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Let Xr be the moduli of SL(3,C) representations of a rank r
free group. In this paper we determine minimal generators of
the coordinate ring of Xr . This at once gives explicit global
coordinates for the moduli and determines the dimension of the
moduli’s minimal affine embedding. Along the way, we utilize
results concerning the moduli of r-tuples of matrices in gl(3,C).
Consequently, we also state general invariant theoretic cor-
respondences between the coordinate rings of the moduli of r-
tuples of elements in gl(n,C), sl(n,C), and SL(n,C).
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1. Introduction

The purpose of this paper is to construct minimal affine embeddings of SL(3,C)-character varieties
of free groups.

Let Fr be a free group of rank r. The Lie group SL(3,C) acts by conjugation on the space
of group homomorphisms Rr = Hom(Fr,SL(3,C)). For any such homomorphism ρ let [ρ] :=
{gρg−1 | g ∈ SL(3,C)} be its orbit closure, and define the following equivalence relation in these
terms: ρ1 ∼ ρ2 if and only if [ρ1] ∩ [ρ2] �= ∅. Call the set of equivalence classes of this relation Xr ,
and denote such a class by [ρ]. We will see Xr is an irreducible affine algebraic set (an affine variety).
Let Nr = r

240 (396 + 65r2 − 5r3 + 19r4 + 5r5). We explicitly construct subsets Wr := {w1, . . . ,wNr } ⊂ Fr ,
and show

Theorem 1. The mappings tWr : Xr → C
Nr given by

[ρ] 	→ (
tr

(
ρ(w1)

)
, . . . , tr

(
ρ(wNr )

))
are polynomial embeddings where Nr is minimal among all such embeddings.
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Most of the work in establishing this theorem is in the construction of the sets Wr and in es-
tablishing minimality. We remark that given any competing set in the group ring of Fr , denoted
Sr ⊂ CFr , so that tSr is likewise an affine embedding, our constructive proof implicitly gives polyno-
mial transformations between the isomorphic images tWr (Xr) and tSr (Xr).

To prove this theorem, we first show that only traces of evaluations at words in Fr are necessary
to construct such embeddings. This is the content of Sections 1 and 2. In particular, the remainder
of this section is devoted to setting the terms, notation, and background necessary for our discus-
sion. We then state our main theorem explicitly and prove its corollaries. Section 2 discusses general
relationships between Xr and some related varieties for which there are established results we find
useful. We prove our main theorem constructively in Section 3. First we show that only a subset of
certain types of words in Fr are necessary (first reductions), then we count exactly how many of each
type is necessary (second reductions). Minimality will then follow from our general considerations in
Section 2.

1.1. Quotient varieties

Let G = SL(n,C), and Y be a G-variety; that is, a variety for which G acts rationally (Y ×G → Y is
regular). The representation variety Rr = Hom(Fr,G) ≈ G×r , and the spaces gl(n,C)×r and sl(n,C)×r

are affine G-varieties. G acts on each by simultaneous conjugation in each factor. Explicitly, this action
is defined as follows. Let (A1, . . . , Ar) be in one of G×r,gl(n,C)×r , or sl(n,C)×r and let g be in G.
Then

g · (A1, . . . , Ar) = (
g A1 g−1, . . . , g Ar g−1).

The orbit space Y /G is not generally a variety; not Hausdorff either. However, there is a categorical
quotient X = Y //G. This quotient is constructed as follows. Let C[Y ] be the coordinate ring of Y ; that
is, the ring of polynomial functions on Y . The conjugation action extends to C[Y ] and the subring of
invariants of this action, C[Y ]G , is the set of polynomial functions on Y invariant under conjugation.
In other words, these polynomials are defined on orbits. But they do not distinguish orbits whose
closures intersect (polynomials are continuous!).

The following definition makes clear a technical condition we will need.

Definition 2. A linear algebraic group G is called linearly reductive if for any rational representa-
tion ρ : G → GL(V ) and any invariant vector v �= 0 there exists a linear invariant function f so
f (v) �= 0.

The “unitary trick” shows that GL(n,C) and SL(n,C) are linearly reductive.
Since G is (linearly) reductive, C[Y ]G is a finitely generated domain and so X = Specmax(C[Y ]G)

is an affine variety (see Nagata [1]).
When Y = Rr the quotient Xr is called the G-character variety of Fr since it is the largest variety

which parametrizes conjugacy classes of representations (characters). In this case, there is a one-to-
one correspondence between the points of Xr and the orbits of completely reducible representations
(representations that are sums of irreducible representations); these are the points whose orbits are
closed. Any representation can be continuously and conjugate-invariantly deformed to one that is
completely reducible, so the points of Xr are unions of orbits of representations that are deformable
in this way. Such a union is called an extended orbit equivalence class. The character variety Xr may
be accurately thought of as either the usual orbit space of Rr with the non-completely reducible
representations removed, or as the usual orbit space with extended orbit equivalences. Either way,
the resulting space is, or is in one-to-one correspondence with, an affine algebraic set, irreducible and
singular, that satisfies the diagrammatic requirements needed to be a categorical quotient. We state
this definition for completeness.
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Definition 3. Let G be an algebraic group. A categorical quotient of a G-variety Y is an object Y //G and
a G-invariant morphism π : Y → Y //G such that the following commutative diagram exists uniquely
for all invariant morphisms f : Y → Z :

Y
π

f

Y //G

Z .

It is a good categorical quotient if the following conditions additionally hold:

(i) for open subsets U ⊂ Y //G, C[U ] ≈ C[π−1(U )]G;
(ii) π maps closed invariant sets to closed sets;

(iii) π separates closed invariant sets.

In [2] it is shown that Y → Specmax(C[Y ]G) is a good categorical quotient, if G is reductive, and so
all such quotients considered in this paper are good.

1.2. The ith fundamental theorem

Perhaps our strongest motivation and our foundation to work from is the work of C. Procesi from
1976.

In [3] Procesi shows

Theorem 4 (1st fundamental theorem of n × n matrix invariants). Any polynomial invariant of r matrices
A1, . . . , Ar of size n × n is a polynomial in the invariants tr(Ai1 Ai2 · · · Ai j ); where Ai1 Ai2 · · · Ai j run over all
possible non-commutative monomials.

This theorem can be recast in the language used above: C[gl(n,C)×r//G] is generated by traces of
words in generic matrices. Let C[xk

i j] be the complex polynomial ring in rn2 variables (1 � k � r and
1 � i, j � n), then

Xk =

⎛
⎜⎜⎜⎜⎝

xk
11 xk

12 · · · xk
1n

xk
21 xk

22 · · · xk
2n

.

.

.
.
.
.

. . .
.
.
.

xk
n1 xk

n2 · · · xk
nn

⎞
⎟⎟⎟⎟⎠

are generic matrices. For any word w in Fr = 〈x1, . . . ,xr〉, let W be the word w with each xi replaced
by the generic matrix Xi . In these terms, the first fundamental theorem says

C
[
gl(n,C)×r//G

] = C
[
tr(W)

∣∣ w ∈ Fr
]
.

Procesi showed in [3] that the index j in Theorem 4 is bounded: j � 2n − 1. It is called the degree
of nilpotency and is often denoted d(n). In 1974 Razmyslov [4] had shown that j � n2. For 1 � n � 4,
it is known that j = n(n+1)

2 (and conjectured to be true in general). See [5] for more on the Kuzmin
conjecture. Consequently, the word length |w| is bounded; not at all obvious.

A first fundamental theorem in invariant theory describes sufficient generators, a second funda-
mental theorem describes sufficient relations.
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Theorem 5 (2nd fundamental theorem of n × n matrix invariants). Let χ(t) = ∑
ck(X)tn−k be the formal

expression of the characteristic polynomial det(X−tI). Then any relation in C[gl(n,C)×r//G] is a consequence
of the formal expression of tr(χ(X) · X).

From Theorem 4 any relation in C[gl(n,C)×r//G] is necessarily a polynomial expression whose
terms are products of the invariants {tr(Ai1 Ai2 · · · Ai j )}. In Theorem 5 the word “consequence” is
vague, but can be made precise. A polynomial identity g = 0 is a consequence of the polynomial identities
f i = 0, i ∈ I , if any algebra satisfying the identities f i = 0 also satisfies g = 0. The consequences of the
expression tr(χ(X) · X) come from its multi-linearizations. See [5] and [3] for further details.

Quoting Procesi:
According to the general theory, we will split the description into two steps. The so called “first

fundamental theorem,” i.e., a list of generators for Ti,n , and the “second fundamental theorem,” i.e.,
a list of relations among the previously found generators. Of course, it would be very interesting
to continue the process by giving the “ith fundamental theorem,” i.e., the full theory of syzygies;
unfortunately, this seems to be still out of the scope of the theory as presented in this paper.

This remains true enough 30 years later.

1.3. Some progress

In 2003 Drensky [6] gave a complete and uniform description of the invariant ring of 2 × 2 matri-
ces. In [7] and [8], algebraically independent generators are worked out for 2 × 2 matrices. Between
1958–1971, work was done establishing minimal generators for the invariants of products of arbitrary
3 × 3 matrices [9–16]. However, in 1989 [17] gave an algorithm to establish minimality in general and
implemented it for 3 × 3 matrices. In 2002 Nakamoto (see [18]) describes the Z-scheme of two 3 × 3
generic matrices; and later (working over a field of characteristic 0) [19] also describes the ideal. Re-
cently, exciting new results using methods similar to those in [17] were established in [20] concerning
the ideal of relations for generic 3 × 3 matrices. In particular, the minimal degree of generators of the
ideal of relations was found to be 7 and the degree 7 relations were then described in general. We
note that this is an incomplete description of contributions. See [5] for a more thorough account.

For two unimodular 3 × 3 matrices, in [21] we prove

Theorem 6. Let X = SL(3,C)×2//SL(3,C). Then the following hold:

(i) C[X] is minimally generated by the nine affine coordinate functions

G = {
tr(X1), tr(X2), tr(X1X2), tr

(
X−1

1

)
, tr

(
X−1

2

)
, tr

(
X1X−1

2

)
,

tr
(
X2X−1

1

)
, tr

(
X−1

1 X−1
2

)
, tr

(
X1X2X−1

1 X−1
2

)}
.

(ii) The eight elements in G\{tr(X1X2X−1
1 X−1

2 )} are a maximal algebraically independent subset. Therefore,
they are local parameters, since the Krull dimension of X is 8.

(iii) tr(X1X2X−1
1 X−1

2 ) satisfies a monic (degree 2) relation over the algebraically independent generators. It
generates the ideal.

(iv) Out(F2) acts on C[X] and has an order 8 subgroup which acts as a permutation group on the independent
generators; as such distinguishes them.

This paper marks our first step to generalize this theorem to the general case of SL(3,C)×r//

SL(3,C) for arbitrary values of r.

Remark 7. In Chapter 10 of [22], parts (i) and (iii) of Theorem 6 were earlier established. Although an
explicit formula is not derived by Fogg, he provides an exact means to compute the ideal. Compare
these results also to results in [23,24].
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1.4. Main results

Our main theorem is

Theorem 8. C[SL(3,C)×r//SL(3,C)] is minimally generated by
(r

1

)
invariants of the form tr(X),

(r
1

)
invariants

of the form tr(X−1),
(r

2

)
invariants of the form tr(XY), 2

(r
2

)
invariants of the form tr(XY−1),

(r
2

)
invariants of the

form tr(X−1Y−1),
(r

2

)
invariants of the form tr(XYX−1Y−1), 2

(r
3

)
invariants of the form tr(XYZ), 6

(r
3

)
invari-

ants of the form tr(XYZ−1), 3
(r

3

)
invariants of the form tr(XYZY−1), 6

(r
3

)
invariants of the form tr(XY−1Z−1),

6
(r

3

)
invariants of the form tr(XYZ−1Y−1),

(r
3

)
invariants of the form tr(X−1Y−1Z−1), 5

(r
4

)
invariants of the

form tr(WXYZ), 20
(r

4

)
invariants of the form tr(WXYZ−1), 18

(r
4

)
invariants of the form tr(WXY−1Z−1), 8

(r
4

)
invariants of the form tr(WXYZY−1), 12

(r
5

)
invariants of the form tr(UVWXY), 35

(r
5

)
invariants of the form

tr(VWXYZ−1), and 15
(r

6

)
invariants of the form tr(UVWXYZ).

We give a numeric and geometric consequence of our main theorem.

Corollary 9. The number of minimal generators for C[SL(3,C)×r]SL(3,C) is

Nr = r

240

(
396 + 65r2 − 5r3 + 19r4 + 5r5).

Proof. Adding up the number of generators from Theorem 8, we conclude the sum

2

(
r

1

)
+ 5

(
r

2

)
+ 24

(
r

3

)
+ 51

(
r

4

)
+ 47

(
r

5

)
+ 15

(
r

6

)

= 2r + 5

2
r(r − 1) + 4r(r − 1)(r − 2) + 17

8
r(r − 1)(r − 2)(r − 3)

+ 47

120
r(r − 1)(r − 2)(r − 3)(r − 4) + 1

48
r(r − 1)(r − 2)(r − 3)(r − 4)(r − 5)

= r

240

(
5r5 + 19r4 − 5r3 + 65r2 + 396

)
. �

The minimal generators are coordinate functions for the variety Xr ; that is, letting {t1, . . . , tNr } be
polynomial indeterminates over C, there exists a finitely generated ideal, I, so

Xr = Specmax
(
C[t1, . . . , tNr ]/I

)
.

Consequently, we have

Corollary 10. There exists an affine embedding Xr → C
Nr where Nr is minimal among all affine embeddings

Xr → C
N .

Moreover, let {w1, . . . ,wNr } be any set of Nr words in Fr corresponding to a minimal generating
set for C[Xr]. Then the embedding from Corollary 10 is given by

[ρ] 	→ (
tr

(
ρ(w1)

)
, . . . , tr

(
ρ(wNr )

))
,

where ρ is in Rr and [ρ] is an extended equivalence class in Xr from the projection Rr → Xr .
There are different choices for {w1, . . . ,wNr } beyond simple cyclic permutations of the letters in

the words. We will see in the derivations of the minimal generating sets (the relations for which
we call reduction relations) explicit formulas to algebraically change variables and global coordi-
nates. Abstractly, we know that for two affine embeddings Xr → C

Nr there is a polynomial mapping
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C
Nr → C

Nr which commutes with the two embeddings. Our explicit reduction formulas give con-
crete form to these polynomial mappings. In other words, the reduction formulas constructively give
examples of equivalent global coordinate systems on Xr .

Remark 11. Having an explicit global description of Xr , we want an equally explicit description of the
local coordinates of an affine patch in Xr . We address this and some very interesting symmetry in Xr
(group actions that preserve patches) in future work.

Remark 12. In 2005 Lopatin [25,26] constructed a minimal generating set for K [gl(3, K )×r]GL(3,K ) for
any infinite field K of arbitrary characteristic. Using our Proposition 13 with the results in [26] one
can likewise construct a minimal system of generators for C[SL(3,C)×r//SL(3,C)].

2. SL(n,CCC)×r//SL(n,CCC), gl(n,CCC)×r//GL(n,CCC)n, and sl(n,CCC)×r//SL(n,CCC)

From the first and second fundamental theorems of Procesi, we have coordinates for gl(n,C)×r//

SL(n,C). We now show how these coordinates relate to coordinates for the space SL(n,C)×r//SL(n,C),
which is our principal interest.

2.1. Preserving trace generators

The difference between the moduli of arbitrary n × n matrices and matrices with determinant 1
(unimodular) is the inclusion or exclusion of the invariants of the form tr(Xn) in their coordinate
rings. In other words, we have

Proposition 13.

C
[
SL(n,C)×r//SL(n,C)

] ≈ C
[
gl(n,C)×r//GL(n,C)

]
/I,

where I = (tr(Xn
1) − P (X1), . . . , tr(Xn

r ) − P (Xr)).
In general,

P (X) = tr
(
Xn) + (−1)nn

(
det(X) − 1

) = (−1)n+1n +
n−1∑
k=1

(−1)n+k+1Cn−k
0 (X) tr

(
Xk)

is a polynomial in terms of the coefficients of the characteristic polynomial.
These coefficients may be computed recursively using

C0
0(X) = 1, C1

0(X) = tr(X), and Cn
0(X) = 1

n

n∑
k=1

(−1)k+1Cn−k
0 (X) tr

(
Xk).

Remark 14. In the case of SL(3,C), P (X) = 3 + 3 tr(X) tr(X2)−tr(X)3

2 .

The proof of Proposition 13 will follow from two lemmas: the ideal cuts out SL(n,C)×r from
gl(n,C)×r as schemes; and the ideal passes through the quotient. After the proof, we will show how
each relates to sl(n,C)×r//SL(n,C).

Remark 15. It is worth mentioning that although the entries xk
i j of the generic matrices Xk are ele-

ments of the polynomial ring C[xk
i j] with rn2 indeterminates, the entries of the unimodular generic

matrices are elements in

C
[
xk

i j

]
/
(
det(Xk) − 1

)
.
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In particular, letting xk
i j represent the projection of xk

i j , the unimodular generic matrices take the form

Xk = (xk
i j). However, we will not distinguish in notation between these two types of generic matrices

since the context is always clear. In other words, the “overline” will from this point be omitted.

We now proceed with the proof of Proposition 13.

Proof. First, we address a technical point: the quotient is the same if we act by GL(n,C) instead

of SL(n,C). Indeed, for any X in GL(n,C), Y = det(X)− 1
3 X is in SL(n,C). Let

−→
X = (X1, . . . ,Xr) be in

SL(n,C)×r , gl(n,C)×r , or sl(n,C)×r . Then

(
XX1X−1, . . . ,XXrX−1) = (

YX1Y−1, . . . ,YXrY−1).
In other words, the actions are identical. Strictly speaking the matrix Y above roughly depends on
an nth root of unity; in other words, there are up to n solutions to the equation xn − det(X) = 0.
But this poses no issue since there is always at least one solution and any such solution gives rise
to an identical action. Any way you look at it, the orbit GL(n,C)

−→
X ⊂ SL(n,C)

−→
X , but since SL(n,C) ⊂

GL(n,C) we have the reverse inclusion as well; the orbits are identical. Now since in the cases we are
considering the “extended orbits” of the categorical quotient are determined by the orbits themselves
(more precisely their closures and how they intersect), the fact that the orbit spaces are equal implies
that for Y equal to any of SL(n,C)×r , gl(n,C)×r , or sl(n,C)×r , we have

Y //GL(n,C) = Y //SL(n,C).

We come to the first lemma.

Lemma 16. Let G be a linearly reductive algebraic group acting rationally on a C-algebra C[Y ] leaving an
ideal I invariant (GI ⊂ I). Then

(
C[Y ]/I

)G ≈ C[Y ]G/
(

I ∩ C[Y ]G)
.

Proof. The inclusion C[Y ]G ⊂ C[Y ] induces an injection

C[Y ]G/
(

I ∩ C[Y ]G) → (
C[Y ]/I

)G
.

The content of this lemma is that it is surjective. This follows from the assumption that G is linearly
reductive. See page 43 in [2]. �
Lemma 17. As affine C-algebras,

C[Rr] ≈ C
[
gl(n,C)×r]/(det(X1) − 1, . . . ,det(Xr) − 1

)
.

Proof. Since C[Rr] ≈ C[SL(n,C)]⊗r it is sufficient to show that

C
[
SL(n,C)

] ≈ C
[
gl(n,C)

]
/
(
det(X) − 1

)
.

However, SL(n,C) is defined to be the solutions of det(X) − 1 = 0 in all n × n matrices; implying
that Rr is cut-out of gl(n,C)×r as sets. Moreover, the determinant is an irreducible polynomial. Thus,
C[gl(n,C)]/(det(X) − 1) is a reduced algebra (no non-trivial nilpotents). Therefore, Rr is cut-out of
gl(n,C)×r by the ideal (det(X1) − 1, . . . ,det(Xr) − 1) as schemes. �
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With these lemmas established, we return to the main argument for Proposition 13. Let IR =
(det(X1) − 1, . . . ,det(Xr) − 1) be the ideal generated in R , and let Y = gl(n,C)×r . Consequently, by
Lemmas 16 and 17

C[Rr]G ≈ (
C[Y ]/IC[Y ]

)G ≈ C[Y ]G/
(
IC[Y ] ∩ C[Y ]G) ≈ C[Y ]G/IC[Y ]G .

The last isomorphism follows since the generators of the ideal are themselves invariants and hence
they are fixed by the G-action (this observation also shows the ideal is stable under the G-action;
a necessary assumption).

Clearly, since we are working over a field of characteristic 0, the ideal generated by the polynomials
det(Xk) − 1 and the one generated by the polynomials tr(Xn

k) − P (Xk) = (−1)n+1n(det(Xk) − 1) are
identical.

To finish the proof, it remains to derive the recursion formula for the polynomials P (X).

Lemma 18.

P (X) = (−1)n+1n +
n−1∑
k=1

(−1)n+k+1Cn−k
0 (X) tr

(
Xk),

where C0
0(X) = 1, C1

0(X) = tr(X), and

Cn
0(X) = 1

n

n∑
k=1

(−1)k+1Cn−k
0 (X) tr

(
Xk).

Proof. First let

det(tI − X) =
n∑

k=0

(−1)n−kCn
k (X)tk

define the coefficients of the Cayley–Hamilton polynomial for an n × n matrix X. We know that
Cn

n(X) = 1, Cn
n−1(X) = tr(X) and Cn

0(X) = det(X). By Newton’s trace formulas each Cn
k (X) is a poly-

nomial in the traces of powers of the matrix X. Polynomials in traces of powers of a matrix are
functions that make sense for any size matrix, so the domain of the functions Cn

k (X) can be extended
to include any size matrix X (not only n ×n, as the superscript originally implied). Observing this and
that deg(Cn

k (X)) = n − k (the determinant is homogeneous of degree n), we have

Cn
k (X) = Cn−i

k−i (X),

since they are also the elementary symmetric functions in the eigenvalues of the matrix X. Conse-
quently, Cn

k (X) = Cn−k
0 (X). As already noted Cn−k

0 (X) = det(X) for an (n − k) × (n − k) matrix. Solving
the characteristic polynomial in this case gives the required recursion. �

With the above lemma complete, the proof of Proposition 13 is likewise complete. �
Using Lemma 16, it further follows that

C
[
sl(n,C)×r//G

] ≈ C
[
gl(n,C)×r//GL(n,C)

]
/
(
tr(X1), . . . , tr(Xr)

)
.

One can say more, since by a change of generators induced by the map

X 	→ X − 1
tr(X)I
n
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(see [5]), it follows that

C
[
sl(n,C)×r//G

][
tr(X1), . . . , tr(Xr)

] ≈ C
[
gl(n,C)×r//GL(n,C)

]
.

In other words, the exact sequence of C[Y ]G-modules

0 → (
tr(X1), . . . , tr(Xr)

) → C
[
gl(n,C)×r//GL(n,C)

] → C
[
sl(n,C)×r//G

] → 0

splits.
Consequently,

C[Rr//G] ≈ C
[
sl(n,C)×r//G

][
tr(X1), . . . , tr(Xr)

]
/I.

Using these isomorphisms, one can obtain results relative to all three quotient varieties: Xr =
SL(n,C)×r//SL(n,C), Zr = sl(n,C)×r//SL(n,C), and Y = gl(n,C)×r//GL(n,C) from any one alone. Our
motivating interest is in Xr and so we focus our attention here. We will however switch between Xr

and Yr as needed.

Remark 19. We note the Krull dimensions: dimXr + r = dimYr = dimZr + r.

Remark 20. This of course begs the question, how does C[GL(n,C)×r]GL(n,C) relate to these varieties?
The answer is that GL(n,C)×r is a quasi-affine variety of gl(n,C)×r . In particular, it is the principle
open set defined by the product of the determinants of the generic matrices. Since the determinant
is an invariant function, and “taking invariants” commutes with “localization,” we have

C
[
GL(n,C)×r]GL(n,C) ≈ C

[
gl(n,C)×r//GL(n,C)

][ 1

det(X1) · · ·det(Xr)

]
,

where C[gl(n,C)×r//GL(n,C)][ 1
det(X1)···det(Xr )

] is the localization at the product of determinants.

2.2. Preserving minimality

Before we continue, we prove that the number of minimal generators for C[Xr] is exactly r less
than that of C[Yr]. We refer to the projection

Π : C[Yr] → C[Xr] ≈ C[Yr]/I

as “the projection from Proposition 13.” What we actually show is that Π preserves minimality (or
minimal sets push forward) when the set of generators for C[Yr] has the form {tr(Ai1 Ai2 · · · Ai j )}.
We call such a set of generators Procesi generators if additionally no generator has the form
tr(W1XnW2) where at least one of the words Wi is not the identity. Using the characteristic poly-
nomial

∑
ck(X)Xn−k = 0 one can always arrange for any set of minimal generators of C[Yr] to be

Procesi generators.

Proposition 21. Let G be a minimal set of Procesi generators for C[Yr]. Then Π(G − {tr(Xn
1), . . . , tr(Xn

r )}) is
a minimal set of generators for C[Xr].

Proof. We first show we can eliminate r of the minimal generators of C[Yr] after projection and
then we show that we cannot eliminate any more. Any set of Procesi generators must include the
set {tr(Xn

1), . . . , tr(Xn
r )}. If not then locally the determinant det(Xi) (a polynomial only involving the

matrix entries of Xi ) would be expressible as a polynomial in tr(Xn−k
i ) for 0 < k < n. But since the
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coefficients of the characteristic polynomial are algebraically independent, there can be no such rela-
tion.

Moreover, once we assume the determinant is 1, we can freely remove the expression tr(Xn
i )

in C[Xr]. Said differently the structure of the ideal I in Proposition 13 allows us to freely remove
the r generators tr(Xn

i ) in the ring C[Xr].
To complete the proof of Proposition 21, it remains to prove that there are no further reductions

after choosing a minimal set of generators for C[Yr].
If there was a further reduction after passing to unimodular invariants, then there would be a

relation of the form tr(W) = Q (X1, . . . ,Xr) where W is a word of some length corresponding to a
minimal generator in C[Yr] and Q is a polynomial trace expression in terms of generic matrices not
including a term with a factor tr(W). Moreover, because C[Xr] is filtered, Q can be assumed to have
no term (with respect to the generic unimodular matrix entries) with degree greater than the length
of W. We additionally assume that W �= Xn since we have already eliminated these r generators.

Pulling back from the projection in Proposition 13, there exists polynomial trace expressions
f1, . . . , fr ∈ C[Yr] so

tr(W) − Q (X1, . . . ,Xr) =
∑

f i
(
tr

(
Xn

i

) − P (Xi)
)

(1)

in the graded ring of arbitrary n × n invariants C[Yr]. However, the degree of the left-hand side and
the degree on the right-hand side of Eq. (1) must be equal, which implies tr(W) cannot be part of
any f i , unless tr(W) is of the form tr(Xn) and f i ’s are constant; we assumed this was not the case.
Thus we would have a further reduction in the ring of arbitrary invariants, which contradicts the
minimality of the generators of C[Yr]. �

Let Nr(x, y) be the minimal number of generators in C[gl(n,C)×r//G] of word length x in y letters.
So 1 � x � d(n) and y � x. As a convention, we say Nr(x, y) = 0 if y > x.

For example, consider gl(3,C). In this case, N3(2,1) = 3 since the only length 2 words that may
be constructed from three letters using only one letter per word are X2,Y2, and Z2. It is reasonable
to assume that in general, Nr(2,1) = r = (r

1

)
. The following combinatorial lemma proves this and a

generalization of this fact as well.

Proposition 22. Nr(x, y) = Ny(x, y)
(r

y

)
.

Proof. Observe that since C[Yr] is multigraded, any reduction will arise from a homogeneous multi-
degree relation. Consequently, once the number of generators in a certain degree are determined in
the number of letters corresponding to that degree (words of length l for r = l), then for r � l the
number of generator types is determined. The multidegree is exactly determined by the total degree
(word length) and the number of each type of letter in the word. Since there cannot be relations
among generators of differing multidegree, there cannot be relations among generators differing in
total degree (word length) and the number of distinct letters in the word (and their multiplicities).

Before we move on let us consider another example in the case gl(3,C). For r = 3 the generators
of degree 3 in three distinct letters, multidegree (1,1,1), are tr(XYZ) and tr(XZY), which is immediate
by cyclic equivalence. It is not immediate that there are no further reductions, but we will assume it
for now to illustrate our point (minimality results of [17] establish it). Regardless, when r = 4 there
are four combinations of three letters and so according to this proposition there are 8 generators
of this type. Cyclic reduction promises that there are no more than 8. Suppose there was less and
let W be the fourth letter. There are only two generators with multidegree (1,1,1,0); namely, the
generators tr(XYZ) and tr(XZY). But there is no relation among them from the r = 3 case. The same
sort of reasoning can be applied to say tr(XYW) and tr(XWY); the only generators of multidegree
(1,1,0,1). Again, there is no relation among them for the same reason as before, the r = 3 case.

Returning to the argument, since the letters used in a word and the word’s length completely
determine its multidegree, and since there can be no relations except among generators of the same
multidegree, the number of such generators is exactly the number of such generators occurring for
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the first time (r = y) times the number of possible differing multidegrees of the same type (after
ignoring zeros); that is,

(r
y

)
. �

Again for the case gl(3,C) we work an example which we believe motivates our next section and
shows how to use these propositions.

In [17] it is shown that when r = 3 a basis for the degree 3 generators (partitions (3) and (1,1,1)

in the next section) is

{
tr

(
X3), tr

(
Y3), tr

(
Z3), tr

(
X2Y

)
, tr

(
X2Y

)
, tr

(
Z2X

)
,

tr
(
X2Z

)
, tr

(
Y2Z

)
, tr

(
Z2Y

)
, tr(XYZ), tr(XZY)

}
.

Proposition 22 shows for r � 3 there are
(r

1

) + 2
(r

2

) + 2
(r

3

)
generators of degree 3; exactly r of type

tr(X3). However, Proposition 21 allows us to freely remove the r generators tr(X3), and no others. This
leaves us with all the generators for C[Xr] which arise from the degree 3 generators in C[Yr], for
any value of r. Continuing this process for all possible multi-degrees will provide us with a minimal
generating set.

3. SL(3,CCC) minimal generators and reductions

3.1. First reduction: generator types

We begin this section by reviewing some of the results in [21]. Let G = SL(3,C) and Xr = G×r//G.
Capital bold letters U, V, W will denote words in the generic matrices (unimodular) unless otherwise
stated, and often X, Y, Z will denote words of length 1. We will frequently speak of word length.
When counting the length of a word, letters with a negative power are counted twice (this was called
weighted word length in [21]). For instance, X−1 has length 2. We denote the word length of a word W
by |W|. It will be assumed, since we are ultimately concerned about traces of such words, that words
have been cyclically reduced; and so length is computed after such a reduction.

We will additionally find useful the following two definitions, both in terms of (weighted) length
of words in generic (unimodular) matrices.

Definition 23. The degree of a polynomial expression in generic matrices (generic unimodular matri-
ces, respectively) with coefficients in C[Yr] (C[Xr], respectively) is the largest word length (weighted
word length, respectively) of monomial words in the expression that is minimal among all such ex-
pressions.

Definition 24. The trace degree of a polynomial expression in generic matrices (generic unimodular
matrices, respectively) with coefficients in C[Yr] (C[Xr], respectively) is the maximal degree over all
monomial words within a trace coefficient of the expression.

In [21] the author shows that C[Xr] is generated by {tr(W) | |W| � 6}. The Cayley–Hamilton equa-
tion provides the identity

X2 − tr(X)X + tr
(
X−1)I − X−1 = 0.

So we may freely replace any polynomial generator of the form tr(UX2V) with one of the form
tr(UX−1V). This follows since

tr
(
UX2V

) = tr
(
UX−1V

) + tr(X) tr(UXV) − tr
(
X−1) tr(UV);

justifying the weight in the weighted length. Therefore, the ring of invariants is generated by traces of
words whose letters have exponent ±1, of word length 6 or less.
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We just showed that for G = SL(3,C) every generator in terms of a letter with exponent −1 is
interchangeable with a generator in terms of the exact same word with the −1 exponents replaced
with exponents of 2. For instance, one can replace tr(WX−1) with tr(WX2), etc.

By linearizing the Cayley–Hamilton polynomial (see [21]), we deduce

YX2 + X2Y + XYX = tr(X)(YX + XY) + (
tr(XY) − tr(X) tr(Y)

)
X +

(
tr(X2) − tr(X)2

2

)
Y

+
(

tr
(
YX2) − tr(X) tr(XY) + tr(Y)

tr(X)2 − tr(X2)

2

)
I + tr(Y)X2. (2)

Define pol(X,Y) to be the right-hand side of Eq. (2). Then pol(X,Y) = YX2 + X2Y + XYX.

Multiplying on the left by a word W1 and on the right by a word W3, substituting a word W2
for Y, letting X possibly be its inverse, and taking the trace of both sides of Eq. (2) yields

tr
(
W1X±1W2X±1W3

) = − tr
(
W1X±2W2W3

) − tr
(
W1W2X±2W3

) + tr
(
W1 pol

(
X±1,W2

)
W3

)
. (3)

However, by subsequently reducing the words having letters with exponent not ±1, we may freely
eliminate generators of the form tr(W1X±1W2X±1W3). In other words, we may assume that for any
word in any generator no letter with the same exponent is ever repeated in the same word.

Letting W3 = X in Eq. (3) we deduce

tr
(
W1XW2X2) = − tr

(
W2XW1X2) − tr

(
W1W2X3) + tr

(
W1 pol(X,W2)X

)
. (4)

Then reducing words having letters with exponents not ±1 we find that we need only one of
tr(W1XW2X−1) and tr(W2XW1X−1) to generate C[Xr].

Putting these reductions together, we have the following description of the generators of C[Xr].

Lemma 25. C[Xr] is generated by traces of the form:

tr(Xi), tr
(
X−1

i

)
, tr(XiX j), tr(XiX jXk), tr

(
XiX

−1
j

)
, tr

(
X−1

i X−1
j

)
, tr

(
XiX jX

−1
k

)
, tr(XiX jXkXl),

tr(XiX jXkXlXm), tr
(
XiX jXkX−1

l

)
, tr

(
XiX jXkX−1

j

)
, tr

(
XiX

−1
j X−1

k

)
, tr

(
X−1

i X−1
j X−1

k

)
, tr

(
XiX jX

−1
k X−1

l

)
,

tr
(
XiX jX

−1
k X−1

j

)
, tr

(
XiX jX

−1
i X−1

j

)
, tr

(
XiX jXkXlX

−1
m

)
, tr

(
XiX jXkXlX

−1
k

)
, tr(XiX jXkXlXmXn),

where 1 � i �= j �= k �= l �= m �= n � r.

Proof. The preceding remarks of this section deserve to be listed (referred to as “the summary”):

(1) If a word has at least one letter with a negative power, we assume (by a cyclic permutation) one
of those letters is the last letter in the word.

(2) No letter is repeated with the same exponent.
(3) All exponents are ±1.
(4) All words are of weighted length 6 or less.

For instance, this tells that the most inverses possible in a word is 3 since the length of a letter
with a negative power in a word is counted twice and the maximal total length is 6.

Since exponents are always ±1, when we say “a positive exponent” or “a negative exponent” we
always mean “an exponent of 1” or “an exponent of −1,” respectively.

The description of the possible generator types is organized in Tables 1–3, and separated by total
length and number of negative exponents represented in the word corresponding to the generator. All
letters in a word denote generic unimodular matrices.
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Table 1
This table lists the generator types that are in terms of words of length four or less

Length Negative exponents Word type

1 0 tr(X)

2 0 tr(XY)

2 1 tr(X−1)

3 0 tr(XYZ)

3 1 tr(XY−1)

4 0 tr(WXYZ)

4 1 tr(XYZ−1)

4 2 tr(X−1Y−1)

Table 2
This table lists the generator types that are in terms of words of length 5

Length Negative exponents Word type

5 0 tr(VWXYZ)

5 1 tr(WXYZ−1)

5 1 tr(WXYX−1)

5 2 tr(XY−1Z−1)

Table 3
This table lists the generator types that are in terms of words of length 6

Length Negative exponents Word type

6 0 tr(UVWXYZ)

6 1 tr(VWXYZ−1)

6 1 tr(VWXYX−1)

6 2 tr(WXY−1Z−1)

6 2 tr(WXY−1X−1)

6 2 tr(YXY−1X−1)

6 3 tr(X−1Y−1Z−1)

We begin with the words of length 4 or less, since the summary is all that is necessary to describe
these generator types without further comment.

There is no possibility for the generators listed in Table 1 to have any letter coexist in the same
word with that letter’s inverse (because of cyclic reduction). With generators of length 5 and 6 this
becomes both possible and necessary.

We now address the generators in words of length 5.
Again, cyclic reduction and the summary together force only the generator types listed in Table 2

to be sufficient to generate the coordinate ring and have word length 5.
For instance, if a length 5 word has two letters with negative exponents it must have exactly one

other letter without a negative exponent, since the letters with negative exponents have a weighted
length of 2. Therefore, the word is in one of the following forms: X−1YZ−1, YZ−1X−1, or Z−1X−1Y.
However, all three forms give the same generator type since

tr
(
X−1YZ−1) = tr

(
YZ−1X−1) = tr

(
Z−1X−1Y

);
exemplifying cyclic equivalence.

We now address the generators that are in terms of words of length 6. This case will require one
further reduction formula beyond the summary to complete the table. We give Table 3.

For words having one letter with a negative exponent, obviously there is at most one letter re-
peated with its inverse. Cyclic equivalence forces it to be either tr(VWXYX−1) or tr(YXVWX−1),
putting the inverse letter at the end of each respective word. However, Eq. (4) mandates that we
need only one of these.
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For words having two letters with negative exponents, once we establish that such letters may be
assumed adjacent, the three possibilities listed in Table 3 are forced to be sufficient to generate the
ring after taking into consideration possible cyclic permutations of the listed generator types.

To complete our description of the generators in Table 3 having two letters with negative expo-
nents, it now remains to consider generators of the form tr(U−1WX−1Z). Using the algorithm in [21]
(see Appendix A) for reducing traces of words of length 7 or more to those of length 6 or less, one
computes that

tr(UVWXYZ) + tr(UVWYXZ) + tr(VUWXYZ) + tr(VUWYXZ)

has trace degree 5; that is, can be expressed as a polynomial in traces of words no longer than 5. Set-
ting U = V and X = Y and subsequently interchanging words with squares to those with inverses, we
find generators of the form tr(U−1WX−1Z) can be freely eliminated; that is, inverses can be assumed
to be adjacent.

Clearly, words with three letters all having negative exponents must be in form tr(X−1Y−1Z−1). �
Remark 26. In [21] these 19 generator types are describes plus one additional one that is not neces-
sary. Namely, Eq. (4) shows us that only one of the generators tr(XiX jXkXlX

−1
k ) and tr(XiXkX jXlX

−1
k )

is needed.

3.2. Second reduction: minimal generators

To prove Theorem 8, it remains to count how many of each type of generator listed Lemma 25 is
necessary to generate the ring of invariants C[Xr]. We devote the remainder of this section to this
goal.

Using the representation theory of GL(r,C), Abeasis and Pittaluga determined in [17] a method
to count the minimal number of generators with respect to word length and with respect to the
invariants of arbitrary matrices. Their algorithm is viable for any size matrix, but relies on computer
computations that were only implementable for 3×3 matrices. Additionally, they also derived explicit
highest weight vectors which can be used to write down an explicit minimal set of generators for
gl(3,C)×r//G. In this case, minimal generators have also been determined by [9–12] and also by [25,
26].

We now review the method of [17]. We then use it to count each type of generator for the uni-
modular invariants under consideration in this paper.

Recall the notation of Section 2:

Yr = gl(3,C)×r//SL(3,C) and Xr = SL(3,C)×r//SL(3,C).

As noted earlier C[Yr] is a C-algebra generated by the functions (X1, . . . ,Xr) 	→ tr(Xi1 · · ·Xik ), where
k � 6. The ring of invariants C[Yr] = C[xk

i j]G is a subring of a connected multigraded ring, and each
generator tr(Xi1 · · ·Xik ) is a homogeneous polynomial of degree k where each monomial has exactly
one matrix element from each of the represented generic matrices Xi j , for 1 � j � k. Consequently,
C[Yr] is connected and multigraded by the degrees in X1, . . . ,Xr . Note that the ring of unimodular
invariants C[Xr] is not graded. However, Proposition 13 implies that it is filtered since the ideal
identifies a homogeneous polynomial of degree 3 (the determinant) with the degree 0 polynomial 1.

The group GL(r,C) acts on C[Yr]:

g · tr(Xi1 · · ·Xik ) = tr

(∑
i

gi1 iXi · · ·
∑

i

gikiXi

)
,

and preserves degree. Therefore it acts on the positive terms C[Yr]+ and on the vector space
C[Yr]+/(C[Yr]+)2. Consequently, a basis for this vector space pulls back to a set of minimal gen-
erators for C[Yr] as a C-algebra.



S. Lawton / Journal of Algebra 320 (2008) 3773–3810 3787
Table 4
This table lists the minimal generators in words with only one letter

Minimal number Generators

Nr(1,1) = r tr(X1), . . . , tr(Xr)

Nr(2,1) = r tr(X−1
1 ), . . . , tr(X−1

r )

Abeasis and Pittaluga determine the irreducible subspaces of this action on C[Yr]+/(C[Yr]+)2 by
highest weight (see [27] for background in representation theory). In these terms they construct a
minimal basis. In particular, the set of weights of the irreducible subspaces is

{
(1), (2),

(
13), (3),

(
22), (2,12), (15), (3,12), (22,1

)
,
(
32), (3,13)},

where, for instance, when r = 5 the expression (13) denotes the partition (1,1,1,0,0). Moreover,
the sum of the entries in a weight correspond to the degree of the generators, since the weights
correspond to Young symmetrizers acting on the generic matrices. The dimension of these irre-
ducible representations is known classically. An irreducible GL(r,C) representation having partition
(λ1, . . . , λr) is

∏
1�i< j�r

λi − λ j + j − i

j − i
.

Note that with respect to the language used in [27] these are the conjugate partitions of the ones
used in [17]. Naturally, if r is less than the length of the partition then the basis is empty.

We will determine explicit reductions for each generator type and use the dimension of the irre-
ducible representations as a means to count when we have enough relations.

Proposition 21 and the work of [17] together will allow us to determine the number of minimal
generators in C[Xr]. However, we wish to know more. We will further write down explicit (at times
algorithmic) reductions to take the set of generators of a certain type to a minimal sufficient subset
of generators of that type.

We use the same notation, Nr(x, y), to denote the number of generators with respect to the free
group of rank r of word length x in y letters in C[Xr] (as opposed to C[Yr]). Recall that any letter
with an exponent of −1 has length 2.

Again to organize the information, as it is copious, we use tables. We proceed with the easiest and
most immediate cases. When r = 1, SL(3,C)//SL(3,C) ≈ C

2 is affine and thus C[SL(3,C)//SL(3,C)] ≈
C[tr(X), tr(X−1)]. Consequently, Proposition 22 gives Table 4.

There are no further reductions necessary, as all the listed generators are necessary to generate the
invariant ring. Note that this corroborates with the computation of the dimensions of the irreducible
representations. For in this case the only weight vectors are (1), (2), and (3). The dimension in each
case is trivially 1 and the basis is {tr(X), tr(X2), tr(X3)}, which projects to {tr(X), tr(X−1)}.

For r = 2 we refer to [21]. Then C[SL(3,C)×2//SL(3,C)] is minimally generated by:

{
tr(X1), tr

(
X−1

1

)
, tr(X2), tr

(
X−1

2

)
, tr(X1X2), tr

(
X1X−1

2

)
,

tr
(
X2X−1

1

)
, tr

(
X−1

1 X−1
2

)
, tr

(
X1X2X−1

1 X−1
2

)}
.

The corresponding minimal generators for C[gl(3,C)×2//SL(3,C)] are:

{
tr(X1), tr

(
X2

1

)
, tr

(
X3

1

)
, tr(X2), tr

(
X2

2

)
, tr

(
X3), tr(X1X2),

tr
(
X1X2

2

)
, tr

(
X2X2

1

)
, tr

(
X2

1X2
2

)
, tr

(
X1X2X2

1X2
2

)}
.
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Table 5
This table lists the minimal generators in words with only two letters

Minimal number Generators

Nr(2,2) = (r
2

) {tr(Xi X j)}, where 1 � i < j � r
Nr(3,2) = 2

(r
2

) {tr(Xi X
−1
j )}, where i �= j and 1 � i, j � r

Nr(4,2) = (r
2

) {tr(X−1
i X−1

j )}, 1 � i < j � r

Nr(6,2) = (r
2

) {tr(Xi X j X
−1
i X−1

j )}, 1 � i < j � r

The weight vectors for the r = 2 case are (1,0), (2,0), (3,0), (2,2) and (3,3). Their dimensions are
respectively computed to be 2, 3, 4, 1, 1 which add to 11; the number of minimal generators for this
case. From the r = 1 case we can account for the first 6 of these, and the rest are essential to r = 2.
Moreover, from Proposition 21 we would expect 11 − 2 = 9 generators for C[X2]; the number listed.

We then have Table 5.
At this point we make a couple observations. Rows 1, 2, and 3 above are determined by cyclic

reduction alone; all generators of that type are included up to cyclic equivalence. We are making a
choice however, we are choosing for instance tr(X1X2) over tr(X2X1); but they are identical. There is
also a choice involved in row 4, but this one is not trivial. In [21] the following relation in C[X2] is
derived:

tr
(
X2X1X−1

2 X−1
1

) = − tr
(
X1X2X−1

1 X−1
2

) + tr(X1) tr
(
X−1

1

)
tr(X2) tr

(
X−1

2

) + tr(X1) tr
(
X−1

1

)
+ tr(X2) tr

(
X−1

2

) + tr(X1X2) tr
(
X−1

1 X−1
2

) + tr
(
X1X−1

2

)
tr

(
X−1

1 X2
)

− tr
(
X−1

1

)
tr(X2) tr

(
X1X−1

2

) − tr(X1) tr
(
X−1

2

)
tr

(
X−1

1 X2
)

− tr(X1) tr(X2) tr
(
X−1

1 X−1
2

) − tr(X1X2) tr
(
X−1

1

)
tr

(
X−1

2

) − 3. (5)

We note that Eq. (5) corresponds to a relation between tr(XYX2Y2) and tr(YXY2X2) in C[Y2].
Up to cyclic equivalence there are only three words of length 6 in two letters, the two just men-

tioned and tr(X3Y3); the latter most being reducible since it has letters with exponents greater than 2.
The maximum exponent allowed on any letter in any word even in C[Yr] is 2, except for tr(X3) itself.

Hence using Eq. (5) we may choose the generators in row 4 of Table 5. Therefore, we have ac-
counted for minimality with explicit reductions in the cases r = 1,2.

We have to consider all cases up to r = 6 since the maximum word length necessary is 6, and
Proposition 22 shows that both the generator types and the combinatorics are determined in general
by the cases r = 1, . . . ,6 alone.

The highest weight vectors for r = 3 are:

Λ3 = {
(1,0,0), (2,0,0), (3,0,0), (2,2,0), (3,3,0), (1,1,1), (2,1,1), (3,1,1), (2,2,1)

}
.

For ease of reading, we will often abbreviate “irreducible representation” with “irrep” from this point
on.

Letting Y3 = gl(3,C)×3//G and V 3(λ) be the GL(3,C) irrep of

V 3 = C[Y3]+/
(
C[Y3]+

)2

associated to λ ∈ Λ3, we may write

V 3 =
⊕
λ∈Λ

V 3(λ).
3
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Table 6
This table lists the minimal generators in words with only three letters

Minimal number Generators

Nr(3,3) = 2
(r

3

)
tr(XYZ), tr(YXZ)

Nr(4,3) = 6
(r

3

)
tr(XYZ−1), tr(YXZ−1)

Nr(5,3) = 9
(r

3

)
3
(r

3

)
: tr(XYZY−1), 6

(r
3

)
: tr(XY−1Z−1)

Nr(6,3) = 7
(r

3

)
6
(r

3

)
: tr(XYZ−1Y−1),

(r
3

)
: tr(X−1Y−1Z−1)

The dimension of each irrep listed in Λ3 is, respectively: 3, 6, 10, 6, 10, 1, 3, 6, 3; adding to 48.
From the previous cases we can account for 21 generators that form the bases of these irreps plus
the 3 removed generators of the form tr(X3). We have exactly 48 − 21 − 3 = 24 left to find.

Table 6 categorizes the number and type of these remaining generators (we suppress the indexing
for clarity).

The first row of Table 6 concerns words of length 3 in 3 letters. The words of length 3 that are
accounted for by the cases r = 1 and r = 2 number 9, meaning there are exactly 2 remaining since
there is a total of dim V 3(3,0,0) + dim V 3(1,1,1) = 10 + 1 = 11. However, up to cyclic equivalence
there are only 2 possible words of length 3 in three letters; both are listed in row 1.

Row 2 of Table 6 concerns words of length 4 in 3 letters. There are 9 generators corresponding to
such words. The words of length 4 that are accounted for number 3, so there are 6 remaining. Again,
up to cyclic equivalence there are exactly 6 possibilities; justifying row 2.

Generators in terms of words of length 5 first show up in this case so the 9 claimed to be required
need to be described. Cyclic equivalence gives us exactly 6 of the generators of type tr(XY−1Z−1).
However, cyclic equivalence alone gives us 6 more of type tr(XYZY−1). Eq. (4) mandates that we
only need half of these. In other words, for every choice of Y we can choose either tr(XYZY−1) or
tr(ZYXY−1). This gives us the required 9 and minimality promises there are no further reductions (as
it goes with every case).

We come to the fourth row. There are 3 generators accounted for in terms of length 6 words from
the two cases when r is in {1,2}; namely,

{
tr

(
X1X2X−1

1 X−1
2

)
, tr

(
X1X3X−1

1 X−1
3

)
, tr

(
X2X3X−1

2 X−1
3

)}
.

With a total of 10 required by the dimension of the irrep with weight (3,3,0); there are 7 left to find.
Eq. (4) tells us that we can assume that inverses are together, and with that noted, cyclic equivalence
alone gives us 6 generators of type tr(XYZ−1Y−1). The last possible generator type is tr(X−1Y−1Z−1).
Cyclically, there are 2 of these.

Using the algorithm in Appendix A for the expression

tr(UVWXYZ) + tr(UVWYXZ) + tr(VUWXYZ) + tr(VUWYXZ)

and identifying U = V, W = X and Y = Z we come to an expression of trace degree five: 2 tr(U2X2Y2)+
2 tr(U2(XY)2). Iteratively replacing squares with inverses reduces this to an expression having the
same trace degree:

2 tr
(
U−1X−1Y−1) + 2 tr

(
U−1(XY)−1) = 2 tr

(
U−1X−1Y−1) + 2 tr

(
U−1Y−1X−1),

which shows that we can choose the order of any three such letters and so finishes the proof that
there are

(r
3

)
generators of the form tr(X−1Y−1Z−1).

We now move on the generators in terms of four letters, see Table 7.
The irreducible spaces consisting of degree four generators have partitions: (2,2,0,0) and

(2,1,1,0); having total dimension 35. From r = 2 we have
(4

2

) = 6 generators in the form tr(X−1Y−1);

r = 3 gives an additional 6
(4

3

) = 24 of type tr(X−1YZ). This leaves exactly 5 generators to find. There
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Table 7
This table lists the minimal generators in words with only four letters

Minimal number Generators

Nr(4,4) = 5
(r

4

)
tr(WXYZ), tr(WXZY), tr(WYXZ),

tr(WYZX), tr(WZXY)

Nr(5,4) = 20
(r

4

)
tr(WXYZ−1)

Nr(6,4) = 26
(r

4

)
18

(r
4

)
: tr(WXY−1Z−1), 8

(r
4

)
: tr(WXYZY−1)

is only one further generator type of length four in four letters: tr(WXYZ). Cyclically there are 6 of
these.

We want to explicitly construct the minimal generating set, so we want the relation. In [21] the
following relation is derived:

XZY + ZXY + YXZ + YZX + XYZ + ZYX

= pol(X + Z,Y) − pol(X,Y) − pol(Z,Y);

it is the full polarization of the Cayley–Hamilton equation. Thus,

tr(WXZY) + tr(WZXY) + tr(WYXZ) + tr(WYZX) + tr(WXYZ) + tr(WZYX)

= tr
(
W

(
pol(X + Z,Y) − pol(X,Y) − pol(Z,Y)

))
, (6)

which allows us to eliminate exactly one of the six generators on the left-hand side of Eq. (6). This
validates the content of row 1 of Table 7.

We note for later use that Eq. 6, with respect to general substitutions of words for W,X,Y, and Z,
has trace degree (recall the trace degree is the largest word length in a trace expression) at most the
length of W plus one less than the sum of the lengths of X,Y,Z. This fact is apparent by inspection
of Eq. (2), and otherwise expressed

∣∣∣tr(W
∑

XYZ
)∣∣∣ � |W| + (|X| + |Y| + |Z| − 1

)
.

With respect to row 2 in Table 7, there are 56 generators of length 5 coming from the weights
(2,2,1) and (3,1,1). From the cases r = 1,2,3 we account for 9

(4
3

) = 36 of these, leaving 20 to find.
The only generator type in four letters of length 5 is tr(WXYZ−1). Cyclically there are 24 possibilities.
Replacing W with W−1 in Eq. (6) gives row 2, since this provides four reductions (one for each choice
of the last letter to have the negative exponent).

Row 3 in Table 7 describes the generators of length 6 in four letters. The corresponding weights
are (3,3) and (3,1,1,1) giving a total of 60 generators. The previous cases account for 34 of these,
leaving 26 to derive. Lemma 25 shows that the only generator types of length 6 in four letters are
tr(WXY−1Z−1) and tr(WXYZY−1).

We first address the generators in the form tr(WXYZY−1). The relations between generators of this
type and the generators that have a form given by permutating the letters of tr(WXYZY−1) are given
in the proof and preceding remarks of Lemma 25. We count the possible number of generators of this
type in this form only. In other words, we do not again explain why we do not need tr(ZYWXY−1).

There are four choices for the letter Y and there are three remaining for the letter Z. We first show
that we can choose an order for WX and demonstrate the relation between differing orders. Then for
each choice of Y we show there is a sum relation among the remaining three choices for Z which
gives four further reductions.

Using the algorithm in Appendix A for the expression

tr(UVWXYZ) + tr(UVWYXZ) + tr(VUWXYZ) + tr(VUWYXZ)
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and setting X = W = Z gives the expression

tr
(
UVX2YX

) + tr
(
UVXYX2) + tr

(
VUX2YX

) + tr
(
VUXYX2),

having trace degree 5. Exchanging squares for inverses and cyclically permuting the letters gives that

tr
(
YXUVX−1) + tr

(
UVXYX−1) + tr

(
YXVUX−1) + tr

(
VUXYX−1)

has trace degree 5 as well. Then using Eq. (4) we reduce this expression to the trace degree 5 ex-
pression

2 tr
(
UVXYX−1) + 2 tr

(
VUXYX−1), (7)

which is what we wished to derive. In other words we can always choose an order for the first two
letters of such a generator and thus there are no more than 12 such generators necessary.

Now, we show there is a sum relation giving four further reductions, as required to show there is
no more than 8 generators of this type necessary.

Setting W = X−1U in Eq. (6) and cyclically permuting letters gives a relation of trace degree 5:

tr
(
UXZYX−1) + tr

(
UZXYX−1) + tr

(
UYXZX−1) + tr(UYZ) + tr

(
UXYZX−1) + tr(UZY).

By subtracting generators with words of length three and using Eq. (4) we come to a relation of like
trace degree:

tr
(
ZYXUX−1) + tr

(
UZXYX−1) + tr

(
UYXZX−1) + tr

(
YZXUX−1). (8)

However, we just showed (see Expression (7)) that expressions of the form

2 tr
(
UVXYX−1) + 2 tr

(
VUXYX−1),

when both terms are taken together, can be freely eliminated. Hence, the outer two summands in
Expression (8) can be eliminated since they are equal to an expression in terms of generators of
smaller word length. We come to the conclusion that

tr
(
UZXYX−1) + tr

(
UYXZX−1)

has trace degree 5 as well. Therefore, for every group of three generators

{
tr

(
UZXYX−1), tr

(
ZYXUX−1), tr

(
UYXZX−1)}

there is one reduction, and there are four such groups among the twelve remaining generators of this
type. Consequently, we have established four further reductions and thus there are no more than 8
generators of this type necessary.

The other possible generator form not addressed yet from row 3 in Table 7 is tr(WXY−1Z−1). We
must show there are no more than 18 necessary. Then the 8 + 18 generators so derived will give the
minimal number of 26, which will imply that no further generators can be eliminated from the sets
of either type.

There are exactly 24 possible generators in the form tr(WXY−1Z−1). We must find 6 reductions.
Again using the algorithm in Appendix A for the expression

tr(UVWXYZ) + tr(UVWYXZ) + tr(VUWXYZ) + tr(VUWYXZ)
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Table 8
This table lists the minimal generators in words with only five letters

Minimal number Generators

Nr(5,5) = 12
(r

5

)
tr(UVWXY)

Nr(6,5) = 35
(r

5

)
tr(VWXYZ−1)

but this time setting X = Y and Z = W gives that the expression

2 tr
(
UVWX2W

) + 2 tr
(
VUWX2W

)

is equal to a polynomial in generators of word length at most 5. Using Eq. (3) reduces this to

2 tr
(
UVW2X2) + 2 tr

(
VUW2X2) + 2 tr

(
UVX2W2) + 2 tr

(
VUX2W2);

trading squares for inverses provides

2 tr
(
UVW−1X−1) + 2 tr

(
VUW−1X−1) + 2 tr

(
UVX−1W−1) + 2 tr

(
VUX−1W−1)

also has trace degree 5. Hence among every group of four generators

{
tr

(
UVW−1X−1), tr

(
VUW−1X−1), tr

(
UVX−1W−1), tr

(
VUX−1W−1)}

we obtain exactly one relation allowing for six reductions since for any four letters there are 6 such
collections (count multidegree). And so we have the required 24 − 6 = 18 generators of this type.

Next, we address generators in five letters. From Lemma 25 the only generator types in five let-
ters that have not been accounted for by the cases r = 1,2,3,4 are tr(UVWXY) of length five and
tr(VWXYZ−1) of length six, see Table 8.

We first address row 1 of Table 8. The corresponding weights for the irreps corresponding to
length 5 generators are (15), (3,12), (22,1). The total dimension of these three irreps is 202. There
are 9

(5
3

) + 20
(5

4

) = 190 such generators accounted for by our previous work (the cases r = 1,2,3,4).
This leaves 12 generators of type tr(UVWXY) out of 24 possible after considering cyclic permutations.
Thus we need 12 reductions.

We now introduce some new notation to express longer formulas with less symbols. Let

t(1,2,3) = tr(X1X2X3), t(−1,3) = tr
(
X−1

1 X3
)
, etc.

Also, let
∑

XYZ denote XZY + ZXY + YXZ + YZX + XYZ + ZYX.
Cyclically we can assume that all generators of type tr(UVWXY) in the letters {X1, . . . ,X5} are in

the form t(1, i, j,k, l); that is, we assume that X1 is the first letter of the word. This choice of cyclically
permuting the letters determines 24 generators of this type out of the total possible 5! = 120.

We begin addressing the contents of Table 8 by deriving some useful formulas. Using the funda-
mental relation from Appendix A for

3 tr(X1X2X3X4X5X6) + 3 tr(X1X2X3X5X4X6) + 3 tr(X2X1X3X4X5X6) + 3 tr(X2X1X3X5X4X6)

and setting X6 = I we derive (using Mathematica):

3t(1,2,3,4,5) + 3t(1,2,3,5,4) + 3t(2,1,3,4,5) + 3t(2,1,3,5,4)

= 3t(1)t(2)t(5)t(3,4) − 3t(5)t(1,2)t(3,4) − 3t(2)t(1,5)t(3,4) − 3t(1)t(2,5)t(3,4)

− 3t(2)t(5)t(1,3,4) + 3t(2,5)t(1,3,4) − 3t(1)t(5)t(2,3,4) + 3t(1,5)t(2,3,4)
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− 4t(1,2)t(3,4,5) + 3t(3,4)t(5,1,2) + 3t(3,4)t(5,2,1) − 3t(1)t(2)t(5,3,4)

+ 7t(1,2)t(5,3,4) + 3t(5)t(1,2,3,4) − 2t(2)t(1,3,4,5) + 3t(2)t(1,5,3,4)

+ 3t(5)t(2,1,3,4) − 2t(1)t(2,3,4,5) + 3t(1)t(2,5,3,4) + 5t(2)t(5,1,3,4)

+ 5t(1)t(5,2,3,4) − 3t(1,2,3,4,5) + 3t(1,2,3,5,4) − 3t(1,2,5,3,4) − 3t(1,5,2,3,4)

− 3t(2,1,3,4,5) + 3t(2,1,3,5,4) − 3t(2,1,5,3,4) − 3t(2,5,1,3,4)

+ 3t(5,1,2,3,4) + 3t(5,2,1,3,4).

Then bringing all length 5 generators of this relation to the left side yields:

3t(1,2,3,4,5) + 3t(1,2,5,3,4) + 3t(1,5,2,3,4) + 3t(1,3,4,5,2) + 3t(1,5,3,4,2) + 3t(1,3,4,2,5)

= 3t(1)t(2)t(5)t(3,4) − 3t(5)t(1,2)t(3,4) − 3t(2)t(1,5)t(3,4) − 3t(1)t(2,5)t(3,4)

−3t(2)t(5)t(1,3,4) + 3t(2,5)t(1,3,4) − 3t(1)t(5)t(2,3,4) + 3t(1,5)t(2,3,4)

− 4t(1,2)t(3,4,5) + 3t(3,4)t(5,1,2) + 3t(3,4)t(5,2,1) − 3t(1)t(2)t(5,3,4)

+ 7t(1,2)t(5,3,4) + 3t(5)t(1,2,3,4) − 2t(2)t(1,3,4,5) + 3t(2)t(1,5,3,4) + 3t(5)t(2,1,3,4)

− 2t(1)t(2,3,4,5) + 3t(1)t(2,5,3,4) + 5t(2)t(5,1,3,4) + 5t(1)t(5,2,3,4). (9)

Applying the following permutations to Eq. (9) we derive 8 further relations: {(1), (34), (23), (24),

(45), (234), (243), (345)}. We will see that they are independent of each other. For now, we need four
more relations in these generators.

Using Eq. (6) and letting W = UV we have a relation for the expression

tr
(

UV
∑

XYZ
)

= tr(UVXZY) + tr(UVZXY) + tr(UVYXZ)

+ tr(UVYZX) + tr(UVXYZ) + tr(UVZYX).

There are four relations of the form tr(X1X j
∑

XkXlXm) where

2 � k, l,m � 5, and k �= l �= m �= j,

corresponding to the four choices for j = 2,3,4,5.
These additional four relations provide a total, with the other eight from Eq. (9), of twelve relations

in 24 variables.
Since the relations are linear in these variables on the left-hand side and in all cases the right-

hand side is of strictly smaller trace degree, we form a 12 × 24 matrix where all entries are either
1 or 0 (we divide Eq. (9) by 3). The rank of this matrix is computed in Mathematica to be 12. Thus
we have established that these 12 relations are independent and we can make exactly 12 reductions
leaving us with the required 12 generators of this type. The complement of any set of twelve pivot
columns of this matrix gives a minimal set of these generators.
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The 12 × 24 matrix is as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0
1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1
0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

One such solution set, from the complement of the pivot set, is:

{
t(1,3,2,5,4), t(1,3,5,4,2), t(1,4,2,5,3), t(1,4,3,2,5),

t(1,4,3,5,2), t(1,4,5,2,3), t(1,4,5,3,2), t(1,5,2,4,3),

t(1,5,3,2,4), t(1,5,3,4,2), t(1,5,4,2,3), t(1,5,4,3,2)
}
.

We now turn to row 2 in Table 8; listing the minimal generators in 5 letters of length 6. The only
generators of length 6 in five letters are the generators of type tr(VWXYZ−1). The weight vectors for
the irreps corresponding to the length six generators are {(3,1,1,1), (3,3)}. The sum of the dimen-
sions of these two irreps totals 245. The cases r = 1,2,3,4 account for 26

(5
4

) + 7
(5

3

) + (5
2

) = 210 of
these generators, leaving exactly 35 generators of this type to describe.

There are five choices for the letter with the negative exponent in the generator tr(VWXYZ−1),
and we can assume it is always the last letter of the word. For every such choice there are 24 choices
for the other four letters. It suffices to show there are 17 independent relations for every one of the
five choices for Z−1. Then we will be left with (24 − 17 = 7) × 5 = 35 generators, as required.

First, we provide 12 easy reductions; that is, expressions whose trace degree is less than the largest
word length in the expression. Such an expression, when uniformly in terms of generators of a fixed
type, permits one to eliminate one of the generators in the expression. Indeed, letting X1 = X2 in the
fundamental relation (see Appendix A) gives a reduction formula (recall that this means it is equal to
an expression having lesser trace degree) for the expression

tr
(
X2

1X3X4X5X6
) + tr

(
X2

1X3X5X4X6
) + tr

(
X2

1X3X4X5X6
) + tr

(
X2

1X3X5X4X6
)
.

Switching squares for inverses, cyclically permuting and re-indexing gives a further reduction for

2 tr
(
X1X2X3X4X−1

5

) + 2 tr
(
X1X3X2X4X−1

5

)
. (10)

In other words, we can always assume there is an ordering on the second two letters, and we need
only the generator that satisfies this ordering. This provides us with 12 generators for every choice
for X−1

5 . We need five further reductions. However, we now fix a set of twelve to work with

{
t(1,2,4,3,−5), t(1,2,3,4,−5), t(1,3,4,2,−5), t(2,1,4,3,−5),

t(2,1,3,4,−5), t(2,3,4,1,−5), t(4,1,3,2,−5), t(4,2,3,1,−5),

t(4,1,2,3,−5), t(3,1,2,4,−5), t(3,1,4,2,−5), t(3,2,4,1,−5)
}
. (11)
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Note that if we derive a relation in general it will not be in these terms, and switching to these
generators introduces a sign. For instance, t(2,4,3,1,−5) must be replaced by −t(2,3,4,1,−5) since
their sum is a reduction relation.

Having found 12 reductions of the 17 needed, we must find 5 more. Identifying W = Z in the
fundamental relation

tr(UVWXYZ) + tr(UVWYXZ) + tr(VUWXYZ) + tr(VUWYXZ),

gives a relation for

tr(UVWXYW) + tr(UVWYXW) + tr(VUWXYW) + tr(VUWYXW),

and subsequently using Eq. (3) yields a reduction for

t(1,2,3,4,−5) + t(1,2,4,3,−5) + t(2,1,3,4,−5) + t(2,1,4,3,−5)

+ t(3,4,1,2,−5) + t(3,4,2,1,−5) + t(4,3,1,2,−5) + t(4,3,2,1,−5).

Imposing the ordering of the second two letters from the reduction Expression (10) and changing
signs accordingly yields the following expression having trace degree at most 5 and in terms of our
chosen 12 generators of this type:

t(1,2,3,4,−5) + t(1,2,4,3,−5) + t(2,1,3,4,−5) + t(2,1,4,3,−5) − t(3,1,4,2,−5)

− t(3,2,4,1,−5) − t(4,1,3,2,−5) − t(4,2,3,1,−5). (12)

Permuting the letters X1 and X3 and again putting the result in terms of the 12 generators of this
type provides for a reduction formula for the expression:

−t(1,2,4,3,−5) − t(1,3,4,2,−5) − t(2,1,3,4,−5) + t(2,3,4,1,−5) − t(3,1,2,4,−5)

+ t(3,2,4,1,−5) + t(4,1,2,3,−5) + t(4,1,3,2,−5). (13)

We will show Expressions (12) and (13) to be independent in what follows. But first we need three
more reductions relations.

Considering Eq. (6), we have a reduction for

tr
(

X2X5X3

∑
X5X4X1

)

which is otherwise expressed

t(2,5,3,5,4,1) + t(2,5,3,5,1,4) + t(2,5,3,4,5,1) + t(2,5,3,4,1,5)

+ t(2,5,3,1,5,4) + t(2,5,3,1,4,5).

Using Eq. (3), we have a reduction for

−t(2,5,5,3,4,1) − t(2,3,5,5,4,1) − t(2,5,5,3,1,4) − t(2,3,5,5,1,4) − t(2,5,5,3,4,1)

− t(2,3,4,5,5,1) − t(2,5,5,3,4,1) − t(2,3,4,1,5,5) − t(2,5,5,3,1,4) − t(2,3,1,5,5,4)

− t(2,5,5,3,1,4) − t(2,3,1,4,5,5).



3796 S. Lawton / Journal of Algebra 320 (2008) 3773–3810
Then switching squares for inverses and cyclically permuting letters so the letter with a negative
exponent is at the end of the word gives the expression

−t(3,4,1,2,−5) − t(4,1,2,3,−5) − t(3,1,4,2,−5) − t(1,4,2,3,−5) − t(3,4,1,2,−5)

− t(1,2,3,4,−5) − t(3,4,1,2,−5) − t(2,3,4,1,−5) − t(3,1,4,2,−5)

− t(4,2,3,1,−5) − t(3,1,4,2,−5) − t(2,3,1,4,−5).

Multiplying by −1 and combining like terms then gives a reduction for

t(1,2,3,4,−5) + t(1,4,2,3,−5) + t(2,3,1,4,−5) + t(2,3,4,1,−5)

+ t(4,1,2,3,−5) + t(4,2,3,1,−5) + 3t(3,1,4,2,−5) + 3t(3,4,1,2,−5).

However, t(3,1,4,2,−5) + t(3,4,1,2,−5) itself has trace degree 5; that is, we have already shown
that this expression is itself entirely reducible (it allowed us to pick an ordering and gave the first
12 reductions). Consequently, we have, after re-writing this expression in terms of our chosen 12
generators of this type and accounting for signs, a reduction for

t(1,2,3,4,−5) − t(1,2,4,3,−5) − t(2,1,3,4,−5)

+ t(2,3,4,1,−5) + t(4,1,2,3,−5) + t(4,2,3,1,−5). (14)

Applying the permutations (13) and (24) to this expression, where the permutation acts on the
indices of the generic matrices, and then putting the result in terms of our 12 chosen generators
provides two additional expressions of this type:

t(2,1,3,4,−5) + t(2,1,4,3,−5) − t(3,1,2,4,−5)

− t(3,2,4,1,−5) − t(4,1,2,3,−5) − t(4,2,3,1,−5), (15)

t(1,2,4,3,−5) − t(1,3,4,2,−5) + t(2,1,4,3,−5)

− t(2,3,4,1,−5) − t(4,1,3,2,−5) − t(4,2,3,1,−5). (16)

The five relations which correspond to the Expressions (12), (13), (14), (15), (16) determine the
rows of a 5 × 12 matrix of 1’s, −1’s, and 0’s. Using Mathematica we compute its rank to be 5, which
implies the relations are independent and we may make five further reductions of the 12 generators,
leaving only 7, as required. Again, that is 7 choices for every choice for the last letter in the word
to have an exponent of −1; there are 5 such choices. Hence we have 35 generators of this type; the
minimal number available.

With respect to the ordering in the list of 12 generators in (11), the 5 × 12 matrix is:

⎛
⎜⎜⎜⎝

1 1 0 1 1 0 −1 −1 0 0 −1 −1
−1 0 −1 0 −1 1 1 0 1 −1 0 1
−1 1 0 0 −1 1 0 1 1 0 0 0
0 0 0 1 1 0 0 −1 −1 −1 0 −1
1 0 −1 1 0 −1 −1 −1 0 0 0 0

⎞
⎟⎟⎟⎠ .

One such solution set of seven among the twelve generators with X−1
5 as its last letter is
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Table 9
This table lists the minimal generators in words with only six letters

Minimal number Generators

Nr(6,6) = 15
(r

6

)
tr(UVWXYZ)

{
t(2,3,4,1,−5), t(3,1,2,4,−5), t(3,1,4,2,−5),

t(3,2,4,1,−5), t(4,1,2,3,−5), t(4,1,3,2,−5), t(4,2,3,1,−5)
}
.

For the other 28 apply each of the permutations (15), (25), (35), and (45) to this set, one at a time,
to get four more sets of 7.

The last case to consider is the case of six independent generic matrices and generators of length
6 in those terms. The only generator type not accounted for yet is tr(UVWXYZ), see Table 9.

The weights for the irreps corresponding to the generators of length 6 in 6 letters are, like in the
last case, {(3,1,1,1), (3,3)}; but in this case the total of their dimensions is 770. The previous cases
r = 1,2,3,4,5 account for 35

(6
5

) + 26
(6

4

) + 7
(6

3

) + (6
2

) = 755 of these generators. This leaves 15 of type
tr(UVWXYZ). Cyclically there are 120 possibilities. We must provide 105 independent relations.

In [10] similar relations for C[Y6] were given. They were of two types: 37 of tr(U
∑

XYZ) and 68
of

tr(UVWXYZ) + tr(UVWYXZ) + tr(VUWXYZ) + tr(VUWYXZ).

However, we construct the 105 reductions from two variations of the relation for tr(U
∑

XYZ)

alone.
First we have

t(1,2,3,4,5,6) + t(1,2,3,5,4,6) + t(4,1,2,3,5,6)

+ t(4,5,1,2,3,6) + t(5,1,2,3,4,6) + t(5,4,1,2,3,6)

= t(4)t(5)t(6)t(1,2,3) − t(6)t(4,5)t(1,2,3) − t(5)t(4,6)t(1,2,3)

− t(4)t(5,6)t(1,2,3) + t(5,4,6)t(1,2,3) + t(5,6,4)t(1,2,3)

− t(5)t(6)t(1,2,3,4) + t(5,6)t(1,2,3,4) − t(4)t(6)t(1,2,3,5)

+ t(4,6)t(1,2,3,5) − t(4)t(5)t(1,2,3,6) + t(4,5)t(1,2,3,6)

+ t(6)t(1,2,3,4,5) + t(5)t(1,2,3,4,6) + t(6)t(1,2,3,5,4)

+ t(4)t(1,2,3,5,6) + t(5)t(1,2,3,6,4) + t(4)t(1,2,3,6,5), (17)

from setting U = X1X2X3,X = X4,Y = X5,Z = X6 in tr(U
∑

XYZ).
In what follows we will cyclically permute all generators of this type (there are 720 of them) so

that the generic matrix X6 is at the end of the word. Then we have 120 generators in the following
natural order:

{
t(1,2,3,4,5,6), t(1,2,3,5,4,6), t(1,2,4,3,5,6), t(1,2,4,5,3,6), t(1,2,5,3,4,6),

t(1,2,5,4,3,6), t(1,3,2,4,5,6), t(1,3,2,5,4,6), t(1,3,4,2,5,6), t(1,3,4,5,2,6),

t(1,3,5,2,4,6), t(1,3,5,4,2,6), t(1,4,2,3,5,6), t(1,4,2,5,3,6), t(1,4,3,2,5,6),

t(1,4,3,5,2,6), t(1,4,5,2,3,6), t(1,4,5,3,2,6), t(1,5,2,3,4,6), t(1,5,2,4,3,6),
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t(1,5,3,2,4,6), t(1,5,3,4,2,6), t(1,5,4,2,3,6), t(1,5,4,3,2,6), t(2,1,3,4,5,6),

t(2,1,3,5,4,6), t(2,1,4,3,5,6), t(2,1,4,5,3,6), t(2,1,5,3,4,6), t(2,1,5,4,3,6),

t(2,3,1,4,5,6), t(2,3,1,5,4,6), t(2,3,4,1,5,6), t(2,3,4,5,1,6), t(2,3,5,1,4,6),

t(2,3,5,4,1,6), t(2,4,1,3,5,6), t(2,4,1,5,3,6), t(2,4,3,1,5,6), t(2,4,3,5,1,6),

t(2,4,5,1,3,6), t(2,4,5,3,1,6), t(2,5,1,3,4,6), t(2,5,1,4,3,6), t(2,5,3,1,4,6),

t(2,5,3,4,1,6), t(2,5,4,1,3,6), t(2,5,4,3,1,6), t(3,1,2,4,5,6), t(3,1,2,5,4,6),

t(3,1,4,2,5,6), t(3,1,4,5,2,6), t(3,1,5,2,4,6), t(3,1,5,4,2,6), t(3,2,1,4,5,6),

t(3,2,1,5,4,6), t(3,2,4,1,5,6), t(3,2,4,5,1,6), t(3,2,5,1,4,6), t(3,2,5,4,1,6),

t(3,4,1,2,5,6), t(3,4,1,5,2,6), t(3,4,2,1,5,6), t(3,4,2,5,1,6), t(3,4,5,1,2,6),

t(3,4,5,2,1,6), t(3,5,1,2,4,6), t(3,5,1,4,2,6), t(3,5,2,1,4,6), t(3,5,2,4,1,6),

t(3,5,4,1,2,6), t(3,5,4,2,1,6), t(4,1,2,3,5,6), t(4,1,2,5,3,6), t(4,1,3,2,5,6),

t(4,1,3,5,2,6), t(4,1,5,2,3,6), t(4,1,5,3,2,6), t(4,2,1,3,5,6), t(4,2,1,5,3,6),

t(4,2,3,1,5,6), t(4,2,3,5,1,6), t(4,2,5,1,3,6), t(4,2,5,3,1,6), t(4,3,1,2,5,6),

t(4,3,1,5,2,6), t(4,3,2,1,5,6), t(4,3,2,5,1,6), t(4,3,5,1,2,6), t(4,3,5,2,1,6),

t(4,5,1,2,3,6), t(4,5,1,3,2,6), t(4,5,2,1,3,6), t(4,5,2,3,1,6), t(4,5,3,1,2,6),

t(4,5,3,2,1,6), t(5,1,2,3,4,6), t(5,1,2,4,3,6), t(5,1,3,2,4,6), t(5,1,3,4,2,6),

t(5,1,4,2,3,6), t(5,1,4,3,2,6), t(5,2,1,3,4,6), t(5,2,1,4,3,6), t(5,2,3,1,4,6),

t(5,2,3,4,1,6), t(5,2,4,1,3,6), t(5,2,4,3,1,6), t(5,3,1,2,4,6), t(5,3,1,4,2,6),

t(5,3,2,1,4,6), t(5,3,2,4,1,6), t(5,3,4,1,2,6), t(5,3,4,2,1,6), t(5,4,1,2,3,6),

t(5,4,1,3,2,6), t(5,4,2,1,3,6), t(5,4,2,3,1,6), t(5,4,3,1,2,6), t(5,4,3,2,1,6)
}
. (18)

Now by applying the 120 permutations of the five letters X1, . . . ,X5 to Eq. (17), we come to exactly
60 new relations. Note that this permutation action amounts to just relabeling the letters since these
relations are determined by words of the given form; the labels are insignificant by themselves.

For the second variation of tr(U
∑

XYZ), let U = X1,X = X2X3,Y = X4X5,Z = X6. Then we come to
the relation

t(1,2,3,4,5,6) + t(1,4,5,2,3,6) + t(2,3,1,4,5,6)

+ t(2,3,4,5,1,6) + t(4,5,1,2,3,6) + t(4,5,2,3,1,6)

= t(1)t(6)t(2,3)t(4,5) − t(1,6)t(2,3)t(4,5) − t(6)t(1,2,3)t(4,5) − 1

2
t(1)t(2,3,6)t(4,5)

− 1

2
t(1)t(6,2,3)t(4,5) + t(1,2,3,6)t(4,5) + t(1,6,2,3)t(4,5) − t(6)t(2,3)t(1,4,5)

+ 1

2
t(1,4,5)t(2,3,6) + 1

2
t(1,4,5)t(6,2,3) − t(1)t(2,3)t(6,4,5) + t(1,2,3)t(6,4,5)

+ t(2,3)t(1,4,5,6) + t(2,3)t(1,6,4,5) − t(1)t(6)t(2,3,4,5) + t(1,6)t(2,3,4,5)

+ t(6)t(1,2,3,4,5) + t(6)t(1,4,5,2,3) + t(1)t(4,5,2,3,6) + t(1)t(4,5,6,2,3). (19)
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Again applying the 120 permutations of the first five generic matrices to Eq. (19) yields exactly 60
equations; for a total of 120 equations when added to the 60 equations coming from the permutations
of Eq. (17).

The left-hand sides of these relations are linear in the 120 generators of length 6 with coefficients
only 1 or 0.

With respect to the order of the generators implicit in the list (18) above, we form the 120 × 120
matrix:

M =
⎛
⎝ M11 M12 M13

M21 M22 M23
M31 M32 M33

⎞
⎠ ,

where each entry is a 40×40 matrix of ones and zeros. The rows of M correspond to the 120 relations
coming from the permutations of Eqs. (17) and (19). We list the submatrices Mij in Appendix B for
completeness.

Computing the rank of M with Mathematica we determine it to be 105. Hence we can reduce the
120 generators to exactly 15; the known minimal number.

The complement of any 105 pivot columns will correspond to 15 minimal generators. For instance,
removing columns 86, 88, 90, 104, 108, 110–114, and 116–120 gives a full rank matrix. Hence the
generators which correspond to those columns (the 86th,88th, . . . , etc., entries in the above list (18)

of 120 generators) are a minimal set of generators of this type. Here they are:

{
t(4,3,1,5,2,6), t(4,3,2,5,1,6), t(4,3,5,2,1,6), t(5,2,1,4,3,6),

t(5,2,4,3,1,6), t(5,3,1,4,2,6), t(5,3,2,1,4,6), t(5,3,2,4,1,6),

t(5,3,4,1,2,6), t(5,3,4,2,1,6), t(5,4,1,3,2,6), t(5,4,2,1,3,6),

t(5,4,2,3,1,6), t(5,4,3,1,2,6), t(5,4,3,2,1,6)
}
.

Performing row reductions on the 120 × 120 matrix and using the permutations and explicit re-
lations above, one can find the exact relations necessary to remove these 105 generators (this is not
computationally trivial however).

This concludes the proof of Theorem 8.
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Appendix A

The algorithm alluded to at the end of the proof of Lemma 25 is as follows (see [21] for details):

Step 1. Define

pol2(X,Y,Z) = pol
(
Y,X2Z

) + X pol(Y,XZ) − pol
(
X,Y2)Z − pol(X,Y)ZY + X2 pol(Y,Z).

Then 3X2ZY2 = pol2(X,Y,Z).
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Step 2. Define

pre pol3(X,U,V,Z) = pol2(X,U + V,Z) − pol2(X,U,Z) − pol2(X,V,Z),

and define

pol3(X,U,V,W,Z) = pre pol3(X,U,V,ZW) + pre pol3(X,WU,V,Z) − pre pol3(X,W,V,Z)U.

Then 6X2ZWUV = pol3(X,U,V,W,Z).

Step 3.

6(XYZWUV + YXZWUV) = pol3(X + Y,U,V,W,Z) − pol3(X,U,V,W,Z) − pol3(Y,U,V,W,Z).

Note. In [21] the expression on the right in Step 3 is shown to have trace degree 6 and total degree 5
(the total degree is the largest word in the expression that is not the argument of a trace).

Step 4. Using Mathematica, we implement Steps 1–3 to find:

6(XYZWUV + YXZWUV)

= I
(
2 tr(XYZWUV + YXZWUV) + tr(XYZWVU + XYZVWU + YXZWVU + YXZVWU)

)
+ E(X,Y,Z,W,U,V),

where E is a polynomial expression of total degree and trace degree less than or equal to 5.

Step 5. Take the trace of both sides of the expression in Step 4 and cancel like terms to yield:

3
(
tr(XYZWVU) + tr(XYZVWU) + tr(YXZWVU) + tr(YXZVWU)

)
= F(X,Y,Z,W,V,U),

where F is a polynomial expression of trace degree less than or equal to 5.
This gives the desired expression which we refer to as the fundamental relation.

Appendix B

With respect to the order of the generators implicit in the list (18) we form the 120 × 120 matrix:

M =
⎛
⎝ M11 M12 M13

M21 M22 M23
M31 M32 M33

⎞
⎠ ,

where each entry is a 40 × 40 matrix of ones and zeros. The rows of M correspond to the 120
relations coming from the permutations of Eqs. (17) and (19). We list the submatrices Mij here for
completeness:
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⎛
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0

⎞
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
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0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

38
06

S.
La

w
to

n
/J

ou
rn

al
of

A
lg

eb
ra

32
0

(2
00

8)
37

73
–3

81
0

M23 =

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



38
07

⎛
⎜⎜

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
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0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
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⎜ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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