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1. Introduction

Variational inequalities introduced by Stampacchia [1] in the early sixties have had a great impact and influence in the
development of almost all branches of pure and applied sciences and have witnessed an explosive growth in theoretical
advances, algorithmic development, etc; see for e.g. [1–18] and the references therein.
Let C be a nonempty closed convex subset of a real Hilbert space H and PC the metric projection of H onto C . Recall that

a mapping S : C → C is said to be nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C .

In this paper, we use F(S) to denote the fixed point set of the mapping S.
Let A : C → H be a mapping. Recall the following definitions.

(a) A is said to be monotone if

〈Ax− Ay, x− y〉 ≥ 0, ∀x, y ∈ C .

(b) A is said to be α-strongly monotone if there exists a positive real number α such that

〈Ax− Ay, x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ C .

(a) A is said to be α-inverse-strongly monotone if there exists a positive real number α such that

〈Ax− Ay, x− y〉 ≥ α‖Ax− Ay‖2, ∀x, y ∈ C .
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Recall that the classical variational inequality, denoted by VI(C, A), is to find u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C . (1.1)

For given z ∈ H and u ∈ C , we see that the following inequality holds

〈u− z, v − u〉 ≥ 0, ∀v ∈ C,

if and only if u = PCz. It is known that projection operator PC is nonexpansive. It is also known that PC satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H.

One can see that the variational inequality (1.1) is equivalent to a fixed point problem. An element x∗ ∈ C is a solution
of the variational inequality (1.1) if and only if x∗ ∈ C is a fixed point of the mapping PC (I − λA), where I is the identity
mapping and λ > 0 is a constant. This alternative equivalent formulation has played a significant role in the studies of the
variational inequalities and related optimization problems.
For a monotone mapping A : C → H , Verma [14–17] studied the following problem of finding (x∗, y∗) ∈ C ×C such that{
〈λAy∗ + x∗ − y∗, x− x∗〉 ≥ 0, ∀x ∈ C,
〈µAx∗ + y∗ − x∗, x− y∗〉 ≥ 0, ∀x ∈ C, (1.2)

where λ,µ > 0 are constant. If we add up the requirement that x∗ = y∗, then the problem (1.2) is reduced to the classical
variational inequality (1.1). Further, the problem (1.2) is equivalent to the following projection formulas{

x∗ = PC (I − λA)y∗,
y∗ = PC (I − µA)x∗.

The problem of finding solutions of (1.2) by using iterative methods has been studied by many authors, see [4,6,8,11,14–17]
and the references therein.
Recently, many authors also studied the problem of finding a common element of the fixed point set of nonexpansive

mappings and the solution set of variational inequalities for α-inverse-strongly monotone mappings in the framework of
real Hilbert spaces. Iiduka and Takahashi [9] introduced an iterativemethod for finding a common element of the fixed point
set of a single nonexpansive mapping and the solution set of variational inequalities for an α-inverse-strongly monotone
mapping. To be more precise, they proved the following theorem.

Theorem IT. Let C be a closed convex subset of a real Hilbert space H. Let A be an α-inverse-strongly monotone mapping of C
into H and S a nonexpansive mapping of C into itself such that F(S) ∩ VI(C, A) 6= ∅. Suppose that x1 = x ∈ C and {xn} is given
by

xn+1 = αnx+ (1− αn)SPC (xn − λnAxn)

for every n = 1, 2, . . ., where {αn} is a sequence in [0, 1) and {λn} is a sequence in [a, b]. If {αn} and {λn} are chosen so that
{λn} ⊂ [a, b] for some a, b with 0 < a < b < 2α,

lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞,

∞∑
n=1

|αn+1 − αn| <∞ and
∞∑
n=1

|λn+1 − λn| <∞,

then {xn} converges strongly to PF(S)∩VI(C,A)x.

Recently, Yao and Yao [18] further studied the problem of finding a common element in fixed point set of a nonexpansive
mapping and solution set of a classical variational inequality for a inverse-strongly monotone mapping by considering a
relaxed extra-gradient methods. More precisely, they proved the following theorem.

Theorem YY. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A be an α-inverse-strongly monotone
mapping of C into H and S a nonexpansive mapping of C into itself such that F(S)∩Ω 6= ∅, whereΩ denotes the set of solutions
of a variational inequality for the α-inverse-strongly monotone mapping. Suppose that x1 = u ∈ C and {xn}, {yn} are given by{x1 = u ∈ C,

yn = PC (xn − λnAxn),
xn+1 = αnu+ βnxn + γnSPC (I − λnA)yn, n ≥ 1,

where {αn}, {βn}, {γn} are three sequences in [0, 1] and {λn} is a sequence in [0, 2a]. If {αn}, {βn}, {γn} and {λn} are chosen so
that {λn} ⊂ [a, b] for some a, b with 0 < a < b < 2α and

(a) αn + βn + γn = 1,∀n ≥ 1;
(b) limn→∞ αn = 0,

∑
∞

n=1 αn = ∞;
(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(d) limn→∞(λn+1 − λn) = 0,

then the sequence {xn} defined by the above iterative algorithm converges strongly to PF(S)∩Ωu.
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In this paper, we consider the problem of convergence of an iterative algorithm for a system of generalized variational
inequalities and a nonexpansive mapping. Strong convergence theorems of common elements are established in the
framework of real Banach spaces. Note that no Banach space is q-uniformly smooth for q > 2; see [19] for more details.
We prove the strong convergence of the purposed iterative scheme in uniformly convex and 2-uniformly smooth Banach
spaces. The results presented in this paper improve and extend the corresponding results announced by Aoyama et al. [2],
Iiduka and Takahashi [9], Yao and Yao [18] and some others.

2. Preliminaries

Let C be a nonempty closed convex subset of a Banach space E and E∗ the dual space of E. Let 〈·, ·〉 denote the pairing
between E and E∗. For q > 1, the generalized duality mapping Jq : E → 2E

∗

is defined by

Jq(x) = {f ∈ E∗ : 〈x, f 〉 = ‖x‖q, ‖f ‖ = ‖x‖q−1}, ∀x ∈ E.

In particular, J = J2 is called the normalized dualitymapping. It is known that Jq(x) = ‖x‖q−2J(x) for all x ∈ E. If E is a Hilbert
space, then J = I , the identity mapping. Further, we have the following properties of the generalized duality mapping Jq:

(a) Jq(x) = ‖x‖q−2J2(x) for all x ∈ E with x 6= 0;
(b) Jq(tx) = tq−1Jq(x) for all x ∈ E and t ∈ [0,∞);
(c) Jq(−x) = −Jq(x) for all x ∈ E.

Let B = {x ∈ E : ‖x‖ = 1}. E is said to be uniformly convex if, for any ε ∈ (0, 2], there exists δ > 0 such that, for any
x, y ∈ B,

‖x− y‖ ≥ ε implies
∥∥∥∥x+ y2

∥∥∥∥ ≤ 1− δ.
It is known that a uniformly convex Banach space is reflexive and strictly convex. E is said to be Gâteaux differentiable if the
limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(1)

exists for each x, y ∈ B. In this case, E is said to be smooth. The norm of E is said to be uniformly Gâteaux differentiable if for
each y ∈ B, the limit (1) is attained uniformly for x ∈ B. The norm of E is said to be Fréchet differentiable, if for each x ∈ B,
the limit (1) is attained uniformly for y ∈ B. The norm of E is said to be uniformly Fréchet differentiable, if the limit (1) is
attained uniformly for x, y ∈ B. It is well-known that (uniform) Fréchet differentiability of the norm of E implies (uniform)
Gâteaux differentiability of the norm of E.
The modulus of smoothness of E is defined by

ρ(t) = sup
{
1
2
(‖x+ y‖ + ‖x− y‖)− 1 : x, y ∈ E, ‖x‖ = 1, ‖y‖ ≤ t

}
.

A Banach space E is said to be uniformly smooth if limt→0
ρ(t)
t = 0. Let q > 1. A Banach space E is said to be q-uniformly

smooth if there exists a fixed constant c > 0 such that ρ(t) ≤ ctq. It is well-known that E is uniformly smooth if and only
if the norm of E is uniformly Fréchet differentiable. If E is q-uniformly smooth, then q ≤ 2 and E is uniformly smooth, and
hence the norm of E is uniformly Fréchet differentiable, in particular, the norm of E is Fréchet differentiable. Note that
(a) E is a uniformly smooth Banach space if and only if J is single-valued and uniformly continuous on any bounded subset
of E.

(b) All Hilbert spaces, Lp (or lp) spaces (p ≥ 2) and the Sobolev spacesW pm (p ≥ 2) are 2-uniformly smooth, while Lp (or lp)
andW pm spaces (1 < p ≤ 2) are p-uniformly smooth.

(c) Typical examples of both uniformly convex and uniformly smooth Banach spaces are Lp, where p > 1. More precisely,
Lp is min{p, 2}-uniformly smooth for every p > 1.

Next, we always assume that E is a smooth Banach space. Let C be a nonempty closed convex subset of E. Recall that an
operator A of C into E is said to be accretive if

〈Ax− Ay, J(x− y)〉 ≥ 0, ∀x, y ∈ c.
A is said to be α-inverse-strongly accretive if there exists a constant α > 0 such that

〈Ax− Ay, J(x− y)〉 ≥ α‖Ax− Ay‖2, ∀x, y ∈ C .
Let D be a subset of C and Q be a mapping of C into D. Then Q is said to be sunny if
Q (Qx+ t(x− Qx)) = Qx,

whenever Qx+ t(x−Qx) ∈ C for x ∈ C and t ≥ 0. A mapping Q of C into itself is called a retraction if Q 2 = Q . If a mapping
Q of C into itself is a retraction, then Qz = z for all z ∈ R(Q ), where R(Q ) is the range of Q . A subset D of C is called a sunny
nonexpansive retract of C if there exists a sunny nonexpansive retraction from C onto D.
The following result describes a characterization of sunny nonexpansive retractions on a smooth Banach space.
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Proposition 2.1 (Reich [20]). Let E be a smooth Banach space and C a nonempty subset of E. Let Q : E → C be a retraction.
Then the following are equivalent:
(a) Q is sunny and nonexpansive;
(b) ‖Qx− Qy‖2 ≤ 〈x− y, J(Qx− Qy)〉,∀x, y ∈ E;
(c) 〈x− Qx, J(y− Qx)〉 ≤ 0,∀x ∈ E, y ∈ C .

Proposition 2.2 (Kitahara and Takahashi [21]). Let C be a nonempty closed convex subset of a uniformly convex and uniformly
smooth Banach space E and S a nonexpansive mapping of C into itself with F(S) 6= ∅. Then the set F(S) is a sunny nonexpansive
retract of C.

For the class of nonexpansive mappings, one classical way to study nonexpansive mappings is to use contractions to
approximate a nonexpansive mapping [22,23]. More precisely, take t ∈ (0, 1) and define a contraction St : C → C by

Stx = tu+ (1− t)Sx, ∀x ∈ C,

where u ∈ C is a fixed point. Banach’s contraction mapping principle guarantees that St has a unique fixed point xt in C .
That is,

xt = tu+ (1− t)Sxt .

It is unclear, in general, what the behavior of xt is as t → 0, even if S has a fixed point. However, in the case of S having
a fixed point, Browder [22] proved that if E is a Hilbert space, then xt converges strongly to a fixed point of S. Reich [23]
extended Browder’s result to the setting of Banach spaces.
Reich [23] showed that if E is uniformly smooth and if D is the fixed point set of a nonexpansive mapping from C into

itself, then there is a unique sunny nonexpansive retraction from C onto D and it can be constructed as follows.

Proposition 2.3. Let E be a uniformly smooth Banach space and S : C → C a nonexpansive mapping with a fixed point. For each
fixed u ∈ C and every t ∈ (0, 1), the unique fixed point xt ∈ C of the contraction C 3 x 7→ tu+ (1− t)Sx converges strongly as
t → 0 to a fixed point of S. Define Q : C → D by Qu = s− limt→0 xt . Then Q is the unique sunny nonexpansive retract from C
onto D; that is, Q satisfies the property:

〈u− Qu, J(y− Qu)〉 ≤ 0, ∀u ∈ C, y ∈ D.

Recently, Aoyama et al. [2] first considered the following generalized variational inequality problem in a smooth Banach
space E.
Let C be a nonempty closed convex subset of E and A an accretive operator of C into E. Find a point u ∈ C such that

〈Au, J(v − u)〉 ≥ 0, ∀v ∈ C . (2.1)

Aoyama et al. [2] proved that the variational inequality (2.1) is equivalent to a fixed point problem. An element x∗ ∈ C is
a solution of the variational inequality (2.1) if and only if x∗ ∈ C is a fixed point of the mapping QC (I − λA), where I is the
identity mapping, λ > 0 is a constant and QC is a sunny nonexpansive retraction from E onto C , see [2] for more details.
Motivated by Aoyama et al. [2], we consider the following general system of variational inequalities.
Let A : C → E be an α-inverse-strongly accretive mapping. Find (x∗, y∗) ∈ C × C such that{
〈λAy∗ + x∗ − y∗, J(x− x∗)〉 ≥ 0, ∀x ∈ C,
〈µAx∗ + y∗ − x∗, J(x− y∗)〉 ≥ 0, ∀x ∈ C . (2.2)

If we add up the requirement that x∗ = y∗, then the problem (2.2) is reduced to the generalized variational inequality (2.1).
In a real Hilbert space, the system (2.2) is reduced to (1.2).
In order to prove our main results, we also need the following lemmas.

Lemma 2.1 (Browder [24]). Let E be a uniformly convex Banach space, C a nonempty closed convex subset of E and S : C → C
a nonexpansive mapping. Then I − S is demi-closed at zero.
The following lemma is a corollary of Bruck’s results in [25].

Lemma 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let S1 and S2 be two nonexpansive mappings
from C into itself with a common fixed point. Define a mapping S : C → C by

Sx = δS1x+ (1− δ)S2x, ∀x ∈ C,

where δ is a constant in (0, 1). Then S is nonexpansive and F(S) = F(S1) ∩ F(S2).

Lemma 2.3. For given (x∗, y∗) ∈ C × C, where y∗ = QC (x∗ −µAx∗), (x∗, y∗) is a solution of problem (2.2) if and only if x∗ is a
fixed point of the mapping D : C → C defined by

D(x) = QC [QC (x− µAx)− λAQC (x− µAx)],

where λ,µ > 0 are constants and QC is a sunny nonexpansive retraction from E onto C.
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Proof.{
〈λAy∗ + x∗ − y∗, J(x− x∗)〉 ≥ 0, ∀x ∈ C,
〈µAx∗ + y∗ − x∗, J(x− y∗)〉 ≥ 0, ∀x ∈ C .
⇐⇒{
x∗ = QC (y∗ − λAy∗),
y∗ = QC (x∗ − µAx∗).
⇐⇒

x∗ = QC [QC (x∗ − µAx∗)− λAQC (x∗ − µAx∗)].

This completes the proof. �

Lemma 2.4 (Suzuki [26]). Let {xn} and {yn} be bounded sequences in a Banach space E and {βn} a sequence in [0, 1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Suppose that xn+1 = (1− βn)yn + βnxn for all integers n ≥ 0 and

lim sup
n→∞

(
‖yn+1 − yn‖ − ‖xn+1 − xn‖

)
≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.5 (Xu [19]). Let E be a real 2-uniformly smooth Banach space with the best smooth constant K . Then the following
inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, Jx〉 + 2‖Ky‖2, ∀x, y ∈ E.

Lemma 2.6 (Xu [27]). Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1− γn)αn + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
(a)

∑
∞

n=1 γn = ∞;

(b) lim supn→∞ δn/γn ≤ 0 or
∑
∞

n=1 |δn| <∞.

Then limn→∞ αn = 0.

3. Main results

Theorem 3.1. Let E be a uniformly convex and 2-uniformly smooth Banach space with the best smooth constant K , C a nonempty
closed convex subset of E andQC a sunny nonexpansive retraction fromE onto C. Let A : C → E be anα-inverse-strongly accretive
mapping and S : C → C a nonexpansive mapping with a fixed point. Assume that F := F(S) ∩ F(D) 6= ∅, where D is defined as
Lemma 2.3. Let {xn} be a sequence generated in the following manner{x1 = u ∈ C,

yn = QC (xn − µAxn),
xn+1 = αnu+ βnxn + γn[δSxn + (1− δ)QC (yn − λAyn)], n ≥ 1,

(8)

where δ ∈ (0, 1), λ,µ ∈ (0, α/K 2) and {αn}, {βn} and {γn} are sequences in [0, 1] such that
(C1) αn + βn + γn = 1,∀n ≥ 1;
(C2) limn→∞ αn = 0,

∑
∞

n=1 αn = ∞;
(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Then the sequence {xn} defined by (8) converges strongly to x̄ = QF u and (x̄, ȳ), where ȳ = QC (x̄−µAx̄) and QF is a sunny

nonexpansive retraction of C onto F , is a solution of the problem (2.2).

Proof. First, we show that F is closed and convex. We know that F(S) is closed and convex. Next, we show that F(D) is
closed and convex. For any λ,µ ∈ (0, α/K 2), we have that the mappings I − λA and I −µA are nonexpansive. Indeed, from
the Lemma 2.5, for all x, y ∈ C , we have

‖(I − λA)x− (I − λA)y‖2 = ‖(x− y)− λ(Ax− Ay)‖2

≤ ‖x− y‖2 − 2λ〈Ax− Ay, J(x− y)〉 + 2K 2λ2‖Ax− Ay‖2

≤ ‖x− y‖2 − 2λα‖Ax− Ay‖2 + 2K 2λ2‖Ax− Ay‖2

= ‖x− y‖2 + 2λ(λK 2 − α)‖Ax− Ay‖2

≤ ‖x− y‖2.
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This shows that I − λA is a nonexpansive mapping, so is I − µA. On the other hand, from Lemma 2.3 we can see that

D = QC [QC (I − µA)− λAQC (I − µA)] = QC (I − λA)QC (I − µA).

That is, D is nonexpansive. This shows that F = F(S) ∩ F(D) is closed and convex. Letting x∗ ∈ F = F(S) ∩ F(D), we from
Lemma 2.3 obtain that

x∗ = QC [QC (x∗ − µAx∗)− λAQC (x∗ − µAx∗)].

Putting y∗ = QC (x∗ − µAx∗), we see that

x∗ = QC (y∗ − λAy∗).

Putting en = δSxn + (1− δ)QC (yn − λAyn) for each n ≥ 1, we arrive at

‖en − x∗‖ = ‖δSxn + (1− δ)QC (yn − λAyn)− x∗‖
≤ δ‖Sxn − x∗‖ + (1− δ)‖QC (yn − λAyn)− x∗‖
≤ δ‖xn − x∗‖ + (1− δ)‖QC (yn − λAyn)− QC (y∗ − λAy∗)‖
≤ δ‖xn − x∗‖ + (1− δ)‖yn − y∗‖
= δ‖xn − x∗‖ + (1− δ)‖QC (xn − µAxn)− QC (x∗ − µAx∗)‖
≤ ‖xn − x∗‖.

It follows that

‖xn+1 − x∗‖ = ‖αnu+ βnxn + γnen − x∗‖
≤ αn‖u− x∗‖ + βn‖xn − x∗‖ + γn‖en − x∗‖
≤ αn‖u− x∗‖ + βn‖xn − x∗‖ + γn‖xn − x∗‖
≤ αn‖u− x∗‖ + (1− αn)‖xn − x∗‖
≤ max{‖u− x∗‖, ‖x1 − x∗‖}
= ‖u− x∗‖,

which implies that the sequence {xn} is bounded, so are {yn} and {en}.
On the other hand, we have

‖en+1 − en‖ = ‖δSxn+1 + (1− δ)QC (yn+1 − λAyn+1)− [δSxn + (1− δ)QC (yn − λAyn)]‖
≤ δ‖Sxn+1 − Sxn‖ + (1− δ)‖QC (yn+1 − λAyn+1)− QC (yn − λAyn)‖
≤ δ‖xn+1 − xn‖ + (1− δ)‖yn+1 − yn‖
= δ‖xn+1 − xn‖ + (1− δ)‖QC (xn+1 − µAxn+1)− QC (xn − µAxn)‖
≤ δ‖xn+1 − xn‖ + (1− δ)‖xn+1 − xn‖
= ‖xn+1 − xn‖. (3.1)

Next, we claim that

lim
n→∞
‖xn+1 − xn‖ = 0. (3.2)

Putting tn =
xn+1−βnxn
1−βn

for each n ≥ 1, we see that

xn+1 = (1− βn)tn + βnxn, ∀n ≥ 1. (3.3)

Now, we compute ‖tn+1 − tn‖. From

tn+1 − tn =
αn+1u+ γn+1en+1

1− βn+1
−
αnu+ γnen
1− βn

=
αn+1

1− βn+1
u+

1− βn+1 − αn+1
1− βn+1

en+1 −
αn

1− βn
u−

1− βn − αn
1− βn

en

=
αn+1

1− βn+1
(u− en+1)+

αn

1− βn
(en − u)+ en+1 − en,

we have

‖tn+1 − tn‖ ≤
αn+1

1− βn+1
‖u− en+1‖ +

αn

1− βn
‖en − u‖ + ‖en+1 − en‖. (3.4)
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Substituting (3.1) into (3.4), we arrive at

‖tn+1 − tn‖ − ‖xn+1 − xn‖ ≤
αn+1

1− βn+1
‖u− en+1‖ +

αn

1− βn
‖en − u‖.

It follows from the conditions (C2) and (C3) that

lim sup
n→∞

(
‖tn+1 − tn‖ − ‖xn+1 − xn+1‖

)
< 0.

From Lemma 2.4, we obtain that

lim
n→∞
‖tn − xn‖ = 0. (3.5)

Thanks to (3.3), we see that

xn+1 − xn = (1− βn)(tn − xn),

which combines with (3.5) yields that (3.2) holds. Noting that

xn+1 − xn = αn(u− xn)+ γn(en − xn),

and the conditions (C2) and (C3), we obtain that

lim
n→∞
‖en − xn‖ = 0. (3.6)

Next, we prove that

lim sup
n→∞

〈u− x̄, J(xn − x̄)〉 ≤ 0, (3.7)

where x̄ = QF u. Define a mapping G : C → C by

Gx = δSx+ (1− δ)QC (I − λA)QC (I − µA)x, ∀x ∈ C .

From Lemma 2.2, we see that G is a nonexpansive mapping with

F(G) = F(S) ∩ F(QC (I − λA)QC (I − µA))
= F(S) ∩ F(D)
= F .

On the other hand, we have

‖xn − Gxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Gxn‖
≤ ‖xn − xn+1‖ + αn‖u− Gxn‖ + βn‖xn − Gxn‖.

This implies that

(1− βn)‖xn − Gxn‖ ≤ ‖xn − xn+1‖ + αn‖u− Gxn‖.

It follows from the conditions (C2), (C3) and (3.2) that

lim
n→∞
‖xn − Gxn‖ = 0. (3.8)

Let zt be the fixed point of the contraction z 7→ tu+ (1− t)Gz, where t ∈ (0, 1). That is,

zt = tu+ (1− t)Gzt .

It follows that

‖zt − xn‖ = ‖(1− t)(Gzt − xn)+ t(u− xn)‖.

On the other hand, for any t ∈ (0, 1), we see that

‖zt − xn‖2 = (1− t)〈Gzt − xn, J(zt − xn)〉 + t〈u− xn, J(zt − xn)〉
= (1− t)

(
〈Gzt − Gxn, J(zt − xn)〉 + 〈Gxn − xn, J(zt − xn)〉

)
+ t〈u− zt , J(zt − xn)〉 + t〈zt − xn, J(zt − xn)〉

≤ (1− t)
(
‖zt − xn‖2 + ‖Gxn − xn‖‖zt − xn‖

)
+ t〈u− zt , J(zt − xn)〉 + t‖zt − xn‖2

≤ ‖zt − xn‖2 + ‖Gxn − xn‖‖zt − xn‖ + t〈u− zt , J(zt − xn)〉.
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It follows that

〈zt − u, J(zt − xn)〉 ≤
1
t
‖Gxn − xn‖‖zt − xn‖ ∀t ∈ (0, 1).

In view of (3.8), we see that

lim sup
n→∞

〈zt − u, J(zt − xn)〉 ≤ 0. (3.9)

On the other hand, we see that QF(G)u = limt→0 zt and F(G) = F . It follows that zt → x̄ = QF u as t → 0. Since the fact
that J is strong to weak∗ uniformly continuous on bounded subsets of E, we see that

|〈u− x̄, J(xn − x̄)〉 − 〈zt − u, J(zt − xn)〉|
≤ |〈u− x̄, J(xn − x̄)〉 − 〈u− x̄, J(xn − zt)〉| + |〈u− x̄, J(xn − zt)〉 − 〈zt − x̄, J(zt − xn)〉|
≤ |〈x̄− q, J(xn − q)− J(xn − zt)〉| + |〈zt − x̄, J(xn − zt)〉|
≤ ‖u− x̄‖‖J(xn − x̄)− J(xn − zt)‖ + ‖zt − x̄‖‖xn − zt‖ → 0, as t → 0.

Hence, for any ε > 0, there exists δ > 0 such that ∀t ∈ (0, δ) the following inequality holds

〈u− x̄, J(xn − x̄)〉 ≤ 〈zt − u, J(zt − xn)〉 + ε.

This implies that

lim sup
n→∞

〈u− x̄, J(xn − x̄)〉 ≤ lim sup
n→∞

〈zt − u, J(zt − xn)〉 + ε.

Since ε is arbitrary and (3.9), we see that lim supn→∞〈u− x̄, J(xn − x̄)〉 ≤ 0. That is,

lim sup
n→∞

〈u− x̄, J(xn+1 − x̄)〉 ≤ 0. (3.10)

Finally, we show that xn → x̄ as n→∞. Observe that

‖xn+1 − x̄‖2 = 〈αnu+ βnxn + γnen − x̄, J(xn+1 − x̄)〉
= αn〈u− x̄, J(xn+1 − x̄)〉 + βn〈xn − x̄, J(xn+1 − x̄)〉 + γn〈en − x̄, J(xn+1 − x̄)〉
≤ αn〈u− x̄, J(xn+1 − x̄)〉 + βn‖xn − x̄‖‖xn+1 − x̄‖ + γn‖en − x̄‖‖xn+1 − x̄‖
≤ αn〈u− x̄, J(xn+1 − x̄)〉 + (1− αn)‖xn − x̄‖‖xn+1 − x̄‖

≤ αn〈u− x̄, J(xn+1 − x̄)〉 +
1− αn
2

(‖xn − x̄‖2 + ‖xn+1 − x̄‖2),

which implies that

‖xn+1 − x̄‖2 ≤ (1− αn)‖xn − x̄‖2 + 2αn〈u− x̄, J(xn+1 − x̄)〉. (3.11)

From the condition (C2), (3.10) and applying Lemma 2.6 to (3.11), we obtain that

lim
n→∞
‖xn − x̄‖ = 0.

This completes the proof. �

Remark 3.2. Since Lp for all p ≥ 2 is uniformly convex and 2-uniformly smooth, we see that Theorem 3.1 is applicable to Lp
for all p ≥ 2.

Remark 3.3. There are a number of sequences satisfying the restrictions (C1)–(C3), for example αn = 1
n+1 , βn =

n
2n+1 and

γn =
n2

2n2+3n+1
for each n ≥ 1.

4. Applications

In real Hilbert spaces, Lemma 2.3 is reduced to the following.

Lemma 4.1. For given (x∗, y∗) ∈ C, where y∗ = PC (x∗ −µAx∗), (x∗, y∗) is a solution of problem (1.2) if and only if x∗ is a fixed
point of the mapping D′ : C → C defined by

D′(x) = PC [PC (x− µAx)− λAPC (x− µAx)],

where PC is a metric projection H onto C.
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It is well known that the smooth constant K =
√
2
2 in Hilbert spaces. From Theorem 3.1, we can obtain the following

result immediately.

Theorem 4.1. Let H be a real Hilbert space, C a nonempty closed convex subset of H. Let A : C → H be an α-inverse-strongly
monotone mapping and S : C → C a nonexpansive mapping with a fixed point. Assume that F := F(S) ∩ F(D′) 6= ∅, where D′
is defined as Lemma 4.1. Suppose that {xn} is generated by{x1 = u ∈ C,

yn = PC (xn − µAxn),
xn+1 = αnu+ βnxn + γn[δSxn + (1− δ)PC (yn − λAyn)], n ≥ 1,

(4.1)

where δ ∈ (0, 1), λ,µ ∈ (0, 2α) and {αn}, {βn} and {γn} are sequences in [0, 1] such that

(C1) αn + βn + γn = 1,∀n ≥ 1;
(C2) limn→∞ αn = 0,

∑
∞

n=1 αn = ∞;
(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then the sequence {xn} defined by (4.1) converges strongly to x̄ = PF u and (x̄, ȳ) is a solution of the problem (1.2), where
ȳ = PC (x̄− µAx̄).

Next, we always assume that E is a uniformly convex and 2-uniformly smooth Banach space.
Recall that an operator Bwith domain D(B) and range R(B) in E is accretive, if for each xi ∈ D(B) and yi ∈ Bxi(i = 1, 2),

〈y2 − y1, J(x2 − x1)〉 ≥ 0,

Observe that x is a zero of an accretivemapping B if and only if it is a fixed point of the pseudo-contractivemapping T := I−B.
An accretive operator B ism-accretive if R(I + rB) = E for each r > 0. Next, we assume that B ism-accretive and has a zero
(i.e., the inclusion 0 ∈ B(z) is solvable). The set of zeros of B is denoted byΩ . Hence,

Ω = {z ∈ D(B) : 0 ∈ B(z)} = B−1(0).

For each r > 0, we denote by Jr the resolvent of B, i.e., JBr = (I + rB)
−1. Note that if B is m-accretive, then JBr : E → E is

nonexpansive and F(JBr ) = Ω for all r > 0.
From Theorem 3.1, we can conclude the following result immediately.

Theorem 4.2. Let E be a uniformly convex and 2-uniformly smooth Banach space with the best smooth constant K , A an α-
inverse-strongly accretive mapping and B an m-accretive mapping. Assume that F := B−1(0) ∩ A−1(0) 6= ∅. Suppose that {xn}
is generated byx1 = u ∈ E,yn = xn − µAxn,

xn+1 = αnu+ βnxn + γn[δJBr xn + (1− δ)(yn − λAyn)], n ≥ 1,
(4.2)

where δ ∈ (0, 1), λ,µ ∈ (0, α/K 2) and {αn}, {βn} and {γn} are sequences in [0, 1] such that

(C1) αn + βn + γn = 1,∀n ≥ 1;
(C2) limn→∞ αn = 0,

∑
∞

n=1 αn = ∞;
(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then the sequence {xn} defined by (4.2) converges strongly to x̄ = QF u, where QF is a sunny nonexpansive retraction of E
onto F .
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