P.,,,,(~.~, = 0 and p(x, x, c) = 0. 

Let r/, be a neighbourhood of the diagonal in M x M so that A]pl(ESJLIO and D(P.cEUjVo 

are invertible. This is possible since A[p*(EIJ(,. r) = I and D]p.(EuJ(X,x) = I. Choose 5r > 0 

so that d(x,y) < TV implies (x, y) E U,, . Put T? = p/3. Suppose h is a homeomorphism of M 

with d(h, iti) < sI. Then (h(y), y) E 06, y E M. Let I‘ E X0 and ]/cl] < 52. Then 

@(Y), Y7 MY))) = &h(Y), Y, rr(NY))) + Nrcv), I’, c#(.v))) + y(Q), y, r(0))) 

= P(Y), y, exp; r exp,~,,+(y))). 

Therefore exp; ’ exp~~,~4~0)) = L,, Y NY)) + t(rl, h)(y) where L,, p : TMltcyj -+ TM,. is linear 

and sends I&., to Ef, E;(,, to E;. and (h(y), .v, t(c, h)(y)) = ~(h(,v). .Y, r(h(y))). 
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By the continuity of L,. L‘ we can define Jh : X0 -+X0 by (J,c)(‘) = Lh.y c(,h(_~)), and if 
u E X0 then t(r, 11) E X0. Hence exp fr(gJ~,.(N~)) = exp,[(J, L.)(Y) f tic‘, /I)().)]. By construction 

J, X,” = 3: and J,,3$ = X,“. A!so exp, t(0. iz)c~) = /l(y) and ‘1 J,, r i t(~.. hii < p if ,!c~i < ~~ . 

I’ E X0. By the above estimate on 7, ljt(~., /t) - r(c’, /I);! < K(h) II’ - I.’ if I’, c’ E 9’ and i/c/I, 

i/u';/ < TV where K(/I) = sup K(Q), y). Hence K(lz) + 0 as c/(/z. id) + 0. 
Y E .tr 

By the continuity of A and D and the fact that Alpa(Esi(.Y, u) = I and Dlp.(~Uj(,, x) = I 

it follows that jJ,ii, -+ 1 and ~iJ,;‘lil --+ 1 as d(l~. id) + 0 for any continuous Riemannian 

metric on ,!I. 

I would like to thank R. L. E. Schwarzenberger for valuable discusions on the ideas 

of the above proof. 

COROLLARY. Let f be n hosoo d~eomorpl~isn~ of M I\*ith sp/itfii7g T-11 = Es + E”. hosol 

constants c, 1 and let F: 3’ -+ 9 ’ be defined by (FL:)(X) = dfc(f -‘.u). b’sing this 

Splitting in ~e~Jlm2 1 3T, > 0 SUC/Z that J, exists for ench hO~leOt7JOrphiSf?l Of 11/1 Wifh d(/J, id) 

< Tl. There exists TV > 0 such that if h is a fzomeonrorphism of h,f IcYth d(h, id) < T3 then 

I- J,, ‘F is invertible, ,\here I is the identity mapping of X0. Also 

lvhere k’(h) -+ I us d(h, id) -+O, 0 < i, < I, iV is at1 integer, and E., and _V nre constants de- 

pending only on the Anosov consta/zts c and i.. 

Proof. We define a new norm jj ~!I on X0 using a technique of blather [2]. Choose an 

integer IV so that 2%’ < !. If L‘~ EX~’ let ijcI/JIz 
X- 1 

= k50 /j F”c, I/’ and if 1’; E 3: let jj c2 I/ I’ = 

N- 1 

k~o~IF-“r2jl*. For I: E lo, c = L’~ + t’?, L’~ E X:, c-, E 9,: put l/&Z = ,jclj/lZ + I/c2/Ilz. If 

11 E X,’ then (j~j/~ I ,/Ncj/c:// and 

< , _ (1 - c2j-‘9‘ 
- 

i NC2 1 ,lr/, 2 

1’ 

Hence IIFL./]~ 5 E,ij1:i\, if i.,’ = 1 - 
(1 - c2>.2.V) 

NC2 
< 1. Similarly iiF-‘r’il I i.,jlcii, if c E2,,‘. 

N and i., depend on c and J. only. 

If C/(/J, id) < 51 let p(h) = max, {l(J,,jj,, i/J;‘l[l;. by lemma 1 p(h) -+ 1 as d(h, id) -+O. 

Choose ~~ > 0 so that 7, < 7'1 and so that ci(lz, id) < TV implies /((ll)il < 1. Let F, = F/X, 

F, = FIX”, , J,,, = J,,lX,o and Jh,, = J,,jX,:. Then 

il(&;l&)kli, 5 (/#J)A,)k k 2 0 

and 

(I - J,‘F,)-’ = 2 (JI,‘F,)” 
k=O 
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exists. AlS0 

and 

~l(F,~‘J,Jk;l 1 I (p(h)j.,)k k 2 0 

exists. Hence 

(F;‘J,, - I)-’ = - i_ (F,-‘J,,,)’ 
k5,;) i 

(J;,‘F, - I)-’ = -(Ft;‘J,, - I)-‘F,;‘J,,,, 

exists and therefore I- J,; IF is invertibls. 

We have 

and since we have lj(Z-- Jf;‘F)-‘II I 
c 1V J 

I - i.,p(/l) 

The following two lemmas are well-known. 

LEMMA 2. Let f: Al -+ M be a C’ ri~eomorphism. There exists TV such that if 2: E .X0 

atid jlcll < TV there exists s(u) E x0 119th 

fexpI-+, L;(_&~) = exp,[rlfc(f-‘(x)) + s(~;)(x)I, s(0) = 0, 

j/dfcf-’ + S(D.)/~ < p and i/s(c) - s(u’)j/ < C(r,)l/u - c’jl if Ijujl, ~ir’[i < To, where C(7,) -+O 

as T4 -to. 

ProoJ Choose TV < p so that d(x,y) I TV implies cl(f(~),f(y)) < p. Let x E M. If 

T,, Mf-lcX, denotes thoss elements u E TMf-,(,, with [lull I TV then the map b, : T,,M,._,,,, 

-+ TM, defined by BX(u) = exp, 1 fexp/- I(xj II is well defined and differentiable at u = 0. 

The linear approximation of j, at II = OisClflT,M/-,(xj and hence exp;‘fexpf-,(,,zl = rifil + 

1~1~/Io,(u) where a,(u) -+ o as II + 0. Let L; = X0, llcll < TV. By the above 

exp.;‘fexp/-I(,, 0-W = rlf(j-l(x)) + ll~tf-‘(~))ll~,(~~f-‘(x)) 
and if we put S(D)(I) = lic(f-‘~)II~~(~.(f-‘(,~)) then s(u) E X0 and 

fexp,- I(~) c(f-‘(4) = exp,MW’(.4) + 44(x)1. 

Moreover s(0) = 0, !Idf$-’ + s(~.)~j < p and if L‘, u‘ E X0, IIci/, /ju’j/ < 51 then 

Ij.Y(E) - S(C’)ii < ~~~F,““~(“‘(f-“~‘))~~ IlL; - L)‘jl = c(Tl)i/t' - U'!j. 

'0 weX 
11.q 97.4 

and C(s,) -+ 0 as r-( -+ 0. 

LEMMA 3. There exists rj > 0, deperlding only on the manifold Xl, ILvith the property 

that ifu, : M ---f M is continuous and d(rp, id) < 7j then q maps M onto &I. 

Proof. Choose TV > 0 so that ci(cp, id) < Tj implies q is homotopic to id and the result 

then follows by easy homology theory. 
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THEOREM 1. An Anosor ch~eomorphism f of a compact manifold M is topologically 

stable in the strong scns@ i.e. 3.~ > 0 such that V 0 < E < q, 3S > 0 \vith the property d(g, f) 

< 6, g a homeomorphism of 121, 3 3 fl fmique continuous map cp of III onto 114 Ir*ith qg = fq 

and d(4p, id) < E. 

Proof. c, 2 will denote the Anosov constants off (using our fixed Riemannian metric), 

N, d,, r3, p(h) denote the numbers obtained from the corollary of Lemma 1, 51 and T? 

those obtained from Lemma 1 using the given splitting of TM, 54 and C(t,) those given 

by Lemma 2 applied to f and 5j the number determined by Lemma 3. 

Choose e0 > 0 so that e0 < min (p, r2, TV, ss) and so that 0 < E < E,, implies 

C(E)<:. Let O<E<E~. Choose S > 0 so that 6 -=z min(s,, TV, p), 

6 < f and so that d(h, id) < 6, where h is a homeomorphism of M, implies 

K(h)<iand cjN 
(1 - k4h)) 

I.@) < c,/N; , li 
(7) ’ 

Let g be a homeomorphism of M with d(g,f) < 6. Put h = gf-‘, then d(h, id) < 6 

and h is a hoineomorphism of M. Since E c p we wish to show that the equation qg = fq 

has a unique solution of the form q(x) = exp,u(x) with v E X0 and /jt./[ < E. Therefore we 

have to solve the following equation uniquely for L’ E So with jIu\/ < E: 

exp,(,) c@(x)) =f exp,- +) G-‘(x)) 

i.e. exp,[(J,u)(x) + t(~, h)(x)] = exp,[(Fu)(x) + s(u)(x)] by Lemmas 1 and 2. i.e. J, u + 

t(o, h) = Fu + s(v), since each side of this equation has length less than p. We now have 

an equation in the Banach space X0 and rearrangement gives (I - Jh ‘F)u = .Jk ’ (s(v) - 

ftv, h)). Since 6 < TV the corollary to Lemma 1 implies that P = (I - .I; *F)-’ exists and 

We now have the equation 

z! = PJ,; l(s(L’) - t(L;, h)). 

O(c) = PJ; l(s(u) - t(v, h)) is defined on the open &,-ball around the origin in X0 and we 

wish to show that it has a unique fixed point in the open E-ball. Let denote the closed 

E + +I 
--ball about the origin in X0. B is a complete metric space. We shall show that @ is 

2 
a contraction of B and that the unique fixed point determined by the contraction mapping 

theorem lies in the open c-ball. We first show that (0 maps B to itself. If v E B then 

ll~(~)ll = llP.4 ‘($4 - f(u> h))I/ 

I llpll llJh111M411 + IIf(Z,> h) - @, h)II + IIf@, h)lll 

‘cJN(I -:,,(h,) 
dh)[C(dII~~II + K(h)ll4l + 61 
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by lemmas 1 and 2 

@ is a contraction of B, since if I*. L.’ E B then 

Ii@(r) - @(L”)II _< l!PII Vi, lIIIIIs(L.) - s(u’)ll + llt(v, h) - r(c’. IJ)li] 

I c,/N 
1 1 1 - L44. 

p(h)[C(~,)liv - ~“1) + K(h)jIL: - c’l)] 

[CLQ)jlC - c’ll + K(h)llu - Lql] 

By the contraction mapping theorem @ has a unique 

show that /L.~II < I-:. 

II 1’0 - WN = I/@(L.~) - W)ll 5 
by the above, and therefore 

II c’o II 5 II (‘0 - @~O)II + llwoIl 
Hence 

i/uol/ < 2PWll = 2llP.J; ‘(GO - GA 

since s(0) = 0 

< -3ll~oll 

77 

fixed point c0 E B. We have to 

tll~‘oll 

+ llW>ll. 

We have obtained a unique continuous map cp such that (pg = f? and d(q, id) < E. 

cp maps M onto M by Lemma 3. 

One cannot always expect the continuous map cp constructed above to be a homeo- 

morphism. A hyperbolic toral automorphism, which has only finitely many fixed points, 

can be CO-perturbed into a homeomorphism with an increased number of fixed points. 

However, we can put a condition on the perturbation g offto ensure 40 is a homeomorphism. 

THEOREM 2. If in Theorem 1 the perturbation g off has the property that x # y implies 

d(g”(x), g”(y)) > 2~ for some integer n, then cp is a homeomorphism. 

(This condition says g is an expansice homeomorphism of the metric space (M, d) with 

expansice constant 2E.) 

Proof. For any integer n, rpg” =f”q~. Suppose q(x) = rpb) and x # y. Then cpg”(x) = 

cpgQ) for every integer n. But for some integer no d(g”“(x), g”“(y)) > 2~ and this contradicts 

the fact that &a) = q(b) implies d(a, b) < 20. 

The following result is a generalisation of Theorem 1. 
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THEOREM 3. Let f : Al -+ LZI be a Anosoc di’eomorphism and suppose the homeomorphism 

g1 : ,%I -+&I is topologically conjugate to f b_v a homeomorphism 4 i.e. ri/gl = f$. 3~~ > 0 

such that VO < E < E,, , 22 > 0 with the property that IY g2 is a homeomorphism of M with 

d(g,, g2) < 6 then there esists a lmique continuous map q of 31 onto RI so that ‘pg2 = fq 

and d(cp, +) < E. 

ProoJ We wish to solve ‘pg2 = fp, or equivalently (pg2g;’ = fq li/-‘f Ic/. Rearrangement 

gives q$-‘(li/gzg;’ I+/I-‘) =f’p$f-I. Putting 71 = q$-’ and tz = $g2g;‘rc/-’ we have 

to solve nhf = fx, for rc near id, since ~(Tc, id) = d(p, II/). Also d(lzf,ff) = d( $g2, $gI). By 

Theorem 1 3~~ > 0 such that V 0 < E < Ed, 3, > 0 so that if 1 is a homeomorphism of M 

with d(l, f) < 6, there exists a unique continuous map n of M onto M with TCI =j% and 

d(n, id) <E. Choose 5 > 0 so that c1(g2, gl) < 6 implies d( tig2, $gI) < 6,. Then d(hhf> < 6, 

and so there is a unique solution of n!lf = fx with d(n, id) < E. 

L. Zsido pointed out to me that Theorem 1 could be used to give a simple proof of 

the following known result. The previous proofs used either stable manifold theory or 

the (difficult to prove) Cl-closing lemma and structural stability. 

THEOREM 4. Let f : M--f M be an Anosov diffeomorphism of a compact manifold. Then 

the periodic points are dense in the non-wandering set, Q(f), off: 

Proof. Let E > 0 be given. Let x0 E Q(f). We shall produce a periodic point off 

within 2~ of x0. 

By Theorem 1, assuming E < E,, , 36 > 0 with the property that d(g,f) < 6 for g a 

homeomorphism of M implies the existence of a continuous map Q of M with (pg = fp 

and d(cp, id) < E. We suppose d < E and that 6 is so small that the J/2-ball, U, about x0 is 

a coordinate chart. Since x0 E Q(f) 3n > 0 withy-“(U) n U # q and we let n denote the 

least positive integer with this property. Let y Ed-” n U. Then y E U, ,f’(y) $4 U for 

0 < i < n andf”(J*) E U. Choose a homeomorphism II of M which is the identity outside 

U and mapsf-“(y) to y. Then h 0 f is a homeomorphism of M and d((h of, f) = d(h, id) < 6. 

Hence 3 a continuous map cp of M with cp(11 of) =fq and d(cp, id) < E. But (11 of‘,“(y) = y, 

by choice of n and h, and thereforef”cp(y) = q(y) i.e. q(y) is a periodic point of j Also 

d((cp(y), xg) 5 d(cp(y>, y) + cf(y, xg) < E + 512 < 2E. 
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