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We argue that in asymptotically free non-Abelian gauge theories possessing the phenomenon of
dynamical mass generation the β function is negative up to a value of the coupling constant that
corresponds to a non-trivial fixed point, in agreement with recent AdS/QCD analysis. This fixed point
happens at the minimum of the vacuum energy (Ω), which, as a characteristic of theories with dynamical
mass generation, has the properties of a c-function.

© 2010 Elsevier B.V. Open access under the Elsevier OA license.
For unitary, renormalizable quantum field theories in two
dimensions, Zamolodchikov has shown [1] that there exists a
positive-definite real function of the coupling constant c(g) such
that

−β
∂

∂ g
c(g,μ) � 0, (1)

where β is the beta-function and μ is the renormalization scale.
This means that there exists a real function of the coupling con-
stant that is monotonically decreasing along the renormalization
group trajectories. The extension of the c-theorem to other dimen-
sions was discussed by Cardy [2], where it was pointed all the
difficulties to find such type of function in more than two dimen-
sions. The attempts to demonstrate the existence of a c-theorem in
four dimensions and its consequences led to several studies (see,
for example, [3–5]), most of them following Cardy’s proposal based
on the Euler term in the trace of the energy–momentum tensor
and relating it to the conformal anomaly coefficient.

It is particularly interesting the discussion of Ref. [3], where the
renormalized free energy per unit volume, F , is considered as a
potential candidate for a c-function. In the high and low tempera-
ture limits the free energy can be used to characterize the number
of degrees of freedom, f , of the theory in the infrared and ultravi-
olet regions:

f IR ≡ − lim
T →0

F
T 4

90

π2
, fUV ≡ − lim

T →∞
F
T 4

90

π2
, (2)
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where T is the temperature. It was conjectured in Ref. [3] that

f IR � fUV , (3)

and this inequality was able to constrain the low energy structure
of supersymmetric and non-supersymmetric gauge theories [3,6].
A proof that the free energy, F , plays the role of a c-function, as
demonstrated in Ref. [3], fails in the case when the low energy
theory is a gauge field theory governed by a free infrared fixed
point.

We will argue that the existence or not of a c-function in
more than two dimensions may be a property related to the gauge
bosons and fermions dynamical mass generation (or breaking of
the conformal symmetry), i.e. to theories where the mass genera-
tion mechanism is triggered by the non-trivial vacuum expectation
value of composite operators. Therefore our discussion will make
use of the vacuum energy, Ω , defined many years ago by Cornwall
and Norton [7] and detailed in Ref. [8]. Of course, the vacuum en-
ergy and the free energy are not fully distinct quantities, but there
is an extensive research on the Ω calculation as a function of the
dynamical masses that will be quite useful for our purposes. We
will show that Ω is a good candidate for a c-function based on the
fact that this quantity is always negative when a dynamical mass
is generated, and we also verify that in this case the β function is
negative, with the minimum of Ω happening at a non-trivial fixed
point.

The vacuum energy Ω = Ω(g,μ) can be defined as

Ω = V (G) − V pert(G), (4)

where we are subtracting from the effective potential for com-
posite operators, V (G), its perturbative counterpart, and V (G) is

https://core.ac.uk/display/81146069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2010.12.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:arlene.aguilar@ufabc.edu.br
http://dx.doi.org/10.1016/j.physletb.2010.12.017
http://www.elsevier.com/open-access/userlicense/1.0/
http://www.elsevier.com/open-access/userlicense/1.0/


174 A.C. Aguilar et al. / Physics Letters B 696 (2011) 173–177
computed as a function of the nonperturbative Green functions (or
complete propagators) G . The effective potential is obtained from
the effective action, Γ (G), when we consider translationally invari-
ant (t.i.) field configurations,

V (G)

∫
d4x = −Γ (G)

∣∣
t.i..

A very important point is that Ω is a finite function of its argu-
ments, because the perturbative contribution has been subtracted
out [7,8]; being a physical quantity its anomalous dimension van-
ishes and Ω satisfies a simple homogeneous renormalization group
equation [9](
μ

∂

∂μ
+ β(g)

∂

∂ g

)
Ω = 0. (5)

Consider gauge theories with dynamically generated gauge bo-
son masses (m). In this case we can write m = μ f (g) [9], from
what follows that μ(∂m/∂μ) = m and, consequently,

m
∂Ω

∂m
= −β(g)

∂Ω

∂ g
. (6)

However, as a physical parameter in ε dimensions, Ω has a simple
scaling behavior

Ω(g,μ) = κmε(g,μ), (7)

where κ is a calculable number, independent of g , consequently

εΩ = −β(g)
∂Ω

∂ g
. (8)

In the sequence we shall discuss the following points: (i)
∂Ω/∂m = 0 is a stationary point for the vacuum energy, mean-
ing that the minimum of energy happens at a fixed point, because
∂Ω/∂ g �= 0 as demonstrated in Ref. [10]; (ii) Ω is negative for the-
ories with dynamically generated masses; therefore the right-hand
side of Eq. (8) indicates that Ω is a c-function; (iii) the β function
is always negative when we have dynamical mass generation.

It is well known that the c-theorem holds in two dimensions;
therefore it would be interesting to check if the vacuum energy of
a two-dimensional theory, as the Gross–Neveu (GN) model, satis-
fies the necessary requirements to be considered as a c-function.
The GN model contains N fermions and a four-fermion interaction
with a coupling constant g , which can also be written in terms of
an equivalent theory with a scalar field σ = g(Ψ̄ Ψ ). In the leading
order of the 1/N expansion, the effective potential of this model is
equal to

V (σ ) = 1

2
σ 2 + λ

4π
σ 2

(
ln

σ 2

μ2
− 3

)
, (9)

where λ = g2N is kept fixed, μ is a renormalization point, and the
minima of V occurs at

|σm| = μexp(1 − π/λ).

The vacuum energy is simply

Ω ≡ V (σm), (10)

and the chiral symmetry is dynamically broken generating a
fermion mass

m ≡ mF = g〈σ 〉 = μg exp(1 − π/λ). (11)

As required by condition (iii), the β function is negative, more
specifically β(g) = −(g3N/2π) < 0. In addition, substituting the
expression for the vacuum energy in Eq. (6), we can easily ver-
ify that indeed m(∂Ω/∂m) < 0 satisfying therefore the condition
Fig. 1. Behavior of the vacuum energy in the case of the Gross–Neveu model. We
show three curves of the effective potential as a function of the field σ and for
different values of the renormalization point μ. Ω is the curve connecting all the
minima and decreases towards the infrared values of the coupling constant.

(ii). Note that the fixed point structure of the GN model (when
∂Ω/∂m ∝ β(g) → 0) involves the knowledge of the β function at
higher orders in the 1/N expansion, when its vacuum energy de-
pends on large mF values, but there are evidences for such critical
coupling [11].

To make clear, the Ω behavior towards the infrared are illus-
trated in Fig. 1, where we show that the expected behavior of the
Gross–Neveu model effective potential as the coupling constant is
changing (increasing its value towards the IR). The minimum of en-
ergy, or Ω value, monotonically decreases as we go to larger and
larger fermion masses (or larger values of the coupling constant).

Now, let us come back for the case of non-Abelian theory in
four dimensions. Note that we will be dealing specifically with
asymptotically free SU(N) gauge theories where there is dynami-
cal mass generation. However this does not exclude the possibility
to extend the vacuum energy as a c-function for other groups as
well as to the case of supersymmetric theories. In particular, all
the SUSY cases treated in Ref. [3] should follow the same idea
discussed here as long as the theory develops different phases or
vacuum expectation values.

It was demonstrated in Ref. [10] that ∂Ω/∂ g �= 0 when the the-
ory has a condensate or develops a dynamically generated mass.
Therefore Eq. (6) tell us that the β function has a zero, i.e. a
non-trivial fixed point, at the minimum of the vacuum energy
(∂Ω/∂m = 0). This point corresponds to the equality of Eq. (1)
when Ω plays the role of a c-function. Away from the fixed point
the inequality (−β(g)[∂Ω/∂ g] < 0) is due to the fact that a non-
trivial dynamics leading to mass generation lowers the vacuum
energy, i.e. Ω is negative, as we shall discuss in detail ahead, in
such a way that the left-hand side of Eq. (8) is negative, therefore
−β(g)[∂Ω/∂ g] � 0 and Ω is a c-function. The inversion method
discussed in Ref. [10] can also be used to show that ∂Ω/∂ g is
monotonic away from the fixed point.

To show that the β function is negative in the case of non-
Abelian gauge theories with dynamical gauge boson mass genera-
tion, we may particularize the problem to the pure gauge theory.
In this case the Lagrangian is given by L = 1

2 G2
μν . We can now

rescale the fields Aa
μ = g−1 Âa

μ , Ga
μν = g−1Ĝa

μν , and regularize the
vacuum energy (and the potential) setting its perturbative part
equal to zero in order to obtain the generating functional (Z ) [12]
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Fig. 2. Left panel: The IR finite QCD running coupling, αs(q2), given by Eq. (14) for a gluon mass of m = 500 MeV (dashed blue curve) and m = 600 MeV (continuous
black curve) when ΛQCD = 400 MeV. The dotted red curve represents the one-loop perturbative behavior αpert(q2). Right panel: The corresponding β function, defined as
β(g) = q(dg(q)/dq), when m = 500 MeV (dashed blue curve) and m = 600 MeV (continuous black curve) compared to the one-loop perturbative value, βpert = −bg3 (dotted
red curve). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)
Z = Z−1
p

∫
dÂμ exp

[
−g−2

∫
d4x

1

4

∑
a

(
Ĝa

μν

)2
]

= e−V Ω, (12)

where V is the volume of Euclidean space–time and Z p is the
perturbative functional. Differentiating with respect to g it follows
that

∂ ln Z

∂ g
= 1

2g

∫
d4x

〈∑
a

(
Ĝa

μν

)2
〉

reg
= − V ∂Ω

∂ g
, (13)

where 〈∑a(Ĝa
μν)2〉 is the gauge boson condensate and the sub-

script reg indicates that the regularization is by subtraction of the
perturbative expectation value in the same way as indicated in
Eq. (4). The factor V in the right-hand side is canceled with the
one coming out from the x integration. It must be noted that
Eq. (13) can be related to the Euclidean trace anomaly (〈θ〉 =
−4Ω) and that −(∂Ω/∂ g) is a positive quantity [3,12]. Therefore,
looking at Eq. (8), necessarily the β function is negative, as af-
firmed in the item (iii) above.

A central point in our discussion is the fact that Ω is negative,
or, as we discussed before, the presence of dynamically generated
masses lowers the vacuum energy. It is well known that in asymp-
totically free non-Abelian gauge theories the vacuum has a min-
imum of energy when dynamical fermion masses are generated,
which is supported, in the QCD case, by the chiral symmetry break-
ing phenomenology. Less known is the fact that such theories also
generate gauge boson dynamical masses. It has already been ob-
served through a variational calculation in four-dimensional SU(N)

theories, that the vacuum energy is best minimized by a varia-
tional state characterized by a dynamically generated mass scale m
[13], indicating that Ω is indeed negative. In a different approach
we can minimize the effective potential for composite operators
(and consequently the vacuum energy) up to two loops, obtaining
the Schwinger–Dyson equations for the gauge boson propagators.
These equations can be reorganized in a gauge invariant (transver-
sal) formulation, truncated and solved under certain approxima-
tions, resulting in a dynamically massive solution [12,14], which
is in agreement with lattice simulations of SU(2) and SU(3) gauge
theories in three and four dimensions [15].
A dynamical gauge boson mass displays the following asymp-
totic behavior

m
(
q2) → m(≡ const) as q → +0,

and

m
(
q2) → 1/qη as q → +∞,

where η is some constant calculable from the SDE solution (ob-
tained from the condition ∂Ω/∂m = 0). For QCD it has been shown
that η = 2 [14–16]. The massive solution obtained in this proce-
dure indeed minimizes the vacuum energy in the Hartree approx-
imation [12,17]. This decreasing behavior with the momentum is
typical of any dynamically generated mass and preserves unitarity.

The presence of the dynamically generated mass also modifies
the IR behavior of the QCD running coupling, αs(q2), that can be
modelled as

αs
(
q2) = 1

4πb ln[(q2 + 4m2(q2))/Λ2
QCD] , (14)

where b = 11CA/48π2 is the first coefficient of the β-function, CA
is the Casimir eigenvalue of the adjoint representation (CA = N for
SU(N)), and ΛQCD is the characteristic QCD mass scale of a few
hundred MeV.

From Eq. (14), we can easily see that αs(q2) saturates in the
deep infrared, reaching a finite value at q2 = 0, which depends
only on the ratio m/ΛQCD [12,18]. In the left panel of Fig. 2, we
show αs(q2) for two different values of m, where we see that
the higher is the ratio m/ΛQCD the lower will be the value of
αs(0) = g2

c /4π . Moreover, for asymptotically large momentum, we
recover the one-loop perturbative behavior αpert(q2), represented
by the dotted red curve.

Notice that the appearance of m2(q2) not only allows for an in-
frared finite value for αs(q2) but it also tames the Landau pole.
As a consequence, such class of theories are not plagued by renor-
malon ambiguities, and calculations as the one defined by Eq. (4),
where the finite result comes out by subtraction of the pertur-
bative contributions are not ill-defined. Such theories may have
a skeleton expansion, where the freezing of the running coupling
constant at low energy scales could allow to capture at an inclu-
sive level the nonperturbative effects in a reliable way as argued
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in Ref. [19] (without renormalon ambiguities). The first steps to
obtain such expansion are outlined in the last work in Ref. [14].

We now discuss a specific calculation of the vacuum energy for
pure gauge theories. Cornwall [12] was the first one to compute
Ω in the QCD case with dynamically massive gluons, and these
calculations are expected to be valid for any non-Abelian asymp-
totically free gauge theory. The vacuum energy, Ω , was calculated
in the Hartree approximation for pure SU(N) gauge theories, as-
suming hard gauge boson masses (i.e. neglecting all momentum
dependence in the masses), with the divergent integral regulated
as described in Ref. [12]. Note that these divergences appear only
because the running of the masses is not considered (otherwise Ω

is finite), the result is

Ω(m, g) = −3(N2 − 1)

2(2π)4

∫
d4k

[
ln

(
k2 + m2

k2

)
− m2

k2 + m2

]

− 3(N2 − 1)

4Ng2
m4. (15)

It is easy to observe that Ω is negative, which again confirms the
assertion of item (ii) above. Therefore in theories with dynami-
cally generated gauge boson masses Ω is negative, ∂Ω/∂m = 0
indicates the presence of a fixed point at gc [10], the β func-
tion is negative, and near the IR fixed point, it approaches to zero
as q2/(q2 + 4m2)βpert , where βpert = −bg3 (see the right panel of
Fig. 2). Notice that the same qualitative behavior for the β function
is found in Ref. [20].

The introduction of fermions in the non-Abelian gauge theory
does not modify our arguments. We can follow Ref. [17] to com-
pute the fermionic vacuum energy, adding to Ω the fermionic
contribution (≡ Ω f ), which, in one approximation where we ne-
glected the running of dynamical fermion masses (m f ), is equal
to

Ω f ≈ 2Nn f

∫
d4k

[
− ln

(k2 + m2
f

k2

)
+ m2

f

k2 + m2
f

+ m4
f

2k4

]
. (16)

The calculation was performed for a SU(N) gauge theory with n f
fermions. We are assuming that the dynamical gauge boson mass
(m) is larger than the dynamical fermion mass (m f ). This means
that the fermionic contribution is just a small perturbation in the
full vacuum, and allows the simple sum of different contributions
to be reliable despite the rough approximations to compute the
effective action [17]. Of course, this is justified as long as we main-
tain asymptotic freedom, in such a way that the instability due
to the fermionic contribution is small, and also by the fact that,
at least in QCD, the dynamical gauge boson masses are twice the
fermionic ones (see, for instance, Refs. [12,21] where it is pointed
out that m ≈ 2ΛQCD whereas we expect m f ≈ ΛQCD).

It can be verified that the vacuum energy that we discussed
up to now, when computed at finite temperature, is equivalent to
the renormalized free energy discussed in Ref. [3], as it is possible
to see if we compare the free energy obtained by Freedman and
McLerran [22] with the loop expansion of Refs. [8,23]. We expect
that at very high temperatures all dynamical masses are erased
and we end up with an almost non-interacting SU(N) theory with
(N2 −1) gauge bosons and n f fermions. The vacuum or free energy
will just be kT factors times the number of degrees of freedom,
which will be [2(N2 − 1) + 7

8 (4Nn f )].
At low temperatures we shall not have exactly the vacuum

energy that we calculated above, because confinement is miss-
ing from the Green’s functions in the above calculation. However
we know that the vacuum energy will be approximated by the
same kT factors times [(n2

f − 1)], which is the number of de-
grees of freedom of the Goldstone bosons resulting from the chiral
(SU(n f ) × SU(n f )) symmetry breaking. This is the dominant con-
tribution to the vacuum energy, but it must be remembered that
all the other excitations (fermionic as well as the ones formed by
gauge bosons) also contribute to the vacuum energy at higher or-
der. In Ref. [3] it was obtained a constraint on the number of
fermions, that for QCD reads, n f < 12; therefore, taking into ac-
count the effects of other excitations that we discussed above,
which, unfortunately, have to be computed with the help of mod-
els for low temperature QCD, since we do not know how to intro-
duce confinement in the Ω calculation, may lead to an even tighter
constraint on the number of fermions. Notice that the vacuum en-
ergy also takes into account the thinning of degrees of freedom
as we move towards the infrared values of the coupling constant,
similarly to what is usually discussed in the standard renormaliza-
tion group framework.

We may have other constraints on the particle spectrum with-
out the need of comparing the extreme T → 0 and T → ∞ limits.
The confinement and chiral symmetry breaking phase transitions
separate different regions of the vacuum energy for asymptotically
free non-Abelian gauge theories. In the QCD case it is expected
that the confinement and chiral transitions for quarks in the fun-
damental representation are quite close, while the chiral transition
for quarks in the adjoint representation would happens at a tem-
perature different of the confinement one [24]. As the coupling
constant increases with the decrease of the temperature we may
have a specific phase transition happening at some critical temper-
ature (Tc), and we may find temperature regions above (Ta > Tc)
and below (Tb < Tc) the critical temperature such that

ΩTb � ΩTa . (17)

At zero temperature we can also expect that gauge theories
with similar β function, i.e. with approximately the same value
for the coefficients of the β function for the same gauge group,
but fermions in different representations, for instance in the fun-
damental ( f ) and adjoint representation (A), will have [25]

Ω( f ) � Ω(A). (18)

This is a consequence of the monotonic behavior of Ω with
the coupling constant and the fact that the vacuum energy (or the
effective potential for composite operators that generates the gap
equation) scales with the coupling constant times the Casimir op-
erator (∝ g2C ).

In conclusion, we are arguing that asymptotically free non-
Abelian gauge theories possessing the phenomenon of dynamical
mass generation, for gauge bosons and fermions, have a fixed point
at the minimum of the vacuum energy, the β function is negative
up to the fixed point and the vacuum energy is a good candidate
for a c-function. The β function behavior for theories with dy-
namically generated gauge boson and fermion masses displays the
same qualitative behavior as the one found in an AdS/QCD analysis
[20]. We believe that the c-theorem can be better understood as
a property of theories with dynamical mass generation, and, con-
sequently, be related in this way to the breaking of the conformal
symmetry.

Acknowledgements

We are grateful to J. Papavassiliou for the critical reading of the
manuscript. This research was partially supported by the Conselho
Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

References

[1] A.B. Zamolodchikov, JETP Lett. 43 (1986) 730.
[2] J.L. Cardy, Phys. Lett. B 215 (1988) 749.



A.C. Aguilar et al. / Physics Letters B 696 (2011) 173–177 177
[3] T. Appelquist, A.G. Cohen, M. Schmaltz, Phys. Rev. D 60 (1999) 045003.
[4] R.D. Ball, P.H. Damgaard, Phys. Lett. B 510 (2001) 341.
[5] K. Intriligator, Nucl. Phys. B 730 (2005) 239.
[6] T. Appelquist, Z. Duan, F. Sannino, Phys. Rev. D 61 (2000) 125009.
[7] J.M. Cornwall, R.E. Norton, Phys. Rev. D 8 (1973) 3338.
[8] J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D 10 (1974) 2428.
[9] D.J. Gross, in: R. Balian, J. Zinn-Justin (Eds.), Methods in Field Theory, Les

Houches, Session XXVIII, North-Holland Pub. Company, 1975, p. 141.
[10] A.C. Aguilar, A.A. Natale, P.S. Rodrigues da Silva, Phys. Rev. Lett. 90 (2003)

152001.
[11] T. Muta, Phys. Rev. D 18 (1978) 2196;

J.F. Schonfeld, Nucl. Phys. B 95 (1975) 148;
J.A. Gracey, Nucl. Phys. B 341 (1990) 403;
C. Luperini, P. Rossi, Ann. Phys. (NY) 212 (1991) 371.

[12] J.M. Cornwall, Phys. Rev. D 26 (1982) 1453.
[13] I.I. Kogan, A. Kovner, Phys. Rev. D 52 (1995) 3719.
[14] A.C. Aguilar, J. Papavassiliou, JHEP 0612 (2006) 012;

A.C. Aguilar, J. Papavassiliou, Eur. Phys. J. A 35 (2008) 189;
A.C. Aguilar, J. Papavassiliou, Phys. Rev. D 81 (2010) 034003;
D. Binosi, J. Papavassiliou, JHEP 0811 (2008) 063;
D. Binosi, J. Papavassiliou, Phys. Rep. 479 (2009) 1.

[15] A.C. Aguilar, D. Binosi, J. Papavassiliou, Phys. Rev. D 78 (2008) 025010;
A.C. Aguilar, D. Binosi, J. Papavassiliou, Phys. Rev. D 81 (2010) 125025.

[16] M. Lavelle, Phys. Rev. D 44 (1991) 26.
[17] E.V. Gorbar, A.A. Natale, Phys. Rev. D 61 (2000) 054012.
[18] J.M. Cornwall, Phys. Rev. D 80 (2009) 096001;

J.M. Cornwall, J. Papavassiliou, Phys. Rev. D 40 (1989) 3474.
[19] S.J. Brodsky, Acta Phys. Polon. B 32 (2001) 4013;

S.J. Brodsky, Fortschr. Phys. 50 (2002) 503;
S.J. Brodsky, E. Gardi, G. Grunberg, J. Rathsman, Phys. Rev. D 63 (2001) 094017.

[20] S.J. Brodsky, G.F. de Teramond, A. Deur, Phys. Rev. D 81 (2010) 096010,
arXiv:1002.4660 [hep-ph].

[21] A.A. Natale, PoS QCD-TNT09 (2009) 031, arXiv:0910.5689 [hep-ph].
[22] B.A. Freedman, L.D. McLerran, Phys. Rev. D 16 (1977) 1130.
[23] J.M. Cornwall, R.C. Shellard, Phys. Rev. D 18 (1978) 1216.
[24] J.M. Cornwall, Talk at the Symposium “Approaches to Quantum Chromodynam-

ics”, Oberwölz, September 2008, arXiv:0812.0395 [hep-ph].
[25] A. Doff, A.A. Natale, Phys. Rev. D 81 (2010) 097702.


	Vacuum energy as a c-function for theories with dynamically generated masses
	Acknowledgements
	References


