Convergence of an iterative algorithm for systems of variational inequalities and nonexpansive mappings with applications

Xiaolong Qin ${ }^{\text {a }}$, Sun Young Cho ${ }^{\text {a }}$, Shin Min Kang ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Gyeongsang National University, Jinju 660-701, Republic of Korea
${ }^{\mathrm{b}}$ Department of Mathematics and the RINS, Gyeongsang National University, Jinju 660-701, Republic of Korea

ARTICLE INFO

Article history:

Received 14 October 2008
Received in revised form 7 July 2009

Keywords:

Inverse-strongly accretive mapping
Variational inequality
Sunny nonexpansive retraction
Fixed point

Abstract

In this paper, we consider the problem of convergence of an iterative algorithm for a system of generalized variational inequalities and a nonexpansive mapping. Strong convergence theorems are established in the framework of real Banach spaces.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Variational inequalities introduced by Stampacchia [1] in the early sixties have had a great impact and influence in the development of almost all branches of pure and applied sciences and have witnessed an explosive growth in theoretical advances, algorithmic development, etc; see for e.g. [1-18] and the references therein.

Let C be a nonempty closed convex subset of a real Hilbert space H and P_{C} the metric projection of H onto C. Recall that a mapping $S: C \rightarrow C$ is said to be nonexpansive if

$$
\|S x-S y\| \leq\|x-y\|, \quad \forall x, y \in C
$$

In this paper, we use $F(S)$ to denote the fixed point set of the mapping S.
Let $A: C \rightarrow H$ be a mapping. Recall the following definitions.
(a) A is said to be monotone if

$$
\langle A x-A y, x-y\rangle \geq 0, \quad \forall x, y \in C
$$

(b) A is said to be α-strongly monotone if there exists a positive real number α such that

$$
\langle A x-A y, x-y\rangle \geq \alpha\|x-y\|^{2}, \quad \forall x, y \in C
$$

(a) A is said to be α-inverse-strongly monotone if there exists a positive real number α such that

$$
\langle A x-A y, x-y\rangle \geq \alpha\|A x-A y\|^{2}, \quad \forall x, y \in C .
$$

[^0]Recall that the classical variational inequality, denoted by $\operatorname{VI}(C, A)$, is to find $u \in C$ such that

$$
\begin{equation*}
\langle A u, v-u\rangle \geq 0, \quad \forall v \in C \tag{1.1}
\end{equation*}
$$

For given $z \in H$ and $u \in C$, we see that the following inequality holds

$$
\langle u-z, v-u\rangle \geq 0, \quad \forall v \in C
$$

if and only if $u=P_{C} z$. It is known that projection operator P_{C} is nonexpansive. It is also known that P_{C} satisfies

$$
\left\langle x-y, P_{C} x-P_{C} y\right\rangle \geq\left\|P_{C} x-P_{C} y\right\|^{2}, \quad \forall x, y \in H
$$

One can see that the variational inequality (1.1) is equivalent to a fixed point problem. An element $x^{*} \in C$ is a solution of the variational inequality (1.1) if and only if $x^{*} \in C$ is a fixed point of the mapping $P_{C}(I-\lambda A)$, where I is the identity mapping and $\lambda>0$ is a constant. This alternative equivalent formulation has played a significant role in the studies of the variational inequalities and related optimization problems.

For a monotone mapping $A: C \rightarrow H$, Verma [14-17] studied the following problem of finding $\left(x^{*}, y^{*}\right) \in C \times C$ such that

$$
\begin{cases}\left\langle\lambda A y^{*}+x^{*}-y^{*}, x-x^{*}\right\rangle \geq 0, & \forall x \in C, \tag{1.2}\\ \left\langle\mu A x^{*}+y^{*}-x^{*}, x-y^{*}\right\rangle \geq 0, & \forall x \in C,\end{cases}
$$

where $\lambda, \mu>0$ are constant. If we add up the requirement that $x^{*}=y^{*}$, then the problem (1.2) is reduced to the classical variational inequality (1.1). Further, the problem (1.2) is equivalent to the following projection formulas

$$
\left\{\begin{array}{l}
x^{*}=P_{C}(I-\lambda A) y^{*} \\
y^{*}=P_{C}(I-\mu A) x^{*}
\end{array}\right.
$$

The problem of finding solutions of (1.2) by using iterative methods has been studied by many authors, see [4,6,8,11,14-17] and the references therein.

Recently, many authors also studied the problem of finding a common element of the fixed point set of nonexpansive mappings and the solution set of variational inequalities for α-inverse-strongly monotone mappings in the framework of real Hilbert spaces. Iiduka and Takahashi [9] introduced an iterative method for finding a common element of the fixed point set of a single nonexpansive mapping and the solution set of variational inequalities for an α-inverse-strongly monotone mapping. To be more precise, they proved the following theorem.

Theorem IT. Let C be a closed convex subset of a real Hilbert space H. Let A be an α-inverse-strongly monotone mapping of C into H and S a nonexpansive mapping of C into itself such that $F(S) \cap \operatorname{VI}(C, A) \neq \emptyset$. Suppose that $x_{1}=x \in C$ and $\left\{x_{n}\right\}$ is given by

$$
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) S P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right)
$$

for every $n=1,2, \ldots$, where $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1)$ and $\left\{\lambda_{n}\right\}$ is a sequence in $[a, b]$. If $\left\{\alpha_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ are chosen so that $\left\{\lambda_{n}\right\} \subset[a, b]$ for some a, b with $0<a<b<2 \alpha$,

$$
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty, \quad \sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty \quad \text { and } \quad \sum_{n=1}^{\infty}\left|\lambda_{n+1}-\lambda_{n}\right|<\infty
$$

then $\left\{x_{n}\right\}$ converges strongly to $P_{F(S) \cap V I(C, A)} x$.
Recently, Yao and Yao [18] further studied the problem of finding a common element in fixed point set of a nonexpansive mapping and solution set of a classical variational inequality for a inverse-strongly monotone mapping by considering a relaxed extra-gradient methods. More precisely, they proved the following theorem.

Theorem YY. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A be an α-inverse-strongly monotone mapping of C into H and S a nonexpansive mapping of C into itself such that $F(S) \cap \Omega \neq \emptyset$, where Ω denotes the set of solutions of a variational inequality for the α-inverse-strongly monotone mapping. Suppose that $x_{1}=u \in C$ and $\left\{x_{n}\right\},\left\{y_{n}\right\}$ are given by

$$
\left\{\begin{array}{l}
x_{1}=u \in C \\
y_{n}=P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right) \\
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} S P_{C}\left(I-\lambda_{n} A\right) y_{n}, \quad n \geq 1
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ are three sequences in $[0,1]$ and $\left\{\lambda_{n}\right\}$ is a sequence in $[0,2 a]$. If $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ are chosen so that $\left\{\lambda_{n}\right\} \subset[a, b]$ for some a, b with $0<a<b<2 \alpha$ and
(a) $\alpha_{n}+\beta_{n}+\gamma_{n}=1, \forall n \geq 1$;
(b) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \bar{\alpha}_{n}=\infty$;
(c) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$;
(d) $\lim _{n \rightarrow \infty}\left(\lambda_{n+1}-\lambda_{n}\right)=0$,
then the sequence $\left\{x_{n}\right\}$ defined by the above iterative algorithm converges strongly to $P_{F(S) \cap \Omega} u$.

In this paper, we consider the problem of convergence of an iterative algorithm for a system of generalized variational inequalities and a nonexpansive mapping. Strong convergence theorems of common elements are established in the framework of real Banach spaces. Note that no Banach space is q-uniformly smooth for $q>2$; see [19] for more details. We prove the strong convergence of the purposed iterative scheme in uniformly convex and 2-uniformly smooth Banach spaces. The results presented in this paper improve and extend the corresponding results announced by Aoyama et al. [2], Iiduka and Takahashi [9], Yao and Yao [18] and some others.

2. Preliminaries

Let C be a nonempty closed convex subset of a Banach space E and E^{*} the dual space of E. Let $\langle\cdot, \cdot\rangle$ denote the pairing between E and E^{*}. For $q>1$, the generalized duality mapping $J_{q}: E \rightarrow 2^{E^{*}}$ is defined by

$$
J_{q}(x)=\left\{f \in E^{*}:\langle x, f\rangle=\|x\|^{q},\|f\|=\|x\|^{q-1}\right\}, \quad \forall x \in E .
$$

In particular, $J=J_{2}$ is called the normalized duality mapping. It is known that $J_{q}(x)=\|x\|^{q-2} J(x)$ for all $x \in E$. If E is a Hilbert space, then $J=I$, the identity mapping. Further, we have the following properties of the generalized duality mapping J_{q} :
(a) $J_{q}(x)=\|x\|^{q-2} J_{2}(x)$ for all $x \in E$ with $x \neq 0$;
(b) $J_{q}(t x)=t^{q-1} J_{q}(x)$ for all $x \in E$ and $t \in[0, \infty)$;
(c) $J_{q}(-x)=-J_{q}(x)$ for all $x \in E$.

Let $B=\{x \in E:\|x\|=1\}$. E is said to be uniformly convex if, for any $\epsilon \in(0,2]$, there exists $\delta>0$ such that, for any $x, y \in B$,

$$
\|x-y\| \geq \epsilon \quad \text { implies }\left\|\frac{x+y}{2}\right\| \leq 1-\delta
$$

It is known that a uniformly convex Banach space is reflexive and strictly convex. E is said to be Gâteaux differentiable if the limit

$$
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}
$$

exists for each $x, y \in B$. In this case, E is said to be smooth. The norm of E is said to be uniformly Gâteaux differentiable if for each $y \in B$, the limit (Δ) is attained uniformly for $x \in B$. The norm of E is said to be Fréchet differentiable, if for each $x \in B$, the limit (Δ) is attained uniformly for $y \in B$. The norm of E is said to be uniformly Fréchet differentiable, if the limit (Δ) is attained uniformly for $x, y \in B$. It is well-known that (uniform) Fréchet differentiability of the norm of E implies (uniform) Gâteaux differentiability of the norm of E.

The modulus of smoothness of E is defined by

$$
\rho(t)=\sup \left\{\frac{1}{2}(\|x+y\|+\|x-y\|)-1: x, y \in E,\|x\|=1,\|y\| \leq t\right\}
$$

A Banach space E is said to be uniformly smooth if $\lim _{t \rightarrow 0} \frac{\rho(t)}{t}=0$. Let $q>1$. A Banach space E is said to be q-uniformly smooth if there exists a fixed constant $c>0$ such that $\rho(t) \leq c t^{q}$. It is well-known that E is uniformly smooth if and only if the norm of E is uniformly Fréchet differentiable. If E is q-uniformly smooth, then $q \leq 2$ and E is uniformly smooth, and hence the norm of E is uniformly Fréchet differentiable, in particular, the norm of E is Fréchet differentiable. Note that
(a) E is a uniformly smooth Banach space if and only if J is single-valued and uniformly continuous on any bounded subset of E.
(b) All Hilbert spaces, L^{p} (or l^{p}) spaces $(p \geq 2)$ and the Sobolev spaces $W_{m}^{p}(p \geq 2)$ are 2 -uniformly smooth, while L^{p} (or l^{p}) and W_{m}^{p} spaces $(1<p \leq 2)$ are p-uniformly smooth.
(c) Typical examples of both uniformly convex and uniformly smooth Banach spaces are L^{p}, where $p>1$. More precisely, L^{p} is $\min \{p, 2\}$-uniformly smooth for every $p>1$.
Next, we always assume that E is a smooth Banach space. Let C be a nonempty closed convex subset of E. Recall that an operator A of C into E is said to be accretive if

$$
\langle A x-A y, J(x-y)\rangle \geq 0, \quad \forall x, y \in c
$$

A is said to be α-inverse-strongly accretive if there exists a constant $\alpha>0$ such that

$$
\langle A x-A y, J(x-y)\rangle \geq \alpha\|A x-A y\|^{2}, \quad \forall x, y \in C
$$

Let D be a subset of C and Q be a mapping of C into D. Then Q is said to be sunny if

$$
Q(Q x+t(x-Q x))=Q x
$$

whenever $Q x+t(x-Q x) \in C$ for $x \in C$ and $t \geq 0$. A mapping Q of C into itself is called a retraction if $Q^{2}=Q$. If a mapping Q of C into itself is a retraction, then $Q z=z$ for all $z \in R(Q)$, where $R(Q)$ is the range of Q. A subset D of C is called a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction from C onto D.

The following result describes a characterization of sunny nonexpansive retractions on a smooth Banach space.

Proposition 2.1 (Reich [20]). Let E be a smooth Banach space and C a nonempty subset of E. Let $Q: E \rightarrow C$ be a retraction. Then the following are equivalent:
(a) Q is sunny and nonexpansive;
(b) $\|Q x-Q y\|^{2} \leq\langle x-y, J(Q x-Q y)\rangle, \forall x, y \in E$;
(c) $\langle x-Q x, J(y-Q x)\rangle \leq 0, \forall x \in E, y \in C$.

Proposition 2.2 (Kitahara and Takahashi [21]). Let C be a nonempty closed convex subset of a uniformly convex and uniformly smooth Banach space E and S a nonexpansive mapping of C into itself with $F(S) \neq \emptyset$. Then the set $F(S)$ is a sunny nonexpansive retract of C.

For the class of nonexpansive mappings, one classical way to study nonexpansive mappings is to use contractions to approximate a nonexpansive mapping [22,23]. More precisely, take $t \in(0,1)$ and define a contraction $S_{t}: C \rightarrow C$ by

$$
S_{t} x=t u+(1-t) S x, \quad \forall x \in C
$$

where $u \in C$ is a fixed point. Banach's contraction mapping principle guarantees that S_{t} has a unique fixed point x_{t} in C. That is,

$$
x_{t}=t u+(1-t) S x_{t}
$$

It is unclear, in general, what the behavior of x_{t} is as $t \rightarrow 0$, even if S has a fixed point. However, in the case of S having a fixed point, Browder [22] proved that if E is a Hilbert space, then x_{t} converges strongly to a fixed point of S. Reich [23] extended Browder's result to the setting of Banach spaces.

Reich [23] showed that if E is uniformly smooth and if D is the fixed point set of a nonexpansive mapping from C into itself, then there is a unique sunny nonexpansive retraction from C onto D and it can be constructed as follows.

Proposition 2.3. Let E be a uniformly smooth Banach space and $S: C \rightarrow C$ a nonexpansive mapping with a fixed point. For each fixed $u \in C$ and every $t \in(0,1)$, the unique fixed point $x_{t} \in C$ of the contraction $C \ni x \mapsto t u+(1-t) S x$ converges strongly as $t \rightarrow 0$ to a fixed point of S. Define $Q: C \rightarrow D$ by $Q u=s-\lim _{t \rightarrow 0} x_{t}$. Then Q is the unique sunny nonexpansive retract from C onto D; that is, Q satisfies the property:

$$
\langle u-Q u, J(y-Q u)\rangle \leq 0, \quad \forall u \in C, y \in D
$$

Recently, Aoyama et al. [2] first considered the following generalized variational inequality problem in a smooth Banach space E.

Let C be a nonempty closed convex subset of E and A an accretive operator of C into E. Find a point $u \in C$ such that

$$
\begin{equation*}
\langle A u, J(v-u)\rangle \geq 0, \quad \forall v \in C \tag{2.1}
\end{equation*}
$$

Aoyama et al. [2] proved that the variational inequality (2.1) is equivalent to a fixed point problem. An element $x^{*} \in C$ is a solution of the variational inequality (2.1) if and only if $x^{*} \in C$ is a fixed point of the mapping $Q_{C}(I-\lambda A)$, where I is the identity mapping, $\lambda>0$ is a constant and Q_{C} is a sunny nonexpansive retraction from E onto C, see [2] for more details.

Motivated by Aoyama et al. [2], we consider the following general system of variational inequalities.
Let $A: C \rightarrow E$ be an α-inverse-strongly accretive mapping. Find $\left(x^{*}, y^{*}\right) \in C \times C$ such that

$$
\begin{cases}\left\langle\lambda A y^{*}+x^{*}-y^{*}, J\left(x-x^{*}\right)\right\rangle \geq 0, & \forall x \in C \tag{2.2}\\ \left\langle\mu A x^{*}+y^{*}-x^{*}, J\left(x-y^{*}\right)\right\rangle \geq 0, & \forall x \in C\end{cases}
$$

If we add up the requirement that $x^{*}=y^{*}$, then the problem (2.2) is reduced to the generalized variational inequality (2.1). In a real Hilbert space, the system (2.2) is reduced to (1.2).

In order to prove our main results, we also need the following lemmas.
Lemma 2.1 (Browder [24]). Let E be a uniformly convex Banach space, C a nonempty closed convex subset of E and $S: C \rightarrow C$ a nonexpansive mapping. Then $I-S$ is demi-closed at zero.

The following lemma is a corollary of Bruck's results in [25].
Lemma 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let S_{1} and S_{2} be two nonexpansive mappings from C into itself with a common fixed point. Define a mapping $S: C \rightarrow C$ by

$$
S x=\delta S_{1} x+(1-\delta) S_{2} x, \quad \forall x \in C
$$

where δ is a constant in $(0,1)$. Then S is nonexpansive and $F(S)=F\left(S_{1}\right) \cap F\left(S_{2}\right)$.
Lemma 2.3. For given $\left(x^{*}, y^{*}\right) \in C \times C$, where $y^{*}=Q_{C}\left(x^{*}-\mu A x^{*}\right)$, ($\left.x^{*}, y^{*}\right)$ is a solution of problem (2.2) if and only if x^{*} is a fixed point of the mapping $D: C \rightarrow C$ defined by

$$
D(x)=Q_{C}\left[Q_{C}(x-\mu A x)-\lambda A Q_{C}(x-\mu A x)\right]
$$

where $\lambda, \mu>0$ are constants and Q_{C} is a sunny nonexpansive retraction from E onto C.

Proof.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left\langle\lambda A y^{*}+x^{*}-y^{*}, J\left(x-x^{*}\right)\right\rangle \geq 0, \quad \forall x \in C, \\
\left\langle\mu A x^{*}+y^{*}-x^{*}, J\left(x-y^{*}\right)\right\rangle \geq 0,
\end{array} \forall x \in C\right.
\end{aligned} \begin{aligned}
& \Longleftrightarrow \\
& \left\{\begin{array}{l}
x^{*}=Q_{C}\left(y^{*}-\lambda A y^{*}\right), \\
y^{*}=Q_{C}\left(x^{*}-\mu A x^{*}\right) .
\end{array}\right. \\
& \Longleftrightarrow \\
& x^{*}=Q_{C}\left[Q_{C}\left(x^{*}-\mu A x^{*}\right)-\lambda A Q_{C}\left(x^{*}-\mu A x^{*}\right)\right] .
\end{aligned}
$$

This completes the proof.
Lemma 2.4 (Suzuki [26]). Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space E and $\left\{\beta_{n}\right\}$ a sequence in [0,1] with

$$
0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1
$$

Suppose that $x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} x_{n}$ for all integers $n \geq 0$ and

$$
\limsup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Then $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.
Lemma 2.5 (Xu [19]). Let E be a real 2-uniformly smooth Banach space with the best smooth constant K. Then the following inequality holds:

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, J x\rangle+2\|K y\|^{2}, \quad \forall x, y \in E
$$

Lemma 2.6 (Xu [27]). Assume that $\left\{\alpha_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
\alpha_{n+1} \leq\left(1-\gamma_{n}\right) \alpha_{n}+\delta_{n},
$$

where $\left\{\gamma_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\delta_{n}\right\}$ is a sequence such that
(a) $\sum_{n=1}^{\infty} \gamma_{n}=\infty$;
(b) $\lim \sup _{n \rightarrow \infty} \delta_{n} / \gamma_{n} \leq 0$ or $\sum_{n=1}^{\infty}\left|\delta_{n}\right|<\infty$.

Then $\lim _{n \rightarrow \infty} \alpha_{n}=0$.

3. Main results

Theorem 3.1. Let E be a uniformly convex and 2-uniformly smooth Banach space with the best smooth constant K, C a nonempty closed convex subset of E and Q_{C} a sunny nonexpansive retraction from E onto C. Let $A: C \rightarrow E$ be an α-inverse-strongly accretive mapping and $S: C \rightarrow C$ a nonexpansive mapping with a fixed point. Assume that $\mathcal{F}:=F(S) \cap F(D) \neq \emptyset$, where D is defined as Lemma 2.3. Let $\left\{x_{n}\right\}$ be a sequence generated in the following manner

$$
\left\{\begin{array}{l}
x_{1}=u \in C \\
y_{n}=Q_{C}\left(x_{n}-\mu A x_{n}\right) \\
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n}\left[\delta S x_{n}+(1-\delta) Q_{C}\left(y_{n}-\lambda A y_{n}\right)\right], \quad n \geq 1
\end{array}\right.
$$

where $\delta \in(0,1), \lambda, \mu \in\left(0, \alpha / K^{2}\right)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$ such that
(C1) $\alpha_{n}+\beta_{n}+\gamma_{n}=1, \forall n \geq 1$;
(C2) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \bar{\alpha}_{n}=\infty$;
(C3) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$.
Then the sequence $\left\{x_{n}\right\}$ defined by (Φ) converges strongly to $\bar{x}=Q_{\mathcal{F}} u$ and (\bar{x}, \bar{y}), where $\bar{y}=Q_{C}(\bar{x}-\mu A \bar{x})$ and $Q_{\mathcal{F}}$ is a sunny nonexpansive retraction of C onto \mathcal{F}, is a solution of the problem (2.2).
Proof. First, we show that \mathcal{F} is closed and convex. We know that $F(S)$ is closed and convex. Next, we show that $F(D)$ is closed and convex. For any $\lambda, \mu \in\left(0, \alpha / K^{2}\right)$, we have that the mappings $I-\lambda A$ and $I-\mu A$ are nonexpansive. Indeed, from the Lemma 2.5, for all $x, y \in C$, we have

$$
\begin{aligned}
\|(I-\lambda A) x-(I-\lambda A) y\|^{2} & =\|(x-y)-\lambda(A x-A y)\|^{2} \\
& \leq\|x-y\|^{2}-2 \lambda\langle A x-A y, J(x-y)\rangle+2 K^{2} \lambda^{2}\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2}-2 \lambda \alpha\|A x-A y\|^{2}+2 K^{2} \lambda^{2}\|A x-A y\|^{2} \\
& =\|x-y\|^{2}+2 \lambda\left(\lambda K^{2}-\alpha\right)\|A x-A y\|^{2} \\
& \leq\|x-y\|^{2} .
\end{aligned}
$$

This shows that $I-\lambda A$ is a nonexpansive mapping, so is $I-\mu A$. On the other hand, from Lemma 2.3 we can see that

$$
D=Q_{C}\left[Q_{C}(I-\mu A)-\lambda A Q_{C}(I-\mu A)\right]=Q_{C}(I-\lambda A) Q_{C}(I-\mu A) .
$$

That is, D is nonexpansive. This shows that $\mathcal{F}=F(S) \cap F(D)$ is closed and convex. Letting $x^{*} \in \mathcal{F}=F(S) \cap F(D)$, we from Lemma 2.3 obtain that

$$
x^{*}=Q_{C}\left[Q_{C}\left(x^{*}-\mu A x^{*}\right)-\lambda A Q_{C}\left(x^{*}-\mu A x^{*}\right)\right]
$$

Putting $y^{*}=Q_{C}\left(x^{*}-\mu A x^{*}\right)$, we see that

$$
x^{*}=Q_{C}\left(y^{*}-\lambda A y^{*}\right) .
$$

Putting $e_{n}=\delta S x_{n}+(1-\delta) Q_{c}\left(y_{n}-\lambda A y_{n}\right)$ for each $n \geq 1$, we arrive at

$$
\begin{aligned}
\left\|e_{n}-x^{*}\right\| & =\left\|\delta S x_{n}+(1-\delta) Q_{C}\left(y_{n}-\lambda A y_{n}\right)-x^{*}\right\| \\
& \leq \delta\left\|S x_{n}-x^{*}\right\|+(1-\delta)\left\|Q_{C}\left(y_{n}-\lambda A y_{n}\right)-x^{*}\right\| \\
& \leq \delta\left\|x_{n}-x^{*}\right\|+(1-\delta)\left\|Q_{C}\left(y_{n}-\lambda A y_{n}\right)-Q_{C}\left(y^{*}-\lambda A y^{*}\right)\right\| \\
& \leq \delta\left\|x_{n}-x^{*}\right\|+(1-\delta)\left\|y_{n}-y^{*}\right\| \\
& =\delta\left\|x_{n}-x^{*}\right\|+(1-\delta)\left\|Q_{C}\left(x_{n}-\mu A x_{n}\right)-Q_{C}\left(x^{*}-\mu A x^{*}\right)\right\| \\
& \leq\left\|x_{n}-x^{*}\right\| .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\| & =\left\|\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} e_{n}-x^{*}\right\| \\
& \leq \alpha_{n}\left\|u-x^{*}\right\|+\beta_{n}\left\|x_{n}-x^{*}\right\|+\gamma_{n}\left\|e_{n}-x^{*}\right\| \\
& \leq \alpha_{n}\left\|u-x^{*}\right\|+\beta_{n}\left\|x_{n}-x^{*}\right\|+\gamma_{n}\left\|x_{n}-x^{*}\right\| \\
& \leq \alpha_{n}\left\|u-x^{*}\right\|+\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\| \\
& \leq \max \left\{\left\|u-x^{*}\right\|,\left\|x_{1}-x^{*}\right\|\right\} \\
& =\left\|u-x^{*}\right\|,
\end{aligned}
$$

which implies that the sequence $\left\{x_{n}\right\}$ is bounded, so are $\left\{y_{n}\right\}$ and $\left\{e_{n}\right\}$.
On the other hand, we have

$$
\begin{align*}
\left\|e_{n+1}-e_{n}\right\| & =\left\|\delta S x_{n+1}+(1-\delta) Q_{C}\left(y_{n+1}-\lambda A y_{n+1}\right)-\left[\delta S x_{n}+(1-\delta) Q_{C}\left(y_{n}-\lambda A y_{n}\right)\right]\right\| \\
& \leq \delta\left\|S x_{n+1}-S x_{n}\right\|+(1-\delta)\left\|Q_{C}\left(y_{n+1}-\lambda A y_{n+1}\right)-Q_{C}\left(y_{n}-\lambda A y_{n}\right)\right\| \\
& \leq \delta\left\|x_{n+1}-x_{n}\right\|+(1-\delta)\left\|y_{n+1}-y_{n}\right\| \\
& =\delta\left\|x_{n+1}-x_{n}\right\|+(1-\delta)\left\|Q_{C}\left(x_{n+1}-\mu A x_{n+1}\right)-Q_{C}\left(x_{n}-\mu A x_{n}\right)\right\| \\
& \leq \delta\left\|x_{n+1}-x_{n}\right\|+(1-\delta)\left\|x_{n+1}-x_{n}\right\| \\
& =\left\|x_{n+1}-x_{n}\right\| . \tag{3.1}
\end{align*}
$$

Next, we claim that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.2}
\end{equation*}
$$

Putting $t_{n}=\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}}$ for each $n \geq 1$, we see that

$$
\begin{equation*}
x_{n+1}=\left(1-\beta_{n}\right) t_{n}+\beta_{n} x_{n}, \quad \forall n \geq 1 \tag{3.3}
\end{equation*}
$$

Now, we compute $\left\|t_{n+1}-t_{n}\right\|$. From

$$
\begin{aligned}
t_{n+1}-t_{n} & =\frac{\alpha_{n+1} u+\gamma_{n+1} e_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n} u+\gamma_{n} e_{n}}{1-\beta_{n}} \\
& =\frac{\alpha_{n+1}}{1-\beta_{n+1}} u+\frac{1-\beta_{n+1}-\alpha_{n+1}}{1-\beta_{n+1}} e_{n+1}-\frac{\alpha_{n}}{1-\beta_{n}} u-\frac{1-\beta_{n}-\alpha_{n}}{1-\beta_{n}} e_{n} \\
& =\frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(u-e_{n+1}\right)+\frac{\alpha_{n}}{1-\beta_{n}}\left(e_{n}-u\right)+e_{n+1}-e_{n},
\end{aligned}
$$

we have

$$
\begin{equation*}
\left\|t_{n+1}-t_{n}\right\| \leq \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left\|u-e_{n+1}\right\|+\frac{\alpha_{n}}{1-\beta_{n}}\left\|e_{n}-u\right\|+\left\|e_{n+1}-e_{n}\right\| \tag{3.4}
\end{equation*}
$$

Substituting (3.1) into (3.4), we arrive at

$$
\left\|t_{n+1}-t_{n}\right\|-\left\|x_{n+1}-x_{n}\right\| \leq \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left\|u-e_{n+1}\right\|+\frac{\alpha_{n}}{1-\beta_{n}}\left\|e_{n}-u\right\|
$$

It follows from the conditions (C2) and (C3) that

$$
\limsup _{n \rightarrow \infty}\left(\left\|t_{n+1}-t_{n}\right\|-\left\|x_{n+1}-x_{n+1}\right\|\right)<0
$$

From Lemma 2.4, we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|t_{n}-x_{n}\right\|=0 \tag{3.5}
\end{equation*}
$$

Thanks to (3.3), we see that

$$
x_{n+1}-x_{n}=\left(1-\beta_{n}\right)\left(t_{n}-x_{n}\right)
$$

which combines with (3.5) yields that (3.2) holds. Noting that

$$
x_{n+1}-x_{n}=\alpha_{n}\left(u-x_{n}\right)+\gamma_{n}\left(e_{n}-x_{n}\right),
$$

and the conditions (C2) and (C3), we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|e_{n}-x_{n}\right\|=0 \tag{3.6}
\end{equation*}
$$

Next, we prove that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-\bar{x}, J\left(x_{n}-\bar{x}\right)\right\rangle \leq 0 \tag{3.7}
\end{equation*}
$$

where $\bar{x}=Q_{\mathcal{F}} u$. Define a mapping $G: C \rightarrow C$ by

$$
G x=\delta S x+(1-\delta) Q_{C}(I-\lambda A) Q_{C}(I-\mu A) x, \quad \forall x \in C
$$

From Lemma 2.2, we see that G is a nonexpansive mapping with

$$
\begin{aligned}
F(G) & =F(S) \cap F\left(Q_{C}(I-\lambda A) Q_{C}(I-\mu A)\right) \\
& =F(S) \cap F(D) \\
& =\mathcal{F}
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
\left\|x_{n}-G x_{n}\right\| & \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-G x_{n}\right\| \\
& \leq\left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|u-G x_{n}\right\|+\beta_{n}\left\|x_{n}-G x_{n}\right\| .
\end{aligned}
$$

This implies that

$$
\left(1-\beta_{n}\right)\left\|x_{n}-G x_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|u-G x_{n}\right\|
$$

It follows from the conditions (C2), (C3) and (3.2) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-G x_{n}\right\|=0 \tag{3.8}
\end{equation*}
$$

Let z_{t} be the fixed point of the contraction $z \mapsto t u+(1-t) G z$, where $t \in(0,1)$. That is,

$$
z_{t}=t u+(1-t) G z_{t}
$$

It follows that

$$
\left\|z_{t}-x_{n}\right\|=\left\|(1-t)\left(G z_{t}-x_{n}\right)+t\left(u-x_{n}\right)\right\|
$$

On the other hand, for any $t \in(0,1)$, we see that

$$
\begin{aligned}
\left\|z_{t}-x_{n}\right\|^{2}= & (1-t)\left\langle G z_{t}-x_{n}, J\left(z_{t}-x_{n}\right)\right\rangle+t\left\langle u-x_{n}, J\left(z_{t}-x_{n}\right)\right\rangle \\
= & (1-t)\left(\left\langle G z_{t}-G x_{n}, J\left(z_{t}-x_{n}\right)\right\rangle+\left\langle G x_{n}-x_{n}, J\left(z_{t}-x_{n}\right)\right\rangle\right) \\
& +t\left\langle u-z_{t}, J\left(z_{t}-x_{n}\right)\right\rangle+t\left\langle z_{t}-x_{n}, J\left(z_{t}-x_{n}\right)\right\rangle \\
\leq & (1-t)\left(\left\|z_{t}-x_{n}\right\|^{2}+\left\|G x_{n}-x_{n}\right\|\left\|z_{t}-x_{n}\right\|\right)+t\left\langle u-z_{t}, J\left(z_{t}-x_{n}\right)\right\rangle+t\left\|z_{t}-x_{n}\right\|^{2} \\
\leq & \left\|z_{t}-x_{n}\right\|^{2}+\left\|G x_{n}-x_{n}\right\|\left\|z_{t}-x_{n}\right\|+t\left\langle u-z_{t}, J\left(z_{t}-x_{n}\right)\right\rangle .
\end{aligned}
$$

It follows that

$$
\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle \leq \frac{1}{t}\left\|G x_{n}-x_{n}\right\|\left\|z_{t}-x_{n}\right\| \quad \forall t \in(0,1)
$$

In view of (3.8), we see that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle \leq 0 \tag{3.9}
\end{equation*}
$$

On the other hand, we see that $Q_{F(G)} u=\lim _{t \rightarrow 0} z_{t}$ and $F(G)=\mathcal{F}$. It follows that $z_{t} \rightarrow \bar{x}=Q_{\mathcal{F}} u$ as $t \rightarrow 0$. Since the fact that J is strong to weak* uniformly continuous on bounded subsets of E, we see that

$$
\begin{aligned}
& \left|\left\langle u-\bar{x}, J\left(x_{n}-\bar{x}\right)\right\rangle-\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle\right| \\
& \quad \leq\left|\left\langle u-\bar{x}, J\left(x_{n}-\bar{x}\right)\right\rangle-\left\langle u-\bar{x}, J\left(x_{n}-z_{t}\right)\right\rangle\right|+\left|\left\langle u-\bar{x}, J\left(x_{n}-z_{t}\right)\right\rangle-\left\langle z_{t}-\bar{x}, J\left(z_{t}-x_{n}\right)\right\rangle\right| \\
& \quad \leq\left|\left\langle\bar{x}-q, J\left(x_{n}-q\right)-J\left(x_{n}-z_{t}\right)\right\rangle\right|+\left|\left\langle z_{t}-\bar{x}, J\left(x_{n}-z_{t}\right)\right\rangle\right| \\
& \quad \leq\|u-\bar{x}\|\left\|J\left(x_{n}-\bar{x}\right)-J\left(x_{n}-z_{t}\right)\right\|+\left\|z_{t}-\bar{x}\right\|\left\|x_{n}-z_{t}\right\| \rightarrow 0, \quad \text { as } t \rightarrow 0 .
\end{aligned}
$$

Hence, for any $\epsilon>0$, there exists $\delta>0$ such that $\forall t \in(0, \delta)$ the following inequality holds

$$
\left\langle u-\bar{x}, J\left(x_{n}-\bar{x}\right)\right\rangle \leq\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle+\epsilon .
$$

This implies that

$$
\limsup _{n \rightarrow \infty}\left\langle u-\bar{x}, J\left(x_{n}-\bar{x}\right)\right\rangle \leq \limsup _{n \rightarrow \infty}\left\langle z_{t}-u, J\left(z_{t}-x_{n}\right)\right\rangle+\epsilon
$$

Since ϵ is arbitrary and (3.9), we see that $\lim \sup _{n \rightarrow \infty}\left\langle u-\bar{x}, J\left(x_{n}-\bar{x}\right)\right\rangle \leq 0$. That is,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle u-\bar{x}, J\left(x_{n+1}-\bar{x}\right)\right\rangle \leq 0 \tag{3.10}
\end{equation*}
$$

Finally, we show that $x_{n} \rightarrow \bar{x}$ as $n \rightarrow \infty$. Observe that

$$
\begin{aligned}
\left\|x_{n+1}-\bar{x}\right\|^{2} & =\left\langle\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n} e_{n}-\bar{x}, J\left(x_{n+1}-\bar{x}\right)\right\rangle \\
& =\alpha_{n}\left\langle u-\bar{x}, J\left(x_{n+1}-\bar{x}\right)\right\rangle+\beta_{n}\left\langle x_{n}-\bar{x}, J\left(x_{n+1}-\bar{x}\right)\right\rangle+\gamma_{n}\left\langle e_{n}-\bar{x}, J\left(x_{n+1}-\bar{x}\right)\right\rangle \\
& \leq \alpha_{n}\left\langle u-\bar{x}, J\left(x_{n+1}-\bar{x}\right)\right\rangle+\beta_{n}\left\|x_{n}-\bar{x}\right\|\left\|x_{n+1}-\bar{x}\right\|+\gamma_{n}\left\|e_{n}-\bar{x}\right\|\left\|x_{n+1}-\bar{x}\right\| \\
& \leq \alpha_{n}\left\langle u-\bar{x}, J\left(x_{n+1}-\bar{x}\right)\right\rangle+\left(1-\alpha_{n}\right)\left\|x_{n}-\bar{x}\right\|\left\|x_{n+1}-\bar{x}\right\| \\
& \leq \alpha_{n}\left\langle u-\bar{x}, J\left(x_{n+1}-\bar{x}\right)\right\rangle+\frac{1-\alpha_{n}}{2}\left(\left\|x_{n}-\bar{x}\right\|^{2}+\left\|x_{n+1}-\bar{x}\right\|^{2}\right),
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left\|x_{n+1}-\bar{x}\right\|^{2} \leq\left(1-\alpha_{n}\right)\left\|x_{n}-\bar{x}\right\|^{2}+2 \alpha_{n}\left\langle u-\bar{x}, J\left(x_{n+1}-\bar{x}\right)\right\rangle . \tag{3.11}
\end{equation*}
$$

From the condition (C2), (3.10) and applying Lemma 2.6 to (3.11), we obtain that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-\bar{x}\right\|=0
$$

This completes the proof.
Remark 3.2. Since L^{p} for all $p \geq 2$ is uniformly convex and 2-uniformly smooth, we see that Theorem 3.1 is applicable to L^{p} for all $p \geq 2$.

Remark 3.3. There are a number of sequences satisfying the restrictions (C1)-(C3), for example $\alpha_{n}=\frac{1}{n+1}, \beta_{n}=\frac{n}{2 n+1}$ and $\gamma_{n}=\frac{n^{2}}{2 n^{2}+3 n+1}$ for each $n \geq 1$.

4. Applications

In real Hilbert spaces, Lemma 2.3 is reduced to the following.
Lemma 4.1. For given $\left(x^{*}, y^{*}\right) \in C$, where $y^{*}=P_{C}\left(x^{*}-\mu A x^{*}\right),\left(x^{*}, y^{*}\right)$ is a solution of problem (1.2) if and only if x^{*} is a fixed point of the mapping $D^{\prime}: C \rightarrow C$ defined by

$$
D^{\prime}(x)=P_{C}\left[P_{C}(x-\mu A x)-\lambda A P_{C}(x-\mu A x)\right],
$$

where P_{C} is a metric projection H onto C.

It is well known that the smooth constant $K=\frac{\sqrt{2}}{2}$ in Hilbert spaces. From Theorem 3.1, we can obtain the following result immediately.

Theorem 4.1. Let H be a real Hilbert space, C a nonempty closed convex subset of H. Let $A: C \rightarrow H$ be an α-inverse-strongly monotone mapping and $S: C \rightarrow C$ a nonexpansive mapping with a fixed point. Assume that $F:=F(S) \cap F\left(D^{\prime}\right) \neq \emptyset$, where D^{\prime} is defined as Lemma 4.1. Suppose that $\left\{x_{n}\right\}$ is generated by

$$
\left\{\begin{array}{l}
x_{1}=u \in C \tag{4.1}\\
y_{n}=P_{C}\left(x_{n}-\mu A x_{n}\right) \\
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n}\left[\delta S x_{n}+(1-\delta) P_{C}\left(y_{n}-\lambda A y_{n}\right)\right], \quad n \geq 1
\end{array}\right.
$$

where $\delta \in(0,1), \lambda, \mu \in(0,2 \alpha)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$ such that
(C1) $\alpha_{n}+\beta_{n}+\gamma_{n}=1, \forall n \geq 1$;
(C2) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(C3) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$.
Then the sequence $\left\{x_{n}\right\}$ defined by (4.1) converges strongly to $\bar{x}=P_{\mathcal{F}}$ u and (\bar{x}, \bar{y}) is a solution of the problem (1.2), where $\bar{y}=P_{C}(\bar{x}-\mu A \bar{x})$.

Next, we always assume that E is a uniformly convex and 2-uniformly smooth Banach space.
Recall that an operator B with domain $D(B)$ and range $R(B)$ in E is accretive, if for each $x_{i} \in D(B)$ and $y_{i} \in B x_{i}(i=1,2)$,

$$
\left\langle y_{2}-y_{1}, J\left(x_{2}-x_{1}\right)\right\rangle \geq 0
$$

Observe that x is a zero of an accretive mapping B if and only if it is a fixed point of the pseudo-contractive mapping $T:=I-B$. An accretive operator B is m-accretive if $R(I+r B)=E$ for each $r>0$. Next, we assume that B is m-accretive and has a zero (i.e., the inclusion $0 \in B(z)$ is solvable). The set of zeros of B is denoted by Ω. Hence,

$$
\Omega=\{z \in D(B): 0 \in B(z)\}=B^{-1}(0)
$$

For each $r>0$, we denote by J_{r} the resolvent of B, i.e., $J_{r}^{B}=(I+r B)^{-1}$. Note that if B is m-accretive, then $J_{r}^{B}: E \rightarrow E$ is nonexpansive and $F\left(J_{r}^{B}\right)=\Omega$ for all $r>0$.

From Theorem 3.1, we can conclude the following result immediately.
Theorem 4.2. Let E be a uniformly convex and 2-uniformly smooth Banach space with the best smooth constant K, A an α -inverse-strongly accretive mapping and B an m-accretive mapping. Assume that $\mathcal{F}:=B^{-1}(0) \cap A^{-1}(0) \neq \emptyset$. Suppose that $\left\{x_{n}\right\}$ is generated by

$$
\left\{\begin{array}{l}
x_{1}=u \in E \tag{4.2}\\
y_{n}=x_{n}-\mu A x_{n}, \\
x_{n+1}=\alpha_{n} u+\beta_{n} x_{n}+\gamma_{n}\left[\delta J_{r}^{B} x_{n}+(1-\delta)\left(y_{n}-\lambda A y_{n}\right)\right], \quad n \geq 1
\end{array}\right.
$$

where $\delta \in(0,1), \lambda, \mu \in\left(0, \alpha / K^{2}\right)$ and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are sequences in $[0,1]$ such that
(C1) $\alpha_{n}+\beta_{n}+\gamma_{n}=1, \forall n \geq 1$;
(C2) $\lim _{n \rightarrow \infty} \alpha_{n}=0, \sum_{n=1}^{\infty} \alpha_{n}=\infty$;
(C3) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$.
Then the sequence $\left\{x_{n}\right\}$ defined by (4.2) converges strongly to $\bar{x}=Q_{\mathcal{F}} u$, where $Q_{\mathcal{F}}$ is a sunny nonexpansive retraction of E onto \mathcal{F}.

Acknowledgment

The authors are extremely grateful to the anonymous referee for the useful suggestions that improved the contents of the paper.

References

[1] G. Stampacchia, Formes bilineaires coercivites sur les ensembles convexes, CR Acad. Sci. Paris 258 (1964) 4413-4416.
[2] K. Aoyama, H. Iiduka, W. Takahashi, Weak convergence of an iterative sequence for accretive operators in Banach spaces, Fixed Point Theory Appl. 2006 (2006) 35390.
[3] Y.J. Cho, Y. Yao, H. Zhou, Strong convergence of an iterative algorithm for accretive operators in Banach spaces, J. Comput. Anal. Appl. 10 (2008) 113-125.
[4] S.S. Chang, H.W.J. Lee, C.K. Chan, Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces, Appl. Math. Lett. 20 (2007) 329-334.
[5] L.C. Ceng, J.C. Yao, An extragradient-like approximation method for variational inequality problems and fixed point problems, Appl. Math. Comput. 190 (2007) 205-215.
[6] L.C. Ceng, C.Y. Wang, J.C. Yao, Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Meth. Oper. Res. 67 (2008) 375-390.
[7] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.
[8] Z. Huang, M.A. Noor, An explicit projection method for a system of nonlinear variational inequalities with different (γ, r)-cocoercive mappings, Appl. Math. Comput. 190 (2007) 356-361.
[9] H. Iiduka, W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005) 341-350.
[10] M. Aslam Noor, Some developments in general variational inequalities, Appl. Math. Comput. 152 (2004) 199-277.
[11] X. Qin, S.M. Kang, M. Shang, Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces, Appl. Anal. 87 (2008) $421-430$.
[12] X. Qin, M. Shang, H. Zhou, Strong convergence of a general iterative method for variational inequality problems and fixed point problems in Hilbert spaces, Appl. Math. Comput. 200 (2008) 242-253.
[13] X. Qin, M.A. Noor, General Wiener-Hopf equation technique for nonexpansive mappings and general variational inequalities in Hilbert spaces, Appl. Math. Comput. 201 (2008) 716-722.
[14] R.U. Verma, Generalized system for relaxed cocoercive variational inequalities and its projection methods, J. Optim. Theory Appl. 121 (2004) 203-210.
[15] R.U. Verma, Generalized class of partial relaxed monotonicity and its connections, Adv. Nonlinear Var. Inequal. 7 (2004) 155-164.
[16] R.U. Verma, General convergence analysis for two-step projection methods and applications to variational problems, Appl. Math. Lett. 18 (2005) 1286-1292.
[17] R.U. Verma, On a new system of nonlinear variational inequalities and associated iterative algorithms, Math. Sci. Res. Hot-Line 3 (1999) 65-68.
[18] Y. Yao, J.C. Yao, On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput. 186 (2007) $1551-1558$.
[19] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991) 1127-1138.
[20] S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl. 44 (1973) 57-70.
[21] S. Kitahara, W. Takahashi, Image recovery by convex combinations of sunny nonexpansive retractions, Topol. Meth. Nonlinear Anal. 2 (1993) $333-342$.
[22] F.E. Browder, Fixed point theorems for noncompact mappings in Hilbert spaces, Proc. Natl. Acad. Sci. USA 53 (1965) 1272-1276.
[23] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980) $287-292$.
[24] F.E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Symp. Pure. Math. 18 (1976) 78-81.
[25] R.E. Bruck, Properties of fixed point sets of nonexpansive mappings in Banach spaces, Tras. Amer. Math. Soc. 179 (1973) $251-262$.
[26] T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochne integrals, J. Math. Anal. Appl. 305 (2005) 227-239.
[27] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002) 240-256.

[^0]: * Corresponding author.

 E-mail addresses: qxlxajh@163.com (X. Qin), ooly61@yahoo.co.kr (S.Y. Cho), smkang@gnu.ac.kr (S.M. Kang).

