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Abstract

Let Mm,n(0, 1) denote the set of all m × n (0, 1)-matrices and let

G(m, n) = max
{

det XTX : X ∈ Mm,n(0, 1)
}
.

In this paper we exhibit some new formulas for G(m, n) where n ≡ −1 (mod 4). Specifically,
for m = nt + r where 0 � r < n, we show that for all sufficiently large t , G(nt + r, n) is
a polynomial in t of degree n that depends on the characteristic polynomial of the adjacen-
cy matrix of a certain regular graph. Thus the problem of finding G(nt + r, n) for large t

is equivalent to finding a regular graph, whose degree of regularity and number of vertices
depend only on n and r , with a certain “trace-minimal” property. In particular we determine
the appropriate trace-minimal graph and hence the formulas for G(nt + r, n) for n = 11, 15,
all r , and all sufficiently large t .
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1. Introduction

Let Mm,n(0, 1) denote the set of all m × n (0, 1)-matrices and let

G(m, n) = max
{

det XTX : X ∈ Mm,n(0, 1)
}
.
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A matrix X = (xij ) ∈ Mm,n(0, 1) is D-optimal (in Mm,n(0, 1)) if det XTX =
G(m, n).

The central problem is to find G(m, n) for each pair of positive integers m �
n and to characterize the matrices for which the maximum is attained. In its full
generality, the problem is unsolved.

This problem comes from the theory of statistical weighing designs. Suppose we
have a one-pan or spring scale with which to determine the weights of n objects
in m weighings. The scale does not give the exact weight, but we assume that the
error distribution has mean zero and is independent from weighing to weighing. One
possible design is to weigh the objects one at a time. But by choosing a more compli-
cated weighing design in which several objects are placed on the scale together, the
variance of the resulting errors can be reduced. This technique appeared in a paper
by Yates [16] in 1935 and was improved and advanced by Hotelling [7] and Mood
[10] in 1944 and 1946.

A weighing design for n objects and m weighings consists of m subsets of the
n objects. Each subset of objects is then placed on the scale together. Letting the
objects correspond to the columns and the weighings correspond to the rows, we
can encode the weighing design into a matrix X ∈ Mm,n(0, 1): xij = 1, if object j is
included in the ith weighing; xij = 0, if it is omitted. Thus a matrix X ∈ Mm,n(0, 1)

is called a design matrix. Under certain assumptions about the error distribution of
the scale, the smallest confidence region for the least-squares estimator of the n-tuple
of weights of the n objects is attained when one uses a weighing design (matrix)
for which det XTX is maximal; thus the interest in D-optimal design matrices (see
e.g. [15,2] for details).

Formulas for G(m, n) are known for n = 2, 3, 4, 5, 6 and all m � n. For n = 7,
G(m, 7) is known for all sufficiently large m. See [8] for n = 2, 3, [12,13] for n =
4, 5, 6, and [14] for n = 7. For some other values of n, partial results are known—
partial in the sense that G(m, n) is known for some, but not all, m. Complete results
for n = 3 and 7 are given in the next two theorems. The first theorem was stated in
[10, p. 443] and proved in [8, p. 562].

Theorem 1. For 0 � r < 3

G(3t + r, 3) = 4(t + 1)r t3−r .

The next theorem was conjectured in [8] and proved in [14].

Theorem 2. For 0 � r < 7 and all sufficiently large t

G(7t + r, 7) = 4 × 28(t + 1)r t7−r .

It is tempting to conjecture that the pattern exhibited in the cases for n = 3, 7
might hold for n = 11, 15, . . . as well, especially since families of (nt + r) × n

design matrices X are given in [8, Theorem 7.1] for which
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det(XTX) = 4

(
n + 1

4

)n+1

(t + 1)r tn−r (1)

for all n ≡ −1 (mod 4) and all 0 � r < n. In addition, it is known that G(nt + r, n)

equals the right-hand side of Eq. (1) when r = 0, 1, 2 and n − 1 (see for example
[11, Theorem 5.2]). But for other values of r , the examples in [8] prove only that the
right-hand side of Eq. (1) is a lower bound on G(nt + r, n).

On the other hand, upper bounds on G(m, n) for all m and n are given in [4,9]
using the idea of an approximate design. In particular, for n ≡ −1 (mod 4) the upper
bounds on G(nt + r, n) combined with the examples given in [8] give the following
range of possible values for G(nt + r, n):

4

(
n + 1

4

)n+1

(t + 1)r tn−r � G(nt + r, n) � 4

(
n + 1

4

)n+1 (
t + r

n

)n

.

(2)

However the upper bound is attainable only when r = 0; that is, when m = nt + r

is a multiple of n. For n � 11, G(nt + r, n) is not equal to the lower bound given
in Eq. (1) in general. In fact for r /= 0, 1, 2, n − 1, the actual value of G(nt + r, n)

for all sufficiently large t , is strictly between the upper and lower bounds given in
inequality (2).

Formulas for n = 11, 15, all 0 � r < n, and large t are given in the next two
theorems.

Theorem 3. For all sufficiently large t

G(11t + 0, 11) = 12(3t)11,

G(11t + 1, 11) = 12(3t)10(3t + 3),

G(11t + 2, 11) = 12(3t)9(3t + 3)2,

G(11t + 3, 11) = 12(3t − 1)(3t)5(3t + 2)5,

G(11t + 4, 11) = 12(3t)5(3t + 2)6,

G(11t + 5, 11) = 12(3t)4(3t + 2)6(3t + 3),

G(11t + 6, 11) = 12(3t)(3t + 1)6(3t + 3)4,

G(11t + 7, 11) = 12(3t + 1)6(3t + 3)5,

G(11t + 8, 11) = 12(3t + 1)5(3t + 3)5(3t + 4),

G(11t + 9, 11) = 12(3t + 1)4(3t + 3)5(3t + 4)2,

G(11t + 10, 11) = 12(3t)(3t + 3)10.

Theorem 4. For all sufficiently large t

G(15t + 0, 15) = 16(4t)15,

G(15t + 1, 15) = 16(4t)14(4t + 4),
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G(15t + 2, 15) = 16(4t)13(4t + 4)2,

G(15t + 3, 15) = 16(4t − 2)(4t)7(4t + 2)7,

G(15t + 4, 15) = 16(4t)7(4t + 2)8,

G(15t + 5, 15) = 16(4t)6(4t + 2)8(4t + 4),

G(15t + 6, 15) = 16(4t)(4t + 1)4(4t + 4)2[(4t)2 + 3(4t) + 1]4,

G(15t + 7, 15) = 16(4t)(4t + 1)8(4t + 2)2(4t + 4)4,

G(15t + 8, 15) = 16(4t + 2)2(4t + 4)[(4t)2 + 4(4t) + 2]2

× [(4t)4 + 8(4t)3 + 20(4t)2 + 16(4t) + 2]2,

G(15t + 9, 15) = 16(4t + 2)4(4t + 4)3[(4t)2 + 4(4t) + 2]4,

G(15t + 10, 15) = 16(4t)(4t + 2)8(4t + 4)6,

G(15t + 11, 15) = 16(4t + 2)8(4t + 4)7,

G(15t + 12, 15) = 16(4t + 2)7(4t + 4)7(4t + 6),

G(15t + 13, 15) = 16(4t + 2)4(4t + 4)3[(4t)2 + 8(4t) + 14]4,

G(15t + 14, 15) = 16(4t)(4t + 4)14.

There is more. Our main result is that for each pair of positive integers, n, r with
n ≡ −1 (mod 4) and 0 � r < n, there is a polynomial pn,r (t) of degree n in t such
that G(nt + r, n) = pn,r (t) for all sufficiently large t . And we describe a relationship
between this polynomial and a certain regular graph whose degree of regularity and
number of vertices depend only on n and r . Once the graph G is known, the poly-
nomial can be obtained easily from the characteristic polynomial of the adjacency
matrix of G. Theorems 1–4 then follow as simple consequences.

2. Main results

The main results of this paper describe a correspondence between the formula
G(m, n) for D-optimal design matrices and certain regular graphs.

2.1. Trace-minimal regular graphs

We begin with a description of the relevant graphs. Let G(v, δ) be the set of all
δ-regular graphs on v vertices and let A(G) be the adjacency matrix of G. The char-
acteristic polynomial of A(G) is denoted by chG(x). We also refer to chG(x) as the
characteristic polynomial of the graph G. Since A(G) is a symmetric (0, 1)-matrix
with zeros on the diagonal, tr(A(G)) = 0 and tr(A(G)2) = δv. These traces do not
depend on the structure of the graph G. However, for i � 3, tr(A(G)i) does depend
on the structure of the graph. Indeed the (j, j) entry of A(G)i equals the number of
closed walks of length i that start and end at vertex j .
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We now define an order relation on the graphs in G(v, δ): Let G, H ∈ G(v, δ), We
say G is trace-dominated by H if A(G) and A(H) have the same spectrum (in which
case tr(A(G)i) = tr(A(H)i) for all 3 � i � n) or if there exists a positive integer
3 � k � n such that tr(A(G)i) = tr(A(H)i), for i < k and tr(A(G)k) < tr(A(H)k).
If G is trace-dominated by all graphs in G(v, δ), then we say that G is trace-min-
imal in G(v, δ). Since G(v, δ) is finite, there always exist trace-minimal graphs in
G(δ, v) and clearly they all have the same characteristic polynomial. The equivalent
graphical definition of trace-dominance is this: G is trace-dominated by H if either
G and H have the same number of closed walks of length i for all 3 � i � n or if
the number of closed walks of length i in G equals the number of closed walks of
length i in H for all i < k and the number of closed walks of length k in G is smaller
than the number of closed walks of length k in H .

The trace-dominance relation actually compares the spectra of the (adjacency ma-
trices of the) graphs in G(v, δ) rather than the graphs themselves. In fact trace-dom-
inance is a linear order on the spectra of graphs; G and H have the same spectrum
if and only if each is trace-dominated by the other. But in general, the spectrum of a
graph does not determine the graph. That is, there exist non-isomorphic graphs with
the same spectrum (see [6, p. 24]). So although trace-dominance is a linear order
on the spectra of graphs, there may exist non-isomorphic, trace-minimal graphs in
G(v, δ). We have not investigated this. We denote the spectrum of a square matrix X

by spec(X) so that the spectrum of a graph G is denoted by spec(A(G)).
Now we turn to the design matrices in Mm,n(0, 1). Throughout, we assume that

n = 4p − 1 and that m = nt + r where the remainder r satisfies 0 � r < n. The
main result is split into four cases depending on the congruence class of r (mod 4).

2.2. Main results for r ≡ 1, 2 (mod 4)

Theorem 5. Let r = 4d + 1. Let G be a trace-minimal graph in G(2p, d). Then for
all sufficiently large values of t

G(nt + r, n) = 4(t + 1)[chG(pt + d)]2

t2
. (3)

Theorem 6. Let r = 4d + 2. Let G be a trace-minimal graph in G(2p, p + d).
Then for all sufficiently large values of t

G(nt + r, n) = 4t[chG(pt + d)]2

(t − 1)2
.

2.3. Bipartite-trace-minimal regular graphs

To state the results for r ≡ −1, 0 (mod 4), we need to define a notion analogous to
trace-minimality for bipartite graphs. Let B(2v, δ) be the set of all δ-regular bipartite
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graphs on 2v vertices and let B ∈ B(2v, δ). It follows from the regularity of B that
each of the sets of vertices in the bipartition has cardinality v. (We assume this even
if δ = 0.) Without loss of generality, we may assume that the sets of vertices in the
bipartition are {1, 2, . . . , v} and {v + 1, v + 2, . . . , 2v}. Thus the adjacency matrix
of B is of the form

A(B) =
[

0 N(B)

N(B)T 0

]
,

where N(B) is a v × v(0, 1)-matrix having exactly δ ones in each row and each
column.

It is clear that tr(A(B)i) = 0 if i is odd and that tr(A(B)2j ) = 2tr((N(B)TN(B))j )

otherwise. For j = 1, tr(N(B)TN(B)) = δv for all B ∈ B(2v, δ).
A graph B ∈ B(2v, δ) is bipartite-trace-minimal in B(2v, δ) if for every H ∈

B(2v, δ) either spec(A(B)) = spec(A(H)) (in which case tr(A(B)i) = tr(A(H)i)

for all i = 4, . . . , 2v) or there exists a positive integer k with 4 � k � 4p such
that tr(A(B)i) = tr(A(H)i) for all i < k and tr(A(B)k) < tr(A(H)k). In view of
the remarks above, B ∈ B(2v, δ) is bipartite-trace-minimal if and only if for every
H ∈ B(2v, δ), either spec(N(H)TN(H)) = spec(N(B)TN(B)) or there exists an
integer 2 � j � v such that tr((N(H)TN(H))i) = tr((N(B)TN(B))i) for i < j and
tr((N(B)TN(B))j ) < tr((N(H)TN(H))j ).

There is a subtle difference between trace-minimality and bipartite-trace-mini-
mality for bipartite graphs. IfB ∈ B(4p, δ) ⊆ G(4p, δ),B may be bipartite-trace-min-
imal inB(4p, δ) without being trace-minimal inG(4p, δ). Bipartite-trace-minimality
requires a comparison of the traces ofA(B)i withA(G)i for allG ∈ B(4p, δ), whereas
trace-minimality requires the same comparison but for all G in the larger setG(4p, δ).
Thus for bipartite graphs, trace-minimality is a stronger condition than bipartite-trace-
minimality.

2.4. Main results for r ≡ −1, 0 (mod 4)

The following two theorems, which contain the main results for r≡−1, 0 (mod 4),
require the notion of bipartite-trace-minimality. Each theorem is divided into two
parts depending on the relative sizes of p and d .

Theorem 7. Let r = 4d − 1. Suppose p/2 � d < p. Let G be a trace-minimal
graph in G(4p, 3p + d − 1). Then for all sufficiently large values of t

G(nt + r, n) = 4chG(pt + d − 1)

t − 3
. (4)

Suppose 0 � d < p/2. Let B be a bipartite-trace-minimal graph in B(4p, d). Then
for all sufficiently large values of t

G(nt + r, n) = 4(p(t − 1) + 2d)chB(pt + d)

t (pt + 2d)
. (5)
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Theorem 8. Let r = 4d . Suppose 0 � d � p/2. Let G be a trace-minimal graph in
G(4p, d). Then for all sufficiently large values of t

G(nt + r, n) = 4chG(pt + d)

t
.

Suppose p/2 < d < p. Let B be a bipartite-trace-minimal graph in B(4p, p + d).
Then for all sufficiently large values of t

G(nt + r, n) = 4(pt + 2d)chB(pt + d)

(t − 1)(p(t + 1) + 2d)
.

3. Families of trace-minimal and bipartite-trace-minimal graphs

Equipped with the four theorems in Section 2, one can translate the problem of
finding an explicit expression of G(nt + r, n) for a given n, remainder 0 � r < n,
and all sufficiently large t into the problem of finding an appropriate trace-minimal
or bipartite-trace-minimal graph. For example suppose n = 11 and r = 9 so that
p = 3 and r = 4d + 1, where d = 2. This case falls within the scope of Theorem 5.
Thus we seek a graph in G(6, 2) that is trace-minimal. It is not hard to see that the
6-cycle is the only trace-minimal graph in G(6, 2). Indeed the v-cycle graph is the
only trace-minimal graph in G(v, 2) (see Lemma 9). The characteristic polynomial
of the 6-cycle graph is ch(x) = (x + 1)2(x − 1)2(x + 2)(x − 2), pt + d = 3t + 2,
and hence by Theorem 5 we have

G(11t + 9, 11) = 12(3t + 1)4(3t + 3)5(3t + 4)2,

for all sufficiently large t .
By exhibiting appropriate families of trace-minimal and bipartite-trace-minimal

graphs, we reprove the old formulas given in Theorems 1 and 2 and prove the new
ones given in Theorems 3 and 4.

The notation for graphs is as follows:

Zv the graph consisting of v independent vertices (no edges)
Kv the complete graph on v vertices
Kv,v the complete bipartite graph with v vertices in each of

the bipartition sets
Cv the cycle with v vertices
K2v − vK2 the complete graph on 2v vertices with a perfect matching

removed
Kv,v − vK2 the complete bipartite graph with a perfect matching removed
G + H the direct sum of graphs G and H

kG the direct sum of k copies of G.

Even though the families of graphs in this section are relatively simple, they are
sufficiently inclusive to prove all of the formulas in Theorems 1–4. A much more
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extensive list of trace-minimal and bipartite-trace-minimal graphs along with the
corresponding formulas for G(m, n) are given in a sequel [1].

Lemma 9. The following graphs are trace-minimal:

Zv ∈ G(v, 0),

Kv ∈ G(v, v − 1),

vK2 ∈ G(2v, 1),

Kv,v ∈ G(2v, v),

K2v − vK2 ∈ G(2v, 2v − 2),

Cv ∈ G(v, 2).

The following graphs are bipartite-trace-minimal:

Zv ∈ B(v, 0),

vK2 ∈ B(2v, 1),

Kv,v − vK2 ∈ B(2v, v − 1).

Proof. Since Zv is the only graph in G(v, 0) it must be trace-minimal and bipartite-
trace-minimal in B(v, 0). Likewise Kv is the only graph in G(v, v − 1), vK2 is the
only graph in G(2v, 1), and K2v − vK2 is the only graph in G(2v, 2v − 1) so they are
trace-minimal and vK2 is bipartite-trace-minimal in B(2v, 1). The bipartite graph
Kv,v − vK2 is the only graph in B(2v, v − 2), so it is bipartite-trace-minimal.

Next consider the complete bipartite graph Kv,v . It is the only graph in B(2v, v)

so it is bipartite-trace-minimal. But Kv,v is also trace-minimal in G(2v, v). To see
this let G ∈ G(2v, v). If G has a 3-cycle, then tr(A(G)3) > 0 whereas tr(A(Kv,v)

3) =
0. Thus G is not trace-minimal. So suppose G has no 3-cycles and assume that vertex
1 is adjacent to vertices v + 1, . . . , 2v. Since G has no 3-cycles, none of the vertices
v + 1, . . . , 2v are adjacent to each other. Thus each of the vertices v + 1, . . . , 2v is
adjacent to each of the vertices 1, 2, . . . , v. That is, G = Kv,v .

Finally, consider the v-cycle, Cv and let G ∈ G(v, 2). Since G is 2-regular, it is a
direct sum of cycles. Suppose G has a cycle of length k < v and let k the minimal
length of a cycle in G. Then tr(A(G)i) = tr(A(Cv)

i) for all i < k, but tr(A(G)k) >

tr(A(Cv)
k) since G has a k-cycle and Cv does not. Hence G is not trace-minimal.

It follows that the only trace-minimal graph in G(v, 2) is Cv . �

3.1. Proof of Theorems 1–3

In each case the trace-minimal or bipartite-trace-minimal graph required is among
those listed in Lemma 9. Thus the formulas for G(nt + r, n) are obtained from
the corresponding theorem from Section 2. In the table below, the values of r , d ,
the graph class, the appropriate trace-minimal or bipartite-trace-minimal graph G

in the class, and the characteristic polynomial chG(x) are given.
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For example, if n = 11 and r = 8 then p = 3, d = 2 and p/2 < d , so we use
the second part of Theorem 8. Thus we seek a bipartite-trace-minimal graph B

in B(4p, p + d) = B(12, 5). By Lemma 9, the graph K6,6 − 6K2 ∈ B(12, 5) is
bipartite-trace-minimal. It is easy to verify that the characteristic polynomial of
K6,6 − 6K2 is ch(x) = (x − 5)(x − 1)5(x + 1)5(x + 5) and that

4(3t + 4) ch(3t + 2)

(t − 1)(3(t + 1) + 4)
= 12(3t + 1)5(3t + 3)5(3t + 4).

Thus the formula for G(11t + 8, 11) in Theorem 3 is proved. All other parts of
Theorems 1–3 are proved in a similar manner.

3.1.1. n = 3
r d class graph G chG(x)

0 0 G(4, 0) Z4 x4

1 0 G(2, 0) Z2 x2

2 0 G(2, 1) K2 (x − 1)(x + 1)

3.1.2. n = 7
r d class graph G chG(x)

0 0 G(8, 0) Z8 x8

1 0 G(4, 0) Z4 x4

2 0 G(4, 2) C4 (x − 2)x2(x + 2)

3 1 G(8, 6) K8 − 4K2 (x − 6)x4(x + 2)3

4 1 G(8, 1) 4K2 (x − 1)4(x + 1)4

5 1 G(4, 1) 2K2 (x − 1)2(x + 1)2

6 1 G(4, 3) K4 (x − 3)(x + 1)3

3.1.3. n = 11
r d class graph G chG(x)

0 0 G(12, 0) Z12 x12

1 0 G(6, 0) Z6 x6

2 0 G(6, 3) K3,3 (x − 3)x4(x + 3)

3 1 B(12, 1) 6K2 (x − 1)6(x + 1)6

4 1 G(12, 1) 6K2 (x − 1)6(x + 1)6

5 1 G(6, 1) 3K2 (x − 1)3(x + 1)3

6 1 G(6, 4) K6 − 3K2 (x − 4)x3(x + 2)2

7 2 G(12, 10) K12 − 6K2 (x − 10)x6(x + 2)5

8 2 B(12, 5) K6,6 − 6K2 (x − 5)(x − 1)5(x + 1)5(x + 5)

9 2 G(6, 2) C6 (x − 2)(x − 1)2(x + 1)2(x + 2)

10 2 G(6, 5) K6 (x − 5)(x + 1)5
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3.2. Proof of Theorem 4, n = 15

r d class graph G chG(x)

0 0 G(16, 0) Z16 x16

1 0 G(8, 0) Z8 x8

2 0 G(8, 4) K4,4 (x − 4)x6(x + 4)

3 1 B(16, 1) 8K2 (x − 1)8(x + 1)8

4 1 G(16, 1) 8K2 (x − 1)8(x + 1)8

5 1 G(8, 1) 4K2 (x − 1)4(x + 1)4

6 1 G(8, 5) K8 − (C3 + C5) (x − 5)x2(x + 3)(x2 + x − 1)2

7 2 G(16, 13) K16 − (4C3 + C4) (x − 13)(x − 1)x8

× (x + 1)2(x + 3)4

8 2 G(16, 2) C16 (x − 2)x2(x + 2)(x2 − 2)2

× (x4 − 4x2 + 2)2

9 2 G(8, 2) C8 (x − 2)x2(x + 2)(x2 − 2)2

10 2 G(8, 6) K8 − 4K2 (x − 6)x4(x + 2)3

11 3 G(16, 14) K16 − 8K2 (x − 14)x8(x + 2)7

12 3 B(16, 7) K8,8 − 8K2 (x − 7)(x − 1)7(x + 1)7(x + 7)

13 3 G(8, 3) C8(1, 4) (x − 3)(x − 1)2(x + 1)

× (x2 + 2x − 1)2

14 3 G(8, 7) K8 (x − 7)(x + 1)7

For r /= 6, 7, 13, the associated graph is among those shown to be trace-minimal or
bipartite-trace-minimal in Lemma 9. Let C8(1, 4) ∈ G(8, 3) be the graph with eight
vertices and an edge (i, j) if |i − j | ≡ 1, 4 (mod 8). It remains only to show that the
graphs K8 − (C3 + C5) for r = 6, K16 − (4C3 + C4) for r = 7, and C8(1, 4) for
r = 13 are trace-minimal.

3.2.1. K8 − (C3 + C5)

There are only three graphs G in G(8, 3): K8 − C8, K8 − 2C4, and K8 − (C3 +
C5). For the first two, the value of tr(A(G)3) is 96, and for the last one is 90. So
K8 − (C3 + C5) is trace-minimal.

3.2.2. K16 − (4C3 + C4)

Let G be a graph in G(16, 13). Then the complement G′ is in G(16, 2) and hence
is a direct sum of disjoint cycles. Let A(G′) = J16 − I16 − A(G) be the adjacen-
cy matrix of G′. Since A(G′)J = JA(G′) = 2J , J 2 = 16J , and tr(A(G′)2) = 32,
we have

tr(A(G)3) = tr((J − I − A(G′))3)

= tr(139J − (I + A(G′)3))

= 139 × 16 − tr(I + 3A(G′) + 3A(G′)2 + A(G′)3)
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= 2224 − 16 − 3(32) − tr(A(G′)3)

= 2112 − tr(A(G′)3).

Thus to minimize tr(A(G)3) for G ∈ G(16, 13) it is enough to maximize tr(A(G′)3),
i.e., the number of triangles, in the complement G′ ∈ G(16, 2). But G′ is a direct
sum of disjoint cycles, thus it can have at most four triangles, which occurs only if
G′ = 4C3 + C4.

3.2.3. C8(1, 4)

It is easy to see that tr(A(G)3) = 0 if and only if G is triangle-free. There are
only two triangle-free graphs in G(8, 3): The graph Q obtained from the edges of a
cube and C8(1, 4). Since tr(A(Q)4) = 168 and tr(A(C8(1, 4))4) = 152, C8(1, 4) is
trace-minimal.

4. Proofs of Theorems 5–8

In this section we prove Theorems 5–8. Several of the lemmas used in the section
require lengthy proofs, which will be given in later sections.

4.1. A correspondence with (±1)-matrices

We begin with a definition. A design matrix X ∈ Mm,n(0, 1) is balanced if each
row of X contains exactly 2p ones and 2p − 1 zeros. Let Bal(m, n, (0, 1)) denote the
subset of Mm,n(0, 1) consisting of all balanced design matrices. For all sufficiently
large m, all D-optimal design matrices are balanced.

Lemma 10 [11]. Let n = 4p − 1 be a positive integer. For all sufficiently large
values of m, every D-optimal matrix X ∈ Mm,n(0, 1) is balanced.

We now define a map L on Bal(m, n, (0, 1)). Let X ∈ Bal(m, n, (0, 1)) where
m = nt + r , with 0 � r < n. Define a matrix L(X) as follows:

L(X) =
[
Jm,1 Jm,n − 2X

Jt,1 Jt,n

]
.

(Ja,b is the a × b matrix all of whose entries are one.) Clearly L(X) is a (4pt +
r) × 4p, (±1)-matrix each of whose first (4p − 1)t + r rows contains exactly 2p

ones and 2p negative ones and whose last t rows consist entirely of ones. We de-
note the set of all such matrices by C(4pt + r, 4p, ±1). It is clear that the map
L : Bal(m, n, (0, 1)) → C(4pt + r, 4p, ±1) is one-to-one and onto. Furthermore,
the determinants of XTX and L(X)TL(X) are related in the following way.
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Lemma 11 [11]. Let n = 4p − 1 be a positive integer and suppose that X ∈
Bal(m, n, (0, 1)). Then

det L(X)TL(X) = t4n det XTX.

Thus it is clear that if X0 ∈ Bal(m, n, (0, 1)) and Y0 = L(X0) ∈ C(4pt + r,

4p, ±1) then

det(Y TY ) � det(Y T
0 Y0)

for all Y ∈ C(4pt + r, 4p, ±1) if and only if

det(XTX) � det(XT
0 X0)

for all X ∈ Bal(m, n, (0, 1)). In view of Lemmas 10 and 11 we now focus our atten-
tion on C(4pt + r, 4p, ±1) and characterize those matrices Y0 ∈ C(4pt + r, 4p, ±1)

for which det Y TY � det Y T
0 Y0 for all Y ∈ C(4pt + r, 4p, ±1). Such a matrix Y0 is

also called D-optimal.

4.2. Remainder matrices

Let S be a symmetric 4p × 4p integral matrix. Then S is a remainder matrix
if there exist t � 0, 0 � r < n, and a matrix Y ∈ C(4pt + r, 4p, ±1) such that

Y TY = 4ptI4p + S. (6)

In this section we give necessary and sufficient conditions for a symmetric integral
matrix to be a remainder matrix and we characterize the remainder matrices S for
which the corresponding design matrix Y is D-optimal for all sufficiently large t .

One property of a remainder matrix S satisfying Eq. (6) is that its diagonal entries
must be r . This is clear since the diagonal entries of Y TY are 4pt + r . Another, not
so obvious, property is that a remainder matrix S is permutation similar to an integral
block-matrix of the form[

U V

V T W

]
, (7)

where U is a u × u symmetric matrix, W is a w × w symmetric matrix, u and w

are even integers with u + w = 4p, and there exists an integer r such that U, W ≡
r (mod 4) and V ≡ r + 2 (mod 4). (If either u or w is zero, then there is only one
block.) A matrix in block-form (7) satisfying the above properties is said to be
blocked. Remainder matrices are characterized in the following lemma.

Lemma 12. Let S = (sij ) be a symmetric 4p × 4p integral matrix. Then S is a
remainder matrix if and only if the following conditions are satisfied:

(a) each row of S sums to zero,

(b) there exists an integer r with 0 � r < 4p − 1 such that sii = r for all i,

(c) S is permutation similar to a blocked matrix.
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Another way to state the result in Lemma 12 is this: Let S = (sij ) be a sym-
metric 4p × 4p integral matrix and let t � 0 be an integer. Define a subset Y(S, t)

of C(4pt + r, 4p, ±1) as follows:

Y(S, t) = {
Y ∈ C(4pt + r, 4p, ±1) : Y TY = 4ptI4p + S

}
.

Lemma 12 is equivalent to the statement that there exists an integer t0 � 0 for
which Y(S, t0) is non-empty if and only if S satisfies conditions (a)–(c). But it turns
out that if S is a remainder matrix, then Y(S, t) is non-empty for all sufficiently
large t .

Lemma 13. Let S be a remainder matrix. Then there exists an integer t0 such that
Y(S, t) is non-empty for all t � t0.

Now suppose that Y(S, t) is non-empty. Since Y TY = 4ptI4p + S for all Y ∈
Y(S, t), either all matrices in Y(S, t) are D-optimal or none are D-optimal. We
say that a non-empty class Y(S, t) is a D-optimal class, if every Y ∈ Y(S, t) is a
D-optimal matrix and Y(S, t) is a non-D-optimal class if none are D-optimal.

Define a subset of Bal(m, n, (0, 1)) as follows:

X(S, t) = {
X ∈ Bal(m, n, (0, 1)) : L(X) ∈ Y(S, t)

}
.

And for 0 � r < n, let M(r) stand for the set of remainder matrices whose diagonal
entries equal r . It follows from Lemma 10 and the argument above that if S ∈ M(r)

then X(S, t) is non-empty for all sufficiently large values of t . And from Lemma 11
it follows that if X ∈ X(S, t) then

det XTX = 1

t4n
det L(X)TL(X)

= 1

t4n
det(4ptI4p + S).

Thus det XTX is the same for all X ∈ X(S, t) and it follows that either all design
matrices in X(S, t) are D-optimal or none are D-optimal. As before, we say that
X(S, t) is a D-optimal class if every X ∈ X(S, t) is a D-optimal design matrix and
X(S, t) is a non-D-optimal class if none are D-optimal. We summarize the above
discussion in the following lemma.

Lemma 14. Let S ∈ M(r). For all sufficiently large t,X(S, t) and Y(S, t) are non-
empty and X(S, t) is a D-optimal class if and only if Y(S, t) is a D-optimal class.

For a given remainder matrix S ∈ M(r), it turns out that either Y(S, t) is a D-
optimal class for all sufficiently large t or a non-D-optimal class for all sufficient-
ly large t . In other words, there cannot be infinitely many values of t for which
Y(S, t) is a D-optimal class and infinitely many values of t for which Y(S, t) is
a non-D-optimal class.
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4.3. Spectrum-maximal remainder matrices

We now characterize those remainder matrices S for which Y(S, t) is a D-optimal
class for all sufficiently large t . To do so, define an order relation � on M(r) as
follows: if S1, S2 ∈ M(r) then S1 � S2 if either spec(S1) = spec(S2) or there exists
an integer 2 � k < 4p such that Ei(S1) = Ei(S2) for i < k and Ek(S1) < Ek(S2).
(Ei(X) stands for the elementary symmetric functions of the eigenvalues of X. Since
E1(S) = tr S = 4pr for all S ∈ M(r), k must be at least 2.) A matrix S0 ∈ M(r)

is spectrum-maximal if S � S0 for every S ∈ M(r).

Theorem 15. Let S ∈ M(r). If S is spectrum-maximal, then Y(S, t) and X(S, t)

are non-empty D-optimal classes for all sufficiently large t .
If S is not spectrum-maximal, then Y(S, t) and X(S, t) are non-empty non-

D-optimal classes for all sufficiently large t .

Since M(r) is infinite, it is not immediately clear that each M(r) contains a spec-
trum-maximal matrix. In fact it does, as we shall see in Lemmas 16–19.

4.4. Trace-minimal graphs

To complete the proofs of Theorems 5–8 we show that every spectrum-maxi-
mal remainder matrix is associated with a trace-minimal or a bipartite-trace-mini-
mal graph. In fact we completely characterize spectrum-maximal remainder matrices
(and hence the D-optimal classes X(S, t)) in terms of these graphs.

Rather than having to state throughout the rest of the paper that a remainder matrix
is permutation similar to a blocked matrix, we will now assume that all remain-
der matrices are blocked. This assumption is harmless: if P is a 4p × 4p permuta-
tion matrix and Y ∈ C(4pt + r, 4p, ±1) with Y TY = 4pI4p + S, then Y1 = YP ∈
C(4pt + r, 4p, ±1), Y T

1 Y1 = 4pI4p + P TSP , and det Y TY = det Y T
1 Y1. In particu-

lar, every remainder matrix is permutation similar to a blocked remainder matrix. So
now M(r) stands for the set of all blocked remainder matrices whose main diagonal
entries equal r .

4.4.1. r ≡ 1 (mod 4)

Let r = 4d + 1. Let G1, G2 be graphs in G(2p, d) and define a symmetric inte-
gral 4p × 4p matrix as follows:

S1(G1, G2) := 4dI4p +
[
J2p − 4A(G1) −J2p

−J2p J2p − 4A(G2)

]
. (8)

It is easy to verify that S1(G1, G2) satisfies conditions (a)–(c) of Lemma 12. Thus
S1(G1, G2) ∈ M(r).
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Lemma 16. Let r = 4d + 1 and suppose that S ∈ M(r). Then S is spectrum-maxi-
mal in M(r) if and only if there exist trace-minimal graphs G1, G2 in G(2p, d) such
that S = S1(G1, G2).

Furthermore, the following equation holds for all graphs G1, G2 in G(2p, d):

det(4ptI4p + S1(G1, G2)) = 44p(t + 1)chG1(pt + d)chG2(pt + d)

t
. (9)

We should point out that since the set of graphs G(2p, d) is finite, there always
exists a graph in G(2p, d) that is trace-minimal. Thus Lemma 16 guarantees the
existence of a spectrum-maximal remainder matrix in M(r). Also notice that the
assumption S is blocked allows us to state that S equals S1(G1, G2) rather than S

is permutation similar to S1(G1, G2).
With the help of Lemma 16, we can now prove Theorem 5.

Proof of Theorem 5. Let G be a trace-minimal graph in G(2p, d). By Lemma 16,
S = S1(G, G) is a spectrum-maximal remainder matrix in M(r). By Theorem 15
there exists t0 such that the class of design matrices X(S, t) is non-empty, balanced,
and D-optimal for all t � t0. Let X ∈ X(S, t) and let Y = L(X). Then by Lemma 11

G(nt + r, n) = det XTX

= 1

t4n
det Y TY

= 1

t4n
det(4ptI4p + S).

Eq. (3) now follows from Eq. (9). �

4.4.2. r ≡ 2 (mod 4)

Let r = 4d + 2. Let G1, G2 be graphs in G(2p, p + d) and define a symmetric
4p × 4p integral matrix as follows:

S2(G1, G2) := 4dI4p +
[

2J2p − 4A(G1) 0
0 2J2p − 4A(G2)

]
. (10)

As in the case r ≡ 1 (mod 4) it is easy to verify that S2(G1, G2) ∈ M(r).

Lemma 17. Let r = 4d + 2 and suppose that S ∈ M(r). Then S is spectrum-maxi-
mal in M(r) if and only if there exist trace-minimal graphs G1, G2 in G(2p, p + d)

such that S = S2(G1, G2).
Furthermore, the following equation holds for all graphs G1, G2 in G(2p,

p + d):

det(4ptI4p + S2(G1, G2)) = 44pt2chG1(pt + d)chG2(pt + d)

(t − 1)2
. (11)
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Using Lemma 17, the Proof of Theorem 6 is almost identical to the Proof of
Theorem 5 given above.

4.4.3. r ≡ −1 (mod 4)

Let r = 4d − 1. The form of a spectrum-maximal remainder matrix depends on
whether 0 � d < p/2, p/2 < d < p, or d = p/2. We define two types of matrices
in M(r). Let G be a graph in G(4p, 3p + d − 1) and define

S31(G) := 4(d − 1)I4p + 3J4p − 4A(G). (12)

The second remainder matrix comes from a bipartite graph B in B(4p, d):

S32(B) := 4dI4p +
[−J2p J2p

J2p −J2p

]
− 4A(B). (13)

Lemma 18. Let r = 4d − 1 and let S ∈ M(r). If p/2 < d < p, then S is spectrum-
maximal in M(r) if and only if there exists a trace-minimal graph G in G(4p, 3p +
d − 1) such that S = S31(G).

Furthermore, the following equation holds for all graphs G in G(4p, 3p +
d − 1):

det(4ptI4p + S31(G)) = 44ptchG(pt + d − 1)

t − 3
. (14)

If 0 � d < p/2, then S is spectrum-maximal in M(r) if and only if there exists a
bipartite-trace-minimal graph B in B(4p, d) such that S = S32(B).

Furthermore, the following equation holds for all bipartite graphs B in B(4p, d):

det(4ptI4p + S32(B)) = 44p(p(t − 1) + 2d)chB(pt + d)

pt + 2d
. (15)

If d = p/2, then S is spectrum-maximal in M(r) if and only if either there exists
a trace-minimal graph G in G(4p, 7p/2 − 1) such that S = S31(G), or there exist
a bipartite graph B in B(4p, p/2) such that S = S32(B) and the complement B ′
of B in G(4p, 7p/2 − 1) defined by

A(B ′) =
[

J − I J − N(B)

J − N(B)T J − I

]
is trace-minimal.

Furthermore, Eq. (14) holds for all graphs G(or B ′) in G(4p, 7p/2 − 1).
If d = p/2, B ∈ B(4p, p/2), and B ′ ∈ G(4p, 7p/2 − 1) is defined as above,

then spec(S32(B)) = spec(S31(B
′)).

With the help of Lemma 18, we now prove Theorem 7.

Proof of Theorem 7. Let p/2 � d < p, and G be a trace-minimal graph in G(4p,

3p + d − 1). By Lemma 18, S = S31(G) is a spectrum-maximal remainder matrix in
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M(r). By Theorem 15, there exists a positive integer t0 such that the class of design
matrices X(S, t) is non-empty, balanced, and D-optimal for t � t0. Let X ∈ X(S, t)

and let Y = L(X). Then by Lemma 11

G(nt + r, n) = det XTX

= 1

t4n
det Y TY

= 1

t4n
det(4ptI4p + S).

Eq. (4) now follows from Eq. (14).
Note that if d = p/2 there are two possible kinds of spectrum-maximal remain-

der matrices S ∈ M(r). The first is S = S31(G) where G ∈ G(4p, 7p/2 − 1) is a
trace-minimal graph. The other is S = S32(B) where B ∈ B(4p, p/2) and the com-
plement graph B ′ ∈ G(4p, 7p/2 − 1) is trace-minimal. The second possibility does
not always occur because it may happen that no B ′ is trace-minimal in G(4p, 7p/2 −
1). However, in the case where B ′ is a trace-minimal graph in G(4p, 7p/2 − 1), then
spec(S31(B

′)) = spec(S32(B)) and hence Eq. (4) holds in case d = p/2.
Next let 0 � d < p/2 and let B be a bipartite-trace-minimal graph in B(4p, d).

By Lemma 18, S = S32(B) is a spectrum-maximal remainder matrix in M(r). By
Theorem 15, there exists a positive integer t0 such that the class of design matrices
X(S, t) is non-empty, balanced, and D-optimal for all t � t0. Let X ∈ X(S, t) and
let Y = L(X). Then by Lemma 11

G(nt + r, n) = det XTX

= 1

t4n
det Y TY

= 1

t4n
det(4ptI4p + S).

Eq. (5) now follows from Eq. (15). �

4.4.4. r ≡ 0 (mod 4)

Let r = 4d . As in the case r ≡ −1 (mod 4), the form of a spectrum-maximal
remainder matrix in M(r) depends on whether 0 � d < p/2, p/2 < d � p, or d =
p/2. We need to define two types of matrices in M(r). Let G be a graph in G(4p, d)

and define a matrix in M(r) by

S01(G) := 4dI4p − 4A(G). (16)

Let B be a bipartite graph in B(4p, p + d) and define

S02(B) := 4dI4p +
[

0 2J2p

2J2p 0

]
− 4A(B). (17)
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Lemma 19. Let r = 4d and suppose S ∈ M(r). If 0 � d < p/2, then S is spec-
trum-maximal in M(r) if and only if there exists a trace-minimal graph G in G(4p, d)

such that S = S01(G).
Furthermore, the following equation holds for all G in G(4p, d):

det(4ptI4p + S01(G)) = 44pchG(pt + d). (18)

If p/2 < d < p, then S is spectrum-maximal in M(r) if and only if there exists a
bipartite-trace-minimal graph B in B(4p, p + d) such that S = S02(B).

Furthermore, the following equation holds for all bipartite graphs B in B(4p,

p + d):
det(4ptI4p + S02(B)) = 44pt (pt + 2d)chB(pt + d)

(t − 1)(p(t + 1) + 2d)
.

If d = p/2 then S is spectrum-maximal in M(r) if and only if either there exists a
trace-minimal graph G in G(4p, p/2) such that S = S01(G) or there exists a bipar-
tite graph B in B(4p, 3p/2) such that S = S02(B) and the graph B ′ ∈ G(4p, p/2)

defined by

A(B ′) =
[

0 J − N(B)

J − N(B)T 0

]
is trace-minimal.

Furthermore, Eq. (18) holds for all G in G(4p, p/2).
If d = p/2, B ∈ B(4p, 3p/2), and B ′ ∈ G(4p, p/2) is defined as above, then

spec(S01(B
′)) = spec(S02(B)).

The proof of Theorem 8 is almost identical to the proof of Theorem 7 above.
It remains to prove Lemmas 12, 13, Theorem 15, and Lemmas 16–19, which will

be done in Sections 5–7.

5. Proof of Lemmas 12 and 13

5.1. The module M

We begin by defining a Z-module M. Let S(4p, 2p) = {v1, . . . , vN } be the set of
all 4p-tuples having 2p coordinates equal to 1 and 2p coordinates equal to −1. Then
N = (4p

2p

)
. Let M be the Z-module generated by the 4p × 4p symmetric integral

matrices {vvT : v ∈ S(4p, 2p)}. Clearly if M is a matrix in M, then M is symmetric,
each row of M sums to zero, and the entries on the main diagonal of M are the same.
Only one additional property is necessary and sufficient for M to be in the module
M:

Lemma 20. Let M = (Mij ) be a symmetric 4p × 4p integral matrix. Then M ∈ M

if and only if the following conditions are satisfied:
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(a) the rows of M sum to zero,

(b) there exists an integer m such that mii = m for all i,

(c) mis + mit + mjs + mjt ≡ 0 (mod 4) for all i, j, s, t .

Furthermore, if M satisfies conditions (a) and (b), then M satisfies condition (c)
if and only if M is permutation similar to a blocked matrix.

5.1.1. Proof of Lemma 20
Each of the generators vvT of M satisfies conditions (a)–(c) and thus every matrix

M ∈ M also satisfies these homogeneous linear conditions.
Next we show that if M satisfies conditions (a) and (b), then M satisfies (c) if and

only if it is permutation similar to a blocked matrix. Let M be a symmetric integral
matrix that satisfies conditions (a) and (b).

First suppose that P is a permutation matrix such that P −1MP is blocked. Since
condition (c) is the same for M as it is for P −1MP , we may assume that M is
blocked. Let 1 � i, j, s, t � 4p and suppose that mis and mit are in the same block
so that mis + mit ≡ 2m (mod 4). Then mjs and mjt are in the same block and so
mjs + mjt ≡ 2m (mod 4). It follows that condition (c) holds. In case mis and mit

are in different blocks, we have mis + mit ≡ 2m + 2 (mod 4). But then mjs and
mjt are in different blocks and mjs + mjt ≡ 2m + 2 (mod 4). Again, condition (c)
holds.

Conversely, suppose that condition (c) holds. Since 2m + 2mis = mii + mis +
msi + mss ≡ 0 (mod 4), all entries of M have the same parity as m. By performing
a permutation similarity on M , we may assume that an integer k exists such that
m1s ≡ m (mod 4) for 1 � s � k and m1s ≡ m + 2 (mod 4) for k < s � 4p. To see
that M is blocked, suppose 1 � i, s � k. Then 0 ≡ m11 + m1s + mi1 + mis ≡ 3m +
mis (mod 4). So mis ≡ m (mod 4); that is, all entries in the k × k upper left block of
M are congruent to m modulo 4. For the upper right block, let 1 � i � k and k <

s � 4p. Then m1i ≡ m (mod 4) and m1s ≡ m + 2 (mod 4). Thus 0 ≡ m11 + m1s +
mi1 + mis ≡ 3m + 2 + mis (mod 4). So mis ≡ m + 2 (mod 4). The argument for
the other blocks is the same. Thus M is blocked. The fact that k is even follows
from condition (b).

Now suppose that a matrix M satisfies conditions (a)–(c). We break the proof that
M ∈ M into two sublemmas.

Lemma 21. Let M satisfy the three conditions in Lemma 20. Then there exist a
matrix M0 ∈ M such that M − M0 ≡ 0 (mod 4) and each diagonal entry of M − M0
is zero.

Proof. Let M satisfy the conditions in Lemma 20. Since M is blocked, we assume
that M is of the form of the block-matrix in (7), where the lower right block W is
2k × 2k and 2k � 4p. There are four cases: m ≡ 0, 1, 2, 3 (mod 4).
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We consider the case m = 4q + 2 ≡ 2 (mod 4) first. Let a, b be non-negative
integers with a + b = 2p and define vectors v1, v2 ∈ S(4p, 2p) as follows:

v1 = [+ea, −ea, +eb, −eb],
v2 = [+ea, −ea, −eb, +eb].

(ea stands for the a-tuple of ones.) A direct calculation gives

M2 := v1v
T
1 + v2v

T
2 =

[
U2 V2

V T
2 W2

]
,

where U2 is a square matrix of size 2a × 2a, W2 is a square matrix of size 2b × 2b,
U2, W2 ≡ 2 (mod 4), and V2 ≡ 0 (mod 4). Letting a = 2p − k and b = k, we get the
matrix M2 such that M − M2 ≡ 0 (mod 4). Each main diagonal entry of M − M2
equals 4q. Letting v be any vector in S(4p, 2p), we have M0 = M2 + 4qvvT ∈ M,
M − M0 ≡ 0 (mod 4), and the main diagonal entries of M − M0 are zero.

If m = 4q ≡ 0 (mod 4), then take M0 = v1v
T
1 − v2v

T
2 + 4qvvT ∈ M. Again M −

M0 ≡ 0 (mod 4) and the diagonal entries of M − M0 are zero.
The case m = 4q + 3 ≡ 3 (mod 4) is a little more complicated. Let a, b, c, d , f ,

g, h be non-negative integers and define vectors v1, v2, v3 as follows:

v1 = [+ea, +eb, −ec, −ed, −ef , +eg, +eh],
v2 = [+ea, −eb, +ec, −ed, +ef , −eg, +eh],
v3 = [+ea, −eb, −ec, +ed, +ef , +eg, −eh].

A direct calculation gives

M3 := v1v
T
1 + v2v

T
2 + v3v

T
3 =

[
U3 V3

V T
3 W3

]
,

where U3 is a square matrix of size a + b + c + d , W3 is a square matrix of size f +
g + h, U3, W3 ≡ 3 (mod 4), and V3 ≡ 1 (mod 4). We will specify the parameters
a, b, c, d, f, g, h satisfying

a + b + c + d = 4p − 2k, (19)

f + g + h = 2k

so that M3 is 4p × 4p and W3 is 2k × 2k and

a + b − c − d − f + g + h = 0,

a − b + c − d + f − g + h = 0, (20)

a − b − c + d + f + g − h = 0

so that v1, v2, v3 ∈ S(4p, 2p).
The choice of parameters depends on the congruence class of k modulo 3. Let

k = 3j + q, where q = 0, 1 or 2. Choose

(a, b, c, d, f, g, h) = (p − 3j, p − j, p − j, p − j, 2j, 2j, 2j) + wq,
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where

w0 = (0, 0, 0, 0, 0, 0, 0),

w1 = (−1, −1, 0, 0, 0, 1, 1),

w2 = (−2, 0, −1, −1, 2, 1, 1).

It is easy to verify that these choices for the parameters satisfy Eqs. (19) and (20).
Thus we take M0 = M3 + 4qvvt so that M − M0 ≡ 0 (mod 4) and the main diago-
nal entries of M − M0 are zero.

If m = 4q + 1 ≡ 1 (mod 4) take M0 = −M3 + 4(q + 1)vvt . Again M − M0 ≡
0 (mod 4), the main diagonal entries of M − M0 are zero, and Lemma 21 is proved.

�

The second lemma required for the proof of Lemma 20 is this.

Lemma 22. Let T = (tij ) be a symmetric 4p × 4p integral matrix satisfying the
following conditions:

(a) each row of T sums to zero,

(b) tii = 0 for all i,

(c) tij ≡ 0 (mod 4).

Then T ∈ M.

Proof. Suppose T = (tij ) satisfies the three conditions. Define four vectors as fol-
lows:

v1 = (+1, +1, −1, −1, u, −u),

v2 = (+1, −1, +1, −1, u, −u),

v3 = (−1, +1, −1, +1, u, −u),

v4 = (−1, −1, +1, +1, u, −u),

where u is the (2p − 2)-tuple consisting of all ones. Clearly vi ∈ S(4p, 2p) and a
direct calculation gives

Q2 := v1v
T
1 − v2v

T
2 − v3v

T
3 + v4v

T
4 =




0 4 −4 0
4 0 0 −4

−4 0 0 4
0 −4 4 0


 ⊕ 0.

Clearly Q2 ∈ M. By performing an appropriate permutation similarity on Q2, we
obtain a matrix Qi ∈ M having +4 in positions (1, i), (i, 1), (2, i + 1), (i + 1, 2)

and −4 in positions (1, i + 1), (i + 1, 1), (2, i), (i, 2) and zeros elsewhere for each
3 � i � 4p − 1. Since each entry of T is divisible by 4, we have in particular that
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t1,2 = 4s2 for some integer s2. Thus the (1, 2) entry of the matrix T1 := T − s2Q2 is
zero and T1 satisfies the conditions in the lemma. The (1, 3) entry of T1 is divisible
by 4 and hence there is an integer s3 such that the (1, 3) entry of T2 := T1 − s3Q3
is zero and T2 satisfies the conditions of the lemma. Inductively, there are integers si
such that all entries in the first row (column) of T − s2Q2 − · · · − s4p−1Q4p−1 are
zero except possibly the (1, 4p) entry. But that entry must also be zero since the row
sums of T , Q2, . . . , Q4p−1 are zero. To summarize, there exists a matrix Q ∈ M

such that the first row (and column) of T − Q is zero.
Arguing inductively on rows 2 to 4p − 3 we have a matrix Q ∈ M such that

T − Q = 0 ⊕

0 a b

a 0 c

b c 0


 ,

where a, b, c are integers. The row sums of T and Q are zero so a = b = c = 0.
Thus T = Q ∈ M. �

Now it is clear from Lemmas 21 and 22 that if M is a matrix satisfying conditions
(a)–(c) of Lemma 20 then M ∈ M. The proof of Lemma 20 is complete.

5.1.2. The matrix Y0
We need one more ingredient before embarking on the proofs of Lemmas 12

and 13. Let Y0 be the N × 4p(±1)-matrix whose rows consist of all (4p)-tuples in
S(4p, 2p). It is not hard to show that N = 2C(4p − 1) and that∑

viv
T
i = Y T

0 Y0

= (N + 2C)I4p − 2CJ4p

= 2C(4pI − J ),

where C = 1
2p

(4p−2
2p−1

)
is a Catalan number and hence an integer. For example, to

compute the dot product of two distinct columns of Y0, notice that they have the
same sign in 2

(4p−2
2p−2

)
coordinates and different signs in 2

(4p−2
2p−1

)
coordinates. Thus

all off-diagonal entries of Y T
0 Y0 equal

2

(
4p − 2

2p − 2

)
− 2

(
4p − 2

2p − 1

)
= − 1

p

(
4p − 2

2p − 1

)
= −2C.

5.2. Proof of Lemma 12

Suppose S is a remainder matrix. Then there exist a non-negative integer t , a
remainder 0 � r < n, and Y ∈ C(4pt + r, 4p, ±1) such that Eq. (6) holds. Thus

Y =
[

Y1
Jt,4p

]
,



B.M. Ábrego et al. / Linear Algebra and its Applications 374 (2003) 175–218 197

where Y1 is a ((4p − 1)t + r) × 4p(±1)-matrix in which each row has 2p ones and
2p negative ones. Thus Y TY = Y T

1 Y1 + tJ4p,4p. Each row of Y1 sums to zero. Thus
each row of Y T

1 Y1 sums to zero, and so each row of Y TY sums to 4pt . It follows that
each row of S sums to zero.

Each diagonal entry of Y TY equals 4pt + r . It follow that each diagonal entry of
S is r .

Finally, to see that S is permutation similar to a blocked matrix, assume that the
first u columns of Y have an even number of negative ones and the last w columns
have an odd number of negative ones. Since the total number of negative ones in Y

is even, u, w are even. Now suppose

S =
[

U V

V T W

]
,

where U is u × u and W is w × w.
For each pair of integers 1 � i, j � 4p define aij to be the number of coordinates

in which both the ith and j th columns of Y are 1, bij the number of coordinates
in which the ith column is 1 and the j th column is −1, cij the number of coordi-
nates in which the ith column is −1 and the j th column is 1, and dij the number
of coordinates in which both the ith and j th columns are −1. Then

(Y TY )ij = aij − bij − cij + dij

≡ (aij + bij + cij + dij ) + 2(bij + dij ) + 2(cij + dij ) (mod 4)

≡ r + 2(bij + dij ) + 2(cij + dij ) (mod 4).

If 0 � i, j � u, then both bij + dij and cij + dij are even. Thus U ≡ r (mod 4).
If u < i, j � 4p, then both bij + dij and cij + dij are odd and so W ≡
r (mod 4). If 1 � i � u < j � 4p then bij + dij is even and cij + dij is odd and
thus V ≡ r + 2 (mod 4).

Conversely, suppose that S satisfies the conditions of Lemma 12. Then S ∈ M.
Thus S = ∑

xiviv
T
i for some integers xi . Choose an integer y such that y + xi � 0

for all i and let Y1 be the matrix whose rows are the vectors vi repeated y + xi times.
Then

Y T
1 Y1 =

∑
(y + xi)viv

T
i

= yY T
0 Y0 + S

= 2Cy(4pI − J ) + S.

Then Y1 has 2Cy(4p − 1) + r rows. Append t = 2Cy rows consisting of ones to
Y1 to get a matrix Y ∈ C(4pt + r, 4p, ±1). Then Y TY = 2Cy(4pI − J ) + S +
2CyJ = 4ptI + S. Thus S is a remainder matrix. The proof of Lemma 12 is
complete.
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5.3. Proof of Lemma 13

Let S be a remainder matrix with main diagonal entries equal to some r with
0 � r < 4p − 1. We show that Y(S, t) is non-empty for all sufficiently large t . The
4p × 4p matrix 4pI − J satisfies the conditions of Lemma 20 and thus is in M.
It follows that q(4pI − J ) + S ∈ M for every integer q and in particular for each
0 � q < 2C. Indeed, for each 0 � q < 2C, we have q(4pI − J ) + S = ∑

xiviv
T
i

for some integers xi . Let yq be an integer large enough that yq + xi � 0 for all i. Let
Yq be the matrix whose rows consists of the vectors vi repeated yq + xi times. Then
the number of rows in Yq is

∑
yq + xi = 2Cyq(4p − 1) + (4p − 1)q + r , and

Y T
q Yq =

∑
(yq + xi)viv

T
i

= yq

∑
viv

T
i +

∑
xiviv

T
i

= 2Cyq(4pI − J ) + q(4pI − J ) + S

= (2Cyq + q)(4pI − J ) + S.

Let t0 be the maximum value of 2Cyq + q for 0 � q < 2C and suppose that t � t0.
We show that Y(S, t) is non-empty. Let t = 2Cy + q for some 0 � q < 2C and
suppose t � t0. Then y � yq . Let Y T = [

Y T
0 , . . . , Y T

0 , Y T
q , Jt,4p

T
]
, where the matrix

Y T
0 is repeated y − yq times. Then the number of rows in Y is 2C(4p − 1)(y − yq) +

2C(4p − 1)yq + (4p − 1)q + r + t = 4pt + r . The first (4p − 1)t + r rows are in
S(4p, 2p) and the last t rows consist of ones, so Y ∈ C(4pt + r, 4p, ±1).

To complete the proof, we must show that Y TY = 4ptI + S:

Y TY = (y − yq)Y T
0 Y0 + Y T

q Yq + tJ

= 2C(y − yq)(4pI − J ) + (2Cyq + q)(4pI − J ) + S + tJ

= 4ptI + S.

Thus Y ∈ Y(S, t), that is, Y(S, t) is non-empty and the proof of Lemma 13 is com-
plete.

6. Proof of Theorem 15

We begin with an inequality about non-negative real numbers. Let λ be a mul-
tiset of k > 1 real numbers w1, . . . , wk satisfying

∑
wi = s1 and

∑
w2

i = s2. It
follows from the Cauchy-Schwarz inequality that ks2 − s2

1 � 0. Conversely, if s1 and
s2 are real numbers with ks2 − s2

1 � 0, then there is a multiset whose sum is s1 and
sum of squares is s2. In fact, there is such a multiset with only two distinct values,
α(s1, s2) � β(s1, s2) where α(s1, s2) occurs with multiplicity k − 1 and β(s1, s2)

with multiplicity one. That is there exist real numbers α(s1, s2) � β(s1, s2) such that

(k − 1)α(s1, s2) + β(s1, s2) = s1, (k − 1)α(s1, s2)
2 + β(s1, s2)

2 = s2.



B.M. Ábrego et al. / Linear Algebra and its Applications 374 (2003) 175–218 199

These essentially quadratic equations have two real solutions, but by choosing the
plus/minus signs as follows:

α(s1, s2) =
(k − 1)s1 −

√
(k − 1)(ks2 − s2

1)

k(k − 1)
,

β(s1, s2) =
s1 +

√
(k − 1)(ks2 − s2

1)

k
,

we get the desired two-valued multiset with α(s1, s2) � β(s1, s2). So {
k−1︷ ︸︸ ︷

α, . . . , α, β} is
the required two-valued multiset, with α = α(s1, s2), β = β(s1, s2), described above.
It is easy to see that if s1 � 0 and s2

1 − s2 � 0, then α(s1, s2) is non-negative.
Now define a function

P(s1, s2) := α(s1, s2)
k−1β(s1, s2) (21)

on the region ks2 − s2
1 � 0. We record some properties of the function P in the next

lemma.

Lemma 23. Let P(s1, s2) be the function defined by Eq. (21) on the region
ks2 − s2

1 � 0. Then

1. α(kτ + s1, kτ 2 + 2τs1 + s2) = τ + α(s1, s2).
β(kτ + s1, kτ 2 + 2τs1 + s2) = τ + β(s1, s2).

2. P(kτ + s1, kτ 2 + 2τs1 + s2)

= (τ + α(s1, s2))
k−1(τ + β(s1, s2))

= τ k + s1τ
k−1 + 1

2 (s2
1 − s2)τ

k−2 + Q(s1, s2, τ ),

for all real τ, where Q(s1, s2, t) is a polynomial in t of degree k − 3 whose
coefficients depend only on s1, s2.

3. P(s1, s2) is decreasing in s2, if s2
1 − s2 � 0, and s1 � 0.

4. If λ = {w1, . . . , wk} is a multiset of k non-negative reals with
∑

wi = s1 and∑
w2

i = s2, then
∏

wi � P(s1, s2).

Proof. The last part of Lemma 23 was proved by Cohn [5].
To prove the third part, let

f (s1, s2) = 1

k − 1

√
(k − 1)(ks2 − s2

1),

so that

α(s1, s2) = s1 − f (s1, s2)

k
, β(s1, s2) = s1 + (k − 1)f (s1, s2)

k
.

Clearly, f (s1, s2) is an increasing function of s2. Now let

F(s1, x) := (s1 − x)k−1(s1 + (k − 1)x).



200 B.M. Ábrego et al. / Linear Algebra and its Applications 374 (2003) 175–218

It is easy to verify that if 0 � x � s1, then �F/�x � 0. But 0 � f (s1, s2) � s1 if and
only if s2

1 − s2 � 0 and s1 � 0. Thus kkP (s1, s2) = F(s1, f (s1, s2)) is a decreasing
function of s2.

To prove the first and second parts of the lemma, suppose that ks2 − s2
1 � 0, τ is

a real number, s′
1 = kτ + s1 and s′

2 = kτ 2 + 2τs1 + s2. Then ks′
2 − s′2

1 = ks2 − s2
1 .

Thus (s′
1, s

′
2) is in the domain of P and f (s′

1, s
′
2) = f (s1, s2). It follows that

α(s′
1, s

′
2) = τ + α(s1, s2),

β(s′
1, s

′
2) = τ + β(s1, s2).

To complete the proof, expand

(τ + α)k−1(τ + β) = τ k + ((k − 1)α + β)τk−1 +
(
(k − 1)αβ

+ 1

2
(k − 1)(k − 2)α2

)
τ k−2 + · · ·

= τ k + s1τ
k−1 + 1

2
(s2

1 − s2)τ
k−2 + · · · ,

which follows since (k − 1)α + β = s1 and (k − 1)α2 + β2 = s2. �

Another technical lemma is needed, which is an application of Lemma 23 to
the spectrum of a remainder matrix. Let S ∈ M(r) and define s1(S) = tr(S) to be
the sum of the eigenvalues of S and s2(S) = tr(S2) to be the sum of the squares
of the eigenvalues of S.

Lemma 24. Let S0 be a remainder matrix in M(r). Then there exists a positive
integer t0 such that if t � t0, S ∈ M(r), and s2(S) > s2(S0), then either Y(S, t) is
empty or det(4ptI4p + S) < det(4ptI4p + S0).

Proof. Assume that S0 ∈ M(r). There exists an integer t1 such that 4ptI4p + S0 has
positive eigenvalues for all t � t1. Let τ = 4pt . Since 2E2(S0) = (4pr)2 − s2(S0),
we have

det(τI4p + S0) = τ 4p + 4prτ 4p−1 + 1

2
((4pr)2 − s2(S0))τ

4p−2

+ q1(S0, t), (22)

where q1(S0, t) = E3(S0)τ
4p−3 + · · · + En(S0) is a polynomial of degree 4p − 3

with coefficients that depend only on S0.
Since the set of integers s2(S) as S ∈ M(r) are non-negative, there exists S1 ∈

M(r) such that s2(S1) is minimal among all s2(S) for which S ∈ M(r) and s2(S) >

s2(S0). That is, if S ∈ M(r) and s2(S) > s2(S0) then s2(S) � s2(S1) > s2(S0). There
exists an integer t2 such that 4ptI4p + S1 has positive eigenvalues for all t � t2. Let
t � t2 and τ = 4pt . Then (s1(τI4p + S1), s2(τI4p + S1)) is in the domain of the
function P(s1, s2) and by Lemma 23 we have
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P
(
s1(τI4p + S1), s2(τI4p + S1)

) = τ 4p + 4prτ 4p−1 + 1

2
((4pr)2

−s2(S1))τ
4p−2 + q2(S1, t), (23)

where q2(S1, t) is a polynomial of degree 4p − 3 with coefficients depending only
on S1.

Since s2(S1) > s2(S0), there exists an integer t3 such that

1

2

(
(4pr)2 − s2(S1)

)
τ 4p−2 + q2(S1, t) <

1

2

(
(4pr)2 − s2(S0)

)
τ 4p−2

+ q1(S0, t) (24)

if t � t3.
Choose t0 to be the maximum of t1, t2, t3. Suppose that t � t0, S ∈ M(r), and

s2(S) > s2(S0). Then s2(S) � s2(S1) and s2(τI4p + S) � s2(τI4p + S1). If Y(S, t)

is empty we are finished. If Y ∈ Y(S, t) for some Y then Y TY = 4ptI4p + S has
non-negative eigenvalues. Since the eigenvalues of 4ptI4p + S are non-negative,
s1(τI4p + S)2 − s2(τI4p + S) � 0. Thus by Lemma 23 applied to 4ptI4p + S, we
get

det(τI4p + S) � P(s1(τI4p + S), s2(τI4p + S)) (25)

� P(s1(τI4p + S1), s2(τI4p + S1)).

Combining inequalities (24) and (25) with Eqs. (23) and (22) we get det(τI4p +
S) < det(τI4p + S0). �

Theorem 15 follows from the next result. To describe the notation k(S) used in the
next theorem, let S, S0 be remainder matrices in M(r) and suppose S0 is spectrum-
maximal but S is not spectrum-maximal. By the definition of spectrum-maximal,
there exists an integer 2 � k(S) � 4p such that Ei(S) = Ei(S0) for i < k(S) and
Ei(S) < Ei(S0) for i = k(S).

Theorem 25. Let S0 ∈ M(r) be a spectrum-maximal remainder matrix and let k(S)

be defined on the S ∈ M(r) that are not spectrum-maximal as above. There exists
an integer t0 with the following properties:

(a) If S ∈ M(r) is not spectrum-maximal and k(S) = 2, then for all t � t0 either
Y(S, t) is empty or Y(S, t) is a non-D-optimal class.

(b) If S ∈ M(r) is not spectrum-maximal and k(S) > 2, then for all t � t0 Y(S, t)

is a non-empty non-D-optimal class.
(c) If t � t0, then Y(S0, t) is a non-empty D-optimal class.

Proof. Let S0 ∈ M(r) be a spectrum-maximal remainder matrix. Let t2 be an inte-
ger such that Y(S0, t) is non-empty for all t � t2.
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Proof of part (a). By Lemma 24, there exists an integer t1 such that if S ∈ M(r)

and s2(S) > s2(S0), then either Y(S, t) is empty or det(4ptI4p + S) < det(4ptI4p +
S0). Now let ta be the maximum of t1, t2 and suppose that S ∈ M(r) and k(S) = 2.
Then E2(S) < E2(S0) and so s2(S) > s2(S0). If Y(S, t) is non-empty, there exists
Y ∈ C(4pt + r, 4p, ±1) such that Y TY = 4ptI4p + S. Since Y(S0, t) is also non-
empty there exists Y0 ∈ C(4pt + r, 4p, ±1) such that Y T

0 Y0 = 4ptI4p + S0. But then

det Y TY = det(4ptI4p + S)

< det(4ptI4p + S0)

= det Y T
0 Y0. (26)

Hence Y is not D-optimal and Y(S, t) is a non-D-optimal class.
To prove part (b), let M0(r) be the subset of remainder matrices S in M(r) that

are not spectrum-maximal and for which k(S) > 2. Then E2(S) = E2(S0) and hence
s2(S) = s2(S0) for all S ∈ M0(r). Since S is an integral matrix on the ball s2(S) =
s2(S0) for S ∈ M0(r), it follows that M0(r) is finite.

Let τ = 4pt . We have

det(τI + S) =
∑

k

τ 4p−kEk(S),

and

det(τI + S0) =
∑

k

τ 4p−kEk(S0).

Since Ei(S) = Ei(S0) for i < k(S),

det(τI + S0) − det(τI + S)

is a polynomial in τ of degree 4p − k(S) and since Ek(S) < Ek(S0) for k = k(S),
the leading coefficient is positive. Hence there is a positive integer t (S) such that
if t � t (S) then

det(τI + S) < det(τI + S0)

for all t � t (S). Let t3 be the maximum value of t (S) as S runs over the finite set
M0(r). It follows that if t � t3 then det(τI + S) < det(τI + S0) for all S ∈ M0(r).

Finally, for each S ∈ M0(r) there exists an integer t4(S) such that if t � t4(S)

then Y(S, t) is non-empty. Choose t4 to be the maximum value of t4(S) as S runs
over the finite set M0(r). Let tb be the maximum of t2, t3, t4 and suppose t � tb,
S ∈ M(r) is not spectrum maximal, and k(S) > 2. Then S ∈ M0(r), there exist Y ∈
Y(S, t), Y0 ∈ Y(S0, t), and

det Y TY = det(4ptI4p + S)

< det(4ptI4p + S0)

= det Y T
0 Y0. (27)

Thus Y(S, t) is a non-D-optimal class.
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Next we prove part (c). Let t � ta, tb. Then Y(S0, t) is non-empty, say Y0 ∈
Y(S0, t). Suppose Y ∈ C(4pt + r, 4p, ±1) with Y TY = 4ptI4p + S for some S ∈
M(r), that is, Y ∈ Y(S, t). We show that det Y TY � det Y T

0 Y0. If S is spectrum-
maximal, then det(4ptI4p + S) = det(4ptI4p + S0) and hence det Y TY = det Y T

0 Y0.
If S is not spectrum-maximal and k(S) = 2, then by Eq. (26) det Y TY < det Y T

0 Y0,
and if k(S) > 2, then by Eq. (27) det Y TY < det Y T

0 Y0. �

Theorem 15 follows directly from Lemma 14 and Theorem 25.

7. Proofs of Lemmas 16–19

Let S, S0 be remainder matrices in M(r) and suppose that S0 is spectrum-maxi-
mal. By the definition of spectrum-maximal, E2(S) � E2(S0). And since 2E2(M) =
(tr M)2 − tr(M2) and tr(M2) = ‖M‖2 for any symmetric matrix M , and tr(S) =
tr(S0) = 4pr , we have ‖S0‖2 � ‖S‖2. Thus we have the following lemma.

Lemma 26. Let S0 ∈ M(r) be a spectrum-maximal remainder matrix. Then
‖S0‖2 � ‖S‖2 for all S ∈ M(r).

In order to prove Lemmas 16–19, which characterize spectrum-maximal remain-
der matrices, we first characterize the minimal-norm remainder matrices. That is
those S0 ∈ M(r) for which ‖S0‖2 � ‖S‖2 for all S ∈ M(r). The results in this sec-
tion establish that all minimal-norm remainder matrices come from certain regular
graphs on either 2p or 4p vertices. We also compute det(4ptI4p + S) for each of
the remainder matrices with minimal norm in terms of the characteristic polyno-
mial of the adjacency matrix of the graph. These characterizations along with the
determinant formulas will be used to establish Lemmas 16–19.

We use the following notation: the spectrum of the adjacency matrix A(G) for
a δ-regular graph G is denoted by spec(A(G)). Since δ is always an eigenvalue
of A(G), we define and denote the reduced spectrum of A(G) by spec′(A(G)) =
spec(A(G)) − {δ}. When G is connected, δ is a simple eigenvalue of A(G) and
thus spec′(A(G)) does not contain δ. If B is a bipartite δ-regular graph, spec(A(B))

is symmetric with respect to zero, that is spec(A(B)) = −spec(A(B)). Indeed, the
eigenvalues of

A(B) =
[

0 N(B)

N(B)T 0

]
are of the form ±λ where λ is a singular value of N(B). That is, the λ are the non-
negative square roots of the eigenvalues of N(B)TN(B). Since B is δ-regular, one
of the singular values of N(B) is δ. Denote the remaining singular values of N(B)

by sing′(N(B)). Then the eigenvalues of A(B) are ±δ and ±λ as λ ∈ sing′(N(B)).
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We also need Newton’s Identities [3], which when applied to the eigenvalues of a
matrix X are

0 = tr(Xq) − E1(X)tr(Xq−1) + E2(X)tr(Xq−2) − · · · + (−1)qqEq(X). (28)

7.1. r ≡ 2 (mod 4)

Let r = 4d + 2. Let G1, G2 be graphs in G(2p, p + d) and let S2(G1, G2) be
the remainder matrix defined in Eq. (10). It is clear that ‖S2(G1, G2)‖2 = 4p(4d +
2)2 + 32p2 − 16p. In the next lemma, we show that the minimal norm for matrices
in M(r) is achieved only for remainder matrices of the form S2(G1, G2). We also
express det(4ptI4p + S2(G1, G2)) in terms of the characteristic polynomials of the
adjacency matrices of G1 and G2, from which we establish Eq. (11) of Lemma 17.

Lemma 27. Let r = 4d + 2 and suppose that S ∈ M(r). Then

‖S‖2 � 4p(4d + 2)2 + 32p2 − 16p, (29)

with equality if and only if there exist graphs G1, G2 in G(2p, p + d) such that
S = S2(G1, G2).

Furthermore,

det(4ptI4p + S2(G1, G2)) = 44pt2chG1(pt + d)chG2(pt + d)

(t − 1)2
. (30)

Proof. Let S ∈ M(r) with

S =
[

U V

V T W

]
,

where U is a u × u matrix, W is a w × w matrix, u + w = 4p, U, W ≡ 2 (mod 4)

and V ≡ 0 (mod 4). Then ‖U‖2 � u(4d + 2)2 + 4u(u − 1), with equality only if
each off-diagonal entry of U is ±2. Likewise, ‖W‖2 � w(4d + 2)2 + 4w(w − 1)

with equality only if each off-diagonal entry of W is ±2. Thus

‖S‖2 = ‖U‖2 + ‖W‖2 + 2‖V ‖2

� u(4d + 2)2 + 4u(u − 1) + w(4d + 2)2 + 4w(w − 1)

= 4p(4d + 2)2 + 4(u2 + w2) − 4(4p)

� 4p(4d + 2)2 + 4((2p)2 + (2p)2) − 16p

= 4p(4d + 2)2 + 32p2 − 16p.

The second inequality follows from the fact that u2 + w2 is minimal at u = w = 2p.
Thus inequality (29) holds.

Inequality (29) is strict unless u = w = 2p, V = 0, and each off-diagonal entry
of U and of W is ±2. In that case U = 4dI2p + 2J2p − 4A1, for some (0, 1)-matrix
A1. Since each row of U sums to zero, each row of A1 contains exactly d + p ones.



B.M. Ábrego et al. / Linear Algebra and its Applications 374 (2003) 175–218 205

That is, A1 = A(G1) for some graph G1 in G(2p, p + d). Likewise W = 4dI2p +
2J2p − 4A(G2) for some graph G2 in G(2p, p + d). Thus S = S2(G1, G2).

To prove Eq. (30), notice that

4ptI4p + S2(G1, G2) = [4(pt + d)I2p + 2J2p − 4A(G1)]
⊕ [4(pt + d)I2p + 2J2p − 4A(G2)].

Since G1 is (p + d)-regular,

chG1(x) = (x − (p + d))
∏

(x − λ)

and

chG1(pt + d) = p(t − 1)
∏

(pt + d − λ),

where the products are taken over λ ∈ spec′(A(G1)). It follows that the eigenvalues
of 4dI2p + 2J2p − 4A(G1) are 0, and 4(d − λ) where λ ∈ spec′(A(G1)). Thus

det(4ptI2p + 4dI2p + 2J2p − 4A(G1)) = 4pt
∏

4(pt + d − λ)

= 42ppt
∏

(pt + d − λ)

= 42ptchG1(pt + d)

t − 1
.

A similar equality holds for G2 and Eq. (30) follows. �

7.2. Proof of Lemma 17: r ≡ 2 (mod 4)

Let G1, G2 be trace-minimal graphs in G(2p, p + d), S0 = S2(G1, G2), and let
S ∈ M(r). We must show that S � S0.

From Lemma 27 we have ‖S‖2 � ‖S0‖2 and thus E2(S) � E2(S0). If the inequal-
ity is strict, then S � S0 and we are finished. So assume that ‖S‖2 = ‖S0‖2. Then by
Lemma 27 there exist graphs H1, H2 in G(2p, p + d) such that S = S2(H1, H2). In
the proof of Lemma 27 we showed that the eigenvalues of S2(H1, H2) are 0, 0, 4(d −
h1), 4(d − h2) where h1 ∈ spec′(A(H1)) and h2 ∈ spec′(A(H2)). Thus

tr(Si) = 4i

[∑
h1

(d − h1)
i +

∑
h2

(d − h2)
i

]

= 4i
i∑

j=0

(
i

j

)
(−1)j di−j


∑

h1

h
j

1 +
∑
h2

h
j

2


 (31)

= 4i

i∑
j=0

(
i

j

)
(−1)j di−j

[
tr(A(H1)

j ) + tr(A(H2)
j ) − 2(p + d)j

]
,
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where the inner sums are taken over h1 ∈ spec′(A(H1)) and h2 ∈ spec′(A(H2)).
Likewise

tr(Si
0) = 4i

i∑
j=0

(
i

j

)
(−1)j di−j

[
tr(A(G1)

j ) + tr(A(G2)
j ) − 2(p + d)j

]
. (32)

Since G1 is trace-minimal, either spec(A(H1)) = spec(A(G1)) or there exists a pos-
itive integer k1 such that

tr(A(G1)
i) = tr(A(H1)

i) for i < k1,

tr(A(G1)
k1) < tr(A(H1)

k1).

A similar statement holds for G2 and H2. If spec(S) = spec(S0) then we are finished.
If not, let k be the least positive integer for which either tr(A(G1)

k) < tr(A(H1)
k) or

tr(A(G2)
k) < tr(A(H2)

k). Then from Eqs. (31) and (32) we have tr(Si
0) = tr(Si) for

i < k and (−1)ktr(Sk
0 ) < (−1)ktr(Sk). It follows from Newton’s Identities (28) that

Ei(S0) = Ei(S) for i < k and Ek(S) < Ek(S0). Thus S � S0.
Conversely, suppose that S ∈ M(r) is a spectrum-maximal remainder matrix. By

Lemma 26, S is a minimal-norm remainder matrix and by Lemma 27 there exist
graphs H1, H2 in G(2p, p + d) such that S = S2(H1, H2). Now let G1, G2 be trace-
minimal graphs in G(2p, p + d). By the first part of this lemma, S2(G1, G2) is
spectrum-maximal. Since S2(H1, H2) is also spectrum-maximal, they have the same
spectrum and hence tr(S2(H1, H2)

i) = tr(S2(G1, G2)
i) for all i. If tr(A(H1)

i) =
tr(A(G1)

i) and tr(A(H2)
i) = tr(A(G2)

i) for all i, then H1 and H2 are trace-minimal.
Otherwise there is a least value of k for which either tr(A(G1)

k) < tr(A(H1)
k) or

tr(A(G2)
k) < tr(A(H2)

k) then, arguing as above, we would have Ek(S2(H1, H2)) <

Ek(S2(G1, G2)), contradicting the assumption that S2(H1, H2) is spectrum-maxi-
mal. It follows that H1, H2 are trace-minimal.

7.3. r ≡ 1 (mod 4)

Let r = 4d + 1, Let G1, G2 be graphs in G(2p, d) and let S1(G1, G2) be the
remainder matrix defined in Eq. (8). Then ‖S1(G1, G2)‖2 = 4p(4d + 1)2 + 16p2 +
32pd − 4p and this is the minimum norm for a matrix in M(r).

Lemma 28. Let r = 4d + 1 and suppose that S ∈ M(r). Then

‖S‖2 � 4p(4d + 1)2 + 16p2 + 32pd − 4p, (33)

with equality if and only if the exist graphs G1, G2 in G(2p, d) such that S =
S1(G1, G2).

Furthermore,

det(4ptI4p + S1(G1, G2)) = 44p(t + 1)chG1(pt + d)chG2(pt + d)

t
. (34)
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Proof. Let S ∈ M(r) and let T = 4pI4p − J4p − S. Then T satisfies the condi-
tions in Lemma 12 and hence T ∈ M(4d ′ + 2), where d ′ = p − d − 1. It is easy
to see that ‖S‖2 = ‖T ‖2 − 64p3 + 48p2 + 128p2d . By Lemma 27 applied to T ,
we have

‖T ‖2 � 4p(4d ′ + 2)2 + 32p2 − 16p (35)

and so

‖S‖2 � 4p(4d ′ + 2)2 + 32p2 − 16p − 64p3 + 48p2 + 128p2d

= 4p(4d + 1)2 + 16p2 + 32pd − 4p.

Now suppose that equality holds in inequality (33). Then equality holds in inequal-
ity (35) and by Lemma 27 there exist graphs G′

1, G
′
2 in G(2p, p + d ′) such that

T = S2(G
′
1, G

′
2). Let G1, G2 be the complements of G′

1, G
′
2. Then G1, G2 are in

G(2p, d) and A(G′
i ) = J2p − I2p − A(Gi). Thus

S = 4pI4p − J4p − S2(G
′
1, G

′
2)

= 4pI4p − J4p − 4d ′I4p −
[

2J2p − 4A(G′
1) 0

0 2J2p − 4A(G′
2)

]

= 4dI4p +
[
J2p − 4A(G1) −J2p

−J2p J2p − 4A(G2)

]
= S1(G1, G2).

We now prove Eq. (34). Since G1, G2 are in G(2p, d), we have

chG1(x) = (x − d)
∏

(x − λ1),

chG1(pt + d) = pt
∏

(pt + d − λ1),

where the products are taken over λ1 ∈ spec′(A(G1)), and

chG2(x) = (x − d)
∏

(x − λ2),

chG2(pt + d) = pt
∏

(pt + d − λ2),

where the products are taken over λ2 ∈ spec′(A(G2)). Thus the eigenvalues of

S1(G1, G2) = 4dI4p +
[
J2p − 4A(G1) −J2p

−J2p J2p − 4A(G2)

]

are 0, 4p, 4(d −λ1), and 4(d −λ2), where λ1 ∈ spec′(A(G1)) and λ2 ∈ spec′(A(G2)).
Thus
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det(4ptI4p + S1(G1, G2)) = (4pt)(4p(t + 1))
∏

4(pt + d − λ1)

×
∏

4(pt + d − λ2)

= 44p(t + 1)chG1(pt + d)chG2(pt + d)

t
. �

7.4. Proof of Lemma 16: r ≡ 1 (mod 4)

Let G1, G2 be trace-minimal graphs in G(2p, d), S0 = S1(G1, G2), and let S ∈
M(r). To prove that S0 is spectrum-maximal we must show that S � S0.

From Lemma 28, we have ‖S‖2 � ‖S0‖2 and thus E2(S) � E2(S0). If E2(S) <

E2(S0), then we are finished. So assume that E2(S) = E2(S0). Then by Lemma
28 there exist graphs H1, H2 in G(2p, d) such that S = S1(H1, H2). In the proof of
Lemma 28 we showed that the eigenvalues of S2(H1, H2) are 0, 4p, 4(d −h1), 4(d −
h2) where h1 ∈ spec′(A(H1)) and h2 ∈ spec′(A(H2)). Thus

tr(Si) = (4p)i + 4i


∑

h1

(d − h1)
i +

∑
h2

(d − h2)
i




= (4p)i + 4i

i∑
j=0

(
i

j

)
(−1)j di−j


∑

h1

h
j

1 +
∑
h2

h
j

2


 (36)

= (4p)i + 4i
i∑

j=0

(
i

j

)
(−1)j di−j

[
tr(A(H1)

j ) + tr(A(H2)
j ) − 2dj

]
,

where the inner sums are taken over h1 ∈ spec′(A(H1)) and h2 ∈ spec′(A(H2)).
Likewise

tr(Si
0) = (4p)i + 4i

i∑
j=0

(
i

j

)
(−1)j di−j

×
[
tr(A(G1)

j ) + tr(A(G2)
j ) − 2dj

]
. (37)

Since G1 is trace-minimal, either spec(A(H1)) = spec(A(G1)) or there exists a
positive integer k1 such that

tr(A(G1)
i) = tr(A(H1)

i) for i < k1

tr(A(G1)
k1) < tr(A(H1)

k1).

A similar statement holds for G2 and H2. If spec(A(Hq)) = spec(A(Gq)) for q =
1, 2, then spec(S) = spec(S0) and we are finished. If not, let k be the least positive
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integer for which either tr(A(G1)
k) < tr(A(H1)

k) or tr(A(G2)
k) < tr(A(H2)

k). Then
tr(A(G1)

i) = tr(A(H1)
i) and tr(A(G2)

i) = tr(A(H2)
i), for i < k. In view of Eqs.

(36) and (37), it follows that tr(Si) = tr(Si
0) for i < k and (−1)ktr(Sk

0 ) < (−1)ktr(Sk).
Since tr(Si) = tr(Si

0) for i < k, it follows from Newton’s Identities (28) that Ei(S) =
Ei(S0) for i < k. And since (−1)ktr(Sk

0 ) < (−1)ktr(Sk), we have Ek(S) < Ek(S0).
Conversely, suppose that S ∈ M(r) is a spectrum-maximal remainder matrix. By

Lemma 26, S is a minimal-norm remainder matrix and by Lemma 28 there exist
graphs H1, H2 in G(2p, d) such that S = S1(H1, H2). Now let G1, G2 be trace-min-
imal graphs in G(2p, d). By the first part of this Lemma, S1(G1, G2) is spectrum-
maximal. Since S1(H1, H2) is also spectrum-maximal, they have the same spectrum
and hence tr(S1(H1, H2)

i) = tr(S1(G1, G2)
i) for all i. If tr(A(H1)

i) = tr(A(G1)
i)

and tr(A(H2)
i) = tr(A(G2)

i) for all i, then H1 and H2 are trace-minimal. Otherwise
there is a least value of k for which either tr(A(G1)

k) < tr(A(H1)
k) or tr(A(G2)

k) <

tr(A(H2)
k). Then, arguing as above, we would have Ek(S1(H1, H2)) < Ek(S1(G1,

G2)), contradicting the assumption that S1(H1, H2) is spectrum-maximal. It follows
that H1, H2 are trace-minimal.

Finally, Eq. (9) has been proved in the proof of Lemma 28.

7.5. r ≡ 0 (mod 4)

Let r = 4d . The minimum norm for a matrix in M(r) depends on whether 0 �
d � p/2 or p/2 � d � p. Let G be a graph in G(4p, d) and let S01(G) be the re-
mainder matrix in M(r) defined in Eq. (16). Then ‖S01(G)‖2 = 4p(4d)2 + 64pd .
The other remainder matrix S02(B) ∈ M(r), defined in Eq. (17), comes from a bipar-
tite graph B in B(4p, p + d). Its norm is given by ‖S02(B)‖2 = 4p(4d)2 + 32p2.
It is easy to check that S01(G) has the smaller norm if 0 � d < p/2 and that S02(B)

has the smaller norm if p/2 < d � p. If p is even and d = p/2, then the norms are
equal.

Lemma 29. Let r = 4d and suppose S ∈ M(r). If 0 � d < p/2, then

‖S‖2 � 4p(4d)2 + 64pd,

with equality if and only if there exists a graph G in G(4p, d) such that S = S01(G).
Furthermore,

det(4ptI4p + S01(G)) = 44pchG(pt + d). (38)

If p/2 < d < p, then

‖S‖2 � 4p(4d)2 + 32p2,

with equality if and only if there exists a bipartite graph B in B(4p, p + d) such
that S = S02(B).

Furthermore,

det(4ptI4p + S02(B)) = 44pt (pt + 2d)chB(pt + d)

(t − 1)(p(t + 1) + 2d)
. (39)
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If p is even and d = p/2, then

‖S‖2 � 4p(4d)2 + 64pd = 4p(4d)2 + 32p2,

with equality if and only if either there exists a graph G in G(4p, p/2) such that S =
S01(G) or there exists a bipartite graph B in B(4p, 3p/2) such that S = S02(B).

Proof. Let S ∈ M(r) with

S =
[

U V

V T W

]
,

where U is a u × u matrix, W is a w × w matrix, u + w = 4p, U, W ≡ 0 (mod 4)

and V ≡ 2 (mod 4). Assume, without loss of generality, that u � 2p. Let
∑

(P ) de-
note the sum of all entries in the matrix P and

∑
off(P ) the sum of all off-diag-

onal entries of P . Since the row sums of S are zero,
∑

off(U) + 4du = ∑
(U) =

−∑
(V ) = ∑

(W) = ∑
off(W) + 4dw. Thus

∑
off(U) − ∑

off(W) = 4d(w − u) =
4d(4p − 2u). Let |U | be the matrix whose entries are |Ui,j | and |U |(2) the matrix
whose entries are |Ui,j |2. Then

∑
off

(|U |(2)
) +

∑
off

(|W |(2)
)
� 4

(∑
off

(|U |) +
∑
off

(|W |)
)

� 4

(∑
off

(U) −
∑
off

(W)

)

= 16d(w − u),

with equality if and only if all non-zero off-diagonal entries of U are 4 and all non-
zero off-diagonal entries of W are −4. Thus

‖S‖2 = ‖U‖2 + ‖W‖2 + 2‖V ‖2

= 4p(4d)2 +
∑
off

(|U |(2)
) +

∑
off

(|W |(2)
) + 2‖V ‖2

� 4p(4d)2 + 16d(w − u) + 2uw(±2)2

= 4p(4d)2 + 16d(4p − 2u) + 8uw

= 4p(4d)2 + 64pd + 8[4(p − d)u − u2],
with equality if and only if all non-zero off-diagonal entries of U are 4, all non-
zero off-diagonal entries of W are −4, and each off-diagonal entry of V is ±2. The
graph of the function f (u) = 4(p − d)u − u2 is a parabola with vertex at (2(p −
d), 4(p − d)2). Thus f (u) attains its minimum value on the interval 0 � u � 2p

at one of the end points, either u = 0 or u = 2p. There are three cases.
First suppose 0 � d < p/2, then p < 2(p − d) so f (u) is minimal at u = 0.

Thus ‖S‖2 � 4p(4d)2 + 64pd , with equality if and only if S = W (since u = 0),
and each non-zero off-diagonal entry of S is −4. Since the diagonal entries of S are
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4d , and each row of S sums to zero, there are exactly d non-zero off-diagonal entries
in each row of S. That is S = S01(G) for some graph G in G(4p, d).

We now prove Eq. (38). Since G is a d-regular graph,

chG(x) = (x − d)
∏

(x − λ)

and

chG(pt + d) = pt
∏

(pt + d − λ),

where the products are taken over λ ∈ spec′(A(G)). It follows that the eigenvalues
of S01(G) are 0 and 4d − 4λ as λ ∈ spec′(A(G)). Thus

det(4ptI4p + S01(G)) = 4pt
∏

(4pt + 4d − 4λ)

= 44ppt
∏

(pt + d − λ)

= 44pchG(pt + d).

Second suppose that p/2 < d � p. Then 2(p − d) < p so f (u) is minimal at u =
2p. Thus ‖S‖2 � 4p(4d)2 + 64pd + 8f (2p) = 4p(4d)2 + 32p2, with equality if
and only if u = w = 2p, each non-zero off-diagonal entry of U is 4, each non-zero
off-diagonal entry of W is −4, and all entries of V are ±2. Now since

∑
(U) =∑

(W), all off-diagonal entries of both U and W are zero. Thus each row and each
column of V sums to −4d . Thus each row and each column of V contains exactly
p − d entries equal to 2 and p + d entries equal to −2. It follows that V = 2J2p −
4N where N is a (0, 1)-matrix having exactly p + d ones in each row and each
column. To summarize,

S = 4dI4p +
[

0 2J2p − 4N

2J2p − 4NT 0

]
.

Now let B be the bipartite graph in B(4p, p + d) such that N(B) = N . That is

A(B) =
[

0 N

NT 0

]
=

[
0 N(B)

N(B)T 0

]
.

Then S = S02(B).
We now prove Eq. (39). The eigenvalues of A(B) are ±(d + p) and ±λ as λ ∈

sing′(N(B)). Thus

chB(x) = (x − (p + d))(x + (p + d))
∏

(x − λ)(x + λ),

where the product is taken over λ ∈ sing′(N(B)). Thus

chB(pt + d) = p(t − 1)(p(t + 1) + 2d)
∏

(pt + d − λ)(pt + d + λ).

It follows that the eigenvalues of

S02(B) = 4dI4p +
[

0 2J2p

2J2p 0

]
− 4A(B)
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are 0, 8d , and 4d ± 4λ, where λ ∈ sing′(N(B)). Hence

det(4ptI4p + S02(B)) = 4pt(4pt + 8d)
∏

(4pt + 4d − 4λ)(4pt + 4d + 4λ)

= 44ppt (pt + 2d)
∏

(pt + d − λ)(pt + d + λ)

= 44pt (pt + 2d)chB(pt + d)

(t − 1)(p(t + 1) + 2d)
.

Third and finally, suppose that d = p/2. Then p = 2(p − d) and so f (u) is mini-
mal at both u = 0 and u = 2p. Arguing as in the previous cases we see that either
S = S01(G) for some graph G in G(4p, p/2) or S = S02(B) for some bipartite graph
B in B(4p, 3p/2). �

7.6. Proof of Lemma 19: r ≡ 0 (mod 4)

Let 0 � d < p/2, G be a trace-minimal graph in G(4p, d), S0 = S01(G), and
S ∈ M(r). To prove that S is spectrum-maximal, we must show that S � S0. From
Lemma 29 we have ‖S‖2 � ‖S0‖2 and thus E2(S) � E2(S0). If E2(S) < E2(S0)

then we are finished. So assume that E2(S) = E2(S0). Then by Lemma 29, there
exists a graph H in G(4p, d) such that S = S01(H).

The eigenvalues of S01(H) are 0 and 4(d − h), where h ∈ spec′(A(H)). Thus

tr(S01(H)i) =
∑
h

[4(d − h)]i

= 4i

i∑
j=0

(
i

j

)
(−1)j di−j

∑
h

hj

= 4i
∑
j

(
i

j

)
di−j (−1)j [tr(A(H)j ) − dj ]. (40)

Likewise

tr(S01(G)i) = 4i
∑
j

(
i

j

)
di−j (−1)j [tr(A(G)j ) − dj ].

If spec(A(H)) = spec(A(G)) then spec(S) = spec(S0) and we are finished. If not,
let 3 � k � 4p be an integer such that tr(A(H)i) = tr(A(G)i) for i < k and
tr(A(G)k) < tr(A(H)k). It follows from Eq. (40) that tr(Si) = tr(Si

0) for i < k and
(−1)ktr(Sk

0 ) < (−1)ktr(Sk). Thus from Newton’s Identities (28) we have Ek(S) <

Ek(S0) and we are finished.
Let p/2 < d < p, B be a bipartite-trace-minimal graph in B(4p, p + d), S0 =

S02(B), and S ∈ M(r). We must show that S � S0. From Lemma 29 we have ‖S‖2 �
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‖S0‖2. If the inequality is strict, then E2(S) < E2(S0) and we are finished. So
assume that ‖S‖2 = ‖S0‖2. Then by Lemma 29 there exists a bipartite graph H

in B(4p, p + d) such that S = S02(H). Then

chH (x) = (x − (p + d))(x + (p + d))
∏

(x − λ)(x + λ),

where the product is taken over λ ∈ sing′(N(H)). The eigenvalues of S02(H) are 0,
8d , and 4(d ± λ) where λ ∈ sing′(N(H)). Thus

tr(S02(H)i) = (8d)i +
∑
λ

[4(d + λ)]i + [4(d − λ)]i

= (8d)i + 4i
∑
λ

i∑
j=0

(
i

j

)
[di−j λj + di−j (−λ)j ]

= (8d)i + 4i
∑
j

(
i

j

)
di−j

∑
λ

[λj + (−λ)j ]

= (8d)i + 4i
∑
j

(
i

j

)
di−j [tr(A(H)j ) − ((d + p)j + (−(d + p))j )].

Likewise

tr(S02(B)i) = (8d)i + 4i
∑
j

(
i

j

)
di−j

×[tr(A(B)j ) − ((d + p)j + (−(d + p))j )].
If spec(A(H)) = spec(A(B)) then spec(S02(H)) = spec(S02(B)) and we are fin-
ished. If not, since B is bipartite-trace-minimal, there exists 4 � k � 2p such that
tr(A(H)2i ) = tr(A(B)2i ) for i < k and tr(A(B)2k) < tr(A(H)2k). It follows from
the above formulas for tr(S02(B)i) and tr(S02(H)i) that tr(S02(B)i) = tr(S02(H)i)

for i < 2k and tr(S02(B)2k) < tr(S02(H)2k). Thus by Newton’s Identities (28) with
q � 2k we have Ei(S02(H)) = Ei(S02(B)) for i < 2k and E2k(S02(H)) <

E2k(S02(B)) and we are finished.
Finally, the proof of the case d = p/2 is based on the following observation: if

B ∈ B(4p, 3p/2) and B ′ is the graph whose adjacency matrix is

A(B ′) =
[

0 J − N(B)

J − N(B)T 0

]
, (41)

then

spec(S02(B)) = spec(S01(B
′)). (42)

Indeed, write S01(B
′) = 4dI4p + T1 and S02(B) = 4dI4p + T2, where

T1 =
[

0 −4J + 4N(B)

−4J + 4N(B)T 0

]
,
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T2 =
[

0 2J − 4N(B)

2J − 4N(B)T 0

]
.

Clearly tr(T i
1 ) = tr(T i

2 ) = 0 if i is odd. Thus it suffices to show that T 2
1 = T 2

2 . Direct
calculations give T 2

1 = M1 ⊕ MT
1 , where

M1 = (−4J + 4N(B)T)(−4J + 4N(B))

= 16(−J + N(B)T)(−J + N(B))

= 16(−pJ + N(B)TN(B)).

The last equality follows from the fact that N(B) has 3p/2 ones in each row and
column. A similar calculation gives T 2

2 = M2 ⊕ MT
2 , where

M2 = (2J − 4N(B)T)(2J − 4N(B))

= 4(J − 2N(B)T)(J − 2N(B))

= 16(−pJ + N(B)TN(B)).

Again, the last equality follows from the fact that N(B) has 3p/2 ones in each row
and column. Thus M1 = M2, T 2

1 = T 2
2 , spec(T1) = spec(T2), and so Eq. (42) holds.

Now suppose G is a trace-minimal graph in G(4p, p/2). We show that S01(G)

is spectrum-maximal in M(r).
Let S ∈ M(r). If ‖S‖2 > ‖S01(G)‖2 we are finished since this implies that

E2(S) < E2(S01(G)). If ‖S‖2 = ‖S01(G)‖2 then by Lemma 29 either S = S01(H)

for some H ∈ G(4p, p/2) or S = S02(B) for some B ∈ B(4p, 3p/2). In the first
case, use the same argument as in the case 0 � d < p/2 to get S01(H) � S01(G).
For the second case, let B ′ ∈ G(4p, p/2) be the graph defined by Eq. (41). As before,
with H = B ′, we have S01(B

′) � S01(G). Thus by Eq. (42), S02(B) � S01(G).
To finish the case d = p/2, we now assume that B ∈ B(4p, 3p/2) is a bipartite

graph such that the graph B ′ defined in Eq. (41) is trace-minimal. By the previous
argument, S01(B

′) is spectrum-maximal in M(r), and thus by Eq. (42), S02(B) is
spectrum-maximal in M(r).

We now prove the converse of Lemma 19. Suppose 0 � d < p/2 and that
S ∈ M(r) is spectrum-maximal. Let G be a trace-minimal graph in G(4p, d). By
the first part of the proof, S01(G) is spectrum-maximal. It follows that spec(S) =
spec(S01(G)), since all spectrum-maximal remainder matrices in M(r) have the
same spectrum. In particular ‖S‖2 = ‖S01(G)‖2 and thus by Lemma 29 there exists
a graph H ∈ G(d, 4p) such that S = S01(H). Thus spec(S01(H)) = spec(S01(G))

and hence spec(A(H)) = spec(A(G)). It follows that H is trace-minimal.
The argument for the converse in the case, p/2 < d < p is similar.
Now suppose d = p/2 and S ∈ M(r) is spectrum-maximal. Let G be a trace-

minimal graph in G(4p, p/2). As in the previous case, it follows that spec(S) =
spec(S01(G)) and ‖S‖2 = ‖S01(G)‖2. Thus by Lemma 29, either there exists a graph
H ∈ G(4p, p/2) such that S = S01(H) or there is a bipartite graph B ∈ B(4p, 3p/2)
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such that S = S02(B). In the first case it follows, as in the previous case, that H

is trace-minimal. For the second case, spec(S01(G)) = spec(S01(B
′)), by Eq. (42),

and hence spec(A(B ′)) = spec(A(G)). Thus B ′ is trace-minimal.

7.7. r ≡ −1 (mod 4)

Let r = 4d − 1. As in the case r ≡ 0 (mod 4), the minimum norm for a matrix
in M(r) depends on how large d is in comparison to p/2. Let G be a graph in
G(4p, 3p + d − 1) and let S31(G) be the remainder matrix defined in Eq. (12). Let
B be a bipartite graph in B(4p, d) and let S32(B) be the remainder matrix defined
in Eq. (13). Then

‖S31(G)‖2 = 4p(4d − 1)2 + 48p2 − 32pd − 4p,

‖S32(B)‖2 = 4p(4d − 1)2 + 16p2 + 32pd − 4p.

Lemma 30. Let r = 4d − 1 and let S ∈ M(r). If p/2 < d < p, then

‖S‖2 � 4p(4d − 1)2 + 48p2 − 32pd − 4p, (43)

with equality if and only if there exists a graph G in G(4p, 3p + d − 1) such that
S = S31(G).

Furthermore,

det(4ptI4p + S31(G)) = 44ptchG(pt + d − 1)

t − 3
. (44)

If 0 � d < p/2, then

‖S‖2 � 4p(4d − 1)2 + 16p2 + 32pd − 4p, (45)

with equality if and only if there exists a bipartite graph B in B(4p, d) such that
S = S32(B).

Furthermore,

det(4ptI4p + S32(B)) = 44p(p(t − 1) + 2d)chB(pt + d)

pt + 2d
. (46)

If d = p/2, then

‖S‖2 � 4p(4d − 1)2 + 32p2 − 36p,

with equality if and only if there exists a graph G in G(4p, 7p/2 − 1) such that
S = S31(G), or there exist a bipartite graph B in B(4p, p/2) such that S = S32(B).

Proof. Let S ∈ M(r) and let T = 4pI4p − J4p − S. Then T ∈ M(4d ′), where d ′ =
p − d . It is easy to verify that

‖S‖2 = ‖T ‖2 − 64p3 − 16p2 + 128p2d. (47)
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By Lemma 29 applied to T , we have

‖T ‖2 � 4p(4d ′)2 + 64pd ′, (48)

if 0 � d ′ < p/2, and

‖T ‖2 � 4p(4d ′)2 + 32p2, (49)

if p/2 < d ′ < p. Using Eq. (47), we find that inequality (43) is equivalent to
inequality (48) and inequality (45) is equivalent to inequality (49).

To prove the cases for equality, first assume that p/2 < d < p and that equality
holds in inequality (43). Then equality holds in (48). Thus by Lemma 29, there exists
a graph G′ in G(4p, d ′) such that T = 4d ′I4p − 4A(G′). Let G be the complement
of G′. Then G ∈ G(4p, 3p + d − 1) and A(G′) = J4p − I4p − A(G). Thus

S = 4pI4p − J4p − T

= 4(d − 1)I4p + 3J4p − 4A(G)

= S31(G).

We now prove Eq. (44). Since G is in G(4p, 3p + d − 1),

chG(x) = (x − (3p + d − 1))
∏

(x − λ),

and

chG(pt + d − 1) = p(t − 3)
∏

(pt + d − 1 − λ),

where the products are taken over λ∈ spec′(A(G)). Thus the eigenvalues of S31(G) =
4(d − 1)I4p + 3J4p − 4A(G) are 0, 4(d − 1 − λ), where λ ∈ spec′(A(G)) so that

det(4ptI4p + S31(G)) = det(4ptI4p + 4(d − 1)I4p + 3J4p − 4A(G))

= 4pt
∏

(4pt + 4(d − 1) − 4λ)

= 44ppt
∏

(pt + d − 1 − λ).

It follows that

det(4ptI4p + S31(G)) = 44ptchG(pt + d − 1)

t − 3
.

Now assume that 0 � d < p/2 and that equality holds in inequality (45). Then
equality holds in inequality (49) as well. By Lemma 29, there exists a bipartite graph
B ′ in B(4p, p + d ′) such that T = S02(B

′). Let

A(B ′) =
[

0 N(B ′)
N(B ′)T 0

]
.

Then N(B ′) is a (0, 1)-matrix and each row and column of N(B ′) has exactly d ′ +
p = 2p − d ones. Thus
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S = 4pI4p − J4p − T

= 4dI4p +
[ −J2p 4N(B ′) − 3J2p

4N(B ′)T − 3J2p −J2p

]

= 4dI4p +
[−J2p J2p

J2p −J2p

]
− 4

[
0 A

AT 0

]
,

where A = J2p − N(B ′). Let B be the bipartite graph on 4p vertices with adjacency
matrix

A(B) =
[

0 A

AT 0

]
=

[
0 N(B)

N(B)T 0

]
.

Then B is in B(4p, d) and S = S32(B).
We now prove Eq. (46). The eigenvalues of A(B) are ±d, ±λ, where λ ∈

sing′(N(B)). Thus

chB(x) = (x − d)(x + d)
∏

(x − λ)(x + λ),

and

chB(pt + d) = pt(pt + 2d)
∏

(pt + d − λ)(pt + d + λ),

where the product runs over λ ∈ sing′(N(B)). Next observe that 0 and −4p are
eigenvalues of the matrix[−J2p J2p

J2p −J2p

]
with eigenvectors [e2p, ±e2p]T. Thus 0, 8d − 4p, 4(d ±λ) are eigenvalues of S32(B).
Hence

det(4ptI4p + S32(B))

= 4pt(4p(t − 1) + 8d)
∏

(4pt + 4d − 4λ)(4pt + 4d + 4λ)

= 44ppt (p(t − 1) + 2d)
∏

(pt + d − λ)(pt + d + λ)

= 44p(p(t − 1) + 2d)chB(pt + d)

pt + 2d
. �

7.8. Proof of Lemma 18: r ≡ −1 (mod 4)

This proof follows the same pattern as the proof of Lemma 19. The only differ-
ence is that if p/2 < d < p and G ∈ G(4p, 3p + d − 1), then

tr(S31(G)i) = 4i

i∑
j=0

(
i

j

)
(−1)j (d − 1)i−j [tr(A(G)j ) − (3p + d − 1)j ],
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and if 0 � d < p/2 and B ∈ B(4p, d), then

tr(S32(B)i) = (8d − 4p)i + 4i
i∑

j=0

(
i

j

)
di−j [tr(A(B)j ) − dj − (−d)j ].
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