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a b s t r a c t

A multivariate measure of association is proposed, which extends the bivariate copula-
based measure Phi-Square introduced by Hoeffding [22]. We discuss its analytical
properties and calculate its explicit value for some copulas of simple form; a simulation
procedure to approximate its value is provided otherwise. A nonparametric estimator for
multivariate Phi-Square is derived and its asymptotic behavior is established based on
the weak convergence of the empirical copula process both in the case of independent
observations anddependent observations fromstrictly stationary strongmixing sequences.
The asymptotic variance of the estimator can be estimated by means of nonparametric
bootstrap methods. For illustration, the theoretical results are applied to financial asset
return data.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Measuring the degree of association between the components of a d-dimensional (d > 2) random vector X = (X1,
. . . , Xd) has attracted much interest among scientists and practitioners in recent years. Naturally, such measures of
multivariate association are based on the copula of the random vector X, i.e., they are invariant with respect to the
marginal distributions of the random variables Xi, i = 1, . . . , d. Wolff [49] introduces a class of multivariate measures
of association which is based on the L1- and L∞-norms of the difference between the copula and the independence copula
(see [16] for various extensions). Other authors generalize existing bivariatemeasures of association to themultivariate case.
For example, various multivariate extensions of Spearman’s Rho are considered by Nelsen [33] and Schmid and Schmidt
[38–40]. Blomqvist’s Beta is generalized by Úbeda-Flores [47] and Schmid and Schmidt [41], whereas a multivariate version
of Gini’s Gamma is proposed by Behboodian et al. [2]. Further, Joe [27] and Nelsen [33] discuss multivariate generalizations
of Kendall’s Tau. A multivariate version of Spearman’s footrule is considered by Genest et al. [19]. Joe [26,25] investigates
another type ofmultivariatemeasureswhich is based on the Kullback–Leiblermutual information. General considerations of
multivariatemeasures of association, in particular ofmeasures of concordance, are discussed in [49,27,11,45]. For a survey of
copula-based measures of multivariate association, we refer to [42]. Despite their common basis on the copula of a random
vector, the aforementionedmeasures generally differwith regard to their analytical properties.Wedonot knowof ameasure
that is superior in every respect and the choice of an appropriate measure depends essentially on the type of application.
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In the present paper, we propose amultivariate extension of the bivariatemeasure of associationwhichwas suggested by
Wassily Hoeffding in his seminal doctoral dissertation (see [22,17]). Multivariate Hoeffding’s Phi-Square (which we denote
by Φ2) is based on a Cramér–von Mises functional and can be interpreted as the (normalized) average squared difference
between the copula of a random vector and the independence copula. It offers a set of properties which are advantageous
for many applications. For example, the measure is zero if and only if the components of X are stochastically independent.
This leads to the construction of statistical tests for stochastic independence based on Hoeffding’s Phi-Square (cf. [20]).
Multivariate Hoeffding’sΦ2 is based on a L2-type distance between the copula C of a random vector and the independence
copula and attains itsmaximal value in the case of comonotonicity, i.e., when the copula equals the upper Fréchet–Hoeffding
bound. The concept of comonotonicity is of interest, e.g., in actuarial science or finance (see [9,10]). Further, multivariate
Hoeffding’s Phi-Square can be estimatedwith low computational complexity, even for large dimension d, and nonparametric
statistical inference for the estimator can be established based on the empirical copula. The measure can thus be used to
quantify the degree of association of multivariate empirical data (e.g., financial asset returns).
The paper is organized as follows. Section 2 introduces relevant definitions and notation. Multivariate Hoeffding’sΦ2 is

introduced in Section 3 and some of its analytical properties are investigated. We calculate the explicit value of multivariate
Hoeffding’sΦ2 for some copulas of simple form and describe a simulation algorithm to approximate its value in cases where
the copula is of a more complicated form. In Section 4, a nonparametric estimator Φ̂2n forΦ

2 based on the empirical copula
is derived. We establish its asymptotic behavior both in the case of independent observations and dependent observations
from strictly stationary strong mixing sequences. In general, two cases need to be distinguished: If Φ2 > 0, asymptotic
normality of

√
n(Φ̂2n − Φ

2) can be shown using the functional Delta-method. The asymptotic variance can consistently be
estimated by means of a nonparametric (moving block) bootstrap method. When Φ2 = 0, weak convergence of nΦ̂2n to a
non-normal distribution follows. We show how the estimator can be adapted to account for small sample sizes. Section 5
presents an empirical study of financial contagion related to the bankruptcy of Lehman Brothers Inc. in September 2008
using multivariate Hoeffding’sΦ2. A brief conclusion is given in Section 6.

2. Notation and definitions

Let X = (X1, . . . , Xd) be a d-dimensional random vector (d ≥ 2), defined on some probability space (Ω,F , P), with
distribution function F(x) = P(X1 ≤ x1, . . . , Xd ≤ xd) for x = (x1, . . . , xd) ∈ Rd and marginal distribution functions
Fi(x) = P(Xi ≤ x) whose survival functions are denoted by F̄i(x) = P(Xi > x) for x ∈ R and i = 1, . . . , d. If not stated
otherwise, we always assume that the Fi are continuous functions. According to Sklar’s theorem [44], there exists a unique
copula C : [0, 1]d → [0, 1] such that

F(x) = C(F1(x1), . . . , Fd(xd)) for all x ∈ Rd.
The copula C is also referred to as the copula of the randomvectorX (if an explicit reference to the randomvector is required,
we denote its copula by CX). It represents the joint distribution function of the random variables Ui = Fi(Xi), i = 1, . . . , d,
i.e., C(u1, . . . , ud) = P(U1 ≤ u1, . . . ,Ud ≤ ud) = P(U ≤ u) for all u = (u1, . . . , ud) ∈ [0, 1]d and random vector
U = (U1, . . . ,Ud). Moreover, C(u) = F(F−11 (u1), . . . , F−1d (ud)) for all u ∈ [0, 1]d. The generalized inverse function G−1 is
defined by G−1(u) := inf{x ∈ R ∪ {∞}|G(x) ≥ u} for all u ∈ (0, 1] and G−1(0) := sup{x ∈ R ∪ {−∞}|G(x) = 0}.
The survival copula C̆ of C is given by C̆(u) = P(U > 1−u)where 1−u = (1−u1, . . . , 1−ud). It represents the copula

of the random vector−X = (−X1, . . . ,−Xd). The random vector X = (X1, . . . , Xd) is said to bemarginally symmetric about
a ∈ Rd if X1, . . . , Xd are symmetric about a1, . . . , ad, respectively (i.e., Fk(ak + x) = F̄k(ak − x) for all x ∈ R, k = 1, . . . , d).
Radial symmetry of X about a ∈ Rd is given if, and only if, the random vector X is marginally symmetric and the copula
CX of X equals its survival copula C̆X, that is CX(u) = P(U ≤ u) = P(U > 1 − u) = C̆X(u) for all u ∈ [0, 1]d. Let αk be
a strictly decreasing transformation of the kth component Xk of X, defined on the range of Xk, and denote the transformed
random vector by αk(X) = (X1, . . . , Xk−1, αk(Xk), Xk+1, . . . , Xd), k = 1, . . . , d. The random vector X is then said to be
jointly symmetric about a ∈ Rd if, and only if, X is marginally symmetric and its copula CX equals the copula Cαk(X) of
αk(X), k = 1, . . . , d. Note that joint symmetry implies radial symmetry; see [34], Chapter 2.7.
Every copula C is bounded in the following sense:
W (u) := max{u1 + · · · + ud − (d− 1), 0}

≤ C(u) ≤ min{u1, . . . , ud} =: M(u) for all u ∈ [0, 1]d,
where M and W are called the upper and lower Fréchet–Hoeffding bounds, respectively. The upper bound M is a copula
itself and is also known as the comonotonic copula. It represents the copula of X1, . . . , Xd if F1(X1) = · · · = Fd(Xd) with
probability one, i.e., if there is (with probability one) a strictly increasing functional relationship between Xi and Xj(i 6= j).
By contrast, the lower boundW is a copula only for dimension d = 2. Moreover, the independence copulaΠ with

Π(u) :=
d∏
i=1

ui, u ∈ [0, 1]d,

describes the dependence structure of stochastically independent random variables X1, . . . , Xd. For a detailed treatment of
copulas, we refer to [34,28]. Further, the space `∞([0, 1]d) is the collection of all uniformly bounded real-valued functions
defined on [0, 1]d. It is equipped with the uniform metricm(f1, f2) = supt∈[0,1]d |f1(t)− f2(t)|.
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3. A multivariate version of Hoeffding’s Phi-Square

In his seminal dissertation, Hoeffding [22] suggests the following measure Φ2 to quantify the amount of association
between the components of the two-dimensional random vector Xwith copula C

Φ2 = 90
∫
[0,1]2
{C(u1, u2)−Π(u1, u2)}2 du1du2. (1)

For the d-dimensional random vector Xwith copula C , we define a multivariate version ofΦ2 by

Φ2 := Φ2(C) = h(d)
∫
[0,1]d
{C(u)−Π(u)}2 du, (2)

with normalization constant h(d) = [
∫
[0,1]d {M(u)−Π(u)}

2 du]−1, whose explicit form is calculated later. In particular,Φ2

can be regarded as a continuous functional on the subset of l∞([0, 1]d) for which the integral on the right-hand side of Eq.
(2) is well-defined. This relationship is used in Section 4 where the statistical properties of Φ2 are derived. An alternative
multivariate measure of association can be defined by

Φ := Φ(C) = +
√
Φ2(C).

This measure can be interpreted as the normalized average distance between the copula C and the independence copulaΠ
with respect to the L2-norm. Bivariate measures of association of this form based on the L1- and L∞-norms are considered
by Schweizer andWolff [43]. For the related multivariate case, we refer to [49,16]. If C is the copula of the random vector X,
we also refer toΦ2 andΦ asΦ2X andΦX, respectively. Various analytical properties ofΦ2 are discussed next. They can also
be established forΦ .
Normalization: An important property ofΦ2 is that

Φ2 = 0 if and only if C = Π .

In order to motivate the specific form of the normalization factor h(d) in Eq. (2), we calculate the value of the defining
integral for the lower and upper Fréchet–Hoeffding bounds, respectively. For C = M , we have

h(d)−1 =
∫
[0,1]d
{M(u)−Π(u)}2 du =

2
(d+ 1)(d+ 2)

−
1
2d

d!
d∏
i=0

(
i+ 1

2

) +
(
1
3

)d
, (3)

and for C = W , we obtain

g(d)−1 =
∫
[0,1]d
{W (u)−Π(u)}2 du =

2
(d+ 2)!

− 2
i=0∑
d

(
d
i

)
(−1)i

1
(d+ 1+ i)!

+

(
1
3

)d
. (4)

The calculations are outlined in Appendix A. Both expressions converge to zero as the dimension d tends to infinity. In
particular, direct calculations yield that

h(d)−1 ≥ g(d)−1 for all d ≥ 2,

such that the range ofΦ2 as defined in (2) is restricted to the interval [0, 1], i.e.,

0 ≤ Φ2 ≤ 1 and Φ2 = 1 iff C = M for d ≥ 3. (5)

Note that for dimension d = 2, it holds thatΦ2 = 1 iff C = M or C = W since g(2) = h(2).

Remark. In the bivariate case, Hoeffding’s Phi-Square thus represents a measure for strictly monotone functional
dependence. In consequence, a value of one of Hoeffding’s Phi-Square also implies that the random variables X1 and X2
are completely dependent, i.e., that there exists a one-to-one function ψ (which is not necessarily monotone) such that
P(X2 = ψ(X1)) = 1 (cf. [23,30]). However, the converse does not hold. For example, two random variables X1 and X2 are
completely dependent if their copula is a shuffle ofM . According to Nelsen [34], Theorem 3.2.2, we find shuffles ofM which
(uniformly) approximate the independence copula arbitrarily closely (see also [32]). Hence, the value of bivariateHoeffding’s
Phi-Square can be made arbitrarily small for completely dependent random variables.

Invariance with respect to permutations: For every permutation π of the components of Xwe haveΦ2X = Φ
2
π(X) according to

Fubini’s Theorem.
Monotonicity: For copulas C1 and C2 with Π(u) ≤ C1(u) ≤ C2(u) ≤ M(u) for all u ∈ [0, 1]d, we have Φ2(C1) ≤ Φ2(C2).
For copulas C3 and C4 such thatW (u) ≤ C3(u) ≤ C4(u) ≤ Π(u) for all u ∈ [0, 1]d, it follows that Φ2(C3) ≥ Φ2(C4). This
property generalizes a result of Yanagimoto [50] to the multivariate case.
Invariance under strictly monotonic transformations: The behavior of Φ2 with respect to strictly monotonic transformations
is given in the next proposition.
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Proposition 1. Let X be a d-dimensional random vector with copula C.
(i) For dimension d ≥ 2,Φ2X is invariant with regard to strictly increasing transformations of one or several components of X.
(ii) For dimension d = 2,Φ2X is invariant under strictly decreasing transformations of one or both components of X.
For d ≥ 3, let αk be a strictly decreasing transformation of the kth component Xk of X, k ∈ {1, . . . , d}, and let αk(X) =
(X1, . . . , Xk−1, αk(Xk), Xk+1, . . . , Xd). Then,Φ2X = Φ

2
αk(X) if one of the following three conditions holds:

• X1, . . . , Xd are jointly symmetric about a ∈ Rd, or
• (X1, . . . , Xk−1, Xk+1, . . . , Xd) is stochastically independent of Xk, or
• X1, . . . , Xk−1, Xk+1, . . . , Xd are mutually stochastically independent.

The proof is outlined in Appendix C. If part (ii) of the above proposition is not satisfied, equality of Φ2X and Φ
2
αk(X) does not

hold in general. For example, let the copula C of X be the comonotonic copula, i.e., C = M , and let α1 be a strictly decreasing
transformation of the first component X1 of X. Then, Cα1(X)(u) 6= M(u) for all u ∈ [0, 1]

d, implying that Φ2α1(X) < Φ2X.
However, when applying the (strictly decreasing) inverse function α−11 of α1 to the first component of α1(X), we obtain that
Φ2
α−11 (α1(X))

= Φ2X > Φ2α1(X).

Duality: For dimension d = 2, Hoeffding’s Phi-Square satisfies duality, i.e.Φ2X = Φ
2
−X or equivalentlyΦ

2(C) = Φ2(C̆), since
Φ2 is invariant under strictly decreasing transformations of all components of X according to Proposition 1, part (ii). For
dimension d ≥ 3, duality does not hold in general except in the case that the random vector X is radially symmetric about
a ∈ Rd. Taylor [45] discusses duality in the context of multivariate measures of concordance.
Continuity: If {Cm}m∈N is a sequence of copulas such that Cm(u)→ C(u) for all u ∈ [0, 1]d, thenΦ2(Cm)→ Φ2(C) as a direct
consequence of the dominated convergence theorem.

Examples. (i) Let C be the d-dimensional Farlie–Gumbel–Morgenstern copula defined by C(u1, . . . , ud) =
∏d
i=1 ui +

θ
∏d
i=1 ui(1− ui), |θ | ≤ 1. Then, Hoeffding’s Phi-Square is given by

Φ2 = h(d)θ2
(
1
30

)d
, d ≥ 2.

It follows that Φ2 ≤ 1/10 for d ≥ 2. This illustrates the restricted range of dependence modeled by the family of
Farlie–Gumbel–Morgenstern copulas.
(ii) Let C(u) = θM(u)+ (1− θ)Π(u)with 0 6 θ 6 1. Then

Φ2 = θ2, d ≥ 2.

Note that for this family of copulas, the value ofΦ2 does not depend on the dimension d.

It is difficult to derive an explicit expression for Φ2 if C is of a more complicated structure than in examples (i) and (ii).
In this case, the value of Φ2 needs to be determined by simulation. The following equivalent representation of Φ2 is useful
for this purpose:

Φ2 = h(d)
∫
[0,1]d
{C(u)−Π(u)}2 du = h(d)EΠ

[
{C(U)−Π(U)}2

]
, (6)

where the random vectorU = (U1, . . . ,Ud) is uniformly distributed on [0, 1]d with stochastically independent components
Ui, i = 1, . . . , d (which is indicated by the subscript Π ). Thus, an approximation of Φ2 is obtained by estimating the
expectation on the right-hand side of Eq. (6) consistently as follows:

ÊΠ
[
{C(U)−Π(U)}2

]
=
1
n

n∑
i=1

{C(Ui)−Π(Ui)}2 , (7)

withU1, . . . ,Un being independent and identically distributedMonte Carlo replications fromU. For illustrationwe compute
the approximated value ofΦ2 for the equi-correlated Gaussian copula, given by

Cρ(u1, . . . , ud) = Φρ
(
Φ−1(u1), . . . ,Φ−1(ud)

)
(8)

with

Φρ(x1, . . . , xd) =
∫ x1

−∞

· · ·

∫ xd

−∞

(2π)−
d
2
∣∣Σρ∣∣− 12 exp(−12x>Σ−1ρ x

)
dxd · · · dx1

and Σρ = ρ
(
11>

)
+ (1 − ρ)I with − 1

d−1 < ρ < 1. The approximated values of Φ2 and Φ for different choices of the
parameter ρ and for dimensions d = 2, d = 5, and d = 10 are displayed in Fig. 1.
The values of Φ2 form a parabolic curve; see [22] for a power series representation of Φ2 for the bivariate Gaussian

copula.
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Fig. 1. Gaussian copula. Approximated values of Φ2 (left panel) and Φ (right panel) in the case of a d-dimensional equi-correlated Gaussian copula with
parameter ρ for dimension d = 2 (solid line), d = 5 (dashed line), and d = 10 (dotted line); calculations are based on n = 100, 000 Monte Carlo
replications.

4. Statistical inference for multivariate Hoeffding’s Phi-Square

Statistical inference for multivariate Hoeffding’s Phi-Square as introduced in formula (2) is based on the empirical copula
which was first discussed by Rüschendorf [37] and Deheuvels [8]. We derive a nonparametric estimator for multivariate
Hoeffding’s Phi-Square and establish its asymptotic behavior based on the weak convergence of the empirical copula
process. After illustrating our approach on the basis of independent observations, we generalize it to the case of dependent
observations from strictly stationary strong mixing sequences.

4.1. Nonparametric estimation

Let X1, . . . ,Xn be an (i.i.d.) random sample from the d-dimensional random vector X with distribution function F and
copula C . We assume that both F and C as well as the marginal distribution functions Fi, i = 1, . . . , d, are completely
unknown. The copula C is estimated by the empirical copula Ĉn, which is defined as

Ĉn(u) =
1
n

n∑
j=1

d∏
i=1

1{Ûij,n≤ui} for u ∈ [0, 1]
d (9)

with pseudo-observations Ûij,n = F̂i,n(Xij) for i = 1, . . . , d and j = 1, . . . , n, and F̂i,n(x) = 1
n

∑n
j=1 1{Xij≤x} for x ∈ R. As

Ûij,n = 1
n (rank of Xij in Xi1, . . . , Xin), statistical inference is based on the ranks of the observations. For fixed n, we suppress

the subindex and refer to the pseudo-observations as Ûij if it is clear from the context.
A nonparametric estimator for Φ2 is then obtained by replacing the copula C in formula (2) by the empirical copula Ĉn,

i.e.,

Φ̂2n := Φ
2(̂Cn) = h(d)

∫
[0,1]d

{̂
Cn(u)−Π(u)

}2
du.

The estimator is based on a Cramér–von Mises statistic and can explicitly be determined by

Φ̂2n = h(d)

{(
1
n

)2 n∑
j=1

n∑
k=1

d∏
i=1

(1−max{Ûij, Ûik})−
2
n

(
1
2

)d n∑
j=1

d∏
i=1

(1− Û2ij )+
(
1
3

)d}
. (10)

The derivation is outlined in Appendix B. Obviously, an estimator for the alternativemeasureΦ is given by Φ̂n = +
√
Φ̂2n . The

asymptotic distributions of Φ̂2n and Φ̂n can be deduced from the asymptotic behavior of the empirical copula process which
has been discussed, e.g., by Rüschendorf [37], Gänßler and Stute [18], Van der Vaart and Wellner [48], and Tsukahara [46].
The following result is shown in [14]:

Proposition 2. Let X1, . . . ,Xn be a random sample from the d-dimensional random vector X with joint distribution function F
and copula C. If the ith partial derivatives DiC(u) of C exist and are continuous for i = 1, . . . , d, the empirical process

√
n(̂Cn−C)

converges weakly in `∞([0, 1]d) to the process GC which takes the form
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GC (u) = BC (u)−
d∑
i=1

DiC(u)BC (u(i)). (11)

The process BC is a d-dimensional Brownian bridge on [0, 1]d with covariance function E{BC (u)BC (v)} = C(u∧ v)− C(u)C(v).
The vector u(i) corresponds to the vector where all coordinates, except the ith coordinate of u, are replaced by 1.

Then, asymptotic normality of Φ̂2n and Φ̂n can be established.

Theorem 3. Under the assumptions of Proposition 2 and if C 6= Π , it follows that

√
n(Φ̂2n − Φ

2)
d
−→ ZΦ2 (12)

where ZΦ2 ∼ N(0, σ
2
Φ2
) with

σ 2
Φ2
= {2h(d)}2

∫
[0,1]d

∫
[0,1]d
{C(u)−Π(u)}E{GC (u)GC (v)}{C(v)−Π(v)}dudv. (13)

Regarding the alternative measureΦ , we have
√
n(Φ̂n − Φ)

d
−→ ZΦ

with ZΦ ∼ N(0, σ 2Φ) and

σ 2Φ =
σ 2
Φ2

4Φ2
= h(d)

∫
[0,1]d

∫
[0,1]d{C(u)−Π(u)}E{GC (u)GC (v)}{C(v)−Π(v)}dudv∫

[0,1]d{C(u)−Π(u)}2du
.

The proof is given in Appendix C. Note that the assumption C 6= Π guarantees that the limiting random variable is
non-degenerated as implied by the form of the variance σ 2

Φ2
. However, if C = Π , Proposition 2 and an application of the

continuous mapping theorem yield

nΦ̂2n
d
−→ h(d)

∫
[0,1]d
{GΠ (u)}2du, as n→∞, (14)

with

E
[
h(d)

∫
[0,1]d
{GΠ (u)}2du

]
= h(d)

{(
1
2

)d
−

(
1
3

)d
−
d
6

(
1
3

)d−1}
.

The asymptotic distribution of Φ̂2n when C = Π is important for the construction of tests for stochastic independence
between the components of a multivariate random vector based on Hoeffding’s Phi-Square. In the bivariate setting, such
tests have been studied by Hoeffding [24] and Blum et al. [3]. Regarding the multivariate case, we mention Genest and
Rémillard [21] and Genest et al. [20] who consider various combinations of Cramér–von Mises statistics with special regard
to their asymptotic local efficiency. In our setting, a hypothesis test for H0 : C = Π against H1 : C 6= Π is performed
by rejecting H0 if the value of nΦ̂2n exceeds the (1 − α)-quantile of the limiting distribution in Eq. (14). The latter can be
determined by simulation; approximate critical values for the test statistic {h(d)}−1nΦ̂2n are also provided in [20].

Remark. When the univariate marginal distribution functions Fi are known, Hoeffding’s Phi-Square can also be estimated
using the theory of U-statistics. Consider the random variables Uij = Fi(Xij), i = 1, . . . , d, j = 1, . . . , n with Uj =
(U1j, . . . ,Udj) having distribution function C . Since

Φ2 = h(d)
∫
[0,1]d
{C(u)−Π(u)}2 du

=

∫
[0,1]d

∫
[0,1]d

∫
[0,1]d

h(d)

(
d∏
i=1

1{xi≤ui} −
d∏
i=1

ui

)(
d∏
i=1

1{yi≤ui} −
d∏
i=1

ui

)
dudC(x)dC(y),

an unbiased estimator of the latter based on the random sample U1, . . . ,Un is given by the U-statistic

Un(ψ) =
(n
2

)−1 ∑
1≤j<k≤n

ψ(Uj,Uk)
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with kernel ψ of degree 2, defined by

ψ(x, y) = h(d)
∫
[0,1,]d

(
d∏
i=1

1{xi≤ui} −
d∏
i=1

ui

)(
d∏
i=1

1{yi≤ui} −
d∏
i=1

ui

)
du, x, y ∈ [0, 1]d.

Results from the theory of U-statistics (see, e.g., Chapter 3 in [31]) and standard calculations yield that
√
n{Un(ψ)− Φ2} is

asymptotically normally distributed with mean zero and variance

σ 2U = Var{ψ1(X)}

= 4{h(d)}2
∫
[0,1]d

∫
[0,1]d
{C(u)−Π(u)}{C(u ∧ v)− C(u)C(v)}{C(v)−Π(v)}dudv,

where ψ1(x) = E{ψ(X, Y)|X = x} with independent random vectors X, Y having distribution function C . The asymptotic
variance coincides with the asymptotic variance of

√
n(Φ̂2n − Φ

2) for known marginal distribution functions (cf. Eq. (13)).
In particular, Un(ψ) is degenerate when C = Π . The fact that both estimators have the same asymptotic distribution in the
case of known margins follows also from the relationship

√
n(Φ̂2n − Φ

2) =
1
n3/2

n∑
j=1

ψ(Uj,Uj)+
√
n
{
n− 1
n
· Un(ψ)− Φ2

}
where the first term in the right equation converges to zero in probability for n → ∞. In the case of unknown marginal
distribution functions, the estimation ofΦ2 by means of U-statistics is more involved in comparison to the above approach
based on the empirical copula.

Now let {Xj = (X1j, . . . , Xdj)}j∈Z be a strictly stationary sequence of d-dimensional random vectors, being defined on a
probability space (Ω,F , P), with distribution function F , continuous marginal distribution functions Fi, i = 1, . . . , d, and
copula C . In order to describe temporal dependence between the observations we use the concept of α-mixing or strong
mixing. SupposeA andB are two σ -fields included in F and define

α(A,B) = sup
A∈A,B∈B

|P(A ∩ B)− P(A)P(B)|.

Themixing coefficientαX associatedwith the sequence {Xj}j∈Z is given byαX(r) = sups≥0 α(Fs,F s+r)whereFt = σ {Xj, j ≤
t} and F t

= σ {Xj, j ≥ t} denote the σ -fields generated by Xj, j ≤ t , and Xj, j ≥ t , respectively. The process {Xj}j∈Z is said to
be strong mixing if

αX(r)→ 0 for r →∞.

Assume that our observations are realizations of the sample X1, . . . ,Xn and denote by Φ̂2n the corresponding estimator for
Hoeffding’s Phi-Square calculated according to (10). The asymptotic behavior of Φ̂2n is given next.

Theorem 4. Let X1, . . . ,Xn be observations from the strictly stationary strong mixing sequence {Xj}j∈Z with coefficient αX(r)
satisfying αX(r) = O(r−a) for some a > 1. If the ith partial derivatives DiC(u) of C exist and are continuous for i = 1, . . . , d,
and C 6= Π , we have

√
n(Φ̂2n − Φ

2)
d
→ ZΦ2 ∼ N(0, σ

2
Φ2
) with

σ 2
Φ2
= {2h(d)}2

∫
[0,1]d

∫
[0,1]d

E
[
{C(u)−Π(u)}G∗(u)G∗(v){C(v)−Π(v)}

]
dudv. (15)

The process G∗ has the same form as in Eq. (11) with process BC being replaced by the centered Gaussian process B∗ in [0, 1]d
having covariance function

E{B∗(u)B∗(v)} =
∑
j∈Z

E
[
{1{U0≤u} − C(u)}{1{Uj≤v} − C(v)}

]
,

where Uj = (F1(X1j), . . . , Fd(Xdj)), j ∈ Z.

The proof is outlined in Appendix C. The result is based on the weak convergence of the empirical copula process to
the Gaussian process G∗ for strictly stationary strong mixing sequences; cf. also [15] for the asymptotic properties of the
smoothed empirical copula process in this setting. Note that the asymptotic variance in Eq. (15) depends not only on the
copula C as in the case of independent observations (cf. Eq. (13)) but also on the joint distribution of U0 and Uj, j ∈ Z.
Theorem 4 can be transferred to sequences with temporal dependence structures other than strong mixing; we refer, for
example, to [1,7,12].
Even though the asymptotic variance has a closed-form expression, it cannot be calculated explicitly in most cases but

has to be estimated adequately. For dependent observations, a bootstrap method, the (moving) block bootstrap, has been
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proposed by Künsch [29], which is briefly described in the following. Given the sample X1, . . . ,Xn, we define blocks of size
l, l(n) = o(n), of consecutive observations by

Bs,l = {Xs+1, . . . ,Xs+l}, s = 0, . . . , n− l.

The block bootstrap draws with replacement k blocks from the blocks Bs,l, s = 0, . . . , n − l where we assume that n = kl
(otherwise the last block is shortened). With S1, . . . , Sk being independent and uniformly distributed random variables on
{0, . . . , n − l}, the bootstrap sample thus comprises those observations from X1, . . . ,Xn which are among the k blocks
BS1,l, . . . , BSk,l, i.e.,

XB1 = XS1+1, . . . ,X
B
l = XS1+l, XBl+1 = XS2+1, . . . ,X

B
n = XSk+l.

The block length l is a function of n, i.e., l = l(n) with l(n) → ∞ as n → ∞. For a discussion regarding the choice of l(n);
see [29,5]. Denote by ĈBn and F̂

B
n the empirical copula and the empirical distribution function of the block bootstrap sample

XB1, . . . ,X
B
n, respectively, and let Φ̂

2,B
n be the corresponding estimator for Hoeffding’s Phi-Square. It follows that the block

bootstrap can be applied to estimate the asymptotic variance of
√
n(Φ̂2 − Φ2).

Proposition 5. Let (XBj )j=1,...,n be the block bootstrap sample from (Xj)j=1,...,n, which are observations of a strictly stationary,
strong mixing sequence {Xj}j∈Z of d-dimensional random vectors with distribution function F and copula C whose partial
derivatives exist and are continuous. Suppose further that

√
n(̂CBn − Ĉn) converges weakly in `

∞([0, 1]d) to the same Gaussian
limit as

√
n(̂Cn − C) in probability. If C 6= Π , the sequences

√
n(Φ̂2n − Φ

2) and
√
n(Φ̂2,Bn − Φ̂

2
n ) converge weakly to the same

Gaussian limit in probability.

The sequence
√
n(̂CBn − Ĉn) converges weakly in probability to the same Gaussian limit as

√
n(̂Cn − C) if the (uniform)

empirical process
√
n(̂F Bn − F̂n) converges weakly in probability to the same Gaussian limit as

√
n(̂Fn − F), provided that

all partial derivatives of the copula exist and are continuous. This can be shown analogously to the proof of Theorem 3.9.11
in [48] using the functional Delta-method (cf. also proof of Theorem 4). The block bootstrap for empirical processes has been
discussed in various settings and for different dependence structures; for an overview see [35] and references therein. The
following sufficient conditions for

√
n(̂F Bn − F̂n) to converge weakly (in the space D([0, 1]

d)) in probability to the appropriate
Gaussian process for strong mixing sequences are derived in [4]:

∞∑
r=0

(r + 1)16(d+1)α1/2X (r) <∞ and block length l(n) = O(n1/2−ε), ε > 0.

The results of a simulation study, which assesses the performance of the bootstrap variance estimator, are presented in
Section 4.2. Note that in the case of independent observations, the standard bootstrap, which draws with replacement n
single observations from the sample X1, . . . ,Xn, can be used to estimate the asymptotic variance of

√
n(Φ̂2n − Φ

2).
Theorem 4 together with Proposition 5 enables the calculation of an asymptotic (1 − α)-confidence interval for

Hoeffding’s Phi-SquareΦ2 ∈ (0, 1), given by

Φ̂2n ± Φ
−1
(
1−

α

2

)
σ̂ B
Φ2n
/
√
n.

Further, an asymptotic hypothesis test for H0 : Φ2 = Φ20 against H1 : Φ
2
6= Φ20 with Φ

2
0 ∈ (0, 1) can be constructed by

rejecting the null hypothesis at the confidence level α if∣∣∣∣∣√n (Φ̂2n − Φ20 )σ̂ B
Φ2n

∣∣∣∣∣ > Φ−1
(
1−

α

2

)
.

Here, (σ̂ B
Φ2n
)2 denotes the consistent bootstrap variance estimator for σ 2

Φ2
, obtained by the block bootstrap. Note that in the

case Φ20 = 1, the copula corresponds to the upper Fréchet–Hoeffding bound M which does not possess continuous first
partial derivatives.
The above results can be extended to statistically analyze the difference of two Hoeffding’s Phi-Squares. In a financial

context, this may be of interest for assessing whether Hoeffding’s Phi-Square of one portfolio of financial assets significantly
differs from that of another portfolio (cf. Section 5). SupposeΦ2X andΦ

2
Y are multivariate Hoeffding’s Phi-Squares associated

with the strictly stationary sequences {Xj}j∈Z and {Yj}j∈Z of d-dimensional random vectors with distribution functions FX
and FY, continuous marginal distribution functions, and copulas CX and CY, respectively. Since the two sequences do not
have to be necessarily independent, consider the sequence {Zj = (Xj, Yj)}j∈Z of 2d-dimensional random vectors with
joint distribution function FZ, continuous marginal distribution functions FZ,i, i = 1, . . . , 2d, and copula CZ such that
CZ(u, 1, . . . , 1) = CX(u) and CZ(1, . . . , 1, v) = CY(v) for all u, v ∈ [0, 1]d.

Theorem 6. Let Z1 = (X1, Y1), . . . , Zn = (Xn, Yn) be observations of the strictly stationary, strong mixing sequence {Zj =
(Xj, Yj)}j∈Z with strong mixing coefficient αZ satisfying αZ(r) = O(r−a) for some a > 1. If the ith partial derivatives of CZ exist
and are continuous for i = 1, . . . , 2d, and CX, CY 6= Π , we have
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√
n
{
Φ̂2X − Φ

2
X − (Φ̂

2
Y − Φ

2
Y)
}

d
−→ W ∼ N(0, σ 2) as n→∞,

where σ 2 = σ 2
Φ2X
+ σ 2

Φ2Y
− 2σΦ2X,Φ2Y with

σΦ2X,Φ
2
Y
= {2h(d)}2

∫
[0,1]d

∫
[0,1]d

E
[
{CX(u)−Π(u)}G∗X(u)G

∗

Y(v){CY(v)−Π(v)}
]
dudv,

and σ 2
Φ2X
= σΦ2X,Φ

2
X
and σ 2

Φ2Y
= σΦ2Y ,Φ

2
Y
(cf. Eq. (15)). The processes G∗X and G∗Y are Gaussian processes on [0, 1]

d with covariance

structure as given in Theorem 4.

The proof is given in Appendix C. Analogously to the discussion prior to Theorem 6, an asymptotic confidence interval or
a statistical hypothesis test for the difference of two Hoeffding’s Phi-Squares can be formulated (cf. Section 5).

4.2. Small sample adjustments

In order to reduce bias in finite samples, the independence copulaΠ in the definition of Φ̂2n in Eq. (10) can be replaced by
its discrete counterpart

∏d
i=1 Un(ui)where Un denotes the (univariate) distribution function of a random variable uniformly

distributed on the set
{ 1
n , . . . ,

n
n

}
. This has also been proposed by Genest et al. [20] in the context of tests for stochastic

independence (cf. Section 4.1). In order to ensure the normalization property of the estimator in small samples, we introduce
the normalization factor h(d, n) depending on both dimension d and sample size n. It is obtained by replacing the upper
Fréchet–Hoeffding boundM with its discrete counterpartMn(u) := min{Un(u1), . . . ,Un(ud)}, which represents an adequate
upper bound of the empirical copula for given sample size n. A small sample estimator forΦ2 thus has the form

Φ̃2n = h(d, n)
∫
[0,1]d

{
Ĉn(u)−

d∏
i=1

Un(ui)

}2
du (16)

with

h(d, n)−1 =
∫
[0,1]d

{
Mn(u)−

d∏
i=1

Un(ui)

}2
du.

We obtain

Φ̃2n = h(d, n)

{(
1
n

)2 n∑
j=1

n∑
k=1

d∏
i=1

(1−max{Ûij, Ûik})

−
2
n

(
1
2

)d n∑
j=1

d∏
i=1

{
1− Û2ij −

1− Ûij
n

}
+

(
1
3

)d {
(n− 1)(2n− 1)

2n2

}d}
,

with

h(d, n)−1 =
(
1
n

)2 n∑
j=1

n∑
k=1

(
1−max

{
j
n
,
k
n

})d
−
2
n

n∑
j=1

{
n(n− 1)− j(j− 1)

2n2

}d
+

(
1
3

)d {
(n− 1)(2n− 1)

2n2

}d
.

Note that Φ̃2n and Φ̂
2
n have the same asymptotic distribution, i.e. under the assumptions of Theorem 4

√
n(Φ̃2n − Φ

2)
d
−→ ZΦ2 ∼ N(0, σ

2
Φ2
).

This can be shown analogously to the proof of Theorem 4 using the fact that limn→∞
√
n{h(d, n)− h(d)} = 0. Accordingly

it follows that the bootstrap to estimate the asymptotic variance of
√
n(Φ̃2n − Φ

2)works (cf. Proposition 5).
A simulation study is carried out in order to investigate the finite-sample performance of the block bootstrap estimator

for the asymptotic standard deviation σΦ2 of
√
n(Φ̃2n − Φ

2).
For comparison, we additionally provide the corresponding simulation results when using a nonparametric jackknife

method to estimate the unknown standard deviation. For dependent observations, Künsch [29] introduces the delete-l
jackknife which, in contrast to the block bootstrap described in the previous section, is based on systematically deleting
one block Bs,l of l consecutive observations each time from the original sample, s = 0, . . . , n − l. Let Φ̃

2,(s)
n denote the

estimator of Hoeffding’s Phi-Square calculated from the original sample when we have deleted block Bs,l, s = 0, . . . , n − l
and define Φ̃2,(.)n = (n− l+ 1)−1

∑n−l
s=0 Φ̃

2,(s)
n . The jackknife estimate of the standard deviation is then given by

σ̂ J =

√√√√ (n− l)2

nl(n− l+ 1)

n−l∑
s=0

(
Φ̃
2,(s)
n − Φ̃

2,(.)
n

)2
.
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Table 1
Gaussian copula (independent observations). Simulation results for estimating the asymptotic standard deviation of

√
n(Φ̃2n − Φ2) by means of the

nonparametric block bootstrap with block length l and the delete-l jackknife (for l = 5): The table shows the empirical means m(·) and the empirical
standard deviations s(·) of the respective estimates, which are calculated based on 1000Monte Carlo simulations of sample size n of a d-dimensional equi-
correlated Gaussian copula with parameter ρ and 250 bootstrap samples. The bootstrap estimates are labeled by the superscript B, jackknife estimates by
J .

ρ n Φ2 m(Φ̃2n ) s(Φ̃2n ) m(σ̂ B) m(σ̂ J ) s(σ̂ B) s(σ̂ J )

Dimension d = 2

0.2 50 0.032 0.077 0.047 0.055 0.049 0.019 0.026
100 0.032 0.054 0.034 0.035 0.033 0.012 0.015
500 0.032 0.035 0.015 0.015 0.015 0.003 0.003

0.5 50 0.197 0.231 0.095 0.089 0.094 0.017 0.022
100 0.197 0.218 0.070 0.067 0.069 0.010 0.011
500 0.197 0.202 0.032 0.031 0.032 0.003 0.002

−0.1 50 0.008 0.056 0.035 0.047 0.037 0.015 0.021
100 0.008 0.032 0.021 0.026 0.022 0.010 0.012
500 0.008 0.013 0.008 0.008 0.008 0.003 0.003

Dimension d = 5

0.2 50 0.028 0.044 0.023 0.026 0.022 0.010 0.010
100 0.028 0.036 0.016 0.017 0.015 0.005 0.005
500 0.028 0.030 0.007 0.007 0.007 0.001 0.001

0.5 50 0.191 0.208 0.065 0.063 0.062 0.013 0.014
100 0.191 0.202 0.048 0.045 0.046 0.007 0.008
500 0.191 0.196 0.022 0.021 0.021 0.002 0.002

−0.1 50 0.007 0.015 0.004 0.005 0.004 0.001 0.002
100 0.007 0.011 0.004 0.003 0.003 0.001 0.001
500 0.007 0.007 0.002 0.002 0.002 0.000 0.000

Dimension d = 10

0.2 50 0.007 0.014 0.009 0.012 0.008 0.007 0.005
100 0.007 0.011 0.005 0.007 0.005 0.003 0.003
500 0.007 0.008 0.002 0.002 0.002 0.001 0.001

0.5 50 0.098 0.111 0.046 0.049 0.043 0.017 0.016
100 0.098 0.107 0.033 0.035 0.033 0.009 0.009
500 0.098 0.100 0.015 0.015 0.015 0.002 0.002

−0.1 50 0.001 0.001 0.000 0.000 0.000 0.000 0.000
100 0.001 0.001 0.000 0.000 0.000 0.000 0.000
500 0.001 0.001 0.000 0.000 0.000 0.000 0.000

We consider observations from an AR(1)-process with autoregressive coefficient β (cf. Table 2) based on the equi-correlated
Gaussian copula as defined in (8). To generate these observations, we proceed as follows: Simulate n independent d-
dimensional random variates Uj = (Uj1, . . . ,Ujd), j = 1, . . . , n, from the equi-correlated Gaussian copula with parameter
ρ. Set εj = (Φ−1(Uj1), . . . ,Φ−1(Ujd)), j = 1, . . . , n. A sample (Xj)j=1,...,n of the AR(1)-process is then obtained by setting
X1 = ε1 and completing the recursion Xj = βXj−1 + εj, j = 2, . . . , n. Additionally, we consider the case of independent
observations from the equi-correlated Gaussian copula (cf. Table 1). To ease comparison, the block bootstrap is used in this
case, too.
Tables 1 and 2 outline the simulation results for dimensions d = 2, 5, and 10, sample sizes n = 50, 100, and 500,

and different choices of the copula parameter ρ. Their calculation is based on 1000 Monte Carlo simulations of size n and
250 bootstrap replications, respectively. For simplicity, we set the block length l = 5 in all simulations. The autoregressive
coefficient β of the AR(1)-process equals 0.5. The third column of Tables 1 and 2 shows an approximation to the true value of
Φ2, which is calculated from a sample of size 100,000. Comparing the latter tom(Φ̃2n ) (column 4), we observe a finite-sample
bias which strongly depends on the dimension d and the parameter choices, and which decreases with increasing sample
size. The standard deviation estimations s(Φ̃2n ) and the empirical means of the block bootstrap estimations, m(σ̂

B), as well
as the delete-l jackknife estimations, m(σ̂ J), for the standard deviation are given in columns 5, 6, and 7. There is a good
agreement between their values, especially for the sample sizes n = 100 and n = 500, implying that the bootstrap and the
jackknife procedure to estimate the asymptotic standard deviation of

√
n(Φ̃2n−Φ

2)performwell for the consideredGaussian
copula models. Further, the standard error s of the bootstrap standard deviation estimations is quite small (column 8) and
slightly smaller than the obtained jackknife estimates (column 9) in lower dimensions. For large sample size n, however,
the jackknife is of higher computational complexity.

5. Empirical study

For illustration purposes, we apply the theoretical results of Section 4 to empirical financial data. We analyze the
association between the daily (log-)returns of major S&P global sector indices before and after the bankruptcy of Lehman
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Table 2
Gaussian copula (dependent AR(1) observations). Simulation results for estimating the asymptotic standard deviation of

√
n(Φ̃2n − Φ

2) by means of the
nonparametric block bootstrap with block length l and the delete-l jackknife (for l = 5): The table shows the empirical means m(·) and the empirical
standard deviations s(·) of the respective estimates, which are calculated based on 1000 Monte Carlo simulations of sample size n of a d-dimensional
equi-correlated Gaussian copula with parameter ρ, AR(1)-processes with standard normal residuals in each margin (with coefficient β = 0.5 for the first
lag) and 250 bootstrap samples. The bootstrap estimates are labeled by the superscript B, jackknife estimates by J .

ρ n Φ2 m(Φ̃2n ) s(Φ̃2n ) m(σ̂ B) m(σ̂ J ) s(σ̂ B) s(σ̂ J )

Dimension d = 2

0.2 50 0.032 0.086 0.059 0.065 0.060 0.022 0.033
100 0.032 0.059 0.043 0.042 0.040 0.016 0.021
500 0.032 0.036 0.018 0.017 0.017 0.005 0.005

0.5 50 0.200 0.242 0.114 0.101 0.110 0.022 0.031
100 0.200 0.222 0.086 0.076 0.081 0.013 0.015
500 0.200 0.203 0.039 0.037 0.037 0.003 0.003

−0.1 50 0.008 0.067 0.045 0.058 0.050 0.019 0.029
100 0.008 0.037 0.025 0.032 0.028 0.012 0.016
500 0.008 0.014 0.010 0.010 0.009 0.004 0.005

Dimension d = 5

0.2 50 0.028 0.047 0.031 0.030 0.026 0.014 0.016
100 0.028 0.039 0.020 0.020 0.019 0.008 0.008
500 0.028 0.031 0.009 0.008 0.008 0.002 0.002

0.5 50 0.192 0.212 0.082 0.072 0.074 0.019 0.023
100 0.192 0.205 0.057 0.053 0.054 0.010 0.011
500 0.192 0.196 0.026 0.025 0.025 0.003 0.002

−0.1 50 0.007 0.015 0.005 0.006 0.005 0.002 0.002
100 0.007 0.011 0.004 0.004 0.004 0.001 0.001
500 0.007 0.008 0.002 0.002 0.002 0.000 0.000

Dimension d = 10

0.2 50 0.007 0.015 0.011 0.013 0.009 0.009 0.008
100 0.007 0.012 0.007 0.008 0.006 0.005 0.004
500 0.007 0.008 0.002 0.003 0.002 0.001 0.001

0.5 50 0.099 0.111 0.055 0.053 0.049 0.020 0.023
100 0.099 0.109 0.042 0.039 0.037 0.014 0.014
500 0.099 0.100 0.018 0.017 0.017 0.003 0.003

−0.1 50 0.001 0.001 0.000 0.000 0.000 0.000 0.000
100 0.001 0.001 0.000 0.000 0.000 0.000 0.000
500 0.001 0.001 0.000 0.000 0.000 0.000 0.000

Fig. 2. Evolution of the S&P global sector indices Financials, Energy, Industrials, and IT with respect to their value on January 1, 2008 (left panel).
Multivariate Hoeffding’s Phi-Square Φ̃2 of the four indices’ returns series, where the estimation is based on a moving window approach with window
size 50 (right panel). The vertical line indicates the 15th of September 2008, the day of the bankruptcy of Lehman Brothers Inc.

Brothers Inc. using multivariate Hoeffding’s Phi-Square. The major S&P global sector indices considered are Financials,
Energy, Industrials, and IT during the period from 1st January 2008 to 8th April 2009 (331 observations).
Fig. 2 (left panel) shows the evolution of the four indices over the considered time horizon. To ease comparison, all series

are plotted with respect to their value on January 1, 2008. The vertical line indicates the 15th of September 2008, the day
of the bankruptcy of Lehman Brothers Inc. All series decrease in mid 2008 in the course of deteriorating financial markets;
they decline especially sharply after the bankruptcy of Lehman Brothers Inc. Table 3 reports the first four moments of the
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Table 3
First four moments (in %) and results of the Jarque–Bera (JB) test, calculated for the returns of the S&P indices, as well as results of the Ljung–Box (LB)
Q -statistics, calculated up to lag twenty from the squared returns.

Financials Energy Industrials IT

Mean −0.3140 −0.1732 −0.2213 −0.1637
Standard deviation 3.1696 3.0553 2.1199 2.1037
Skewness 0.1490 −0.2462 −0.1139 0.1148
Kurtosis 5.2523 6.6540 4.8467 5.2024
JB statistics 71.1875 187.4846 47.7495 67.6229
JB p-values 0.0000 0.0000 0.0001 0.0000
LB Q -statistics 141.8456 447.6130 386.8856 266.6008
LB p-values 0.0000 0.0000 0.0000 0.0000

daily returns of the four indices as well as the related results of the Jarque–Bera (JB) test, calculated over the entire time
horizon. In addition, the last two rows of the table display the results of the Ljung–Box (LB) Q -statistics, computed from the
squared returns of the indices up to lag twenty. All return series show skewness and excess kurtosis. The Jarque–Bera (JB)
test rejects the null hypothesis of normality at all standard levels of significance. Further, all squared returns show significant
serial correlation as indicated by the Ljung–Box (LB) test, which rejects the null hypothesis of no serial correlation. We fit
an ARMA–GARCH model to each return series (which cannot be rejected by common goodness-of-fit tests). The estimated
parameters are consistent with the assumption of strong mixing series (cf. [6]).
Fig. 2 (right panel) displays the evolution of multivariate Hoeffding’s Phi-Square of the indices’ returns, estimated on the

basis of a moving window approach with window size 50. Again, the vertical line indicates the day of Lehman’s bankruptcy.
We observe a sharp increase of Hoeffding’s Phi-Square after this date and, hence, an increase of the association between the
indices’ returns. In order to verify whether this increase is statistically significant, we compare Hoeffding’s Phi-Square over
the two distinct time periods before and after this date using the results on the statistical properties of the difference of two
Hoeffding’s Phi-Squares discussed in Section 4.1. Note that the test by Genest and Rémillard [21] (cf. Section 4.1) rejects the
null hypothesis of stochastic independence (i.e., C = Π ) with a p-value of 0.0005 such that Theorem 6 can be applied. We
calculate the estimated values (based on 250 bootstrap samples with block length l = 5) of Hoeffding’s Phi-Square and the
asymptotic variances and covariance as stated in Theorem 6 for both time periods which comprise n = 100 observations
each:

Φ̃2before = 0.1982,
Φ̃2after = 0.7437,

(σ̃ Bbefore)
2
= 0.1663,

(σ̃ Bafter)
2
= 0.2064,

σ̃ Bbefore,after = −0.0287.

The choice of the block length l = 5 is motivated by the results of the simulation study in Section 4.2. The corresponding
test statistic has the form∣∣∣∣∣∣√n (Φ̃2after − Φ̃

2
before)√

(σ̃ Bbefore)
2 + (σ̃ Bafter)

2 − 2σ̃ Bbefore,after

∣∣∣∣∣∣ = 8.3190,
with corresponding p-value 0.0000. Hence, we conclude that there has been a significant increase in association between
the returns of the four indices after the bankruptcy of Lehman Brothers Inc.

6. Conclusion

A multivariate version is proposed for Hoeffding’s bivariate measure of association Phi-Square. A nonparametric
estimator for the proposed measure is obtained on the basis of the empirical copula process. Its asymptotic distribution is
established for the cases of independent observations as well as of dependent observations from a strictly stationary strong
mixing sequence. The asymptotic distribution can be approximated by nonparametric bootstrap methods. This allows for
the calculation of asymptotic confidence intervals for Hoeffding’s Phi-Square and the construction of hypothesis tests. The
results are derived under the general assumption of continuous marginal distributions.
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Appendix A. Derivation of the functions h(d)−1 and g(d)−1

We calculate the explicit form of the functions h(d)−1 and g(d)−1, as stated in Eqs. (3) and (4). Regarding the function
h(d)−1, we have
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h(d)−1 =
∫
[0,1]d
{M(u)−Π(u)}2 du

=

∫
[0,1]d
{M(u)}2 du− 2

∫
[0,1]d

M(u)Π(u)du+
∫
[0,1]d
{Π(u)}2 du.

The first summand on the left-hand side of the above equation can be written as∫
[0,1]d
{M(u)}2 du = E

(
[min{U1, . . . ,Ud}]2

)
= E

(
X2
)

where U1, . . . ,Ud are i.i.d. from U ∼ R[0, 1] and X = min{U1, . . . ,Ud}. Therefore,

E
(
X2
)
= d

∫ 1

0
x2(1− x)d−1dx =

2
(d+ 1)(d+ 2)

. (A.1)

For the second summand, we obtain∫
[0,1]d

M(u)Π(u)du =
1
2d

∫
[0,1]d

min{u1, . . . , ud}
d∏
i=1

2uidu =
1
2d
E (min{V1, . . . , Vd}) =

1
2d
E(Y )

where V1, V2, . . . , Vd are i.i.d. from V , which has density fV (v) = 2v for 0 6 v 6 1 and Y = min {V1, V2, . . . , Vd}. Thus,

1
2d
E(Y ) =

1
2d

∫ 1

0
xd(1− x2)d−12xdx =

1
2d

∫ 1

0
(1− x2)ddx =

1
2d
1
2
Γ (d+ 1)

√
π

Γ
(
d+ 1+ 1

2

)
=
1
2d

d!
d∏
i=0

(
i+ 1

2

) . (A.2)

Combining Eqs. (A.1) and (A.2) and using that
∫
[0,1]d{Π(u)}

2du =
( 1
3

)d
yields the asserted form of h(d)−1.

Regarding the function g(d)−1 as defined in Eq. (4), we have

g(d)−1 =
∫
[0,1]d
{W (u)−Π(u)}2 du

=

∫
[0,1]d
{W (u)}2 du− 2

∫
[0,1]d

W (u)Π(u)du+
∫
[0,1]d
{Π(u)}2 du.

For the first summand, it follows that∫
[0,1]d
{W (u)}2 du =

∫ 1

0
· · ·

∫ 1

d−2−
d−2∑
i=1
ui

∫ 1

d−1−
d−1∑
i=1
ui

(
d∑
i=1

ui − d+ 1

)2
dud · · · du2du1 =

2
(d+ 2)!

. (A.3)

Partial integration of the second term further yields∫
[0,1]d

W (u)Π(u)du =
∫ 1

0
· · ·

∫ 1

d−2−
d−2∑
i=1
ui
ud−1

∫ 1

d−1−
d−1∑
i=1
ui
ud

(
d∑
i=1

ui − d− 1

)
dud · · · du2du1

=

d∑
i=1

(
d
i

)
(−1)i

1
(d+ 1+ i)!

. (A.4)

Again, by combining Eqs. (A.3) and (A.4) and using that
∫
[0,1]d{Π(u)}

2du =
( 1
3

)d
, we obtain the asserted form of g(d)−1.

Appendix B. Derivation of the estimator Φ̂2
n

We outline the derivation of the estimator Φ̂2n as given in (10).

{h(d)}−1Φ̂2n =
∫
[0,1]d

{
Ĉn(u)−

d∏
i=1

ui

}2
du =

∫
[0,1]d

{
1
n

n∑
j=1

(
d∏
i=1

1{Ûij≤ui} −
d∏
i=1

ui

)}2
du

=

(
1
n

)2 n∑
j=1

n∑
k=1

∫
[0,1]d

(
d∏
i=1

1{Ûij≤ui} −
d∏
i=1

ui

)(
d∏
i=1

1{Ûik≤ui} −
d∏
i=1

ui

)
du
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=

(
1
n

)2 n∑
j=1

n∑
k=1

∫
[0,1]d

(
d∏
i=1

1{max{Ûij,Ûik}≤ui} +
d∏
i=1

u2i −
d∏
i=1

ui1{Ûij≤ui} −
d∏
i=1

ui1{Ûik≤ui}

)
du

=

(
1
n

)2 n∑
j=1

n∑
k=1

d∏
i=1

(1−max{Ûij, Ûik})−
2
n

(
1
2

)d n∑
j=1

d∏
i=1

(1− Û2ij )+
(
1
3

)d
.

Appendix C. Proofs

Proof of Proposition 1. Consider the d-dimensional random vector Xwith copula C .
(i) For all d ≥ 2, the copula C is invariant under strictly increasing transformations of one or several components of X

(see, e.g., [13, Theorem 2.6]). As direct functional of the copula,Φ2X thus inherits this property.
(ii) Let αk be a strictly decreasing transformation of the kth component Xk of X, k ∈ {1, . . . , d}, defined on the range of

Xk. For dimension d = 2, we have

h(2)−1Φ2(α1(X1),α2(X2)) =
∫
[0,1]2

{
C(α1(X1),α2(X2))(u1, u2)−Π(u1, u2)

}2 du1du2
=

∫
[0,1]2

{
C(X1,X2)(1, u2)− C(X1,α2(X2))(1− u1, u2)− u1u2

}2 du1du2
=

∫
[0,1]2

{
u1 + u2 − 1− C(X1,X2)(1− u1, 1− u2)− u1u2

}2 du1du2
=

∫
[0,1]2

{
1− x+ 1− y− 1+ C(X1,X2)(x, y)− (1− x)(1− y)

}2 dxdy
=

∫
[0,1]2

{
C(X1,X2)(x, y)− xy

}2 dxdy = h(2)−1Φ2X,
see e.g. [13], Theorem 2.7, for the second equation. For dimension d ≥ 3, let αk(X) = (X1, . . . , Xk−1, αk(Xk), Xk+1, . . . , Xd)
denote the random vector where the kth component of X is transformed by the function αk. Without loss of generality set
k = 1. If a random vectorX is jointly symmetric about a ∈ Rd then its copula is invariant with respect to a strictly decreasing
transformation of any component. Hence,Φ2 is invariant as well. For non-jointly symmetric random vectors, consider

h(d)−1Φ2α1(X) =
∫
[0,1]d

{
Cα1(X)(u1, u2, . . . , ud)−Π(u1, u2, . . . , ud)

}2 du
=

∫
[0,1]d
{CX(1, u2, . . . , ud)− CX(1− u1, u2, . . . , ud)− u1u2 · · · · · ud}2 du

=

∫
[0,1]d

[{CX(1, u2, . . . , ud)− u2 · · · · · ud} − {CX(x, u2, . . . , ud)− xu2 · · · · · ud}]2 dxdu′

where u′ = (u2, . . . , ud)

=

∫
[0,1]d−1

{CX(1, u2, . . . , ud)− u2 · · · · · ud}2 du′ +
∫
[0,1]d
{CX(x, u2, . . . , ud)− xu2 · · · · · ud}2 dxdu′

−

∫
[0,1]d−1

{CX(1, u2, . . . , ud)− u2 · · · · · ud}
{
2
∫
[0,1]
CX(x, u2, . . . , ud)dx− u2 · · · · · ud

}
du′. (C.1)

According to Eq. (C.1), it holds thatΦ2α1(X) = Φ
2
X if either

• CX(1, u2, . . . , ud) = u2 · · · · · ud, meaning that X2, . . . , Xd are independent or
• CX(1, u2, . . . , ud) = 2

∫
[0,1] CX(x, u2, . . . , ud)dx. This condition is fulfilled if X1 is independent of (X2, . . . , Xd) since

CX(x, u2, . . . , ud) = xCX(1, u2, . . . , ud) in this case. �

Proof of Theorem 3. Note that Φ2 = ϕ(C) represents a Hadamard-differentiable map ϕ on `∞([0, 1]d) of the copula C
(see [14,48] for the relevant definitions and background reading). Its derivative ϕ′C at C ∈ `

∞([0, 1]d), a continuous linear
map on `∞([0, 1]d), is given by

ϕ′C (D) = 2h(d)
∫
[0,1]d
{C(u)−Π(u)}D(u)du,

which can be shown as follows: For all converging sequences tn → 0 and Dn → D such that C + tnDn ∈ `∞([0, 1]d) for
every n, we have
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ϕ(C + tnDn)− ϕ(C)
tn

=
h(d)

∫
[0,1]d{C(u)−Π(u)+ tnDn(u)}

2du
tn

−
h(d)

∫
[0,1]d{C(u)−Π(u)}

2du
tn

=
2h(d)tn

∫
[0,1]d{C(u)−Π(u)}Dn(u)du+ t

2
n

∫
[0,1]d D

2
n(u)du

tn

→ 2h(d)
∫
[0,1]d
{C(u)−Π(u)}D(u)du, (C.2)

for n→∞, since the second integral in Eq. (C.2) is bounded for all Dn. An application of the functional Delta-method given
in Theorem 3.9.4 in [48] together with Proposition 2 then implies

√
n(Φ̂2 − Φ2) =

√
n{ϕ(̂Cn)− ϕ(C)}

d
−→ ϕ′C (GC ), (C.3)

where ϕ′C (GC ) = 2h(d)
∫
[0,1]d{C(u) − Π(u)}GC (u)du. Using the fact that GC (u) is a tight Gaussian process, Lemma 3.9.8

in [48], p. 377, implies that ZΦ2 = ϕ
′

C (GC ) is normally distributedwithmean zero and variance σ
2
Φ2
as stated in the theorem.

Another application of the Delta-method to (C.3) yields the weak convergence of
√
n{Φ (̂Cn)−Φ(C)} to the random variable

ZΦ ∼ N(0, σ 2Φ). �

Proof of Theorem 4. Let Ĉn denote the empirical copula based on the sample X1, . . . ,Xn. Given the weak convergence of
the empirical copula

√
n(̂Cn−C)process to theGaussian processG∗, the asymptotic behavior of

√
n(Φ̂2n−Φ

2) as stated in the
theorem follows by mimicking the proof of Theorem 3. Weak convergence of

√
n(̂Cn− C) can be established analogously as

in [14] (see also [7]) and we outline the single steps in the following. First, by considering the transformed random variables
Uij = Fi(Xij), i = 1, . . . , d, j = 1, . . . , n, it is possible to confine the analysis to the case where the marginal distributions
Fi of F , i = 1, . . . , d, are uniform distributions on [0, 1] and thus, F has compact support [0, 1]d. Second, the functional
Delta-method is applied which is based on the following representation of the copula C as a map of its distribution function
F (cf. [48]):

C(u) = φ(F)(u) = F(F−11 (u1), . . . , F−1d (ud)), u ∈ [0, 1]d

with map φ : D([0, 1]d)→ `∞([0, 1]d). Here, the space D([0, 1]d) comprises all real-valued cadlag functions and C([0, 1]d)
the space of all continuous real-valued functions defined on [0, 1]d, both equipped with the uniform metricm. If all partial
derivatives of the copula exist and are continuous, the map φ is Hadamard-differentiable at F as a map from D([0, 1]d)
(tangentially to C([0, 1]d), cf. Lemma 2 in [14]) with derivativeφ′F . Further, Rio [36] shows that under the above assumptions
on the mixing coefficient α(r), it holds that

√
n{̂Fn(u)− F(u)}

w
−→ B∗(u)

in `∞([0, 1]d) with Gaussian process B∗ as defined in the theorem. Hence, an application of the functional Delta-method
yields the weak convergence of

√
n{φ(̂Fn)− φ(F)} to the process φ′F (B

∗) = G∗. Since

sup
u∈[0,1]d

|φ(̂Fn)(u)− Ĉn(u)| = O
(
1
n

)
cf. [14], the assertion follows by an application of Slutsky’s theorem. �

Proof of Theorem 6. Let ĈZ,n denote the empirical copula based on the sample Z1, . . . , Zn. Under the assumption of the
theorem,weak convergence of the empirical copula process

√
n{̂CZ,n−CZ} to the Gaussian processG∗Z in `

∞([0, 1]2d) follows
(cf. proof of Theorem 4). Since(

Φ2X
Φ2Y

)
=

(
Φ2{CZ(u, 1, . . . , 1)}
Φ2{CZ(1, . . . , 1, v)}

)
= g(CZ),

the asymptotic behavior of (Φ̂2X, Φ̂
2
Y)
> can be established analogously as in the proof of Theorem 3 using the Hadamard

differentiability of the map g at CZ whose derivative is denoted by g ′CZ . Hence,
√
n{(Φ̂2X, Φ̂

2
Y)
>
− (Φ2X,Φ

2
Y)
>
} converges in

distribution to the multivariate normally distributed random vector g ′CZ(G
∗

Z) given by

g ′CZ(G
∗

Z) =


∫
[0,1]d
{CX(u)−Π(u)}G∗Z(u, 1 . . . , 1)du∫

[0,1]d
{CY(v)−Π(v)}G∗Z(1, . . . , 1, v)dv

 .
With G∗X(u) = G∗Z(u, 1, . . . , 1) and G∗Y(v) = G∗Z(1, . . . , 1, v), apply the continuous mapping theorem to conclude the
proof. �
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