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1. Introduction

Variational inequalities introduced by Stampacchia [1] in the early sixties have had a great impact and influence in the
development of almost all branches of pure and applied sciences and have witnessed an explosive growth in theoretical
advances, algorithmic development, etc; see for e.g. [1-18] and the references therein.

Let C be a nonempty closed convex subset of a real Hilbert space H and P the metric projection of H onto C. Recall that
amapping S : C — C is said to be nonexpansive if

[Sx = Syll < lIx =yll, VYx,yeC.

In this paper, we use F(S) to denote the fixed point set of the mapping S.
Let A : C — H be a mapping. Recall the following definitions.

(a) Ais said to be monotone if
(Ax —Ay,x—y) >0, Vx,yeC.
(b) A is said to be «-strongly monotone if there exists a positive real number « such that
(Ax — Ay, x—y) = alx —yl*>, Vx,y€C.
(a) Ais said to be «-inverse-strongly monotone if there exists a positive real number « such that

(Ax — Ay, x —y) > a|Ax — Ay|>, Vx,y e C.
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Recall that the classical variational inequality, denoted by VI(C, A), is to find u € C such that
(Au,v—u) >0, VveC. (1.1)
For given z € H and u € C, we see that the following inequality holds
(u—z,v—u) >0, VYvec,
if and only if u = Pcz. It is known that projection operator P¢ is nonexpansive. It is also known that P¢ satisfies
(x =y, Pcx — Pcy) = |Pcx = Peyll’, - Vx,y € H.

One can see that the variational inequality (1.1) is equivalent to a fixed point problem. An element x* € C is a solution
of the variational inequality (1.1) if and only if x* € C is a fixed point of the mapping Pc(I — AA), where I is the identity
mapping and A > 0 is a constant. This alternative equivalent formulation has played a significant role in the studies of the
variational inequalities and related optimization problems.

For a monotone mapping A : C — H, Verma [14-17] studied the following problem of finding (x*, y*) € C x C such that

(1.2)

(AMy* +x* —y* , x—x") >0, VxeC,
(UAX* +y" — X", x —y*) >0, VxeC,

where A, u > 0 are constant. If we add up the requirement that x* = y*, then the problem (1.2) is reduced to the classical
variational inequality (1.1). Further, the problem (1.2) is equivalent to the following projection formulas

X" = Pc(I — AA)y*,
y* = Pc(I — nA)x*.

The problem of finding solutions of (1.2) by using iterative methods has been studied by many authors, see [4,6,8,11,14-17]
and the references therein.

Recently, many authors also studied the problem of finding a common element of the fixed point set of nonexpansive
mappings and the solution set of variational inequalities for «-inverse-strongly monotone mappings in the framework of
real Hilbert spaces. liduka and Takahashi [9] introduced an iterative method for finding a common element of the fixed point
set of a single nonexpansive mapping and the solution set of variational inequalities for an a-inverse-strongly monotone
mapping. To be more precise, they proved the following theorem.

Theorem IT. Let C be a closed convex subset of a real Hilbert space H. Let A be an «-inverse-strongly monotone mapping of C
into H and S a nonexpansive mapping of C into itself such that F(S) N VI(C, A) # (. Suppose that x; = x € C and {x,} is given

by
Xnt1 = anX + (1 — an)SPc (Xn — AnAXp)

foreveryn = 1,2, ..., where {«,} is a sequence in [0, 1) and {A,} is a sequence in [a, b]. If {a,} and {A,} are chosen so that
{An} C [a, b] forsomea, bwith0 < a < b < 2«,
o0 o0 (o]
nlirgloan =0, X]:an = 00, 2 |01 — | < 00 and Z [Ant1 — Anl < 00,
n= n= n=

then {x,} converges strongly to Prs)nvi(c,a)X.

Recently, Yao and Yao [ 18] further studied the problem of finding a common element in fixed point set of a nonexpansive
mapping and solution set of a classical variational inequality for a inverse-strongly monotone mapping by considering a
relaxed extra-gradient methods. More precisely, they proved the following theorem.

Theorem YY. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A be an a-inverse-strongly monotone
mapping of C into H and S a nonexpansive mapping of C into itself such that F(S) N $2 # (J, where $2 denotes the set of solutions
of a variational inequality for the a-inverse-strongly monotone mapping. Suppose that x; = u € C and {x,}, {yn} are given by

xy=uecC,
Yn :PC(Xn _)LnAxn)s
Xnp1 = U + BpXy + YaSPc (I — ApA)yn, n>1,

where {o}, {Bn}, {yn} are three sequences in [0, 1] and {)\,} is a sequence in [0, 2a]. If {«n}, {Bn}, {vn} and {\,} are chosen so
that {\,} C [a, b] for some a, bwith0 < a < b < 2« and

@an+Bi+ya=1Vn>1,;

(b) limy_, o0 0ty =0, Z;i] Qp = 0O0;

(c) 0 < liminf, o By < limsup,_, o Bn < 1;

(d) limneoo()tn+l - )m) =0,

then the sequence {x,} defined by the above iterative algorithm converges strongly to Pr(synoU.
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In this paper, we consider the problem of convergence of an iterative algorithm for a system of generalized variational
inequalities and a nonexpansive mapping. Strong convergence theorems of common elements are established in the
framework of real Banach spaces. Note that no Banach space is g-uniformly smooth for ¢ > 2; see [19] for more details.
We prove the strong convergence of the purposed iterative scheme in uniformly convex and 2-uniformly smooth Banach
spaces. The results presented in this paper improve and extend the corresponding results announced by Aoyama et al. [2],
liduka and Takahashi [9], Yao and Yao [18] and some others.

2. Preliminaries

Let C be a nonempty closed convex subset of a Banach space E and E**the dual space of E. Let (-, -) denote the pairing
between E and E*. For q > 1, the generalized duality mapping J; : E — 2F" is defined by

Jo@ = {f € E* (. f) = X1 If | = X1}, Vx €E.

In particular, ] = J, is called the normalized duality mapping. It is known that J,(x) = IX[1972J (x) for all x € E.IfE is a Hilbert
space, then ] = I, the identity mapping. Further, we have the following properties of the generalized duality mapping J;:

(a) Jg(x) = [Ix[1972J»(x) for all x € E with x # 0;
(b) Jo(tx) = t971J,(x) forallx € E and t € [0, o0);
(€) Jo(—=x) = —Jq(x) for allx € E.
Let B = {x € E : ||x|| = 1}.E is said to be uniformly convex if, for any € € (0, 2], there exists § > 0 such that, for any
X,y €B,

Ix —yll > € implies <1-38.

Xty
2

It is known that a uniformly convex Banach space is reflexive and strictly convex. E is said to be Gateaux differentiable if the
limit
i X+ Ol = Xl
im——

t—0 t

exists for each x, y € B.In this case, E is said to be smooth. The norm of E is said to be uniformly Gateaux differentiable if for
each y € B, the limit (A) is attained uniformly for x € B. The norm of E is said to be Fréchet differentiable, if for each x € B,
the limit (A) is attained uniformly for y € B. The norm of E is said to be uniformly Fréchet differentiable, if the limit (A) is
attained uniformly for x, y € B. It is well-known that (uniform) Fréchet differentiability of the norm of E implies (uniform)
Gateaux differentiability of the norm of E.

The modulus of smoothness of E is defined by

(A)

1
p(t) = sup {Z(IIX+yII +lx—yl) —1:xy ek x|l =1, [yl < t} .
A Banach space E is said to be uniformly smooth if lim;_ ¢ @ = 0.Let ¢ > 1. A Banach space E is said to be g-uniformly
smooth if there exists a fixed constant ¢ > 0 such that p(t) < ct?. It is well-known that E is uniformly smooth if and only
if the norm of E is uniformly Fréchet differentiable. If E is g-uniformly smooth, then ¢ < 2 and E is uniformly smooth, and
hence the norm of E is uniformly Fréchet differentiable, in particular, the norm of E is Fréchet differentiable. Note that

(a) E is a uniformly smooth Banach space if and only if ] is single-valued and uniformly continuous on any bounded subset
of E.

(b) All Hilbert spaces, L” (or IP) spaces (p > 2) and the Sobolev spaces WY, (p > 2) are 2-uniformly smooth, while P (or IP)
and WP, spaces (1 < p < 2) are p-uniformly smooth.

(c) Typical examples of both uniformly convex and uniformly smooth Banach spaces are LP, where p > 1. More precisely,
[P is min{p, 2}-uniformly smooth for every p > 1.

Next, we always assume that E is a smooth Banach space. Let C be a nonempty closed convex subset of E. Recall that an
operator A of C into E is said to be accretive if
(Ax — Ay, J(x—y)) =0, Vx,yec.
A is said to be «-inverse-strongly accretive if there exists a constant « > 0 such that
(Ax — Ay, J(x = y)) = a|Ax = Ay|>, Vx,y €C.
Let D be a subset of C and Q be a mapping of C into D. Then Q is said to be sunny if
Q(Qx +t(x — Qx)) = Qx,
whenever Qx + t(x — Qx) € C forx € C and t > 0. Amapping Q of C into itself is called a retraction if Q2 = Q. If a mapping
Q of C into itself is a retraction, then Qz = z for all z € R(Q), where R(Q) is the range of Q. A subset D of C is called a sunny

nonexpansive retract of C if there exists a sunny nonexpansive retraction from C onto D.
The following result describes a characterization of sunny nonexpansive retractions on a smooth Banach space.
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Proposition 2.1 (Reich [20]). Let E be a smooth Banach space and C a nonempty subset of E. Let Q : E — C be a retraction.
Then the following are equivalent:

(a) Q is sunny and nonexpansive;
(b) lox — QylI* < (x —y,J(Qx — Qy)), ¥x,y € E;
(c) (x—Qx,J(y —Qx)) <0,VxeE,y eC.

Proposition 2.2 (Kitahara and Takahashi [21]). Let C be a nonempty closed convex subset of a uniformly convex and uniformly
smooth Banach space E and S a nonexpansive mapping of C into itself with F(S) # . Then the set F(S) is a sunny nonexpansive
retract of C.

For the class of nonexpansive mappings, one classical way to study nonexpansive mappings is to use contractions to
approximate a nonexpansive mapping [22,23]. More precisely, take t € (0, 1) and define a contraction S; : C — C by

S;x=tu+ (1—-1t)Sx, VxeC,
where u € C is a fixed point. Banach’s contraction mapping principle guarantees that S; has a unique fixed point x; in C.
That is,

X =tu+ (1 —1t)Sx.

It is unclear, in general, what the behavior of x; is as t — 0, even if S has a fixed point. However, in the case of S having
a fixed point, Browder [22] proved that if E is a Hilbert space, then x; converges strongly to a fixed point of S. Reich [23]
extended Browder’s result to the setting of Banach spaces.

Reich [23] showed that if E is uniformly smooth and if D is the fixed point set of a nonexpansive mapping from C into
itself, then there is a unique sunny nonexpansive retraction from C onto D and it can be constructed as follows.

Proposition 2.3. Let E be a uniformly smooth Banach space and S : C — C a nonexpansive mapping with a fixed point. For each
fixedu € C and every t € (0, 1), the unique fixed point x, € C of the contraction C > x > tu + (1 — t)Sx converges strongly as
t — 0 to a fixed point of S. DefineQ : C — D by Qu = s — lim;_,q x;. Then Q is the unique sunny nonexpansive retract from C
onto D; that is, Q satisfies the property:

(u—Qu,J(y —Qu)) <0, VYueC,yeD.

Recently, Aoyama et al. [2] first considered the following generalized variational inequality problem in a smooth Banach

space E.
Let C be a nonempty closed convex subset of E and A an accretive operator of C into E. Find a point u € C such that
(Au,J(v —w)) >0, VveC. (2.1)

Aoyama et al. [2] proved that the variational inequality (2.1) is equivalent to a fixed point problem. An element x* € C is
a solution of the variational inequality (2.1) if and only if xX* € C is a fixed point of the mapping Qc(I — LA), where [ is the
identity mapping, A > 0 is a constant and Q¢ is a sunny nonexpansive retraction from E onto C, see [2] for more details.
Motivated by Aoyama et al. [2], we consider the following general system of variational inequalities.
Let A : C — E be an «-inverse-strongly accretive mapping. Find (x*, y*) € C x C such that

{(AAy* +x =y J(x—x")) >0, VxeC, 22)

(MAX" 4+ y* —x*,J(x —y")) =0, VxeC.

If we add up the requirement that x* = y*, then the problem (2.2) is reduced to the generalized variational inequality (2.1).
In a real Hilbert space, the system (2.2) is reduced to (1.2).
In order to prove our main results, we also need the following lemmas.

Lemma 2.1 (Browder [24]). Let E be a uniformly convex Banach space, C a nonempty closed convex subset of E andS : C — C
a nonexpansive mapping. Then I — S is demi-closed at zero.
The following lemma is a corollary of Bruck’s results in [25].

Lemma 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let S; and S, be two nonexpansive mappings
from C into itself with a common fixed point. Define a mapping S : C — C by

Sx =68S1x+ (1 —96)Sx, VxeC,
where § is a constant in (0, 1). Then S is nonexpansive and F(S) = F(S1) N F(Sy).

Lemma 2.3. For given (x*, y*) € C x C, where y* = Qc (x* — uAx*), (x*, y*) is a solution of problem (2.2) if and only if x* is a
fixed point of the mapping D : C — C defined by
D(x) = Qc[Qc(x — nAX) — AAQc(x — nAx)],

where A, u > 0 are constants and Qc is a sunny nonexpansive retraction from E onto C.
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Proof.
(My* +x" —y*, J(x —x")) =0, VxeC,
(UAX" +y* = X", J(x—y")) =0, VxeC.
—
X" = Qc(y* — AAY"),
¥y = Qc(x" — uAx").
=
X" = Qc[Qc (" — pAX™) — AAQc (x* — pnAx™)].

This completes the proof. O

Lemma 2.4 (Suzuki [26]). Let {x,} and {y,} be bounded sequences in a Banach space E and {,} a sequence in [0, 1] with

0 < liminf B, <limsup 8, < 1.
n—oo n— 00

Suppose that x,11 = (1 — Bn)Yn + BuXy for all integers n > 0 and

lim sup([1yn1 — Yall = [Xn1 — Xal) < O.
n—-oo
Then limy_, oo ||Y¥n — Xall = O.

Lemma 2.5 (Xu [19]). Let E be a real 2-uniformly smooth Banach space with the best smooth constant K. Then the following
inequality holds:

x4+ ylI* < IX]1> + 2(y, Jx) + 2]|IKy|>, V¥x,y € E.

Lemma 2.6 (Xu [27]). Assume that {«,} is a sequence of nonnegative real numbers such that
anp1 < (1 — yn)ay + &,
where {y,} is a sequence in (0, 1) and {3,} is a sequence such that
(a) 230:1 Yn = 005
(b) imsup,,_, o 8n/¥n <001 Y 12, 18a] < 00.
Then limy,_, oo o, = 0.

3. Main results

Theorem 3.1. Let E be a uniformly convex and 2-uniformly smooth Banach space with the best smooth constant K, C a nonempty
closed convex subset of E and Q¢ a sunny nonexpansive retraction fromE onto C. Let A : C — E be an «-inverse-strongly accretive
mapping and S : C — C a nonexpansive mapping with a fixed point. Assume that ¥ = F(S) N F(D) # (), where D is defined as
Lemma 2.3. Let {x,} be a sequence generated in the following manner

x1=uecC,
Yn = Qc(Xy — uAxy), (@)
Xnp1 = ol + BuXy + Yu[8Sxn + (1 = 8)Qc(Vn — AAyn)], n>1,

where § € (0, 1), A, i € (0, «/K?) and {a,}, {B.} and {y;} are sequences in [0, 1] such that
C)on+Bn+yn=1Yn=1;
(C2) limpoo 0ty = 0, Y ooty = 00;
(C3) 0 < liminfy oo Bn < limsup,_, o, fn < 1.
Then the sequence {x,} defined by (®) converges strongly to X = Qg u and (X, y), where y = Qc(x — uAx) and Q« is a sunny
nonexpansive retraction of C onto ¥, is a solution of the problem (2.2).

Proof. First, we show that ¥ is closed and convex. We know that F(S) is closed and convex. Next, we show that F(D) is
closed and convex. For any A, i € (0, @/K?), we have that the mappings I — AA and I — ;1A are nonexpansive. Indeed, from
the Lemma 2.5, for all x, y € C, we have

(I — 2A)x — (I — AMA)y|I*> = |(x —y) — A(Ax — Ay)||?

< x = yI> — 21(Ax — Ay, J(x — y)) + 2K*2?||Ax — Ay||?
< lIx = ylI* = 27| Ax — Ay||* + 2K*2%||Ax — Ay||®

=[x = ylI* + 24(AK* — ) || Ax — Ay|)?

< llx —ylI*.
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This shows that I — AA is a nonexpansive mapping, so is I — pA. On the other hand, from Lemma 2.3 we can see that
D = Qc[Qc( — pA) — AAQc(I — nA)] = Qc I — 2A)Qc (I — pA).
That is, D is nonexpansive. This shows that # = F(S) N F(D) is closed and convex. Letting x* € ¥ = F(S) N F(D), we from
Lemma 2.3 obtain that
X" = Qc[Qc (" — nAX") — AAQc (X" — uAX™)].
Putting y* = Qc (x* — uAx*), we see that
X" = Qc(y* — rAy").
Putting e, = 8Sx,, + (1 — 8)Qc (v, — MAy,) for each n > 1, we arrive at
llen — X*[| = [16S%n + (1 — 8)Qc (Yn — AAyn) — X" ||
< 8l1Sxa — X*[| + (1 = 8)IQc (Yo — AAyn) — X" ||
< 8lxa — X1 + (1 = O)IQc (n — AAyn) — Qc(y* — AAY) ||
< 8% = X[ + (1= &) llyn — ¥7Il
= 8%y — X" + (1 = 8)1Qc (Xq — 1AX,) — Qe (X — uAX™) ||
< llxa — x*|I.
It follows that

llantt + Buxn + ynen — x|l

anllu — x|l + Ballxn — x*[| + yallen — x|l
anllu — x| + Ballxn — x*[| + yallxn — x|l
anllu — x| + (1 — o) llxa — X*||

max({|lu — x*[|, lx; —x*||}

%41 — X"l

INIA TN TA

llu —x*|I,

which implies that the sequence {x,} is bounded, so are {y,} and {e,}.
On the other hand, we have

llen1 — enll = [165%n11 + (1 — 8)Qc Wnt1 — AAYay1) — [65xn + (1 — 8)Qc (Yo — AAy)]|l
< 81ISXn1 — Sxnll + (1 = O)|Qc Wny1 — AAYn41) — Qe (Vn — AAyn) |l
=< 8lXnt1 — Xnll + (1 = &Yn41 — Yl
= Sllxnt1 — Xall + (1 — &) [1Qc Kn1 — AXn41) — Qc (xXn — pAxy) ||
=< 8lXnt1 — Xnll + (1 = &)1 Xnt1 — Xnll
= |Xn+1 — Xall- (3.1
Next, we claim that

lim |[xp11 — x|l = 0. (3.2)
n—oo
Putting t,, = % for eachn > 1, we see that

Xnp1 = (1 = Bty + Buxn, Vn > 1. (3.3)
Now, we compute ||t,+1 — t,||. From

Opp1U + Vnri1€n+1 onl + Ynen

thy1 —th =
e 1— But 1-8,
Oni1 1— Bny1 — Anp Qp 1— By —ay
= u-+ €ni1 — u-— €n
1_ﬂn+1 1_/3n+1 1_,311 1_/3n
Oni1 On
= ———(@Uu-—e + ——(en—u) +enp1 — ey,
1— ,Bn+1( n+1) 1— /311( n ) n+1 n
we have
Ont1q (04
st — tall < |t — ens1ll + ———llen — ull + llens1 — enll. (34)
1= Bnt 1— By
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Substituting (3.1) into (3.4), we arrive at

Oni1 On
ltarr — tall = Xnp1 — Xnll = ———llu — enall + ———llea — ull.
1- IBn—H 1- ,Bn

It follows from the conditions (C2) and (C3) that

lim sup(lltas1 — tall = lIXn41 = Xaa]l) < 0.
n—o00

From Lemma 2.4, we obtain that
lim ||, — x,]| = 0.
n—oo
Thanks to (3.3), we see that
Xnp1 — Xn = (1 — Bp)(tn — Xn),
which combines with (3.5) yields that (3.2) holds. Noting that
X1 — Xp = o (U — Xp) + Vn(en — Xp),
and the conditions (C2) and (C3), we obtain that

lim |le, — x,]| = 0.
n—oo

Next, we prove that

limsup(u — X, J(x, — X)) <0,

n—oo
where x = Qg u. Define a mapping G : C — C by
Gx =685+ (1—68)Qc(I —AA)Qc(U — nA)x, VxeC.
From Lemma 2.2, we see that G is a nonexpansive mapping with
F(G) = F(S) NF(Qc( — AA)Qc (I — pnA))
F(S) NF(D)
= ¥F.

On the other hand, we have

IX0 — GXnll < llxn — Xnt1ll + X1 — Gxnll
< %0 — Xpall + anllt — Gxg || + BnllXn — Gxyll.

This implies that
(1= B llxn — Gxpll < lIXn — Xp1ll + anllt — Gxy|l.
It follows from the conditions (C2), (C3) and (3.2) that

lim ||x, — Gx,|| = 0.
n—oo

Let z; be the fixed point of the contraction z + tu 4+ (1 — t)Gz, where t € (0, 1). That is,
ze =tu+ (1 —t)Gz.

It follows that
e — Xnll = 111 = £)(Gze — Xp) +t(U — Xp) |

On the other hand, for any t € (0, 1), we see that

lze — xall* = (1 — 0)(Gze — X, J (2 — Xn)) + t{U — Xn, J (2e — Xn))
= (1 —0)((Gzy — Gxn, J (2 — %n)) + (GXn — Xn, ] (2c — Xn)))
Ft{u— 2z, J(ze — xn)) + t{ze — X0, J(2e — Xn))

IA

A

I2e = Xall? 4+ 11GXn = Xl ll2e = Xl 4 ¢ u = 2¢, ] (20 = Xn)).

(1 =0 (2 — xall> + 1Gxn — xallllze — xall) + t(u — 2, J(ze — X)) + tlze — xal?

237

(3.8)
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It follows that

(ze —u, J(ze —%n)) < —11Gxn — Xnllllze — xall V¥t € (0, 1).

| -

In view of (3.8), we see that

limsup{z; — u, J(z; — x,)) <O. (3.9)

n—oo

On the other hand, we see that Qru = lim;—,¢z; and F(G) = ¥. It follows that zz — x = Qzu ast — 0. Since the fact
thatJ is strong to weak* uniformly continuous on bounded subsets of E, we see that

(U —X,J(xn — X)) — (2 — U, J(Ze — Xn))|
S u=%J& —%) = (U—=XJ& —z))| + (U =X, J(Xn — 20)) — (ze — X, ]zt — Xn))]
SIX =4, J&n — @) —J &0 — 20))| + [(ze — X, J(xn — 20))]
< lu—=XIJ(n = %) —J (0 — 2|l + llze — X[[IXn — 2| = 0, ast — 0.
Hence, for any € > 0, there exists § > 0 such that Vt € (0, §) the following inequality holds
U—%J( —X) < (2 —uJ(z — X)) +e.
This implies that

limsup(u — x, J(x, — X)) < limsup(z; — u, J(z; — %)) + €.
n—o0o n—oo

Since € is arbitrary and (3.9), we see that lim sup,,_, . (t — X, J(x, — X)) < 0. That s,

limsup(u — x, J(xpr1 — X)) <O0. (3.10)

n—oo

Finally, we show that x, — X as n — c0. Observe that

IX01 — )_(”2 = (o + BuXn + Vnen — X, J (X1 — X))
= on(u — X, J(Xnp1 — X)) + Bn(xn — X, J(Xnt1 — X)) + Yn(en — X, ] (Xn11 — X))
< an(u =X, J(Xnp1 — X)) + BullXn — X[ IXn1 — XI| + nllen — X[ 1 Xn1 — X]|
< an(u =X, J(Xnp1 — X)) + (1 — o) X0 — X[ IXn11 — X]|
_ _ 11—« _ _
< on(u =X, J(Xnp1 — X)) + S0 = X%+ %ng1 — X1,
which implies that
[Xn1 — X1 < (1= o) X0 — XN + 2000 (11 = X, ] (a 41 — R)). (3.11)

From the condition (C2), (3.10) and applying Lemma 2.6 to (3.11), we obtain that
lim ||x, —x|| = 0.
n—oo

This completes the proof. O

Remark 3.2. Since I? for all p > 2 is uniformly convex and 2-uniformly smooth, we see that Theorem 3.1 is applicable to L?
forallp > 2.

Remark 3.3. There are a number of sequences satisfying the restrictions (C1)-(C3), for example «;, = and

1 _ n
n+1’ ﬁ” — 2n+1

2
n
= — >
Yn 231 for eachn 1.

4. Applications
In real Hilbert spaces, Lemma 2.3 is reduced to the following.

Lemma 4.1. For given (x*, y*) € C, where y* = Pc(x* — uAx*), (x*, y*) is a solution of problem (1.2) if and only if x* is a fixed
point of the mapping D' : C — C defined by
D'(x) = Pc[Pc(x — wAx) — AAPc(x — pAX)],

where P¢ is a metric projection H onto C.
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It is well known that the smooth constant K = ‘/75 in Hilbert spaces. From Theorem 3.1, we can obtain the following
result immediately.

Theorem 4.1. Let H be a real Hilbert space, C a nonempty closed convex subset of H. Let A : C — H be an «-inverse-strongly
monotone mapping and S : C — C a nonexpansive mapping with a fixed point. Assume that F := F(S) N F(D') # , where D’
is defined as Lemma 4.1. Suppose that {x,} is generated by

x1=uecC,
Yn = Pc(%n — uAxy), (4.1)
Xny1 = Ol + lgnxn + Vn[(ssxn + (1 - S)PC(yn - )‘-AJ’n)]s n= 17

where § € (0, 1), A, u € (0, 2e) and {a,}, {Bn} and {y,} are sequences in [0, 1] such that

C)an+Bu+ya=1,Yn>1;
(C2) limpoo 0ty = 0, Y ooty = 00;
(C3) 0 < liminfy—o0 By < limsup,_, o, Bn < 1.

Then the sequence {x,} defined by (4.1) converges strongly to x = Pzu and (x,y) is a solution of the problem (1.2), where
§ = Pc(® — uAv.

Next, we always assume that E is a uniformly convex and 2-uniformly smooth Banach space.
Recall that an operator B with domain D(B) and range R(B) in E is accretive, if for each x; € D(B) and y; € Bx;(i = 1, 2),

2 —y1,J(x2 —x1)) = 0,

Observe that x is a zero of an accretive mapping B if and only if it is a fixed point of the pseudo-contractive mapping T := [ —B.
An accretive operator B is m-accretive if R(I + rB) = E for each r > 0. Next, we assume that B is m-accretive and has a zero
(i.e., the inclusion 0 € B(z) is solvable). The set of zeros of B is denoted by £2. Hence,

2 ={zeD@B):0eB(z)} =B10).

For each r > 0, we denote by J, the resolvent of B, i.e., J® = (I + rB)~!. Note that if B is m-accretive, then J? : E — E is
nonexpansive and F(J%) = 2 forall r > 0.
From Theorem 3.1, we can conclude the following result immediately.

Theorem 4.2. Let E be a uniformly convex and 2-uniformly smooth Banach space with the best smooth constant K, A an «-
inverse-strongly accretive mapping and B an m-accretive mapping. Assume that & := B~1(0) N A~1(0) # . Suppose that {x,}
is generated by

xy=u€kE,
Yn = Xn — AXy, (4.2)
Xn+1 :anu+ﬂnxn+yn[8]fxn+(1 —8)(Yn — AAyn)], n=>1,

where § € (0, 1), A, i € (0, a/K?) and {a,,}, {Bn} and {yy} are sequences in [0, 1] such that

(cn) an+,3n+]/n =1,Vn>1;
(C2) limp_, oy =0, Zﬁi] oy = 0Q;
(C3) 0 < liminf, o Bn < limsup,_, o Bn < 1.

Then the sequence {x,} defined by (4.2) converges strongly to X = Qgsu, where Q# is a sunny nonexpansive retraction of E
onto ¥.
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