
J. Math. Pures Appl. 94 (2010) 131–169

www.elsevier.com/locate/matpur

Mathematical study of the β-plane model for rotating fluids
in a thin layer

Anne-Laure Dalibard ∗, Laure Saint-Raymond

DMA – UMR CNRS 8553, Ecole Normale Supérieure, 45, rue d’Ulm, 75005 Paris, France

Received 10 July 2009

Available online 19 February 2010

Abstract

This article is concerned with an oceanographic model describing the asymptotic behaviour of a rapidly rotating and incom-
pressible fluid with an inhomogeneous rotation vector; the motion takes place in a thin layer. We first exhibit a stationary solution
of the system which consists of an interior part and a boundary layer part. The spatial variations of the rotation vector generate
strong singularities within the boundary layer, which have repercussions on the interior part of the solution. The second part of the
article is devoted to the analysis of two-dimensional and three-dimensional waves. It is shown that the thin layer effect modifies
the propagation of three-dimensional Poincaré waves by creating small scales. Using tools of semiclassical analysis, we prove that
the energy propagates at speeds of order one, i.e. much slower than in traditional rotating fluid models.
© 2010 Elsevier Masson SAS. All rights reserved.

Résumé

On étudie ici le comportement asymptotique d’un fluide incompressible tournant à grande vitesse dans une couche mince, avec un
vecteur rotation inhomogène ; ce type de modèle apparaît en océanographie. On commence par exhiber une solution stationnaire du
système, obtenue comme la somme d’un terme intérieur et d’un terme de couche limite. Les variations spatiales du vecteur rotation
génèrent de fortes singularités dans la couche limite, qui se répercutent dans la partie intérieure de la solution. Dans un second
temps, on caractérise le comportement des ondes bi- et tri-dimensionnelles. L’effet de couche mince modifie la propagation des
ondes de Poincaré (3D) en favorisant l’apparition de petites échelles. Grâce à une analyse de type semi-classique, on montre que la
vitesse de propagation de l’énergie est d’ordre un, soit beaucoup plus faible que dans les modèles classiques de fluides tournants.
© 2010 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The goal of this article is to study the behaviour of a rotating, incompressible and homogeneous fluid, whose
rotation vector depends on the (horizontal) space variable. We also assume that the motion of the fluid takes
place in a thin layer. These two features are inspired from models of oceanic circulation, which are the main physical
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motivation for our study. We will explain more thoroughly the physical assumptions and scalings leading to our model
in Section 1.1.

The mathematical framework of our analysis is the following: consider the equation:

∂tu + 1

ε
b(xh)e3 ∧ u +

( ∇hp
1
η2 ∂zp

)
− νh�hu − νz∂zzu = 0, (xh, z) ∈ ωh × (0,1), (1.1)

where the horizontal domain ωh is either T2 or T × R. Eq. (1.1) is endowed with Navier conditions at the bottom of
the domain,

∂zuh|z=0 = 0, u3|z=0 = 0, (1.2)

and we assume that there is a shear stress at the surface of the fluid, described by the boundary condition,

∂zuh|z=1(t, xh) = γ σ(xh), u3|z=1 = 0. (1.3)

Above, ε, η, νh, νz, γ are positive parameters, whose relative size will be precised later on. Let us merely announce
that ε, η, νh, νz are meant to be small, whereas γ will be taken large. We emphasize that Eq. (1.1), supplemented with
(1.2)–(1.3), is already in rescaled form. Hence all quantities are dimensionless. We refer to the next subsection for a
derivation of this equation, and for a definition of the various parameters in terms of the physical quantities involved
in the model.

Notice that the rotation is of order ε−1, with ε � 1; hence we focus on the limit of high rotation. As we will see
in Section 1.1, the parameter η is the aspect ratio of the domain: assuming that η � 1 means that the characteristic
horizontal length scale is much larger than the vertical one. In other words, the motion is set in a thin layer.

In this article, we are primarily interested in two topics:

• the computation of stationary solutions of our model;
• the analysis of the local stability of these stationary solutions in the case ωh = T × R.

In particular, we will not address the full Cauchy problem here. Indeed, it can be proved that in the scaling which
is the most relevant for our study, the energy estimates for the system (1.1)–(1.2)–(1.3) blow up in finite time. In a
similar way, the stationary solution that we build has a size which becomes arbitrarily large as ε, η vanish. Hence the
problem (1.1)–(1.2)–(1.3) is highly singular.

To our knowledge, the asymptotic analysis of the system (1.1) has not been addressed before: in the papers [8]
by A. Dutrifoy and A. Majda, [11] by I. Gallagher and the second author, and [9] by A. Dutrifoy, A. Majda and
S. Schochet, the authors study the asymptotic behaviour of a shallow water system within a β-plane model (i.e. in
the case b(xh) = βx2). This shallow water system can be obtained by considering the limit η → 0 in (1.1) (see [15]).
Thus the studies of [11,9] are concerned with the successive limits η → 0, ε → 0. In [7], B. Desjardins and E. Grenier
take into account the thin layer effect within the original Navier–Stokes system, but they assume that b(xh) = 1+ εx2;
hence the penalization is constant at first order. Our goal is to study a crossed limit (ε, η) → (0,0), with a rotation
vector which has variations at the main order.

Let us now make precise the main novelties of our work: first, the construction of stationary solutions involves the
definition of boundary layer terms with a varying Coriolis factor b. Since the size of the boundary layer is directly
related to the amplitude of b, singularities appear at the vanishing points of b. These singularities in the boundary
layer have repercussions on the interior part of the stationary solution, and make the construction much more involved
than in the constant case. On the other hand, studying the stability of stationary solution when ωh = T × R amounts
to describing the waves in the β-plane model with a thin layer effect. We exhibit new types of behaviour for the
Poincaré waves, for which we prove that dispersion takes place on a time scale much larger than usual: for instance,
in Chapter 2 of [12], the group velocity associated with Poincaré waves (i.e. the speed at which energy propagates)
is of order ε−1, while the group velocity in the present setting is of order one. The proof of this fact uses tools of
semiclassical analysis, in the spirit of the recent papers by C. Cheverry, I. Gallagher, T. Paul and the second author
(see [5,6]). Notice also that the presence of dispersion in our model reflects the fact that the domain is unbounded in
the y-direction; however, in the case of the shallow water system within the β-plane model (see [8,11,9]), in which
the domain is also T × R, no dispersion occurs because equatorial waves are trapped into a waveguide. Hence the
structure of the waves is physically quite different in the shallow water system and in our model.
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In the next sections, we explain which physical assumptions led to the system (1.1). We then present our main
results. Eventually, let us point out that the structure of the stationary solution which will be built in this article
enforces particular shapes for the isothermal surfaces inside the fluid (the so-called “thermocline”). We present a few
results in this regard in Section 1.4.

1.1. Physical derivation of Eq. (1.1)

Let us now explain in which regime oceanic currents can be modeled by Eq. (1.1). In this subsection, we denote by
u′ the velocity of oceanic currents in dimensional variables.

• As a starting point, we recall that the ocean can be considered as an incompressible fluid with variable density ρ′.
In order to simplify the analysis, we neglect the variations of density, which are of order 10−3 in the ocean. Conse-
quently, the velocity u′ satisfies the Navier–Stokes equations, with a Coriolis term accounting for the rotation of the
Earth

ρ′
0

[
∂tu

′ + (
u′ · ∇)

u′] + ∇p′ = F + ρ′
0u

′ ∧ Ω, ∇ · u′ = 0, (1.4)

where F denotes the frictional force acting on the fluid, Ω is the Earth rotation vector, p′ is the pressure defined as
the Lagrange multiplier associated with the incompressibility constraint, and ρ′

0 is the (constant) value of the density.
Since we have chosen to work on large horizontal scales (see below), Eq. (1.4) should be written in spherical

coordinates. However, computations involving spherical coordinates are much lengthier, and do not change substan-
tially the physical phenomena we wish to highlight, at least at a formal level (see [25]). Thus in the rest of the article,
we neglect the curvature of the Earth (but we keep a varying Coriolis factor nonetheless). Note also that we neglect
the influence of the horizontal component of the Earth rotation vector, which is classical in an oceanographic frame-
work (see [12]). In fact, it is proved in [7,19] that when the aspect ratio is small, the effect of the vertical component
(the so-called “cosine effect”) can be neglected at first order, which justifies the present assumption. However, the
cosine terms may modify the behaviour of the waves; this issue is left aside in the present paper.

The observed persistence over several days of large-scale waves in the oceans shows that frictional forces F are
weak, almost everywhere, when compared with the Coriolis acceleration and the pressure gradient, but large when
compared with the kinematic viscous dissipation of water. One common but not very precise notion is that small-scale
motions, which appear sporadic or on longer time scales, act to smooth and mix properties on the larger scales by
processes analogous to molecular, diffusive transports. For the present purposes it is only necessary to note that one
way to estimate the dissipative influence of smaller-scale motions is to retain the same representation of the frictional
force

F = Ah�hu
′ + Az∂zzu

′

where Az and Ah are respectively the vertical and horizontal turbulent viscosities, of much larger magnitude than
the molecular value, supposedly because of the greater efficiency of momentum transport by macroscopic chunks of
fluid. Notice that Az 	= Ah is therefore natural in a geophysical framework (see [25]). Moreover, models of oceanic
circulation usually assume that the vertical viscosity Az is not constant (see [2,24]); we choose to retain only the mean
boundary value of the vertical viscosity Az, since one of the motivations for our work was to compute the boundary
layer terms in a context where Ω is not constant.

• Let us now describe the boundary conditions associated with (1.4): typically, Dirichlet boundary conditions are
enforced at the bottom of the ocean and on the lateral boundaries of the horizontal domain ω′

h (the coasts), i.e.

u′
|z′=hB(x′

h)
= 0 (bottom),

u′
|x′∈∂ω′

h
= 0 (coasts). (1.5)

In Eq. (1.1), we have neglected the effects of the lateral boundary conditions by considering the case when ωh is
either T × R or T2. By doing so, we have deliberately prohibited the apparition of strong western boundary currents,
which play a crucial role in the oceanic circulation (e.g. the Gulf Stream, the Kuroshio current). These horizontal
boundary layers are believed to be responsible for the vertical structure of the ocean, and for the creation of large ed-
dies. In the linear case, the mathematical treatment of these layers, called Munk layers, is performed by B. Desjardins
and E. Grenier in [7]. Their study could probably be mimicked in the present paper without strong modifications;
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however, we have chosen to leave this issue aside in order to focus on the other features of the model. Note that in the
nonlinear case, the analysis of lateral boundary layers is completely open from a mathematical point of view.

In a similar fashion, for the sake of simplicity, we did not take into account the topography of the bottom in (1.2)
(i.e. we have taken hB ≡ 0), and we took Navier instead of Dirichlet boundary conditions, meaning that oceanic
currents achieve perfect slip on the bottom. This choice simplifies the mathematical analysis, since it avoids the
apparition of Ekman boundary layers on the lower boundary. The treatment of Ekman boundary layers in the case
of a Dirichlet boundary condition with hB ≡ 0 is in fact completely similar to the one of Ekman boundary layers
due to the wind at the surface of the fluid, which is performed in Section 2. Hence changing Dirichlet into Navier
boundary conditions is not a strong mathematical restriction. The case of Ekman boundary layers with a non-zero
hB has been addressed by B. Desjardins and E. Grenier [7], N. Masmoudi [22], and D. Gérard-Varet [14] in the case
of a constant b, when hB is of the order of the Ekman boundary layer (see below). In the present case, if the same
assumption is satisfied, it can be checked that the case of a non-constant hB can be treated with the same arguments as
the ones in Section 2. To our knowledge, the case when hB = O(D) (where D is the average depth of the ocean) has
never been addressed mathematically, although vertical sections of the Atlantic ocean show that this scaling is in fact
relevant. In fact, formal calculations show that variations of hB of order one deeply modify the asymptotic analysis;
therefore the treatment of the case hB = O(D) most likely requires new mathematical techniques.

We assume that the upper surface, which we denote by Γs , has an equation of the type z′ = hS(t, x′
h). As boundary

conditions on Γs , we enforce (see [15])

Σ · n|Γs = σw,

∂

∂t
10�z′�hS(t,x′

h) + divx′(10�z′�hS(t,x′
h)u) = 0, (1.6)

where Σ is the total stress tensor of the fluid, and σw is a given stress tensor describing the wind on the surface of the
ocean. In general, Γs is a free surface, and a moving interface between air and water, which has its own self-consistent
motion. In (1.3), we have assumed that

hS

(
t, x′

h

) ≡ D,

where D is the typical depth of the ocean. Hence (1.3) is a rigid lid approximation, which is a drastic, but standard
simplification. The justification of (1.3) starting from a free surface is mainly open from a mathematical point of view;
we refer to [1] for the derivation of Navier-type wall laws for the Laplace equation, under general assumptions on the
interface, and to [17] for some elements of justification in the case of the great lake equations. Nevertheless, from a
physical point of view, the simplification does not appear so dramatic, since in any case the free surface is so turbulent
with waves and foam, that only modelization is tractable and meaningful. Condition (1.3) is a simple modelization
which already catches most of the physical phenomena (see [25]).

• Let us now evaluate the order of magnitude of the different parameters occurring in (1.4), and write the equations
in a dimensionless form. We set:

u′
h = Uuh, u′

3 = Wu3,

x′
h = Hxh, z′ = Dz,

where U (resp. W ) is the typical value of the horizontal (resp. vertical) velocity, H is the horizontal length scale, and
D is the depth of the ocean. In order that u′(x′) remains divergence-free, we choose,

W = UD

H
.

A typical value of the horizontal velocity for the mesoscale eddies that have been observed in the western Atlantic
(see for instance [25]) is U ∼ 1 cm s−1. Moreover, the typical horizontal and vertical scales which we are interested
in are:

H ∼ 104 km, and D ∼ 4 km.
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Notice that we work on an almost planetary scale, which justifies the use of a varying rotation vector. Concerning the
rotation, we write Ω = Ω0 sin(θ), where θ is the latitude, and Ω0 = 2π/day ∼ 7 · 10−5 s−1. Eventually, we consider
the motion on a typical time scale T , with T of the order of a few months (T ∼ 107 s). With these values, we get:

ε := 1

T Ω0
∼ 10−3,

and hence ε � 1 (notice that the parameter ε is dimensionless). Thus the asymptotic of fast rotation (small Rossby
number) is valid.

The dimensionless system (see for instance [25,16]) becomes:

∂tu + T U

H
u · ∇u + 1

ε
b(xh)e3 ∧ u +

( ∇hp
1
η2 ∂zp

)
− νh�hu − νz∂zzu = 0,

∇ · u = 0, (1.7)

where η := D/H ∼ 4 · 10−4 is the aspect ratio, and the vertical and horizontal viscosities are defined by,

νz := T Az

ρ0D2
, νh = AhT

ρ0H 2
.

Typical values for the turbulent viscosities are (see [16]) Az/ρ0 ∼ 10−4–10−3 m2 s−1, and Ah/ρ0 ∼ 104–105 m2 s−1,
which yields in the present case νz ∼ 10−3 and νh ∼ 10−10–10−9.

The boundary conditions are (1.3), (1.2), with

γ := |σw|D
AzU

.

Notice that with the time scale chosen above, the convective term is of order 10−2 � 1; hence we neglect it in the
rest of the study. Note however that the effect of this term is expected to be large if the waves associated with (1.7) are
resonant, and small if they are dispersive. Thus the rigorous treatment of the convective term requires a mathematical
analysis which goes beyond the scope of this article, and which we deliberately leave aside from now on.

In the rest of the article, the relative size of the parameters will be chosen as follows: the most important feature
of our analysis is that η and ε are chosen of the same order. In order to keep the number of different small parameters
to a minimum, we also choose to take νz = ε, and γ = ε−2; with this last choice, the interior part of the stationary
solution built in the next sections will be of order one. Concerning the size of νh, our analysis allows us to consider
horizontal viscosities νh = o(ε), which is compatible with the orders of magnitude given above.

The next subsections are devoted to the presentation of our main results: the existence of approximate stationary
solutions, their stability, and the computation of asymptotic temperature profiles.

1.2. Stationary solutions of the system

Our first result is concerned with the construction of an approximate “stationary” solution of the system (1.1),
endowed with the boundary conditions (1.2)–(1.3). The problem under consideration is rather different from the
Cauchy problem, since no initial data is prescribed. The goal is merely to compute a solution of (1.1), and to investigate
its asymptotic behaviour as ε vanishes. Furthermore, the stationary solution we compute is the sum of a boundary
layer term and an interior term. As we will see, the solution obtained by this construction is uniquely determined,
up to terms of the type (u(y),0,0) (or lower order terms, since we only compute an approximate solution). We do
not claim, however, that the stationary solution we build is unique among the whole class of approximate solutions.
In some cases, it is possible to prove that all approximate stationary solutions are close to one another; we refer to
Remark 1.3 below Theorem 1.2 for more details.

Remark 1.1 (Influence of the convective term). Of course, the analysis we perform is valid only in the linear case. If
the convective term is kept, then the relevant equation for the waves should include a linearization of the quadratic
term around the stationary solution, which substantially modifies the analysis. Moreover, if the convective term is of
order one (i.e. T U/H = O(1) with the notation of the previous section), the boundary layer terms should satisfy a
non-linear degenerate elliptic equation, whose treatment is completely open from a mathematical point of view.
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Let us now state our result about stationary solutions: since the vertical viscosity is small (we take νz = ε � 1), it
disappears from the asymptotic system. As a consequence, solutions of the limit system cannot satisfy the boundary
conditions. Thus boundary layer terms are introduced, which restore the correct boundary conditions. Hence the
stationary solution built here is composed of an interior part and a boundary layer part.

We state our result in the case ωh = T × R, and explain below the theorem the main differences when ωh = T2.
Throughout the paper, we set,

ω := ωh × (0,1).

Theorem 1.2 (Stationary solutions of (1.1)). Let ωh = T × R.
Assume that νh = o(ε) and that η = νz = ε, γ = ε−2.
Let σ ∈ H 2(ωh) ∩ W 2,∞(ωh) such that∣∣σ(x, y)

∣∣, ∣∣∂xσ (x, y)
∣∣ � Cy2 ∀(x, y) ∈ ωh,∣∣∂yσ (x, y)

∣∣ � C|y| ∀(x, y) ∈ ωh, (1.8)

and such that the following compatibility condition is satisfied,∫
T

σ1(x, y) dx = 0 ∀y. (1.9)

Assume that the Coriolis factor b satisfies the following assumptions:

b(x, y) = b(y) ∀(x, y) ∈ ωh, with b ∈ W
3,∞
loc (R),

∃c > 0, c−1 � b′(y) � c ∀y, b(y) ∼ βy for y → 0. (1.10)

Then there exists stationary functions (ustat,pstat) ∈ L2(ω) ∩ H 1(ω), such that ustat satisfies (1.3), (1.2), and

1

ε
b(y)

(
ustat

h

)⊥ + ∇hp
stat − ε∂zzu

stat
h − νh�hu

stat
h = r1

h + r2
h,

1

ε2
∂zp

stat − ε∂zzu
stat
3 − νh�hu

stat
3 = r2

3 ,

with

r1
h = O

(
ε5/4) in L2(ω), r2

h = O

(
νh√
ε

)
in L2([0,1],H−1(ωh)

)
,

r2
3 = O

(
νh

ε1/4

)
in L2([0,1],H−1(ωh)

)
.

Moreover, ustat can be decomposed as

ustat = uBL + uint,

where uBL is a term located in a boundary layer of size ε, in the vicinity of the surface, and uint is an interior term.
The functions uBL and uint satisfy the following estimates:∥∥uint

∥∥
L2(ω)

� C‖σ‖H 2(ωh),∥∥uBL
h

∥∥
L2(ω)

� C√
ε
‖σ‖H 1(ωh),∥∥uBL

3

∥∥
L2(ω)

� C‖σ‖H 1(ωh). (1.11)

The above theorem ensures that the function ustat is stable by the semi-group associated with Eq. (1.1) in the
following sense: if uini ∈ L2(ω)3 is such that ‖uini − ustat‖L2

ε
= o(1), then for all T > 0,

sup
∥∥u(t) − ustat

∥∥
L2

ε
= o(1),
t∈[0,T ]
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where u(t) is the solution of (1.1)–(1.2)–(1.3) with initial data u|t=0 = uini. Above, the norm L2
ε is the relevant norm

for the energy conservation, namely

‖u‖2
L2

ε
:= ‖uh‖2

L2(ω)
+ ε2‖u3‖2

L2(ω)
.

Corollary 1.7 below gives a more refined version of this stability result.

Remark 1.3. As we have already pointed out, the stationary solutions of (1.1)–(1.2)–(1.3) are not unique in general.
However, if ustat, vstat are two approximate stationary solutions of (1.1) with error terms which satisfy the estimates
of Theorem 1.2, then a simple energy inequality shows that w = ustat − vstat satisfies,

νh

∫
ω

(|∇hwh|2 + ε2|∇hw3|2
) + ε

∫
ω

(|∂zwh|2 + ε2|∂zw3|2
)
� C

(
νh

ε
+ ε5/4‖wh‖L2(ω)

)
.

If we know furthermore that ‖wh‖L2 = O(ε−1/2), then we infer that

νh

∫
ω

(|∇hwh|2 + ε2|∇hw3|2
) + ε

∫
ω

(|∂zwh|2 + ε2|∂zw3|2
)
� C

(
νh

ε
+ ε3/4

)
= o(1),

so that

ustat − vstat = o
(∥∥ustat

∥∥)
. (1.12)

If no estimates on w in L2 are available, we need to derive one from the equation directly. For instance, one may
use the Poincaré–Wirtinger inequality: setting

wh = w̄h + w̃h, where w̄h :=
1∫

0

wh(·, z) dz,

there holds,

‖w̃h‖L2 � C‖∂zwh‖L2 .

Thus there only remains to find a bound on w̄h. In the case of the β-plane approximation, for instance (i.e. b(y) = βy),
it is convenient to work in Fourier space. We refer to Section 4 for the details of the calculation. We retrieve eventually,

‖w̄h‖L2 � C

(
ε5/4

νh

+ ε−1/2
)

.

Thus as long as νh is not too small (i.e. if ε5/2 � νh � ε), the (1.12) holds true.

If ωh = T2, the result of Theorem 1.2 remains true under slightly different conditions on σ and b. More precisely,
we assume that σ ∈ H 2(T2) satisfies (1.8), (1.9), and that

d

(
Suppσ,T ×

{
1

2

})
> 0.

In other words, σ vanishes in a neighbourhood of (x,1/2) for all x ∈ T (and by periodicity, in a neighbourhood of
(x,−1/2) also).

We assume furthermore that b(x, y) = b(y) with

b ∈ L∞(T) and b ∈ W 3,∞(K) ∀K ⊂ T compact s.t. d(K,1/2) > 0,

b(y) 	= 0 for y 	= 0, and ∃C > 0,
∣∣b(y)

∣∣ � C for |y| � 1/4,

b(y) ∼ βy for y → 0,

∀K ⊂ T compact s.t. d(K,1/2) > 0, ∃cK > 0, c−1
K � b′(y) � cK ∀y ∈ cK. (1.13)

In other words, we do not assume that b ∈ W 2,∞(T): b may have a discontinuity at y = 1/2; an example of a
function b satisfying the assumptions above is given in Fig. 1.
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Fig. 1. Example of a Coriolis factor satisfying assumptions (1.13).

But we require that σ vanishes in a neighbourhood of that singularity, so that all terms of the type σb, σ/b, σ/b′
are well-defined and T2-periodic.

Remark 1.4.

(i) The assumptions (1.10) and (1.13) on the Coriolis factor b are satisfied in two particular cases:
• b(y) = βy, with ωh = T × R: this approximation is especially relevant for the motion of equatorial currents,

and is used in [11,9].
• b(y) = sin(πy) for y ∈ (−1/2,1/2), with ωh = T2 (see Fig. 1): this is the case of a “real” ocean, whose study

takes place on a planetary scale. Of course, in this case, the effect of the curvature of the Earth should be taken
into account, which we have chosen not to do here (see the discussion in the previous section). The choice of
periodic boundary conditions is also clearly a strong mathematical simplification, which is not realistic from a
physical point of view.

(ii) Notice that in the above theorem, it is assumed that the surface stress vanishes near y = 0. Although this as-
sumption stems from mathematical considerations, it is in fact quite reasonable in an oceanographic context.
Indeed, it is a well-known phenomenon that there are no steady surface winds near the equator: as trade winds
coming from the North and South meet, they are heated and produce upward winds. The area of calm in the
vicinity of the equator is called the Doldrums.

(iii) The compatibility condition (1.9) means that there is no zonal average wind. This condition is of course not
realistic from a physical point of view, but it is the price to pay for working with a domain with no boundary in x.
If the horizontal domain ωh is replaced by [0,1] × T or [0,1] × R, this condition disappears; the (mathematical)
counterpart lies in the construction of the horizontal boundary layer terms, the so-called Munk layers discussed
in the previous section.

(iv) In general, the size of the boundary layer term uBL is much larger than that of the interior term. This means that
the greatest part of the energy is concentrated in a boundary layer located in the vicinity of the surface. In the
original variables, it can be checked that the boundary layer carries an energy of order ρ0U

2H 3, while the energy
contained in the interior of the domain is of order ρ0U

2H 2D.
This is in fact a consequence on the requirements on uBL, uint, and not an artefact of our model. Indeed, assume
that the functions uBL, uint are such that∥∥uint

3|z=1

∥∥
L2(ωh)

∼ ∥∥uint
h|z=1

∥∥
L2(ωh)

∼ ∥∥uint
h

∥∥
L2(ω)

,

uint
3|z=1 = −uBL

3|z=1,

and assume that uBL, uint are divergence free and that uBL is located in a boundary layer of size δE (where E

stands for ‘Ekman’) near the surface. Denote by ABL
h ,ABL

3 the size of uBL
h ,uBL

3 in L∞, and by Aint the size of
uint in L2(ω).



A.-L. Dalibard, L. Saint-Raymond / J. Math. Pures Appl. 94 (2010) 131–169 139
The assumptions above entail that ABL
3 = Aint; on the other hand, since uBL is divergence free, we have:

ABL
h = 1

δE

ABL
3 = 1

δE

Aint.

Consequently, since

uBL
h ∼ ABL

h exp

(
−1 − z

δE

)
,

we infer that ∥∥uBL
h

∥∥
L2(ω)

∼ √
δEABL

h = 1√
δE

Aint.

Thus the energy in the boundary layer is always larger than the energy in the interior of the fluid with this type
of model. The assumption that ‖uint

3|z=1‖ ∼ ‖uint
h|z=1‖ stems from observations of the isothermal surfaces in the

ocean, as we will explain in the next section. From a physical point of view, having ‖uBL‖ much larger than
‖uint‖ is in fact quite reasonable: indeed, it is observed that subsurface currents generally travel at a much slower
speed when compared to surface flows.

Let us also emphasize that in the case of the f -plane model (i.e. when the rotation vector b is constant), the result of
Theorem 1.2 is false in general. Indeed, the interior part of the solution must satisfy the geostrophic system, namely:

u⊥
h + ∇hp = 0,

divh uh + ∂zu3 = 0,

∂zp = 0,

and thus u is a two-dimensional divergence-free vector field. In other words, u3 ≡ 0 and thus the Ekman pumping
velocities must be zero at first order. Consequently, the interior part of the solution cannot be wind-driven at first order.
Notice that in the present case, the stationary solution is given by the so-called Sverdrup relation (see Eq. (3.3)).

1.3. Stability issues and propagation of waves

Once the behaviour of the stationary solution is understood, we address the question of its local stability; since
Eq. (1.1) is linear, this is equivalent to studying the Cauchy problem for Eq. (1.1), with homogeneous Navier condi-
tions at z = 0 and z = 1. We then exhibit Rossby waves, which are essentially two-dimensional, and Poincaré waves,
which are fluctuations around the three-dimensional part of the initial data, and which take place on a much larger
time scale.

Theorem 1.5 (Waves associated with Eq. (1.1)). Assume that ωh = T × R, and that b(xh) = βy for all xh =
(x, y) ∈ ωh.

For any ε > 0, let vε be a solution to the propagation equation,

∂tu + 1

ε
b(xh) ∧ u +

( ∇hp
1
ε2 ∂zp

)
− νh�hu − ε∂zzu = 0,

(xh, z) ∈ ωh × (0,1),

with νh = O(ε2), supplemented with homogeneous boundary conditions:

∂zuh|z=0 = ∂zuh|z=1 = 0, u3|z=0 = u3|z=1 = 0.

Then vε can be decomposed as the sum of

• a stationary part v̄ε(t, y) = ∫
T

∫ 1
0 vε(t, x, y, z) dx dz, which satisfies:

∂t v̄
ε − νh∂

2
y v̄ε = 0,
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• Rossby waves vε
R = ∫

vεdx3 − v̄ε corresponding to the 2D vorticity propagation,

∂t ζ
ε
R + β

ε
∂x�

−1
h ζ ε

R − νh�hζ
ε
R = 0,

where ζ ε
R = roth vε

R ,
• and gravity waves vε

G = vε − ∫
vεdx3.

Rossby and Gravity waves have a dispersive behaviour as ε vanishes:

• Rossby waves disperse on a small time scale,

∀t > 0, ∀K � ω,
∥∥vε

R(t)
∥∥

L2(K)
→ 0 as ε → 0,

since we have assumed that y ∈ R;
• Gravity waves generate fast oscillations with respect to y, which slows down the propagation:

∀K � ω,
∥∥vε

G(t)
∥∥

L2(K)
→ 0 as (ε, t) → (0,∞).

Remark 1.6.

• The energy associated with gravity (or Poincaré) waves propagates on a time scale much larger than the one of
Rossby waves; we refer to Sections 4 and 5 for details. This is due to the thin layer effect, which causes the
apparition of small scales in the variable y.

• The field v̄ε is said to be “stationary” because the horizontal viscosity νh is small: hence

v̄ε(t) ≈ v̄ε
|t=0 in L2

on time scales of order one.
• The assumption νh = O(ε2) is discussed in Section 5.6. In particular, we prove that if νh � ε2, the energy

contained in the Poincaré modes is in fact dissipated in a very short time.

Corollary 1.7. Assume that ωh = T × R, and that b(xh) = βy for all xh = (x, y) ∈ ωh. Assume that νh = O(ε2).

For any ε > 0, let uε be a solution of (1.1) supplemented with (1.2)–(1.3), and assume that

sup
ε>0

(∥∥uε
h|t=0 − ustat

h

∥∥
L2(ω)

+ ε
∥∥uε

3|t=0 − ustat
3

∥∥
L2(ω)

)
< +∞.

Then for any finite time t > 0,

uε(t) − ustat ∼ v̄ε(t) + vε
G(t) in L2

loc(ω),

where vε
G is the (slow propagating and fast oscillating) gravity part of the velocity field vε defined in Theorem 1.5,

and v̄ε is the stationary part of vε , with vε
|t=0 = uε

h|t=0 − ustat
h before the full stop.

The above corollary is an immediate consequence of Theorems 1.2 and 1.5, together with the energy inequality.
An important consequence of our analysis is that the vertical component of the velocity uε is not expected to be

bounded – as is usually claimed for shallow water approximation. We refer to Section 5 for further details regarding
that point. This is due to the smallness of the horizontal velocity νh: indeed, if νh is of order one, then the energy
inequality entails that ∇hu

ε
h is bounded in L2([0, T ] × ω) for all T > 0. Since uε is divergence free, ∂zu

ε
3 is also

bounded in L2, and thus uε
3 is bounded.

1.4. Towards a mathematical derivation of the thermocline

In this section, we try to justify the shape of the surfaces of equal temperature in the ocean, in view of the results
of Theorem 1.2.

The isothermal surface which is located just below the Ekman boundary layer is of special interest to oceanogra-
phers, due to its importance on the global oceanic circulation (see [25,26,20]). Fig. 2 shows the longitudinal variations
of the temperature in the Pacific ocean in a layer of 1000 m depth below the surface.



A.-L. Dalibard, L. Saint-Raymond / J. Math. Pures Appl. 94 (2010) 131–169 141
Fig. 2. Longitudinal section of the surfaces of equal temperature in the Pacific ocean (from the WOCE Pacific Ocean Atlas).

In particular, there are zones in which the temperature surfaces are tilted up (that is, there is a flux of cold water
towards the surface); this phenomenon cannot always be accounted for by the heating differences at the surface, as
shows the upward flux of cold water in the equatorial zone. The physical justification of these particular shapes is the
following: inside the ocean, the temperature T solves an equation of the kind,

u′ · ∇T − κ�T = 0,

where u′ is the velocity of oceanic currents (in dimensional variables) and κ is the heat conductivity coefficient. If the
temperature diffusion can be neglected, this equation takes the form,

u′ · ∇T = 0,

which means that u′ is tangent to the isothermal surfaces. Consequently, the temperature surfaces are tilted up (or
down) if and only if u′

3|surface 	= 0, or more precisely, if |u3|z=1|/|uh|z=1| = O(1) in rescaled variables. This justifies
the assumption, ∥∥uint

3|z=1

∥∥ ∼ ∥∥uint
h|z=1

∥∥,

in the previous section (see Remark 1.4(iv)).
In that regard, the special solution constructed in Theorem 1.2 is of particular interest. Indeed, in rescaled variables,

we have (see Section 3),

uint
3|z=1 = −1

b
roth σ − b′

b2
σ1.

Hence u3|surface 	= 0, and our model predicts that the temperature surfaces are indeed modified by the Ekman
pumping velocity.

We now give a rigorous result about the asymptotic shape of the temperature in our model. We denote with a prime
the original (dimensional) variables. We write

T
(
x′
h, z

′) = T0 + T1θ

(
x′
h

H
,
z′

D

)
,

with the same notations as in Section 1.1. The temperature T0 is a reference temperature (for instance, T0 = 10 ◦C),
whereas T1 is the order of magnitude of the variations of the temperature. Performing the same change of variables as
in Section 1.1, we obtain,

u · ∇θ − λη2�hθ − λ∂zzθ = 0,

where the diffusion coefficient λ is given by,

λ = κL

D2U
.

We recall that η is the aspect ratio of the domain; as in Theorems 1.2 and 1.5, we take η = ε. With the notation of
Theorem 1.2, our result is the following:
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Proposition 1.8. Let λ > 0. Assume that the wind stress σ ∈ Hs(ωh) is such that∣∣σ(x, y)
∣∣ � Cyk ∀(x, y) ∈ ωh,∣∣∇σ(x, y)

∣∣ � C|y|k−1 ∀(x, y) ∈ ωh, (1.14)

for some k, s � 2 chosen sufficiently large, and assume that∥∥∇hu
int
h

∥∥
L∞(ω)

� λ

4
. (1.15)

Let θ be the solution of the equation,

ustat · ∇θ − η2λ�hθ − λ∂zzθ = 0, (1.16)

supplemented with the boundary conditions

θ|z=1 = θ1, ∂zθ|z=0 = 0, (1.17)

for some function θ1 ∈ H 2(ωh).
Define the function θapp by

θapp(xh, z) = θ̄ (xh, z) + εθBL
(

xh,
1 − z

ε

)
,

where θ̄ , θBL are solutions of

−λ∂zzθ̄ + uint · ∇ θ̄ = 0 in ω,

θ̄|z=1 = θ1, ∂zθ̄|z=0 = 0, (1.18)

and

−λ∂ζζ θ
BL(xh, ζ ) + εuBL

h (xh,1 − εζ ) · ∇hθ1 = 0,

θBL(xh, ζ )−→
ζ→∞0.

Then as ε → 0, ∥∥θ − θapp
∥∥

L2(ω)
+ ∥∥∂z

(
θ − θapp)∥∥

L2(ω)
→ 0.

Remark 1.9.

(i) If the Sobolev exponent s is chosen sufficiently large, then σ ∈ W 1,∞(ωh). Hence assumption (1.14) merely
specifies the behaviour of σ near y = 0. In general, the assumptions of Proposition 1.8 are more stringent
than (1.8).

(ii) The assumption (1.15) on the size of ∇hu
int
h is purely technical, and does not have any physical interpretation.

It rises from the fact that Eq. (1.18) on θ̄ is degenerate in the horizontal variable; we refer to Section 6 for more
details. We emphasize in particular that if (1.15) is not satisfied, Eq. (1.18) is still well-posed in L2(ωh,H

1(0,1));
however, in this case, we are no longer able to prove the convergence.

(iii) The boundary conditions (1.17) mean that the atmosphere acts like a thermostat for the ocean, and that there is no
heat flux at the bottom of the ocean. Both assumptions seem reasonable from a physical point of view, although
other boundary conditions might also make sense: for instance, it could also be assumed that the heat flux at the
surface (caused by heating by the sun) is a given function of the latitude.

(iv) Let us mention a last direction towards which the physical accuracy of our model could be improved. When
considering the spatial variations of the temperature, it would be more reasonable to consider a model which
couples the velocity of ocean currents and the temperature, in the spirit of [3]. However, the relevant scalings
within such models are not completely clear. Furthermore, the analysis in Chapter 6 of [25] shows that for such
problems, the curvature of the Earth should be taken into account. Hence we leave this issue aside in the present
paper.
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The construction of the article is as follows: in the next two sections, we construct the stationary solution of
Eq. (1.1), starting with the boundary layer part, and then building the interior part by solving the geostrophic equations
with a Dirichlet boundary condition on the vertical component. Then, we prove Theorem 1.5 in Sections 4 and 5,
by treating separately the two-dimensional and three-dimensional parts of the initial data. Eventually, Section 6 is
dedicated to the proof of Proposition 1.8.

2. The boundary layer part of the stationary solution

In this section, we construct functions uBL,pBL which are approximate stationary solutions of Eq. (1.1) (in the
sense of Theorem 1.2), and which satisfy the horizontal part of the boundary condition (1.3). These functions are
located in a boundary layer in the vicinity of the surface z = 1. Our methodology is the following: we first assume
that νh = 0, and we use the classical construction of Ekman layers in this case. We then derive several estimates on
the functions thus obtained. Eventually, we estimate the error terms in Eq. (1.1) which are due to the fact that νh is
non-zero.

2.1. Construction in the case νh = 0

When the horizontal viscosity vanishes, the construction of the boundary layer is exactly the same as in the f -plane
model, i.e. when the function b does not depend on xh. Indeed, in this case the variable xh is merely a parameter of the
equation, and building the boundary layer term amounts to solving an equation on the rate of exponential decay. For
more results regarding classical boundary layers, we refer to [4,22,23,27]. Nonetheless, let us stress that even though
the construction itself is the same, the estimates become much more involved than in the case of the f -plane model.
Indeed, the vanishing points of b create singularities, and prevent the boundary layer terms to belong to L2 in general.
Hence, assumptions on the stress σ have to be introduced in order to handle these singularities.

The construction of the boundary layer term is as follows: we wish to construct an approximate solution (uBL,pBL)

of (1.1), such that (1.3) is satisfied. Furthermore, we assume that this approximate solution is small outside a boundary
layer located in the vicinity of the surface z = 1. Hence, we look for uBL, pBL in the form:

uBL(t, xh, z) = UBL
(

xh,
1 − z

ε

)
,

pBL(t, xh, z) = P BL
(

xh,
1 − z

ε

)
.

We assume that UBL,P BL together with all their derivatives vanish as ζ → ∞, where ζ stands for the rescaled variable
(1 − z)/ε. Inserting the above ansatz into Eq. (1.1) yields,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

b(xh)
(
UBL

h

)⊥ − ∂2
ζ UBL

h + ε∇hP
BL = 0,

−∂2
ζ UBL

3 − 1

ε2
∂ζ P

BL = 0,

divh UBL
h − 1

ε
∂ζ U3 = 0.

(2.1)

The last two equations entail that

P BL = −ε2∂ζ U
BL
3 = −ε3 divh UBL

h .

We henceforth neglect the pressure term in the equation on UBL
h . Then, we set, as usual (see for instance [22]),

U±
h := Uh ± iU⊥

h .

Above and in the rest of the article, for all u = (u1, u2) ∈ R2, u⊥ := (−u2, u1).
An easy calculation leads to,

−∂2
ζ U±

h ∓ ibU±
h = 0,

∂ζ U
±
h|ζ=0 = −1 (

σ ± iσ⊥)
.

ε
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Consequently, U±
h is an exponentially decaying function of the form,

U±
h (xh, ζ ) = 1

ελ±(xh)

(
σ ± iσ⊥)

(xh) exp
(−λ±(xh)ζ

)
,

where the decay rate λ± is defined by: (
λ±)2 = ∓ib and �(

λ±)
> 0,

i.e.

λ±(xh) = λ±(y) = 1 ∓ i sign(b)√
2

∣∣b(y)
∣∣1/2

. (2.2)

Notice in particular that the decay rates λ± vanish at y = 0 and depend only on y.
Going back to the definition of U±

h , we infer that

UBL
h (xh, ζ ) = U+

h + U−
h

2
= 1

2ε

∑
±

(σ ± iσ⊥)(xh)

λ±(xh)
exp

(−λ±(xh)ζ
)
. (2.3)

Hence, in order that uBL is divergence free, we set:

UBL
3 (xh, ζ ) = −ε

∞∫
ζ

divh UBL
h

(
xh, ζ

′)dζ ′

= −1

2

∑
±

(divh σ ∓ i roth σ )(xh)
(
λ±(xh)

)−2
e−λ±(xh)ζ

+ 1

2

∑
±

(
σ ± iσ⊥)

(xh) · ∇hλ
±(xh)

(λ±(xh))3

(
2 + ζλ±(xh)

)
e−λ±(xh)ζ . (2.4)

We have used the convention,

roth uh = −divh u⊥
h ,

for two-dimensional vector fields.
The remaining flux term is then given by:

uBL
3|z=1 = UBL

3|ζ=0(xh) = −1

2

∑
±

(divh σ ∓ i roth σ )(xh)
(
λ±(xh)

)−2

+
∑
±

(
σ ± iσ⊥)

(xh) · ∇hλ
±(xh)

(λ±(xh))3
. (2.5)

We now wish to point out a particular difficulty steaming from the above construction. If the Coriolis factor b

has vanishing points, which occurs in particular in the case of the β-plane approximation (b(xh) = βy), then the
functions UBL

h ,UBL
3 may not be square integrable if the function σ is arbitrary. Hence, the function σ should vanish at

a sufficiently high order near y = 0 so that the singularity disappears. We will check that (1.8) entails that the functions
UBL

h ,UBL
3 defined by (2.3), (2.4) are square integrable for a Coriolis factor satisfying (1.10). For further purposes, we

also require that the function ∇hU
BL belongs to L2(ωh × [0,∞)ζ ). Unfortunately, assumption (1.8) is not sufficient

to ensure such a result. Thus we introduce an approximate boundary layer term, in which the low values of b have
been truncated.

2.2. Estimates on the boundary layer terms

We begin with a short justification of the need for a truncation. Using the definition of λ± together with assumption
(1.10), we infer that if y is close to zero, then
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∥∥∇xh
UBL

3 (xh)
∥∥

L2([0,∞)ζ )
� C

( |D2σ(xh)|
y5/4

+ |∇σ(xh)|
y9/4

+ |σ(xh)|
y13/4

)
� Cy−5/4.

Hence ∇xh
UBL

3 does not belong to L2(ωh × [0,∞)ζ ) in general. We thus define, for any δ > 0, the function

bδ(y) = b(y)ψ

( |y|
δ

)
, y 	= 0, (2.6)

where ψ ∈ C∞((0,∞)) is such that

ψ(y) � 1

2
for y ∈ (0,∞),

ψ(y) = 1 if y � 2,

ψ(y) = y−α if y ∈ (0,1),

for some exponent α ∈ (0,1) to be chosen later on. Notice that with this choice of ψ , the function bδ behaves like
δαy1−α for y > 0 near zero. Consequently, bδ vanishes with a weaker rate than b, and thus σ/bδ vanishes more
strongly than σ/b.

We now define approximated decay rates λ±
δ by replacing b by bδ in the expression (2.2); eventually, we define

approximated boundary layer terms by the formulas (2.3)–(2.4), in which the decay rates λ± have been replaced
by λ±

δ .

Remark 2.1. We will eventually choose δ = ε and α > 3/5, which allows us to obtain the result stated in Theorem 1.2.

We then have the following result:

Lemma 2.2. Assume that hypotheses (1.8), (1.10) are satisfied. Then there exists a constant C, depending only on σ

and b, such that for all α > 0, δ > 0, ∥∥UBL
δ,h

∥∥
L2(ωh×[0,∞)ζ )

� C

ε
,∥∥UBL

δ,3

∥∥
L2(ωh×[0,∞)ζ )

� C.

Additionally, if α > 3/5, there exists a constant Cα, depending only on α,σ and b, such that for all δ > 0,∥∥∇hU
BL
δ,h

∥∥
L2(ωh×[0,∞)ζ )

� Cα

ε
,∥∥∇hU

BL
δ,3

∥∥
L2(ωh×[0,∞)ζ )

� Cα

δ3/4
.

Moreover, for all δ > 0, ∥∥(b − bδ)U
BL
δ,h

∥∥
L2(ωh×[0,∞)ζ )

� C
δ11/4

ε
,∥∥∇hP

BL
δ

∥∥
L2(ωh×[0,∞)ζ )

� Cα

ε2

δ1/4
.

Remark 2.3. The above estimates are given for the rescaled boundary layer profiles UBL, P BL, which are defined on
ωh × [0,∞)ζ . Remember that the boundary layer part of the stationary solution is defined on ωh × [0,1] by

uBL(xh, z) = UBL
h

(
xh,

1 − z

ε

)
.

Hence ∥∥uBL
h

∥∥
L2(ωh×(0,1))

� ε1/2
∥∥UBL

h

∥∥
L2(ωh×[0,∞))

.

Similar estimates hold for pBL, uBL.
3
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Proof. • L2 estimates: According to (1.10), and to the definition of bδ , we have:∣∣λ±(xh)
∣∣ 	= 0 if y 	= 0,

∣∣λ±(xh)
∣∣ ∼ √

β|y| as y → 0,

and thus there exists a constant C such that∣∣�(
λ±(xh)

)∣∣−1
,
∣∣λ±(xh)

∣∣−1 � C|y|−1/2 ∀x,∀y ∈ [−1,1].
We recall that

λ± = ∣∣λ±∣∣ exp

(
∓i sign(b)

π

4

)
.

Similarly, for all δ > 0, we have, for |y| � δ∣∣�(
λ±

δ (xh)
)∣∣−1

,
∣∣λ±

δ (xh)
∣∣−1 � C|y|−(1−α)/2δ−α/2.

If |y| � δ, then λ±
δ (xh) satisfies the same estimates as λ±(xh). A careful computation leads to

∞∫
0

∣∣UBL
δ,h(xh, ζ )

∣∣2
dζ = 1

2ε2

∣∣σ(xh)
∣∣2 ∑

±

1

|λ±
δ (y)|2�(λ±

δ (y))
. (2.7)

Hence we obtain, using (1.8),( ∞∫
0

∣∣UBL
δ,h(xh, ζ )

∣∣2
dζ

)1/2

� C

ε

⎧⎨⎩ |y| 5+3α
4 δ− 3α

4 if |y| � δ,

|y|5/4 if δ � |y| � 1,

|σ | else.

Eventually, we infer that ∥∥UBL
δ,h

∥∥
L2(ωh×[0,∞)ζ )

� C0

ε
,

where the constant C0 depends only on b and σ . Notice that the truncation does not play any role at this stage: the
same arguments show that UBL

h ∈ L2(ωh × [0,∞)ζ ).

Similarly, we have,
∞∫

0

∣∣UBL
δ,3 (xh, ζ )

∣∣2
dζ � C

∑
±

( |∇σ(xh)|2
|λ±

δ (y)|5 + |σ(xh)|2|∇λ±
δ (y)|2

|λ±
δ (y)|7

)
. (2.8)

Using the definition of the decay rates λ±
δ together with the definition of the function ψ , we obtain:

∣∣∇λ±
δ

∣∣ = |b′
δ|

2|bδ|1/2
� C

⎧⎨⎩ |y|− α+1
2 δα/2 if |y| � δ,

|y|−1/2 if δ � |y| � 1,

1 else.
Thus ∥∥UBL

δ,3

∥∥
L2(ωh×[0,∞)ζ )

� C0.

• H 1
h estimates:

We begin with the bound on ∇hU
BL
δ,h ; the calculations are very similar to the ones which led to the L2 bound on

Uδ,3, and are therefore left to the reader. In fact, the situation is even a little less singular than in the case of Uδ,3 (we
“gain” one integration with respect to the variable ζ , and thus one factor (λ±

δ )−1). The bounds on λ±
δ and σ entail that∥∥∇hU

BL
δ,h

∥∥
L2(ωh×[0,∞)ζ )

� C0

ε
.

We now tackle the bound on ∇hU
BL
δ,3 . We differentiate Eq. (2.4) with respect to xh and use the following rules,

exp
(−ζλ±

δ

)
, ζλ±

δ exp
(−ζλ±

δ

) = O
(|λδ|−1/2) in L2([0,∞)ζ

)
,
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where |λδ| denotes the common size of |λ+
δ | and |λ−

δ |. We obtain:

∥∥∇hU
BL
δ,3 (xh)

∥∥
L2([0,∞)ζ )

� C

( |D2σ(xh)|
|λδ|5/2(y)

+ ∣∣∇σ(xh)
∣∣ |∂yλ

±
δ (y)

|λδ(y)|7/2

)
+ C

(∣∣σ(xh)
∣∣ |∂yyλδ(y)|
|λδ(y)|7/2

+ ∣∣σ(xh)
∣∣ |∂yλδ(y)|2
|λδ(y)|9/2

)
.

Notice that due to the sign change in b at y = 0, there is in general a Dirac mass at y = 0 in the term ∂yyλδ ; more
precisely, the part of ∇hU

BL
δ,3 which is not absolutely continuous with respect to the Lebesgue measure is of the type:

δy=0|σ | |b′
δ|

|bδ|1/2|λδ|7/2
= δy=0|σ ||bδ|−9/4.

At this stage, the need for a truncation is clear: if bδ is replaced by b, then |σ ||b|−9/4 ∼ |y|−1/4 near y = 0, and thus
the singular part of ∇hU

BL
3 is not well-defined in the sense of distributions. Conversely, if α > 1/9, then

|σ ||bδ|−9/4 ∼ |y| 9α−1
4 δ− 9α

4 as y → 0,

and thus the singular part of ∇hU
BL
δ,3 is zero.

Gathering all the terms, we deduce that

∥∥∇hU
BL
δ,3 (xh)

∥∥
L2

ζ
� C

⎧⎨⎩ |y|− 5(1−α)
4 δ− 5α

4 if |y| � δ,

|y|−5/4 if δ � |y| � 1,

|σ(xh)| + |∇σ(xh)| + |D2σ(xh)| else.

Thus ∇hU
BL
δ,3 ∈ L2(ωh × [0,∞)) if and only if α > 3/5, and in this case there exists a constant Cα , depending on σ ,

b and α, such that for all δ > 0, ∥∥∇hU
BL
δ,3 (xh)

∥∥
L2(ωh×[0,∞))

� Cα

δ3/4
.

• Error estimates: First, by definition of bδ , we have

∥∥(b − bδ)U
BL
δ,h

∥∥2
L2 =

∫
ωh∩{|y|�2δ}

∞∫
0

∣∣b(y) − bδ(y)
∣∣2∣∣UBL

δ,h(x, y, ζ )
∣∣2

dζ dy dx.

Notice that for all y ∈ R \ {0},∣∣b(y) − bδ(y)
∣∣ = ∣∣b(y)

∣∣∣∣∣∣1 − ψ

(
y

δ

)∣∣∣∣
= 1|y|�δ

∣∣b(y)
∣∣( δα

|y|α − 1

)
+ 1δ�|y|�2δ

∣∣b(y)
∣∣∣∣∣∣1 − ψ

(
y

δ

)∣∣∣∣
� C

(
1|y|�δ|y|1−α

(
δα − |y|α) + 1δ�|y|�2δ|y|)

� C1|y|�2δ|y|1−αδα.

Using (2.7), we infer

∥∥(b − bδ)U
BL
δ,h

∥∥2
L2(ωh×[0,∞)ζ )

� C

ε2

∫
x∈T

∫
|y|�2δ

|y|2(1−α)δ2α|y|4|y|−3/2
∣∣∣∣yδ

∣∣∣∣3α/2

dy

� C

ε2

∫
|y|�2δ

|y|(9−α)/2δα/2 dy

� Cδ11/2

2
.

ε
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There remains to evaluate P BL
δ . By definition:

P BL
δ = −ε3 divh UBL

h,δ .

Using the same kinds of calculations as the ones which led to the bound on ∇hU
BL
δ,3 , we deduce that

∥∥∇hP
BL
δ

∥∥
L2(ωh×[0,∞)ζ )

� C
ε2

δ1/4
. �

2.3. Error estimates in the case νh 	= 0 and conditions on the parameter δ

If νh 	= 0, we keep the construction of the previous section, and we merely treat the viscous terms as error terms.
The function uBL

δ,h is an approximate solution of the horizontal part of Eq. (1.1), with the error term,

1

ε
(b − bδ)

(
uBL

δ,h

)⊥ − νh�hu
BL
δ,h + ∇hp

BL
δ .

According to the estimates of the previous section (see Lemma 2.2), we have,∥∥∥∥1

ε
(b − bδ)

(
uBL

δ,h

)⊥
∥∥∥∥

L2(ω)

� C
δ11/4

ε3/2

and ∥∥νh�hu
BL
δ,h

∥∥
L2([0,1],H−1(ωh))

� C
νh√
ε
,

∥∥∇hp
BL

∥∥
L2(ω)

� C
ε5/2

δ1/4
.

Recall that because of the boundary layer scaling, there is a factor ε1/2 between the L2 norms of uBL
δ and UBL

δ . With
the choice,

δ = ε, α >
3

5
,

we infer that the error terms,

r1
h := 1

ε
(b − bδ)

(
uBL

δ,h

)⊥ + ∇hp
BL,

r2
h := −νh�hu

BL
δ,h,

r2
3 := −νh�hu

BL
δ,3

satisfy the estimates of Theorem 1.2, namely ∥∥r1
h

∥∥
L2(ω)

= O
(
ε5/4),∥∥r2

h

∥∥
L2((0,1),H−1

h )
= O

(
νhε

−1/2), ∥∥r2
3

∥∥
L2((0,1),H−1

h )
= O

(
νhε

−1/4).
Furthermore, uBL

δ satisfies the horizontal part of the boundary condition (1.3) at z = 1; on the other hand, uBL
3 does

not satisfy the non-penetration condition at z = 1. Hence, we construct in the next section an interior term, which is
also an approximate solution of (1.1), and which lifts the trace of uBL

3 at z = 1.
Notice that uBL also has a non-vanishing trace at z = 0; however, this trace is exponentially small on the set where

b is bounded away from zero, and can thus be lifted thanks to an exponentially small corrector. This will be taken care
of after the construction of the interior term uint, in the next section.
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3. The interior part of the stationary solution

In this section, we construct a stationary solution uint of Eq. (1.1), which is such that uint + uBL satisfies the
boundary conditions (1.2), (1.3). Going back to Eq. (1.1), it can be readily checked that the function uint should
satisfy the system:

b(y)
(
uint

h

)⊥ + ∇hp = 0,

∂zp = 0,

divuint = 0, (3.1)

together with the boundary conditions,

∂zu
int
h|z=1 = 0, uint

3|z=1 = −uBL
3|z=1,

∂zu
int
h|z=0 = 0, uint

3|z=0 = 0. (3.2)

We recall that since the function uBL
3 depends on the small parameter δ, the function uint also depends on δ in general,

and thus will be denoted by uint
δ in the sequel. Hence we also investigate the asymptotic behaviour of uint

δ as δ → 0.

It turns out that the solution of the system (3.1)–(3.2) is unique, up to a function of the type (v(y),0,0). Hence we
give in this section a straightforward way of building the solution, and then we derive L2 estimates on the function uint

δ .
The main result of this section is the following:

Lemma 1. Assume that assumptions (1.8)–(1.10) are fulfilled. Then there exists a solution uint
δ ∈ L2(ω) of the sys-

tem (3.1). Moreover, there exists a positive constant C, depending only on σ and b, such that∥∥uint
δ

∥∥
L2(ω)

� C ∀δ > 0.

3.1. Construction of uint
δ

To begin with, we differentiate the first equation of (3.1) with respect to z, and we obtain

b(y)∂z

(
uint

δ,h

)⊥ = 0.

Since uint
δ is divergence-free, we infer that ∂zzu

int
δ,3 = 0. Hence the third component uint

δ,3 is uniquely determined; in
order to lighten the notation, set

wδ(xh) = −uBL
δ,3|z=1(xh).

We have,

uint
δ,3(xh, z) = zwδ(xh).

Then, taking the two-dimensional vorticity of the first equation in (3.1), we derive,

roth
(
b
(
uint

δ,h

)⊥) = divh

(
buint

δ,h

) = 0.

Since the Coriolis factor only depends on the latitude y, we are led to,

b′(y)uint
δ,2 = −b(y)divh uint

δ,h = +b(y)∂zu
int
δ,3 = b(y)wδ(xh).

Consequently, the second component is also uniquely determined. In the case when b(y) = βy, one has in particular,

uint
δ,2(xh) = ywδ(xh). (3.3)

This equation is known as the Sverdrup relation (see [25,26]).
There remains to compute the first component of uint; the divergence-free condition entails that

∂xu
int
δ,1 = −∂yu

int
δ,2 − ∂zu

int
δ,3 = −∂y

(
b

′ wδ

)
− wδ = −

(
2 − bb′′

′2

)
wδ − b

′ ∂ywδ.

b b b
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Notice that this equation has a solution in ωh if and only if the right-hand side has zero average in x, for all y. This is
satisfied in particular, if ∫

T

wδ(x, y) dx = 0 ∀y. (3.4)

We assume that this assumption is satisfied for the time being, and we will prove that it is in fact equivalent to (1.9).
Integrating the equality giving ∂xu

int
δ,1 with respect to x, we deduce that uint

δ,1 is defined up to a function of y only,
provided (3.4) is satisfied.

Now, let us compute wδ in terms of σ and b. Using Eq. (2.5), we infer that

wδ(xh) = 1

2

∑
±

(divh σ ∓ i roth σ )
1

(λ±
δ )2

−
∑
±

(
σ ± iσ⊥) · ∇hλ

±
δ

(λ±
δ )3

.

By definition of λ± (see (2.2)), we have,

∇λ±
δ =

(
0,

1 ∓ i sign(b)

2
√

2

sign(b)b′
δ

|bδ|1/2

)
.

Hence

wδ(xh) = 1

bδ

roth σ + 1

b2
δ

σ⊥ · ∇bδ = ∂xσ2

bδ

− ∂y

(
σ1

bδ

)
. (3.5)

(Recall that bδ only depends on the latitude y.)
We now prove the equivalence of (1.9) and (3.4). It is clear that (1.9) ⇒ (3.4). Conversely, if (3.4) is satisfied, then

(3.5) leads to the existence of a constant αδ ∈ R such that∫
T

σ1(x, y)

bδ(y)
dx = αδ ∀y.

Since σ1 vanishes quadratically near y = 0, we deduce that the left-hand side of the above equality vanishes at least
linearly near y = 0. Consequently, αδ = 0 for all δ, and thus (1.9) is satisfied.

3.2. Bounds on uint

We begin with a bound on the function wδ given by (3.5). We recall that

b(y) ∼ βy near y = 0,

and

σ1(x, y) = O
(|y|2) as y → 0,

∂xσ2(x, y) = O
(|y|2) as y → 0.

Thus

∂y

(
σ1

bδ

)
= bδ∂yσ1 − σ1∂ybδ

b2
δ

= O
(|y|αδ−α

)
for y → 0, |y| � δ.

The exponent α was introduced in the previous section, see (2.6).
Consequently, there exists a constant C (independent of δ) such that

‖wδ‖L2(ωh) � C.

This entails immediately that uint
δ,3 and uint

δ,2 are bounded in L2(ω), uniformly in δ.

As for uint , we have, by definition
δ,1
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∂xu
int
δ,1 = −∂y

(
b∂xσ2

b′bδ

)
− ∂xσ2

bδ

+ ∂y

(
b

b′ ∂y

σ1

bδ

)
+ ∂y

σ1

bδ

= −∂y

(
∂xσ2

ψ( ·
δ
)b′

)
− ∂xσ2

bδ

+ ∂y

∂yσ1

b′ψ( ·
δ
)

− ∂y

(
σ1

bδ

(
bb′

δ

b′bδ

− 1

))
.

Integrating with respect to x, we deduce that

uint
δ,1 = −∂y

(
σ2

ψb′

)
− σ2

bδ

+ ∂y

∂yS1

b′ψ
− ∂y

(
S1

bδ

(
bb′

δ

b′bδ

− 1

))
,

where S1(x, y) = ∫ x

0 σ1(x
′, y) dx′. Using the definition of bδ , we obtain

bb′
δ

b′bδ

− 1 = 1

δ

ψ

ψ

′( ·
δ

)
b

b′ .

It can be checked that the function in the right-hand side is bounded in W 2,∞(R). Moreover, its support is included in
[−2δ,2δ]. As a consequence, the term

∂y

(
S1

bδ

(
bb′

δ

b′bδ

− 1

))
is o(1) in H 1(ω) as δ → 0. The other terms can be evaluated in a similar fashion. Using the assumptions on σ and b

together with the definition of ψ , we deduce that there exists a constant C[σ ] such that∥∥uint
δ

∥∥
L2(ω)

� C[σ ]. (3.6)

• We now derive estimates in L2([0,1],H 1(ωh)), which are needed to bound the error term νh�hu
int
δ . First, using

the definition of bδ together with assumptions (1.8), (1.10), it can be proved that

∂ywδ = O
(
yα−1δ−α

)
as y → 0, |y| � δ.

Hence ∂ywδ ∈ L2(ω) (recall that α > 3/5 > 1/2) and

‖∂ywδ‖L2(ω) = O
(
δ−1/2).

The term ∂xwδ , on the other hand, is bounded in L2(ω), uniformly in δ. Consequently, there exists a constant C,
depending only on σ , b and α, such that ∥∥∇hu

int
δ,3

∥∥
L2(ω)

� C

δ1/2
.

Similarly, we prove that ∂yuδ,2 = O(|y|αδ−α) for y in a neighbourhood of zero, and thus there exists a constant C

such that ∥∥∇hu
int
δ,2

∥∥
L2(ω)

� C.

We now tackle the term uδ,1; using either the expression of ∂xuδ,1 in terms of wδ or the final definition in terms of
σ2 and S1, it can be checked that

∂yuδ,1 = O
(
yα−1δ−α

)
as y → 0, |y| � δ.

The largest terms are those coming from S1 (or from b∂ywδ/b
′); for instance, the above calculations show that

b

b′ ∂ywδ = O
(|y|αδ−α

);
since one power of y is lost with each differentiation with respect to y, we obtain the desired bound on uδ,1. Eventually,
we are led to ∥∥∇hu

int
δ,1

∥∥
L2(ω)

� C

δ1/2
.

• Notice that

uint
δ → uint in L2(ω),
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as δ → 0, where uint is the function defined by the same expressions as uint
δ , but replacing every occurrence of wδ by

w = roth σ

b
+ σ⊥ · ∇b

b2
.

By definition of bδ , w and wδ coincide on the set {|y| � 2δ}. Moreover, w is bounded in L2 and w,y∂yw have finite
limits as y → 0, while ∫

T

∫
|y|�δ

|wδ|2 + |y|2|∂ywδ|2 = o(1).

Consequently, wδ (resp. b∂ywδ) converges towards w (resp b∂yw) in L2(ω) as δ → 0. The convergence of uint
δ

follows. However, in general, uint does not belong to H 1(ω), except if the surface stress σ vanishes at sufficiently
high order.

3.3. Proof of Theorem 1.2

Let us first evaluate the error terms in Eq. (1.1). To begin with, notice that ∂zzu
int
δ = 0, so that there is no error term

associated with the vertical Laplacian. Consequently, the only error terms in Eq. (1.1) are those coming from the term
νh�hu

int
δ .

According to the H 1 estimates of the previous section, we have∥∥νh�hu
int
δ,h

∥∥
L2([0,1],H−1(ωh))

� C
νh√
δ
,∥∥νh�hu

int
δ,3

∥∥
L2([0,1],H−1(ωh))

� C
νh√
δ
.

With the choice δ = ε, this yields another error term r2 ∈ L2([0,1],H−1(ωh)) such that∥∥r2
∥∥

L2([0,1],H−1(ωh))
= O

(
νh√
ε

)
.

• The proof of Theorem 1.2 is now almost complete. There only remains to take care of the boundary conditions:
indeed, as we have explained at the end of the previous section, the trace of ∂zu

BL
δ,h and uBL

δ,3 is non-zero at z = 0.

Hence, we define a corrector vint
δ , which is small in H 1, and which lifts the remaining boundary conditions. The result

is the following:

Lemma 3.1. Assume that νh = o(ε). Then there exists a divergence-free function vint
δ , such that vint

δ = o(1) in L2(ω),
which satisfies the conditions,

∂zv
int
δ,h|z=1 = 0, vint

δ,3|z=1 = 0,

∂zv
int
δ,h|z=0 = −∂zu

BL
h|z=0, vint

δ,3|z=0 = −uBL
3|z=0.

Furthermore, with the choice δ = ε and α > 3/5, we have

1

ε
be3 ∧ vint

δ ,−ε∂zzv
int
δ,h = O

(
ε3) in L2(ω),

−ε∂zzv
int
δ,3 = O

(
ε2) in L2([0,1],H−1(ωh)

)
,

νh�hv
int
δ,h = O(ενh) in L2([0,1],H−1(ωh)

)
,

νh�hv
int
δ,3 = O

(
νhε

−1/2) in L2([0,1],H−1(ωh)
)
.

Before proving the lemma, let us complete the proof of Theorem 1.2: we choose δ = ε, α > 3/5. We set

ustat = uBL
δ + uint

δ + vint
δ ;



A.-L. Dalibard, L. Saint-Raymond / J. Math. Pures Appl. 94 (2010) 131–169 153
by construction, ustat satisfies the boundary conditions (1.2), (1.3), and it is an approximate solution of Eq. (1.1) in the
sense of Theorem 1.2. The bounds on uint

δ and uBL
δ were proved in the previous sections. Notice that the error terms

steaming from the corrector vint
δ are all of lower order than the ones coming from uint

δ , uBL
δ . Hence Theorem 1.2 is

proved.

Proof of Lemma 3.1. Throughout the proof, we drop all indices δ in order not to burden the notation.
The construction of the corrector vint follows the one given in Lemma 1 in Appendix B of [10]: setting

φh := −∂zu
BL
h|z=0, φ3 := −uBL

3|z=0,

we define:

vint
h = (1 − z)2

2
φh + ∇hχ,

where the potential χ ∈ H 2(ωh) is defined by,

�hχ =
1∫

0

divh vint
h − 1

6
divh φh = −[

vint
3

]z=1
z=0 − 1

6
divh φh = φ3 − 1

6
divh φh.

We will check later on that the function φ3 has zero mean value on ωh, so that χ is well-defined. The third component
of vint is then determined by

vint
3 (xh, z) = −

1∫
z

∂zv
int
3

(
xh, z

′)dz′ =
1∫

z

divh vint
h

(
xh, z

′)dz′.

By construction, vint is divergence free and satisfies the correct boundary conditions. There remains to evaluate vint in
L2(ω) and L2([0,1],H 1(ωh)).

The boundary conditions φh,φ3 are given by,

φh = − 1

2ε

∑
±

(
σ ± iσ⊥)

exp

(
−λ±

ε

)
,

φ3 = −1

2

∑
±

(divh σ ∓ i roth σ )
1

(λ±)2
exp

(
−λ±

ε

)
+ 1

2

∑
±

(
σ ± iσ⊥) · ∇hλ

±

(λ±)3

(
2 + λ±

ε

)
exp

(
−λ±

ε

)
.

Recall that in the expressions above, the functions λ± are in fact λ±
δ . Notice that

φ3 = divh ϕ,

where

ϕ = −1

2

∑
±

(
σ ± iσ⊥) 1

(λ±)2
exp

(
−λ±

ε

)
;

this proves that φ3 has zero mean value on ωh, and will be used several times in the proof.
We now derive three type of estimates: first, estimates of ∇hφh and φ3 in L2(ωh) will yield H 2(ωh)-bounds on χ ,

and thus bounds in L2([0,1],H 1(ωh)) for the function vint
h , and in L2(ω) for the function vint

3 . Then, estimates of φh

and ϕ will provide L2(ω)-bounds on vint
h . Eventually, L2 estimates of ∇hφ3,D

2
hφh will allow us to derive bounds on

vint
3 in L2([0,1],H 1(ωh)).

• Estimates of ∇hφh and φ3 in L2(ωh):
The main difficulty lies in the fact that λ±

δ does not have the same behaviour for |y| � δ and |y| � δ. We merely
explain how the term divh φh is evaluated; the treatment of the term φ3 is left to the reader.

If |y| � 1, we have (
λ±)2 = ∓ib(y), with

∣∣b(y)
∣∣ � C (see (1.10)).
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Thus ∣∣∣∣exp

(
−λ±

ε

)∣∣∣∣ � exp

(
−C

ε

)
,

and ∫
|y|�1

∫
x∈T

∣∣∇hφh(x, y)
∣∣2

dx dy � C

ε4
‖σ‖2

H 1(ωh)
exp

(
−2C

ε

)
.

On the set where δ � |y| � 1, the assumptions on the truncation function ψ entail that there exists a constant c such
that

c−1|y|1/2 � �(
λ±

δ (y)
)
,

∣∣λ±
δ (y)

∣∣ � c|y|1/2,∣∣∂yλ
±
δ (y)

∣∣ � c|y|−1/2.

As a consequence,∫
δ�|y|�1

∫
x∈T

∣∣∇hφh(x, y)
∣∣2

dx dy � C

ε2

1∫
δ

|y|2 exp

(
−2c

√
y

ε

)
dy + C

ε4

1∫
δ

|y|4 1

|y| exp

(
−2c

√
y

ε

)
dy � Cε4.

There remains to treat the set where |y| � δ; because of the truncation function ψ , this part is the most complicated.
The definition of the function ψ and the fact that b(y) ∼ βy for y close to zero entail that

c−1|y| 1−α
2 δ

α
2 �

∣∣λ±
δ (y)

∣∣, �(
λ±

δ (y)
)
� c|y| 1−α

2 δ
α
2 ,∣∣∂yλ

±
δ (y)

∣∣ � c|y|− 1+α
2 δ

α
2 .

Thus, for instance ∫
|y|�δ

∫
x∈T

∣∣∣∣divh σ exp

(
−λ±

ε

)∣∣∣∣2

� C

δ∫
0

|y|2 exp

(
−c

|y| 1−α
2 δ

α
2

ε

)
dy � C

(
ε

2
1−α

δ
α

1−α

)3

.

The other terms in divh φh are evaluated in the same way. Gathering all the terms, we infer that

‖∇hφh‖L2(ωh) � C

(
ε−2 exp(−C/ε) + ε2 + ε−1

(
ε

1
1−α

δ
α

2(1−α)

)3)
.

With the choice δ = ε, we obtain

‖∇hφh‖L2(ωh) � C
(
ε−2 exp(−C/ε) + ε2 + ε

4−α
2(1−α)

)
.

Since 4−α
2(1−α)

� 2, we deduce eventually that ‖∇hφh‖L2(ωh) = O(ε2).

Using the same arguments, it can be checked that ‖φ3‖L2(ω) = O(ε). As a consequence,∥∥∇hv
int
h

∥∥
L2((0,1),H−1(ωh))

= O(ε),
∥∥∂zzv

int
3

∥∥
L2((0,1),H−1(ωh))

= O(ε).

Similarly, we show that with δ = ε,

‖φh‖L2(ω) = O
(
ε4), ‖ϕ‖L2(ω) = O

(
ε3).

Consequently, ‖vint
h ‖L2 = O(ε3). Notice that this is not entirely sufficient to prove the assertion of the lemma since the

Coriolis factor b is unbounded when ωh = T × R. However, using the fact that φh and ϕ decay like exp(−|b|1/2/ε)

for |y| � 1, it can be easily proved that

�h(bχ) = b�hχ + 2b′∂2χ + b′′χ = O
(
ε3) in H−1(ωh).

Hence bχ = O(ε3) in H 1(ωh), and b∇χ = ∇(bχ) − b′χ = O(ε3) in L2. Eventually, we infer that bvint
h = o(ε) in

L2(ω).
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• Estimates of D2φh and ∇hφ3 in L2(ωh):
Calculations similar to the ones led above show that if δ = ε,∥∥D2φh

∥∥
L2(ωh)

� C‖σ‖H 2(ωh)

(
exp(−C/ε)

ε3
+ 1 + ε

α
2(1−α)

)
.

Hence ‖D2φh‖L2(ω) = O(1).
The term ∇hφ3 is the most singular of all. Indeed, it can be proved that with δ = ε,

‖∇hφ3‖L2(ωh) � C‖σ‖H 2(ωh)

(
exp(−C/ε)

ε2
+ 1 + ε−1/2 + ε

3α−2
1−α

)
.

Since α > 3/5, (3α − 2)/(1 − α) > −1/2, and thus

‖∇hφ3‖L2(ωh) = O
(
ε−1/2).

Eventually, we infer that ∥∥�hv
int
3

∥∥
L2((0,1),H−1(ωh))

= O
(
ε−1/2). �

4. Two-dimensional propagation

We recall that throughout this section and the following, we assume that b(xh) = βy, and that ωh = T × R.

The object of this section is to prove the “two-dimensional part” of Theorem 1.5. In particular, we prove that a two-
dimensional perturbation of the solution ustat creates waves, propagating at a speed of order ε−1, with frequencies
given by

β
k

|k|2 + |ξy |2 ,

where (k, ξy) is the wavelength.

Remark 4.1 (Strong stability in 2D). A consequence of our result is that if ustat is initially perturbed by a
two-dimensional function u0 such that u0 = O(1) in L2 and such that the x-average of u0 is zero (i.e. u0 has no
Fourier mode corresponding to k = 0), then the solution of (1.1) with initial data ustat + u0 becomes close to ustat for
finite times, with an error term which is o(1) in L2([T0, T ] × ω) for all T > T0 > 0.

Definition 4.2. Denote by P2D :L2(ωh)
2 → L2(ωh)

2 the projection on two-dimensional divergence-free vector fields.
The Rossby propagation operator, denoted by LR , is defined by

LRV = P2D

(
bV ⊥)

.

Lemma 4.3. Let v̄0
h ∈ L2(ωh) be a two-dimensional divergence-free vector field, and let v ∈ C(R+,L2(ω)) be the

solution of Eq. (1.1) with initial data

v|t=0 =
(

v̄0
h

0

)
,

supplemented with the boundary conditions,

∂zvh|z=1 = 0, v3|z=1 = 0,

∂zvh|z=0 = 0, v3|z=0 = 0.

Then v = (vh,0), where vh is a two-dimensional divergence-free vector field given by

vh(t) = 1

2π

∑
k∈Z

∫
exp

(
iβt

ε

k

|kh|2 − νh|kh|2t + ixh · kh

)
v̂0
h(k, ξy) dξy,
R
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where kh = (k, ξy) and

v̂0
h(k, ξy) = 1

2π

∫
ωh

exp
(−i(xk + yξy)

)
v̄0
h(x, y) dx dy, ∀(k, ξy) ∈ Z × R.

Proof. Let us first prove that the property ∂zu = 0 is propagated by Eq. (1.1). Using the same arguments as Chemin,
Desjardins, Gallagher and Grenier in [4] for classical rotating fluids, one can introduce some kind of Fourier variable
with respect to z, denoted by k3. Since Eq. (1.1) is linear, it can be easily checked that there is no resonance between
Fourier modes in k3; in other words, since the only Fourier mode at time t = 0 is k3 = 0, there is no Fourier mode
corresponding to k3 	= 0 for t > 0, which means exactly that ∂zv = 0.

We infer that for all t � 0, v(t) is a two-dimensional vector field which satisfies

∂tvh + 1

ε
LRvh − νh�hvh = 0, divh vh = 0,

∂zvh = 0, v3 = 0. (4.1)

This leads to

vh(t) = exp

(
t

(
−LR

ε
+ νh�h

))
vh|t=0.

Let us now investigate the precise expression of the operator LR . First, since vh is divergence free, we have, for all
y ∈ R,

∂y

∫
T

v2(·, y) = −
∫
T

∂xv1(·, y) = 0.

Consequently, since vh ∈ L2(T × R), ∫
T

v2(t, ·, y) = 0 ∀t � 0, y ∈ R.

Taking the x-average of the first component of (4.1), we obtain

∂t

∫
T

v1 − νh∂
2
y

∫
T

v1 = 0.

This corresponds to the “stationary part” of vε in Theorem 1.5.
Hence Lemma 4.3 is proved for the Fourier modes such that k = 0, where k is the Fourier variable associated

with x. Thus we now focus on the modes such that k 	= 0, or, in other words, on initial data such that
∫

T v̄0
h = 0. For

such vector fields, we have, since vh ∈ L2(T × R) is divergence free,

vh = ∇⊥
h �−1

h ζ,

where ζ := roth vh. On the other hand,

roth
(
bv⊥

h

) = divh(bvh) = vh · ∇b = βv2 = β∂x�
−1
h ζ.

In Fourier space, this leads to

∂t ζ̂ (k, ξy) − i
βk

ε(|k|2 + |ξy |2) ζ̂ (k, ξy) + νh

(|k|2 + |ξy |2
)
ζ̂ = 0,

and thus, setting kh = (k, ξy),

v̂h(t, k, ξy) = − ik⊥
h

2
exp

(
i

βk

2
t − νh|kh|2t

)
ζ̂|t=0(k, ξy) = exp

(
i

βk

2
t − νh|kh|2t

)
k⊥
h · v̂0

h(k, ξy)

2
k⊥
h .
|kh| ε|kh| ε|kh| |kh|
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Since v is a two-dimensional divergence-free vector field, for all kh ∈ Z × R, we have kh · v̂0
h(kh) = 0, and thus

v̂0
h(kh) = k⊥

h · v̂0
h(kh)

|kh|2 k⊥
h .

Eventually, we retrieve

v̂h(t, k, ξy) = exp

(
i

βk

ε(|k|2 + |ξy |2) t − νh|kh|2t
)

v0
h(k, ξy) ∀t, k, ξy.

Using the Fourier inversion formula, the proof of the lemma is complete. �
• We now prove the dispersion result for Rossby waves. The argument is quite classical: we want to prove that the

function

vR(x, t) := 1

2π

∑
k∈Z\{0}

∫
R

exp

(
iβt

ε

k

|kh|2 − νh|kh|2t + ixh · kh

)
v̂0
h(k, ξy) dξy (4.2)

satisfies, for all t > 0 and for all compact sets K ⊂ R2,∥∥vR(t)
∥∥

L2(K)
→ 0 as ε → 0.

We first localize the problem in Fourier space. Let n ∈ N arbitrary. There exists a function v̂n
h ∈ L2(Z × R) with

compact support in Z × R such that

Supp v̂n
h ⊂ Z × R∗,∥∥v̂n

h − v̂0
h

∥∥
L2(Z×R)

� 1

n
.

Notice that the assumptions on the support of v̂n
h mean that we have truncated both the large and the small frequencies.

Without loss of generality, we can also assume that v̂n
h(k, ·) ∈ C∞

0 (R) for all k ∈ Z. We denote by vn
R the function

defined as in (4.2) by replacing v̂0
h by v̂n

h . Then the Plancherel formula yields, for all t � 0,∥∥vR(t) − vn
R(t)

∥∥
L2(T×R)

= ∥∥v̂0
h − v̂n

h

∥∥
L2(Z×R)

� 1

n
.

Hence we work with vn
R from now on.

Notice that for ξy ∈ R∗, k ∈ Z∗

exp

(
iβtk

ε|kh|2
)

= − |kh|4ε
2iβtkξy

d

dξy

exp

(
iβtk

ε|kh|2
)

.

Thus, integrating by parts, we infer

vn
R(t, x) = 1

2π

∑
k∈Z∗

∫
R

dξy

|kh|4ε
2iβtk

exp

(
iβt

ε

k

|kh|2 − νh|kh|2t + ixh · kh

)

×
{[

− 1

ξ2
y

+ 1

ξy

(−2νhξyt + iy)

]
v̂n
h(k, ξy) + 1

ξy

∂ξy v̂
n
h(k, ξy)

}
.

According to the assumptions on the support of v̂n
h , there exists a constant Cn such that for all kh = (k, ξy) ∈ Supp v̂n

h ,∣∣ξ−1
y

∣∣ � Cn, |kh| � Cn.

Thus we deduce that for all t > 0, x ∈ K, ∣∣vn
R(t, x)

∣∣ � Cn,K

ε

t
(1 + t),

so that eventually ∥∥vR(t)
∥∥

L2(K)
� 1

n
+ Cn,Kε

(
1 + 1

t

)
.

The result announced in Theorem 1.5 follows.
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5. Three-dimensional propagation

5.1. Remarks about the qualitative behaviour of three-dimensional waves

We are now interested in waves having vertical oscillations, that is in the solutions to

∂tu + 1

ε
βyu⊥ +

( ∇hp
1
ε2 ∂zp

)
− νh�hu − ε∂zzu = 0,

∇ · u = 0,

∂zuh|z=0 = ∂zuh|z=1 = 0, u3|z=0 = u3|z=1 = 0, (5.1)

having zero average with respect to z.
Once again, we introduce a kind of Fourier variable with respect to z (see [4]), denoted by k3, which here is

different from zero. The Fourier variable associated with the first coordinate x is still denoted by k.
If νh is sufficiently small, we then expect the main dynamics to be given by the Poincaré propagation operator

LP u = βye3 ∧ u +
(

ε∇hp
1
ε
∂zp

)
(5.2)

where p is such that both the incompressibility constraint and the boundary condition are satisfied.
• A very rough analysis shows that fast oscillations with respect to y should appear for times greater than ε.

Indeed, as long as the solution (u,p) to

ε∂tu + LP u = 0

depends slowly on y, the pressure which satisfies

−
(

∂xx + ∂yyp + 1

ε2
∂zz

)
p = −1

ε
βy∂xu2 + 1

ε
∂y(βyu1)

can be approximated in the following way

p̂ = ε

k2
3

(−ikβyû2 + ∂y(βyû1)
) = O(ε).

In particular, at leading order, the singular penalization behaves as in the compressible case

(LP u)h ∼ βyu⊥
h .

Plugging this ansatz in the evolution equation leads to

uh ∼
∑
±

u
0,±
h exp

(
±i

βyt

ε

)
,

which is relevant only for very small times, but indicates that a fast dependence with respect to y can be expected.
• On the other hand, we do not expect (u,p) to behave as a function of y/ε only. Such a property, together with

usual integrability conditions, would indeed imply that the solution (u,p) concentrates on small times in the vicinity
of y = 0. Notice that this is not a consequence of the equation, but follows from the two properties,

u(t, y) ∼ ϕ

(
t,

y

ε

)
,

for some function ϕ and for small times, and ‖u(t)‖L2 � C.

As previously, a rough analysis based on the change of variable Y = y/ε and on some asymptotic expansion of
LP u,

L̂P u ∼ (
0, ik3

(
k2

3 − ∂YY

)−1
(βY∂Y û1)

)
,

shows that “concentrated functions” are not stable under the penalization LP .
The mechanism we want to study involves therefore both scales y and y/ε, and results from a balance between

rotation and vertical oscillations, which is the main novelty here. Note indeed that previous works on rotating fluids
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consider either the case when the effect of rotation is dominating (macroscopic layer of fluid) [4] or the case when
vertical oscillations hold on very small scales and can be averaged (shallow water approximation) [11].

Semiclassical analysis seems therefore to be the relevant tool to study this problem, insofar as it allows to separate
both scales in a systematic way.

• Note finally that, if the horizontal viscosity is such that νh � ε2, then because of the small scale in y, we expect
all the energy to be dissipated on a small time interval, leading to some boundary layer effect (see the discussion
in Section 5.6).

In order to exhibit a non-trivial propagation, we will assume in all the sequel that

νh = o
(
ε2).

We therefore start with the study of the 3D propagation without dissipation. We will then check a posteriori that the
viscous dissipation introduces only small error terms for any finite time.

5.2. Semiclassical analysis of the three-dimensional propagation

In order to study the propagation of energy by 3D waves, a natural idea is then to get a polarization of Poincaré
waves, i.e. to obtain a diagonalization of the system,

ε∂tu + LP u = 0,

in the limit ε → 0. We first use the incompressibility constraint to rewrite the propagator in the form of a 2 × 2 matrix
of pseudo-differential operators. We indeed have:

−�εp := −ε2
(

�h + 1

ε2
∂zz

)
p = −εβy∂xu2 + ε∂y(βyu1),

from which we deduce that

ε∂tuh +
( −ε2∂x∂y�

−1
ε (βy·) −βy · +ε2∂2

xx�
−1
ε (βy·)

βy · −ε2∂2
yy�

−1
ε (βy·) ε2∂x∂y�

−1
ε (βy·)

)
uh = 0.

Our first goal is then to perform a suitable change of variables leading to,

ε∂tv +
(

H+
ε (∂x, ∂z, y, ε∂y) 0

0 H−
ε (∂x, ∂z, y, ε∂y)

)
v = O

(
ε∞)

.

In all the sequel, for the sake of simplicity, we will consider a single Fourier mode in (x, z), and denote by (k, k3) ∈
Z × Z∗ the associated wavenumber. Any solution is indeed a superposition of such waves. We will denote abusively
H±

ε (k, k3, y, ε∂y) the Fourier transform of H±
ε (∂x, ∂z, y, ε∂y).

We are then brought back to study the propagation of waves by the scalar pseudo-differential operator
H±

ε (k, k3, y, ε∂y), which can be done for instance using classical results on the Wigner transform. For such scalar
skew-symmetric pseudo-differential operators, we indeed know [13] that energy is propagated according to the
Hamiltonian transport equations

∂tf + {
h±, f

} = 0,

where ih±(k, k3, y, ξ) is the semiclassical principal symbol of H±
ε (k, k3, y, ε∂y).

Note that the time scale over which one has a macroscopic propagation of the energy is inversely proportional to
the size of the oscillations. Such a property can be seen very simply on equations with constant coefficients,

ε∂tv + h(ε∂y)v = 0.

Indeed, denote by λ the time scale of the energy propagation (i.e. the inverse of the group velocity). Then by definition,

ε

λ
= dh(iεk2)

dk2
= iεh′(iεk2).

Thus λ has a finite limit as εk2 → ξ .
What we are finally able to establish is the following proposition:
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Proposition 5.1. Let u0 ∈ L2(ω) be a compactly supported divergence-free vector field such that
∫

u0 dz = 0, and let
u ∈ C(R+,L2(ω)) be the solution of Eq. (5.1) with initial data u0.

Then the L2 norm of uh(t) on any fixed compact converges to 0 as t → ∞.

In other words, 3D waves are dispersive, but only on times of order 1. Note that, in the case of a macroscopic layer
of fluid, the group velocity of Poincaré waves is much larger (typically of order 1/ε); see for instance [4,12].

Furthermore the vertical component u3 of the velocity will not remain bounded, as is usually claimed in formal
derivations leading to shallow water models.

5.3. Reduction to a scalar situation

The first step of the proof follows a method initiated in [5].
• We first compute a kind of characteristic polynomial for the matrix of pseudo-differential operators:(

ε(−�ε)
−1ikε∂y(βy·) −βy − ε(−�ε)

−1k2βy

βy + ε∂y(−�ε)
−1ε∂y(βy·) −ε∂y(−�ε)

−1(iεkβy·)
)

.

A simple way to obtain a scalar equation is to proceed by linear combination and substitution.
Because the solution is expected to depend both on y and y/ε (whatever the initial data), ε∂y is a O(1) operator

like multiplication by any function of y. We then apply usual rules of semiclassical analysis (see [21]):

ε∂y = O(1), y = O(1),

and any commutator has smaller order,

[ε∂y, y] = O(ε).

Keeping only leading order terms, we get

iτ û1 − βyû2 = O(ε),

βyû1 + ε∂y

(
k2

3 − (ε∂y)
2)−1

ε∂y(βyû1) + iτ û2 = O(ε),

so that

β2y2û2 + ε∂y

(
k2

3 − (ε∂y)
2)−1

ε∂y

(
β2y2û2

) − τ 2û2 = O(ε)

or equivalently

k2
3(βy)2û2 − τ 2(k2

3 − (ε∂y)
2)û2 = O(ε), (5.3)

since commutators provide higher order terms with respect to ε. Note that one can also compute an exact pseudodif-
ferential relation (which is actually a polynomial of degree 6 with respect to τ ) by keeping all the terms,

P(ε, y, ε∂y, τ )û2 = 0. (5.4)

Note that, contrarily to [5], as we will only consider times of order 1, we do not need to compute subsymbols, so
that we could also proceed directly using symbolic calculation and diagonalize the matrix:(

0 −βy

βy − ξ2βy

k2
3+ξ2 0

)
.

Anyway, we expect the roots to the following polynomial to play a special role in the propagation:

P(0, y, ξ, τ ) = k2
3(βy)2 − (

k2
3 + ξ2)τ 2. (5.5)

• We can actually prove that there exist pseudo-differential operators H±
ε with principal symbols,

ih± = ±i

√
(k3βy)2

k2
3 + ξ2

such that ε∂tμ
± + H±

ε μ± = 0 implies that
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v±
h :=

(
(βy − ε∂y�̂

−1
ε ε∂y(βy·))−1(H±

ε − ε∂y�̂
−1
ε (iεkβy·))

1

)
μ±

v±
3 := i

εk3
ε∂yμ

± − k

k3
v±

1 ,

satisfies (5.1) up to O(ε∞), where μ+, μ− are scalar functions.
This result is actually a variant of the main lemma in [5]. (Indeed the exact dispersion relation depends here

explicitly on ε.)

Lemma 5.2. (See [5].) Let Pε = P(ε, y, ξ, τ ) be a polynomial function such that ∂τP0|P=0 	= 0, and let h = h(y, ξ)

be any continuous root of

P
(
0, y, ξ, h(y, ξ)

) = 0.

Then there exists a pseudo-differential operator Hε = Hε(y,−iε∂y) with principal symbol ih(y, ξ) such that

Hεψ = iτψ �⇒ Pε,τψ = O
(
ε∞)

, (5.6)

where Pε,τ is a pseudo-differential operator of full symbol P(ε, y, ξ, τ ).

The proof of this lemma relies on pseudo-differential functional calculus, and uses various quantifications to make
the computations as simple as possible. For the sake of completeness, we recall here the main arguments, but refer
to [5] for details.

At first order, we have:

Pε,τψ ≡
∫

ei
ξ(y−y′)

ε P
(
ε, y, ξ,Hε

(
y′,−iε∂y

))
ψ

(
y′) dξ dy′

ε

=
∫

ei
ξ(y−y′)

ε ei
ξ ′(y′−y′′)

ε P
(
ε, y, ξ,h

(
y′′, ξ ′))ψ(

y′′) dξ dξ ′ dy′ dy′′

ε2

=
∫

ei
ξ(y−y′)

ε P
(
ε, y, ξ,h

(
y′, ξ

))
ψ

(
y′) dξ dy′

ε
.

So the principal symbol of Pε,τ is P(0, y, ξ, h(y, ξ)) which, by assumption, is 0.
For the ε∞ result, it is enough to repeat the same argument with hε ∼ h + ∑

εkhk . We obtain:

P(ε, y, ξ,hε) +
∑
k�1

εkQk

(
h, . . . , ∂l

y∂
m
ξ hε

) = 0,

that can be solved recursively under the condition ∂τP0|P=0 	= 0.
• We further obtain a decomposition of any initial data on the eigenstates of the scalar propagators H±

ε .
For all u0

h, there exist μ0,±
ε such that

u0,h =
∑
±

(−(βy − ε∂y�̂
−1
ε ε∂y(βy·))−1(H±

ε − ε∂y�̂
−1
ε (iεkβy·))

1

)
μ0,±

ε + O
(
ε∞)

=:
∑
±

Q±
ε μ0,±

ε + O
(
ε∞)

,

where �̂ε := ε2∂2
yy − ε2k2 − k2

3 . The vertical component is then entirely determined by the divergence-free condition.
To prove this result, one first remarks that the leading order symbol of the matrix (Q+

ε Q−
ε ), namely(

− i

√
k2

3+ξ2

|k3| sgn(y)

i

√
k2

3+ξ2

|k3| sgn(y)

1 1

)
is invertible.

The inversion of the matrix (Q+
ε Q−

ε ) can then be done symbolically at any order.
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Remark 5.3. Notice that the operators Q±
ε have a singularity at y = 0. Hence it is necessary to consider initial data

whose support is bounded away from zero. In fact, we can always restrict ourselves to this case: indeed, the analysis
we perform in the next section shows that such a property is preserved by the evolution. Moreover, functions whose
support is bounded away from zero are dense in L2, and the operator LP preserves the L2 norm.

5.4. Dispersion of energy

Standard arguments of semiclassical analysis allow then to control the propagation of energy for the scalar equa-
tions,

ε∂tμ
±
ε + H±

ε μ±
ε = 0.

• Because H±
ε is skew-symmetric, we have a uniform control on the L2 norm of μ±

ε ,∥∥μ±
ε (t)

∥∥
L2(ω)

= ∥∥μ0,±
ε

∥∥
L2(ω)

.

These uniform a priori estimates allow to establish the convergence of the remainders in the equations for the
Wigner transforms:

f ±
ε (t, y, ξ) := 1

π

∫
e2iξy′

μ±
ε

(
y − εy′)μ̄±

ε

(
y + εy′)dy′.

We therefore have:

∂tf
±
ε + {

h±, f ±
ε

} = O(ε).

For detailed computations leading to that estimate, we refer for instance to [18] or [13]:

Lemma 5.4. (See [13].) Let μ0,± be any fixed function of L2 (non-oscillatory).
Assume that

• H±
ε is skew-symmetric on L2;

• there exists σ ∈ R such that H±
ε is of order σ uniformly as ε → 0;

• the Weyl symbol of H±
ε satisfies

ih±
ε = ih± + εih±

1 + o(ε) uniformly in C∞
loc.

Then the Wigner transform f ±
ε (t, y, ξ) of μ±

ε (t) converges locally uniformly in t to the continuously t-dependent
positive measure f ±, solution to

∂tf
± + {

h±, f ±} = 0.

In other words, the energy associated to the ± mode is transported along the characteristics of the Hamiltonian h±:

dY±

dt
= ∂h±

∂ξ

(
Y±,Ξ±)

,

dΞ±

dt
= −∂h±

∂y

(
Y±,Ξ±)

. (5.7)

• The previous 1D Hamiltonian systems are of course integrable. The bicharacteristics are indeed included in the
level lines of h±, which are hyperbola as shown in Fig. 3. In particular, the sign of Y± is constant along a trajectory
(Y± does not vanish as long as Y±

|t=0 	= 0).
A rapid inspection of the large time asymptotics shows that trajectories cannot be trapped in some compact. This

would indeed imply that there exists either some stationary point or some turning point. But Ξ±(t) is a monotonic
function,

dΞ±

dt
= ∓βk3sgn(Y (t))√

k2
3 + Ξ2(t)

,

which converges necessarily to infinity.
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Fig. 3. Bicharacterictics associated to Poincaré waves.

More precisely, for large t , we have, ∣∣Ξ±(t)
∣∣ ∼ √

β|k3|t,
from which we deduce that

Y±(t) ∼ h0|Ξ±(t)|
|k3|β ∼ h0

√
t

|k3|β .

5.5. Proof of Proposition 5.1

Combining the previous results, we are now able to establish Proposition 5.1. Without loss of generality, we can
assume that u0 has only a finite number of Fourier modes k and k3 (truncation of high frequencies). By linearity, we
can then restrict our attention to the case when there is only one mode (k, k3).

We start by decomposing the initial data u0 on the eigenstates of the scalar propagators H±
ε :

u0
h =

∑
Q±

ε μ0,±
ε .

We then propagate μ0,±
ε according to H±

ε :

ε∂tμ
±
ε = H±

ε μ±
ε .

By Lemma 5.2, the velocity field vε defined by,

vε,h =
∑

Q±
ε μ±

ε , and vε,3 = i

k3
∇h · vh,

satisfies the original system up to O(ε∞) error terms,

ε∂tvε + LP vε = rε = O
(
ε∞)

.
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Remark 5.5. Proving that vε,1 and εvε,3 are in L2(ω) is not immediate. Indeed (Q+
ε ,Q−

ε ) is a pseudodifferential
operator of order 1, while (Q+

ε ,Q−
ε )−1 is of order 0. The L2 bounds rely actually on symmetry considerations which

can be seen by simple computations on the principal symbols.

By a standard energy inequality, we then have,∥∥(uε,h − vε,h)(t)
∥∥

L2(ω)
+ ε2

∥∥(uε,3 − vε,3)(t)
∥∥

L2(ω)

�
∥∥(

u0
ε,h − v0

ε,h

)
(t)

∥∥
L2(ω)

+ ε2
∥∥(

u0
ε,3 − v0

ε,3

)
(t)

∥∥
L2(ω)

+
t∫

0

∥∥rε(s)
∥∥2

L2(ω)
= O

(
ε∞)

. (5.8)

Now, for vε , we can use the orthogonal L2-decomposition vε = v+
ε + v−

ε , together with the semiclassical approxi-
mation of the Wigner transforms of μ±

ε . By Lemma 5.4, we indeed have for all compact subset K of ω,∣∣∣∣‖vε‖2
L2(K)

−
∑
±

∥∥f ±∥∥
L1(K×R2)

∣∣∣∣ → 0 as ε → 0. (5.9)

The solutions f ± to the transport equations,

∂tf
± + {

h±, f ±} = 0,

are explicitly given by the method of characteristics,

f ±(
t,X±(t, y, ξ),Ξ±(t, y, ξ)

) = f 0,±(y, ξ).

As u0 is compactly supported in y, f 0,± is microlocalized in the vicinity of suppu0 ×{0}. For large times t , the spatial
support of f ± is transported at a distance of the order of

√
t from the initial support. We then have the dispersion

estimate: ∥∥f ±∥∥
L1(K×R2)

→ 0 as t → ∞. (5.10)

Gathering together (5.8), (5.9) and (5.10), we get the expected dispersion result,∥∥uε,h(t)
∥∥

L2(K)
→ 0 as t → ∞, ε → 0,

which concludes the proof.

Remark 5.6.

(i) The qualitative behaviour of Rossby and Poincaré waves obtained here, i.e. in the case of a thin layer of fluid with
rigid lid, is very different from the one exhibited in shallow water approximations (see [5]). Note that, in both
cases, Rossby waves are easily identified because they are directly linked to the inhomogeneity of the Coriolis
force, in particular they always propagate eastwards.
Here the energy associated to Poincaré waves propagates much slower than the energy associated to Rossby
waves. The point is that fast oscillations with respect to latitude y, which are generated spontaneously for vertical
modes but not for purely 2D Rossby waves, slow down the propagation. Maybe it would be physically relevant to
consider initial data that depend already on the fast variable y/ε.
The other points which should be discussed are the influence of the free surface and the effect of the bottom
topography. But, at the present time, we have no convenient mathematical tool to study the propagation of waves
in such a complex geometry.

(ii) The formula,

v±
3 = − k

k3

(
H±

ε

)−1
(βy·) + i

εk3
(ε∂y ·)μ±,

shows that the vertical component of the velocity does not remain bounded, as is usually claimed. Notice that this
is due to the apparition of small scales in y.
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5.6. Influence of the viscosity

In the case when νh = o(ε2), an easy computation based on the energy estimate shows that the viscous dissipation
does not modify the propagation for finite times.

More generally, we could extend the previous study considering the whole viscous Poincaré propagation operator,

LP u = βyu⊥ +
(

ε∇hp
1
ε
∂zp

)
− νh�hu − ε∂zzu, (5.11)

where p is such that both the incompressibility constraint and the boundary condition are satisfied.
The diagonalization process is of course unchanged since the dissipation operator is scalar. The only difference is

therefore that one has now to control the propagation of energy for the scalar equations,

ε∂tμ
±
ε + H±

ε μ±
ε − νh�hμ

±
ε − ε∂zzμ

±
ε = 0.

A standard computation (reported for instance in Proposition 1.8 of [13]) shows that the Wigner transform then
satisfies the following damped transport equation:

∂tf
±
ε + 4

νh

ε2
|ξ |2f ±

ε + {
h±, f ±

ε

} = o(1).

(Note that the symmetric part of the propagator occurs at leading order in ε, which can be seen by easy symmetry
considerations.)

We then deduce that

• if νh � ε2, the energy is propagated according to the bicharacteristics associated to h±, as stated in Proposi-
tion 5.1;

• if νh � ε2, the energy contained initially in the Poincaré modes is dissipated on a very short time, leading to some
initial layer phenomenon;

• if νh ∼ ε2, the dynamics is a combination of both phenomena, as shown by Duhamel’s formula

f ±(
t, Y±(t, y, ξ),Ξ±(t, y, ξ)

)
exp

(
4
νh

ε2

∣∣Ξ(t, y, ξ)
∣∣2

t

)
= f 0(t, y, ξ).

Note in particular that the energy associated to Poincaré modes has a super exponential decay, since
|Ξ(t, y, ξ)| → ∞ along any trajectory.

6. Derivation of the thermocline

This section is devoted to the proof of Proposition 1.8, which relies on classical elliptic arguments. The main
difficulty lies in the fact that the equation on θ is degenerate in the horizontal variables. We first prove the existence
of θ̄ , along with some H 1 estimates, and then we prove the convergence.

Throughout the proof, we assume that the wind stress σ vanishes at sufficiently high order near y = 0, so that there
is no need for a truncation (see Section 2) and the function ustat does not have any singularity. If such an assumption
is not satisfied, the function θ̄ (solution of (1.18)) will be well-defined nonetheless, but our proof of convergence fails:
indeed, our arguments require estimates of ∇hθ̄ , and these are available only if ∇hu

int
h is small in L∞(ωh). On the

other hand, a close look at the calculations in Section 3 shows that when σ vanishes quadratically at the origin, ∇hu
int
h

does not belong to L∞(ωh), and thus the proof below is no longer valid.
• A priori estimates on the function θ̄ :
Let θ̄ ∈ L2(ωh,H

1([0,1])) be any solution of

−λ∂zzθ̄ + uint · ∇ θ̄ = 0 in ω,

θ̄|z=1 = θ1, ∂zθ̄|z=0 = 0.

Multiplying the above equation by θ̄ and integrating on ω, we obtain:
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λ

∫
|∂zθ̄ |2 = −1

2

∫
∂ω

uint · nωθ̄2 + λ

∫
ωh

∂zθ̄|z=1θ̄|z=1 − λ

∫
ωh

∂zθ̄|z=0θ̄|z=0

= −1

2

∫
ωh

uint
3|z=1θ

2
1 + λ

∫
ωh

θ1∂zθ̄|z=1. (6.1)

According to Section 3, we have,

uint
3|z=1 = ∂xσ2

b
− ∂y

σ1

b
.

We assume that σ is such that uint
3|z=1 belongs to L∞(ωh). We now evaluate ∂zθ̄|z=1: we have,

λ∂zθ̄|z=1 = λ

1∫
0

∂zzθ̄ =
1∫

0

uint · ∇ θ̄ = divh

(
uint

h

1∫
0

θ̄

)
+ uint

3|z=1θ1. (6.2)

Recall that uint
h , defined in Section 3, is independent of z, while uint

3 is linear with respect to z. Consequently,
the function θ̄ depends on xh and z, and

λ

∫
ωh

θ1∂zθ̄|z=1 =
∫
ωh

θ1

(
divh

(
uint

h

1∫
0

θ̄

)
+ uint

3|z=1θ1

)
= −

∫
ω

θ̄uint
h · ∇hθ1 +

∫
ωh

uint
3|z=1θ

2
1 . (6.3)

Using the identity

θ̄ (·, z) = θ1 −
1∫

z

∂zθ̄ (·, z′) dz′,

we deduce that

‖θ̄‖L2(ω) � ‖θ1‖L2(ωh) + ‖∂zθ̄‖L2(ω). (6.4)

Gathering (6.1), (6.3) and (6.4), we infer that

λ

∫
ω

|∂zθ̄ |2 = 1

2

∫
ωh

uint
3|z=1θ

2
1 −

∫
ω

θ̄uint
h · ∇hθ1

� 1

2

∥∥uint
3|z=1

∥∥
L∞(ωh)

‖θ1‖2
L2 + ∥∥uint

h

∥∥
L∞‖∇hθ1‖L2

(‖θ1‖L2 + ‖∂zθ̄‖L2

)
.

Using the Cauchy–Schwarz inequality, we obtain eventually:

λ

∫
ω

|∂zθ̄ |2 �
∥∥uint

3|z=1

∥∥
L∞‖θ1‖2

L2 + ∥∥uint
h

∥∥
L∞‖∇hθ1‖L2‖θ1‖L2 + 1

λ

∥∥uint
h

∥∥2
L∞‖∇hθ1‖2

L2 . (6.5)

Inequalities (6.5) and (6.4) entail that any solution θ̄ of (1.18) is bounded in L2(ωh,H
1([0,1])) by a constant

depending only on λ, θ1 and uint.
We now derive estimates on the horizontal derivatives in a similar fashion: we have,

−λ∂zz∇hθ̄ + (
uint · ∇)∇hθ̄ = −(∇hu

int
h

) · ∇hθ̄ − ∇hu
int
3 ∂zθ̄ . (6.6)

Multiplying the above equation by ∇hθ̄ and integrating by parts, we have, using the boundary conditions,

−
∫

∂zz∇hθ̄ · ∇hθ̄ =
∫

|∂z∇hθ̄ |2 −
∫

∂z∇hθ̄|z=1 · ∇hθ1 =
∫

|∂z∇hθ̄ |2 +
∫

∂zθ̄|z=1�hθ1.
ω ω ωh ω ωh



A.-L. Dalibard, L. Saint-Raymond / J. Math. Pures Appl. 94 (2010) 131–169 167
Using Eq. (6.2), we express ∂zθ̄|z=1 in terms of θ̄ and θ1. Integrating by parts once again leads to∣∣∣∣ ∫
ωh

∂zθ̄|z=1�hθ1

∣∣∣∣ � 1

λ

(∥∥uint
h

∥∥
L∞‖θ̄‖L2‖θ1‖H 3 + ∥∥uint

3

∥∥
L∞‖θ1‖H 2‖θ1‖L2

)
.

On the other hand, since uint
3|z=0 = 0, we have

2
∫
ω

[(
uint · ∇)∇hθ̄

] · ∇hθ̄ =
∫
ωh

uint
3|z=1|∇hθ̄|z=1|2 −

∫
ωh

uint
3|z=0|∇hθ̄|z=0|2 =

∫
ωh

uint
3|z=1|∇hθ1|2.

The two terms in the right-hand side of (6.6) can easily be evaluated in L2 using the estimate on ∂zθ̄ ; there remains,

λ

∫
ω

|∂z∇hθ̄ |2 � C + ∥∥∇hu
int
h

∥∥
L∞‖∇hθ̄‖2

L2,

where the constant C depends on λ, ‖uint‖L∞ and ‖θ1‖H 3 .
Assume that ∥∥∇hu

int
h

∥∥
L∞(ω)

� λ

2
;

this assumption is discussed in Remark 1.9 following Proposition 1.8. Then∫
ω

|∂z∇hθ̄ |2 +
∫
ω

|∇hθ̄ |2 � C,

where the constant C depends on λ, θ1 and uint. These estimates easily lead to the existence of a solution θ̄ of
Eq. (1.18); the uniqueness of θ̄ follows from the estimates above with θ1 = 0. The same method also shows that under
condition (1.15) on ∇hu

int
h , D2

hθ̄ is bounded in L2(ωh,H
1([0,1])). Plugging this estimate back into (6.6), we deduce

that ∇hθ̄ ∈ L2(ωh,H
2[0,1]), and thus that ∇hθ̄ is bounded in L2(ωh,W

1,∞([0,1])).
Concerning the function θBL, the existence and uniqueness are obvious; indeed, we recall that θBL is a solution of:

−λ∂ζζ θ
BL(xh, ζ ) + εUBL

h (xh, ζ ) · ∇hθ1 = 0,

θBL(xh, ζ )−→
ζ→∞0,

where the function UBL was computed in Section 2. Thus we have merely,

θBL(xh, ζ ) = 1

2λ
∇hθ1 ·

∑
±

(
σ ± iσ⊥)exp(−λ±(xh)ζ )

(λ±(xh))3
.

Remark 6.1. The same kind of arguments also show that there exists a unique solution θ of Eq. (1.16). However, the
estimates on θ blow up as ε vanishes because ∥∥ustat

∥∥
L2 = O

(
ε−1/2).

• Proof of convergence:
We construct an approximate solution of (1.16) as follows: we set

θapp(xh, z) = θ̄ (xh, z) + εθBL
(

xh,
1 − z

ε

)
+ εθ̃(xh, z),

where θ̃ is any bounded and smooth function such that θapp satisfies the boundary conditions (1.17). We choose for
instance

θ̃ (xh, z) = z − 1
∂ζ θ

BL
|ζ= 1 (xh) − θBL|ζ=0(xh).
ε ε
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Notice that by construction,

∂zθ
app
|z=0 = 0, θ

app
|z=1 = θ1.

Moreover, using the definition of θBL, it is easily proved that θ̃ = O(1) in W 2,∞(ω) (provided the stress σ is smooth
and vanishes at a sufficiently high order near y = 0).

Consequently,

−λ∂zzθ
app − λε2�hθ

app + ustat · ∇θapp

= uBL
h · ∇h(θ̄ − θ1) − λε2�hθ̄ + uBL

3 ∂zθ̄ + vint · ∇ θ̄ − λε3�hθ
BL

(
xh,

1 − z

ε

)
+ εustat · ∇θBL

(
xh,

1 − z

ε

)
− λε3�hθ̃ + εustat · ∇ θ̃ . (6.7)

According to the results of Sections 2 and 3, we have,∥∥uBL
3

∥∥
L2 = O(

√
ε),

∥∥vint
∥∥

L2 = o(ε),

ε
∥∥ustat

h

∥∥
L∞,

∥∥ustat
3

∥∥
L∞ = O(1), ε

∥∥ustat
∥∥

L2 = O(
√

ε).

These estimates, together with the ones derived above on θ̄ , enable us to bound all the terms in the right-hand side
of (6.7), except for the first one. Using Hardy’s inequality, we have:∥∥uBL

h · ∇h(θ̄ − θ1)
∥∥

L2(ω)
�

∥∥(1 − z)uBL
h

∥∥
L∞(ωh,L2([0,1]))

∥∥(1 − z)−1∇h(θ̄ − θ1)
∥∥

L2(ωh,L∞([0,1]))
� C

√
ε
∥∥∂z∇h(θ̄ − θ1)

∥∥
L2(ωh,L∞([0,1])).

Thus θapp is an approximate solution of (1.16), with an error term o(1) in L2(ω). As a consequence, θ − θapp satisfies:

−λ∂zz

(
θ − θapp) − λε2�h

(
θ − θapp) + ustat · ∇(

θ − θapp) = o(1),(
θ − θapp)

|z=1 = 0, ∂z

(
θ − θapp)

|z=0 = 0.

Multiplying the above equation by θ − θapp and using the Poincaré inequality, we prove that∥∥∂z

(
θ − θapp)∥∥

L2(ω)
= o(1),

and thus the proposition is proved.
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