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Abstract

A dissipative mechanism is presented, which emerges in generic interacting quantum field systems and which leads to robust
warm inflation. An explicit example is considered, where using typical parameter values, it is shown that considerable radiation
can be produced during inflation. The extension of our results to expanding spacetime also is discussed.
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1. Introduction

Inflationary dynamics inherently is a multifield problem, since the vacuum energy that drives inflation eventually
must convert to radiation, which generally is comprised of a variety of particle species. Phenomenologically it has
been shown that the inflation and radiation production phases can be two well separated periods in scenarios
generically termed supercooled (or isentropic) inflation (for a review see [1]), or radiation production can occur
concurrently with inflationary expansion in scenarios generically termed warm (or non-isentropic) inflation [2].
Warm inflation is a broader picture, since the extent of radiation production during inflation is variable, so that
supercooled inflation emerges as the limiting case of zero radiation production.

Although by now considerable work has demonstrated its phenomenological significance [3], one key barrier
to the warm inflation picture has been establishing plausibility of its dynamics from first principles quantum field
theory. To some extent this point has been overemphasized for warm inflation, since in similar respects particle
production during the far out-of-equilibrium reheating phase of supercooled inflation is not well understood,
thus leaving incompleteness also to this picture. However, for supercooled inflation, since particle production is
assumed not to affect large scale structure formation during inflation, thus the main observational predictions, these
shortcomings are cast aside as secondary concerns. Nevertheless, without a solution here, this picture is unproven
On the other hand, the warm inflation picture makes no a priory assumption that particle production does not affect
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large scale structure formation. As such, the particle production problem appears more acute here. More basically
a proper understanding of particle production should mean that theory itself can decide which or to what extent
either of these two pictures is valid. Undoubtedly, no theory based on inflationary expansion will ever emerge, until
particle production in quantum field theory is adequately understood.

This is a major problem, which must be tackled in steps. Fair enough is to attempt to see how well either
picture of inflation can be understood from first principles andoute hope a clearer general picture eventually
will emerge. For warm inflation, there is greater possibility to understand particle production, and eventually reach
closure at a theoretical level about the viability of this picture as a description of the early universe. The reason is
that recall in this picture the scalar inflaton field is required to have a slow, overdamped motion. As such, adiabatic
methods of quantum field theory are applicable here, and these are the only methods for which dissipation can be
unarguably analyzed.

The road toward a first principles warm inflation picture primarily has been hindered by basic gaps in the
understanding of dissipative quantum field theory, which during the course of developing warm inflation are being
filled [4-9]. The first attempt to understand warm inflation dynamics utilized finite temperature dissipative quantum
field theory, since some formalism already existed here [10-14]. Based on this work [4], statements of a general
sort have been made about the impossibility of warm inflation dynamics [6]. However, these criticisms failed to
recognize that the key problems were specific to the restrictive constraints of th& lsigproximation and were
not reflexive of warm inflation in general.

Intrinsically, warm inflation is an out-of-equilibrium problem, in that it is not tied to any specific equilibrium
statistical state, but rather simply requires radiation production concurrent with the overdamped relaxation of a
global order parameter. Although the actual statistical state during warm inflation may not be very far from an
equilibrium state, at present the problem is simply technical limitations in describing the scope of such states.
Furthermore, as has been noted [2,7], very little radiation production during inflation, at the scale of tens of orders
of magnitude below the vacuum energy density, is already sufficient to affect large scale structure formation and
create an adequately high post-inflation temperature.

With these thoughts in mind, in [7] a simple attempt was made to circumvent the specific constraints of the
high-temperature formalism, by examining dissipation at zero-temperature. The point there was to investigate a
suggestions learned from our high-temperature analysis, that alleviation of the constraints specific to the high-
T approximation would adequately allow realizing robust radiation production during warm inflation. The main
purpose of [7] was to develop the necessary formalism, but in addition one suggestive mechanism was identified
that could realize this point, which involved a scafarfield (whose zero mode can be associated, e.g., with
the inflaton) exciting heavy -bosons which then decay into lightgr-fermions. This Letter reports a detailed
investigation of this process and demonstrates that it is a robust mechanism for warm inflation. For this, in Section 2
alinear response derivation will be presented, which in the adiabatic regime and at leading order is equivalent to the
closed time Lagrangian formalism, but is simpler and physically more transparent. Then in Section 3 an alternative
derivation is presented, using canonical methods. From this approach, the origin of particle production and energy
balance for this mechanism will be clarified. Next, Section 4 gives a physical picture to the mechanism and supplies
an explicit numerical example to demonstrate the extent of radiation production it yields during inflation. Section 5
discusses the extension of the calculation to expanding spacetime. Finally the conclusions are given in Section 6.

2. A model for robust radiation production

We consider a multi-field model, first studied in [7], of a scalar figéléhteracting with a set of scalar fields,
j=1,..., Ny, which in turn interact with fermion fieldgy, k =1, ..., Ny, with Lagrangian density
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The regime of interest for warm inflation, that is studied herenis > 2my, > my, where these are the
renormalized and, if relevant, background field dependent masses.

By decomposingp in terms of a homogeneous classical part), and its fluctuations, the effective equation
of motion (EOM) forg emerges as
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j=1

We will use a linear response theory approach in which the field averages in Eq. (2) are expressed in terms of
the respective field propagata® (x, x') andG; (x, x'). Also in the following, we derive the effective EOM

from an adiabatic approximation. This approximation requires that all macroscopic motion is slow relative to
the characteristic scales of the microscopic dynamics. In our model the time scale for microscopic dynamics is
represented through the (inverse of the) particle decay widjhs", and for macroscopic dynamics is contained

in ¢(t), with the basic consistency condition [4]

@/p K Iy, Ty 3)

Turning to the derivation, consider first ). This expectation value can be expressed in terms of the coincidence
limit of the (causal) two-point Green’s function for thg field, G++(x x"). Recall that this Green’s function is the
(1, 1)-component of the real time matrix of full propagators, alf of which satisfy the appropriate Schwinger—Dyson
equations (see, e.qg., [4,7] for additional details)

[o+ m)z(_,. + gf(pz(t)]GXj (x,x") + / d*z 2y, (x,2)Gy, (2, X)) = i8(x, %), (4)

where X, is the x; field self-energy. The field frequencies appearing in these propagators depend on the
background field configuratiop(z). This field is decomposed @8r) = ¢o + §¢(t), wheregg is a constant (the

value of the field at say the initial time= tp) and§¢(¢) is treated perturbatively. This is just a linear response
theory approach to calculating the averages of the fields appearing in Eq. (2). Following this procedure, we have
that(X]?> can be written to lowest order as
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where(...)o means the correlation function evaluated at the initial time. #hedependence in Eq. (5) emerges
from expanding the two point function with respect to the dependent terms. Formally this can be done by
treatingd¢ dependent terms in the shifted potential as interaction vertices. This implies adding an interacting
vertex quadratic in the; field, with Feynman ruIe—igj2./2 [92(t) — 93], and is used in calculating the leading
order one-loop bubble diagram that gives the two-point function. This method was first implemented to study
dissipation in [12,13] and more recently in [7]. This is also analogous to the functional Schwinger closed time
path formalism used in [4,10]. Using translational invariance we can now(/[/mfe{x 1), X2(x )]), appearing in

Eq. (5), in terms of the two-point Green'’s function for thefield, G+/.+(x x'), as
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whereG++(q t —t’) is given by (see, e.g., [7] for the explicit expressions for both the scalar and fermion field
propagatorsG++(q t—t)_G> (g,t —1t)o(t — t)+G<,,(q t—tHe —1t). HereG , Gy, are

1 —i (0)—iT, . 1(t—1") —ilwg.y. (O)+iTy . 1(t—t")
G>(Qt—1)= —— | lwax; Oily, ot —t' a.%; X 0@ —t
%@ ) qu,x,-(0>{e (t—1t)+e ' =}
Gy@.t—t)=G, @.1' =0, )

wherewg y; (0) = \/qz +mSX +ReXy (q) + gztpcz), with X (¢q) the x; field self-energy (recall that the field

decay widthl"; is related to the imaginary part of the self-energylgs(q) = —Im Xy, (q)/(2wq,,))- Thus
using Eq. (7) i |n Eq. (6), the explicit expression for Eq. (5) becomes

t
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For the second term on the RHS of Eq. (8), after integrating by parts with respédt teecomes
t
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The first (local) terms on the RHS of both Egs. (8) and (9), when perturbatively expanded in the coupling
constant lead to quantum corrections from hefields to m2, andx, to orderg and g respectively. These
corrections are divergent but are renormalized by the usual procedure of addlng mass and coupling constant
counter-terms. The second term on the RHS of Eq. (9) is responsible for dissipation. In this study, we are interested
in the regime where(r) changes slowly relative to the relaxation time, in this case sef)hy which means
the adiabatic approximation is valid. Under this approximation, similar to the treatment in [7], a Markovian, or
equivalently time local, treatment can be used, which amounts to a derivative expansion of théjieldd in
which the leadingp term only is retained. After implementing this approximation and substituting Eq. (9) back
into Eq. (8), we obtain

a3 g20¢Ty,
2 ~ 1 J J } 10
i) / <2n>32wq,x_,.<r>{ +[wé,x_,~<f>”x2.,~]2 Y

In the above, note we have conveniently reintroduced the time dependence back into the field frequencies and
when they are perturbatively expanded to orglﬁrthe above mentioned mass and coupling constant corrections
are correctly reproduced.

An analogous expression to Eq. (10) also follows f9f). Note, however, that for an initial (at= 19) zero
temperature bath and for fields and x; satisfying the mass constraint,; > 2my, > mg, there only will be
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decay channels for; into ¥ particles. As a result, it implies,(¢g) = 0 and I, (¢) = 0, while we have that

Ny

4m2 3/2

mxj

As such, in the adiabatic regime, dissipation will only involve the decay;qfarticles. The other two averages in

the EOM, (¢3) and (¢ x?) can also be worked out in the linear response approach, and their leading contributions

are at two-loop order f?]. Here, we will not consider them but restrict our calculation to leading one-loop order

for simplicity. In this case, the only contribution to dissipation is Eq. (10), and this effect already will be adequate

to demonstrate considerable radiation production from our model Lagrangian. Substituting Eq. (10) back into the
effective EOM, Eg. (2), the second term on the RHS of Eq. (10) leads to a dissipative term in the EOM and

the first term leads t@ mass and coupling constant divergent corrections, that can be renormalized as usual by
the introductions of counterterms in Eq. (1). This renormalization procedure is standard and will not be further
addressed. In our final expressions, all mass parametggsmoy;, moy,, and coupling constants, g;, h; are

then taken as the renormalized ones. The renormalized effective EQpriathat finally emerges can be written

as

0 Veti(@)
dp

In the above equation, we have included/s the quantum renormalization corrections to the mass and coupling
constant for thep field, which are exactly the same as found in the calculation of a constant backgrdiahd
effective potential. The dissipation coefficierty) in Eq. (12) comes from performing the momentum integral in
Eq. (10) and using (11) to give

¢+

+n(p)¢ =0. (12)

Ny 1/2
g w(m +O‘X ¢)
n(e) = ¢*(1) Ll (13)
121327t(2 /m +oz w+2m )1/2
wherea)z( v = h,fl . X,(l 4mwk/m )%/2/(87) andm,; in Eq. (13) denote the field dependent masses,

m)z(/ = X,(ga) = mOX + g @2(1). The d|SS|pat|ve mechanism Eq. (13) overcomes an underlying impediment to
realizing robust warm |nﬂat|on in the finite temperature calculations [4,6], where all mass scales were constrained
by the temperature. In sharp contrast, a key feature about the dissipative mechanism of this paper is that irrespective
of the magnitude op andm,, dissipation occurs unchecked by these severely limiting constraints.

For the dissipative mechanism derived in this Letter to be applicable to warm inflation, there must be some
control in determining the quantum correctionsWas in Eq. (12). This is required mainly since, similar to
supercooled inflation, in the warm inflation case also, treatment of density perturbations requires an ultraflat
potential [2,3,15]. However, there are one-loop quantum corrections to th® Effective potential arising in
the Lagrangian Eq. (1) from the self-interaction of thdield and from its interactions with thg-fields, which

give [16]

1 43 o
1(<P) (2 )3 (Em¢ + Z mei ) s (14)
i=1

where E,,, = \/k2 + ’"0¢ + 1¢2/2 and Ey,, \/kz —|—m0X + g%¢2. To obtain the desired ultraflat potential, it
requiresa to be tiny Wlthm0¢ < A@?/2.1n thls regime, the contribution from th,,, term above is negligible.
However, since in general we wagﬁlf > A, the one-loop contributions from th@mx,- terms lead to corrections

~ gj‘(p“ in Vet and thus would ruin the flatness of the potential. Operationally these one-loop contributions can
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be controlled by adding to the Lagrangian Eq. (1) fermionic “partnér§to the x -fields, with oney * -field for
every foury-fields and coupling only to theé-field aszfvleM g’ ¥y @. The one-loop quantum corrections to

the effective potential from these terms will yield [16]
Ny /4

3k
Vi(p) = —2/ W Z Emw,-x’ (15)

where Enlv,x = \/kz + (moyx + giX<p)2. In particular, this fermionic contribution has the familiar opposite sign

to the bosonic contribution. Thus with appropriately tuned paramgtergix and with zero explicit masses
Moy, = Moy, = 0, the one-loop quantum corrections ¥ cancel to all orders iry;, gl.X. This modification
simply is mimicking supersymmetry. For realistic model building, the mechanism derived in this Letter must be
examined in actual SUSY models, where the chcgizf:e> A of coupling parameters could be obtained naturally,
but that will not be pursued here.

3. Alternativederivation of dissipation—operator formalism

For completeness, here an alternative derivation of dissipation is presented using the canonical approach and
following the formalism developed in [12,14]. In this approach, the figldg and are expressed in terms of
their mode decompositions and dynamics is determined with respect to the mode operators. Thus, for example, for
the x; (x, 1) field this means

3
Xj (X, 1) :f 3 4’q T [aq,xj (t)e X +ag|,xj(t)e’q'x]. (16)
(27)2[2wq, 5, ()12 '

Since there is a time dependent background figld, this induces time dependence in the frequencies and so in
the creation/annihilation operators of tiheand y; fields. In the analysis that follows, we will focus on the
fields, with similar considerations carrying over for thdield.

The time dependent;—frequency in Eq. (16) is given byq,,, (1) = [0 + m%xj + g5¢(1)]*2. From Eq. (16)
it follows that

d3
<X,2) = / m[z’cqw ®+2 Rqu,X_, (t)] + 1], a7)

wherexq, y; (1) = (a;r,x_,. (t)aq,x,; (1)) is the particle number density ang y, (t) = (aq.x,; ()a—q.y, (1)) is the off-
diagonal correlation.

From the field equation fog; and Eq. (16) we can deduce the equations satisfied,jy andyq, ;. Taking
also into account the possibility that the fielg can decay into lighter fields with a decay rdig (¢) as already
givenin Eq. (11),xq,,, andyq,,; can be shown to satisfy the coupled differential equations [12,14]

d)quj . Cbq,)(j 1 . .
Reyg.y ;) = A R —il,, . 18
0ax; Ya.x; Ya.x; Oax — iFX_,- @ |:xq,xj + 21| l[a)q,xj Uy, (Q)]J’q,x, (18)
A solution for Eqg. (18) can be found in the quasi-adiabatic regime as follows. Let us consider the case of a
slowly changing configuratiop(r). We can therefore suppose that the number of produced particles at time
is xq,x; (1) < 1. Consequently we also have thaf,; and its time derivative slowly change. We then find g, ;
in Eq. (18) the result

g 11— expl—2i(wq,, —iTy)1])
yq,)(_,'(t) =—1 N 2
4[quXj - ’ij ()]

Xa,x; =

: (19)
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which in the limitz > Fx—jl yield
g—’2¢¢ _
2 (wé,x,- + FXZJ_)Z'
Using Eqg. (20) in Eqg. (17), once again we get Eqg. (10), from which the effective EOM Eq. (12) follows.
A shortcoming of this approach is that interactions are added to the set of Eq. (18) in a somewhat ad-hoc way.
This point was discussed recently in [8], where the complete kinetic equations where derived for the single field
self-interactingp* model. Nevertheless, the final answer from the approach of this section agrees with that from
the Lagrangian based approach of the previous section, where interactions can be added consistently through the
appropriate set of Schwinger—Dyson equations for the propagators [7]. Thus it suggests the results by this canonical
approach are acceptable, but missing gaps in the formalism of [12] must still be resolved. For our purposes, due
to the importance of the dissipative mechanism studied in this Letter, we felt it was important to point out the
agreement between independently developed formalisms, even if there remain shortcomings in one of them. The
practical significance of the results in this Letter provide motivation to address these difficult problems in the course
of future work.

Reya,y; (1) = (20)

4. Physical interpretation and an explicit application

We now turn to an application of the equations derived above, using an explicit set of model parameter
values, which are consistent with simple inflationary models. But before that, let us address briefly the physical
interpretation of dissipation in Eq. (12).

We note that the evolving background figldr) changes the masses of the bosons. As a consequence, the
positive and negative frequency components of thdields mix. This in turn results in the coherent production
of x; particles which then decohere through decay into lightgifermions. This picture can be confirmed
by checking energy balance. This is done by examining the time evolution of jtparticle number density.

For this, their number density is expressed in terms of time dependent creation and annihilation operators as
N = Zj (a;:/, ()ay, (1)). By relating the time dependentoperat@I,s(t) anday; (1) to the initial, time independent,
creation and annihilation operators through a Bogoliubov transformation, the total particle production rate then can
be computed in general. Thus, the time evolution of the total production rate is

L[ d
N:Z/ (271)3Xq'x'j’ (21)
j=1
which using Egs. (18) and (20), leads to

Ny 3 4
: 3 & Iy
N=¢*> j/ / / . (22)
3 2 22
a (2m) qu,xj (wq,x_,' + FX,)

J

It can now be checked from Egs. (2), (10) and (12), that the above result, Eq. (22) is precisely equal to the vacuum
energy loss rate;¢?, as obtained from the effective EOM, Eq. (12).

Let us now examine the application of the results in this Letter to warm inflation and also understand their
significance. The scope of the present calculation is limited since dissipation at zero temperature necessarily implies
a non-equilibrium state, which is evolving to some statistical state containing particles. Thus the estimates made
below only give some idea of the magnitude of particle production. However, provided the magnitude is significant,
as will be shown, it reveals that on scales relevant to inflation, quantum field theory with generic interactions has
robust tendency to dissipate. For our estimates, we have set saghe-gil couplingsg,;, = g as well ally — ¢
couplings i = h.



A. Berera, RO. Ramos/ Physics Letters B 567 (2003) 294-304 301

We are interested in overdamped motion for the inflaien, which requires (i)ng = mg(@ = m§¢ +292/2 <
n%(¢)/4. The adiabatic approximation Eq. (3) requires )@i@((p)/ﬁ((p) < I'y. Although our derivation was for
Minkowski spacetime, provided the time scale of microscopic dynamics is faster than the Hubble time scale, then
within sub-Hubble length scales, this Minkowski spacetime calculation should be valid. For this to hold, it requires
(i) H = \/871 Vett/3m3, = \/Sn(k/4!)<p4/3m§| < I'y, wheremp, is the Planck mass. Also, so that the macroscopic
motion of ¢ is governed by the dissipative term it requires (N¥y) > 3H. Thus combining all four of the above
consistency conditions leads to parametric constraints. To obtain these, we will fread, ,, where from below
Eq. (13) we have, by setting? ~ g%¢?, “)Zmﬁ ~ g%h?Ny ¢?/(8), which thus require2Ny /(8r) < 1. In this
regime, we have from Eq. (13)~ g%h?N, Ny ¢/(5127%) and from Eq. (11), ~ gh? Ny ¢/(87). The parametric
constraints that follow from the four conditions given above are, respectively,

67,4772 N2 4,4 2
i a<S il i N"N"’, iy r< i X7 ! NXN"’,
2(51272)2 204873
2 2
9g%hANG m3, . gBhtNZNZ m, )
(i) A< ————, V) A<—Fm55 - (23)
64r> ¢ m(5127%)% ¢

To yield large dissipation, we are usually interested in the regime where the couplihgare big. To remain
within a well defined perturbative region, we will then further require t@rﬁdt/x <1 and f?N,,, <1 and will
base our estimates on the upper bounds here. Also, in genefatp, but to obtain the tightest constraints on
A in (iii) and (iv), we will set this at the equality point. Under these conditions, we find for the constraints (i)—
(iv) in Eq. (23), respectively, < min(10-8 2N, ,107°,1073¢2, 1078 ¢?N, ). Recalling that constraints imposed
by density fluctuations give typically < 1014 [2,3,15], we see that the above constraints introduce no stricter
limitations.

As shown in Eq. (22), radiation production is determined by

2
dv, m$ (@)
pr(t) = 1(9)§? = — =N & Verr(p) —2—. (24)

dy
The zero temperature calculation should be valid for a time peridd Iy, in which time the magnitude of
radiation produced is

pr(1/Ty) = Vett(@)m5 (@) /(nTy) < Vett(p). (25)

Based on Egs. (11) and (13) and the above constraintsthere is considerable freedom in choosing the rRtia
mdz,/(n Iy) appearingin Eq. (25). Considering then an ultraflat potential, as necessary for observationally consistent

density perturbations, which requires typical values.gf 10714, this impliesR < 1(Tl°/(g4h4N§NX). For
unexceptional values of the perturbative coupling parametersg sayt ~ 0.1, and small number of and

fields, Ny, Ny ~ 1-10, this leads t&® ~ 10-?~%. Also note these parameters choices are consistent with the
conditions oni given above Eq. (24). Thus for a typical scale for inflation, where the potential energy is at the
GUT scale,Vesr(¢)Y4 ~ 1015716 GeV, it implies a generated radiation component which, if expressed in terms

of temperature, is at the scale~ 10316 GeV, and this is non-negligible. This is a significant result not only
because the magnitude of produced radiation is large, but also because it emerges from a very generic interaction,
scalar— heavy scalar~ light fermions, which is very common in many particle physics models. Moreover, we
expect similar robust radiation production for decay of the heavy scalars into gauge bosons. Finally, although we
did this zero temperature calculation first simply due to its tractability, an interesting fact emerges for inflationary
cosmology, that even if the initial state of the universe before inflation is at zero temperature, the dynamics itself
could bootstrap the universe to a higher temperature during inflation.
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5. Extension to expanding spacetime

The extension of this calculation is formally straightforward to Friedmann—Robertson—-Walker (FRW)
spacetimeds? = dt? — a?(r) dx?, wherea(r) is the cosmic scale factor ands cosmic time. In this case, the
extension of Eq. (1), for the Lagrangian density of the matter fields coupled to the gravitational fieldsignssr
given by

2
1 m A
L= J__g{ 58" PP — %%)2 _ 2t S pep?

4! 2
Ne e 2 2
g Oxi 2 fia 8 2.2 &, >
+Z[78Mf3“xf T TN T R
=1 '

Ny Ny
+Z|:i1ﬂk7/”(3u+wu)lﬂk—Wk<mo¢k +thj)(j>1ﬂki|}» (26)
k=1 j=1
whereR is the curvature scalar argdis the dimensionless parameter describing the coupling of the matter fields

to the gravitational background. In the last terms involving the fermion fieldsy thmatrices are related to the
vierbeiney, (whereg,,, = eﬁe{jnab, with 1,5, the usual Minkowskii metric tensor) by (x) = y“el; (x) [17], where

y“ are the usual Dirac matrices amg = —(i /4)0%%elV  epy, With 0% =i /2[y*, y?].

It is easy to show that the Lagrangian Eq. (26) in conformal timeyheredr = a dt., remains unchanged from

Eqg. (1) except that all masses obtain time dependence relatég Y¢see, for example, [14] for a similar problem).

In particular, for the bosonic fields we have tlmﬁj (t.) = mngaz(tc) —d?a/2adt? + £a®R/2 and similar for the

¢ field, and for the fermionic fields:y, (1.) = mo¢ka(tc). These time dependent parameters can be treated within
the linear response formalism used in this Letter. Moreover, since the time dependence is associatég) with

it is easy to show that provided < I',, the time dependence of the mass terms is slow relative to microscopic
dynamics and thus an appropriate adiabatic approximation should be applicable.

The observations made above are adequate to establish that, for the mechanism of central interest in this Letter,
the robust dissipative properties found above for Minkowski spacetime also will hold for expanding spacetime.
However, the exact form of the effectigeEOM is a more involved matter. The problem is there are three relevant
time scales?, I'y; andg/¢, where for the slow-roll motion of interest, we seek solutions it < H. Moreover,
ultimately we require the evolution equation in cosmic time, and the relation between that and conformal time is
in general very non-linear. For example, for the case of prime interest, de Sitter spad®(l — bz.). Thus
power law ambiguities can have non-trivial relevance in relating between conformal and cosmic time, and such
ambiguities are prevalent in adiabatic approximations and derivative expansions. This is a serious matter and to
learn more about this mechanism in expanding spacetime beyond what already has been understood from the
above Minkowski spacetime calculation requires application of more complete non-equilibrium methods, such
as [18]. We will consider the details of this derivation in the FRW spacetime in a future work.

6. Conclusions

The relevance of the analysis in this Letter extends beyond warm inflation, since the interactions studied here
are exactly the same as found in supercooled inflation models. In fact, in the context of the model studied here, with
couplings around the ones studied in the example of Section 4, reheating becomes irrelevant, since our analysis
showed the model is inconsistent with supercooling in the first stage, and the entire dynamics is warm throughout.
Thus, as originally suggested [2,15], warm inflation dynamics is inherently intertwined with the general problem
of inflationary dynamics.
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Since the first principle results in this Letter give support to the warm inflation picture, it is worth recalling here
other features that also have made this picture compelling. First, warm inflation overcomes a conceptual barrier
that the supercooled picture has never shaken away, which is that in warm inflation there is no quantum-classical
transition problem, since the macroscopic dynamics of the background field and fluctuations [15] are classical from
the onset. Second, in warm inflation models, in regimes relevant to observation, the mass of the inflaton field is
typically much larger than the Hubble scale, thus these models do not suffer from what is sometimes called the “eta
problem”. Finally, accounting for dissipative effects may be important in alleviating the initial condition problem
of inflation [19,20].

The emerging picture is that warm inflation remains a hopeful direction toward a complete and consistent
dynamical description of the early universe. However, considerable work remains in understanding the quantum
field theory of this picture. Two areas were already identified in the paper. One is resolving the gaps in the canonical
dissipative formalism of [12], thus permitting this approach to be a viable cross-check to the Lagrangian approach.
The other area is a full investigation of the dissipative formalism in expanding spacetime. Beyond this, the more
difficult problem is extending the adiabatic contraints in the present formalisms to treat nonequilibrium conditions.
Steps along this direction already have begun, using operator methods [9] and the even more ambitious attempt
in [8] to derive the Boltzmann-like kinetic equation for interacting fields.
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