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Abstract

The splitting rate model proposed by Smith and Mounce (2011) establishes a traffic evolution process on a link-node network
representation, which overcomes the difficulties in applying traditional path-based models and provides the ease of implementing
controls at nodes. While their model offers a new method for modeling traffic evolution, it contains an ad-hoc step of flow
adjustment to preserve the flow conservation. This flow adjustment step leads to difficulties in analyzing the system properties.
This paper proposes a generalized flow splitting model for day-to-day traffic assignment based on the concept of splitting flow at
nodes. The proposed model preserves the flow conservation endogenously by introducing the inflow variable into the
formulation. The generalized formulation provides the ease to construct a variety of day-to-day traffic assignment models, and
serves as a framework for analyzing the models’ properties, such as the invariance property and the preservation of the Lipschitz
continuity and strong monotonicity. Specifically, a proportional-adjustment model and a projection-type model are developed
based on the proposed generalized formulation. A numerical example demonstrates the ease of implementing the proposed
generalized model, as well as its convergence to user equilibrium.
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1. Introduction

With the advancement of intelligent transportation systems, travelers have the capability of accessing historical
and real-time traffic information, thereby adjusting their path choices in accordance with their day-to-day experience
and information provision. Understanding and modeling travelers' day-to-day choice adjustment plays an important
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role in developing effective advance traffic management systems. Many day-to-day traffic assignment models have
been proposed and used in day-to-day traffic control strategies such as dynamic congestion pricing (Friesz et al.
2004; Yang and Szeto 2006; Yang et al. 2007; Guo 2013; Guo et al. 2013), signal timing (Hu and Mahmassani 1997,
Smith and Mounce 2011), and transit operator strategies (Cantarella et al. 2013).

In the literature, most deterministic day-to-day traffic assignment models are path-based models, i.e., they all
explicitly use path flow variables and provide explicit path flow evolution trajectories. Yang and Zhang (2009)
classify these path-based models into four categories: the proportional-switch adjustment process (Smith, 1984;
Smith and Wisten 1995; Peeta and Yang 2003), network tdtonnement adjustment (Friesz et al. 1994), projected
dynamical system (Zhang and Nagurney 1996; Nagurney and Zhang 1997) and evolutionary traffic dynamics
(Sandholm 2001; Yang 2005). Since these models involve a differential equation for each possible path, the problem
becomes intractable when the network size increases.

He et al. (2010) discuss the shortcomings of path-based models and propose a model built upon link flows to
eliminate the realism issues inherent in path-based models. Since its state variables contain link flows only, the link-
based model (LBM) has a tractable problem size that is suitable for analyzing the traffic evolution for a large-scale
network, e.g., the traffic evolution after the I-35W Bridge collapse in Minneapolis, Minnesota (He and Liu 2012).
Han and Du (2012) extend the LBM to model traffic evolution for networks with non-separable link cost functions.
Guo et al. (2013) develop a generalized link-based model to cover a variety of discrete-time day-to-day traffic
evolution processes.

Another way to overcome the shortcomings in path-based models is to construct a traffic evolution model on a
link-node network representation. Smith and Mounce (2011) propose a splitting rate model (SRM), which adjusts
link flow splitting rates at each node. Formulating a day-to-day traffic assignment model as a SRM has two main
advantages. First, as the SRM is constructed on a node-link network representation, its problem size is tractable, and
the path-non-uniqueness and path-overlapping problems identified in He et al. (2010) can be overcome. Second,
various control strategies can be applied on nodes and easily combined into the model, since the flow adjustment is
directly formulated at nodes.

However, maintaining the flow conservation is not an easy task in the absence of path flow variables. The LBM
in He et al. (2010) essentially embeds a traffic assignment sub-problem to ensure that the link flows satisfy the
conservation law. For a large network, an efficient path generation algorithm is needed to solve the traffic
assignment sub-problem in the LBM. The SRM in Smith and Mounce (2011) requires an additional computational
adjustment of link flows to maintain flow conservation at nodes. This ad-hoc process induces difficulties in
analyzing the system properties, especially when the link cost function is non-separable.

This paper proposes a general formulation for link-based deterministic day-to-day traffic assignment models. The
proposed generalized flow splitting model not only enables the computation of the link flow trajectories by
circumventing the realism issues of path-based models, but also maintains flow conservation endogenously. Since it
is developed on the link-node network representation, path variables are completely absent in the formulation, while
link flows are updated through a demand distribution matrix to guarantee the flow conservation.

The proposed general formulation can provide modeling flexibility and serve as a unified umbrella for
establishing a variety of day-to-day traffic assignment models based on different assumptions on travelers’ path
swapping decision at nodes. The representation of flow splitting rates can vary to accommodate different routing
policies and control strategies in the real world. The realization of the splitting rate may follow either the
proportional adjustment used in the SRM, or a projection operator similar to the LBM. Any specified model can
directly inherit the analytical properties of the general framework. Thus, the cumbersome analysis due to the
exogenous flow adjustment process in the SRM could be avoided.

This remainder of the paper is organized as follows. The next section reviews the SRM proposed in Smith and
Mounce (2011) and discusses its inherent problems. Section 3 presents the mathematical formulation of the proposed
flow splitting modeling framework, which is established on an acyclic sub-network. The relationship between the
modeling framework and existing link-based models is also discussed. Section 4 provides mathematical properties of
the proposed flow splitting modeling framework. Section 5 demonstrates the applicability of the proposed modeling
framework using a numerical example constructed on a small network. The final section provides some concluding
comments.
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2. Preliminaries

This section introduces the notation associated with the modeling of the day-to-day traffic evolution process, and
a brief review of the SRM.

2.1. Notation

Let the traffic network G (N ,E) be represented by a directed graph G with node set A/ and link set £ .
Assume that this graph is strongly connected, i.e., for any pair of nodes (i, j) there exists at least a directed path
connecting them. Let S N be the set of trip destinations in the network. For each node i e N, the set of its
outgoing (downstream) links is denoted by E; C £ and its incoming (upstream) links is denoted by £ < L.

Let x’ denote the flow on link a € L traveling toward destination s € S. Link flow X is the aggregation of the
flows towards different destinations, i.e., x = Zaxf‘ , for all a € L. Denote link flow vector x = [xa ] The link cost
function of link @ € L is denoted by 7,{ X ) which is a continuous function of link flow vector x. Denote dm as the
travel demand from origin r € A/ to destination s€ S, r#s. Additional notation will be introduced when
necessary.

2.2. Splitting rate traffic rerouting model

The SRM is a deterministic day-to-day traffic evolution model developed by Smith and Mounce (2011) to
describe the traffic rerouting dynamics at nodes. The SRM is built upon the path choice behavior assumption similar
to the path-based proportional flow swapping model developed by Smith (1984). The SRM can be presented in a
concise form as:

x(t+1)—x(t):7/A(x(t))x(t) D
where A(x) is a block diagonal matrix with |£| *‘S‘ rows and |£‘ *‘S‘ columns defined by:
A(x) :diag{AS(x)} . 2

For each destination s€ S, A’(x) isa ‘£| by |£| square matrix. Each element &,

> [a-a()] fazb

5y (x)= [cj (x)—cs(x)]+ ifbe L ,anda=b, (3)

a

(x) in matrix A*(x) is defined by:

0 otherwise

where x, = max {O, x} denotes a non-negativity projection. The SRM is formulated based on the flow-weighted path
cost ¢, which measures a cost from the tail node of link a to destinations .

The formulation of the flow-weighted path cost plays the critical role in the SRM and can be presented as
follows. Assume we focus on the calculation of the flow-weighted path cost ¢, of link a connecting to downstream
node i in a network. The link and node locations and associated attributes are illustrated in Fig. 1.

As shown in Fig. 1, each link in the network is associated with a flow proportion p, which is defined in Smith
and Mounce (2011) as:

Fig. 1. Calculation of the generalized cost.
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In equation (4), the numerator represents the flow on link b that is incident from node i while the denominator
represents the summation of all outgoing flows from node i toward destination s. Therefore, equation (4) prescribes
how traffic flow splits (in terms of proportion) at node i. Each node i in the network is associated with a node
potential to represent the flow-weighted cost from node i to destination node s through links with tail node i .
Particularly, let ¥" =0 for destination node s . The flow-weighted node potential is formulated as:

= Y (a(x)+Y)p. 5)

b=(i,j)eL;

After the flow-weighted node potential ¥;* is computed, the generalized cost ¢, for link a € £ in equation (3) is
defined by:

¢ =1,(x)+1". (6)
As Zhe Dy =1, equation (5) represents that the node potential ¥ is a normalized linear combination of the
generalized costs ¢; on all downstream links with weights p; . Therefore, it has a concise form:

=Y . ™
b=(i.7)ets

2.3. Problem statement

One of the main challenges of applying dynamical system (1) is to maintain the flow conservation at the nodes.
According to formulation (1), for each node the total exit flow is conserved with the value of total inflow in previous
time step. Considering that the upstream inflow rates may change in the current time step, flow conservation is lost
at the node level.

To maintain the flow conservation, Smith and Mounce (2011) suggest an additional link flow adjustment process
after applying dynamical system (1) to compute the link flow pattern. The flow adjustment process updates link
flows by an iterative approach:

x; (k+1) A0 Doue Nulk), VoL ®)
where k denotes the iteration number. As shown by (8), the outgoing link flow from node i is adjusted
proportional to the total inflow through upstream links. Smith and Mounce (2011) show that when the network is
acyclic (i.e., loop free), the iterative process converges in a finite number of iterations and the flow conservation is
maintained.

Although adding the link flow adjustment process (8) ensures that the link flows generated by day-to-day traffic
evolution model (1) maintains the conservation law, such an ad-hoc process induces difficulties in analyzing the
system properties, such as its asymptotic stability and attraction domain (Bie and Lo 2010). More importantly, as the
value of total inflow appears as the denominator in the link flow adjustment process (8), this process is not well
defined when the total inflow of node i is zero. Because of this, Smith and Mounce (2011) assume that each non-
destination node has a positive demand to ensure the denominator in the right-hand-side of equation (8) is always
positive. Nevertheless, this is a strong assumption for practical applications.

Another challenge of applying dynamical system (1) is to have a well-defined formulation of the node potential
Y’ in constructing the flow swapping matrix A(x). As shown by (4), the flow proportion p, is not well defined if
the total outflow at node i is zero. The assumption of positive demand at each non-destination node resolves this
issue. As the same assumption is used for the flow adjustment process (8), the SRM (1) would have limited
application for large-scale networks. Hence, there is a research need to develop a well-defined formulation for the
node potential and generalized cost for the wider application of the SRM.

Based on the aforementioned challenges of applying the SRM, this paper proposes a generalized formulation for
modeling day-to-day traffic assignment, which follows the link flow splitting rate structure and introduces an inflow
variable at each node. The proposed general formulation not only allows the computation of the link flow evolution
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without the realism issues of path-based models, but also maintains flow conservation endogenously. As in the
SRM, path flow variables are completely absent in the proposed formulation, while the existence of the inflow
variable helps in maintaining the flow conservation law. A well-defined generalized cost formulation is developed
based on the properties of the acyclic network structure. In addition, the generalized modeling framework can
provide flexibility in modeling the splitting rates. Various routing policies and traffic control strategies can be
accommodated easily by the general framework. A specific realization of splitting rate may follow either the
proportional adjustment form of the SRM or a projection mapping form of the LBM. The detailed formulation of the
proposed model is presented in the next section.

3. Generalized flow splitting model

This section first discusses the assumptions imposed on the network structure that help in formulating the
generalized flow splitting model and deriving its analytical properties. Then, the detailed mathematical formulation
of the proposed model is presented. To illustrate how to apply the proposed model, the flow splitting model is
specified by adopting the path choice behavior assumptions from the SRM (1) and the LBM.

3.1. Network structure

The generalized flow splitting model is inspired by the origin-based algorithm (Bar-Gera 2002; Dial 2006; Nie
2010) for the static traffic assignment problem, where origin-destination (OD) demands are distributed onto sub-
networks decomposed by origin or destination. A set of sub-networks needs to be constructed before the analytical
formulation of the proposed model is presented.

For the given traffic network G (/\/ ,ﬁ), all paths connecting all origins to the same particular destination can
form a sub-network for that destination. Denote Q as the sub-network for destination s. It is assumed that each
sub-network g satisfies the following assumptions.

1. G contains no loops, i.e., G, is acyclic;
2. gY is strongly connected, i.e., there exists at least a path in QS connecting every non-destination node to
destination s .
Note that the first assumption is a strong one that may not be satisfied by general networks. However, acyclic sub-
networks can be constructed for each destination based on reasonable paths, which exclude links that take the
traveler back toward the origin (Sheffi 1985). If only reasonable paths are used by travelers, the link flow pattern
can be analyzed on the corresponding acyclic network.

As sub-network g is acyclic, we can construct a topological ordering of nodes and a topological ordering of
links (Chapter 3 in AhuJa et al. 1993) such that for every link (z j) € L, order (z)< order é 5) For a specific sub-
network gy the topological ordering can be constructed as follows. First, as sub-network G is acyclic, there exists
at least one node that does not have a predecessor. Put all nodes without predecessors into an order by their node
potentials defined by (5). For each ordered node, we can rank its downstream links (directly incident from the node)
by their generalized travel costs to destination s. After these nodes and links are ranked, they can be temporarily
removed from Q and the rest of the sub-network remains acyclic and strongly connected. This step can be done
repeatedly until all nodes and links of sub-network g are ranked, and the results are the topological orderings of
nodes and links. The topological ordering concept is 1mp0rtant in constructing the generalized flow splitting model
and analyzing its properties.

3.2. Model formulation

As in the SRM, the generalized flow splitting model is constructed on a single-destination sub-network g Thus,
the model formulation and its properties are considered on the sub-network g Further, define variable A,
associated with node i that measures the total inflow at node i heading to destination s . Mathematically, it can be
represented as:
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A=di+ ) x )
acl;

where d; 20 denotes the OD demand between node i and destination s . Note that, differing from the SRM, d;
may be zero in our model. Let X" denote the outflow vector at node i , i.e., x* = [xff }, ae Lff .

An outflow distribution function F'(4,,x’ ) : R+ R" is defined as follows.
Definition 1. The outflow distribution function F’(ﬂ,:‘,x”") is a continuous function, satisfying the following
assumptions:

(a) F i(ﬂf,x"“’) is negatively monotone with respect to outflows, i.e., for any feasible outflows x;* and x}*,

. . . . T . .
[F’ (ZIST,X’I"‘)—F’ (zlf,x’z’s )J (x;"F —x'z's) <0 (10)
(b) For every nonempty subset £ = L, if ¢, — +oo forall ae £\ &, and x* — x{ forall ee &, then:
F/(4.x") >0 Vae L/ \€ and F (4 .x") > F/(4.x") Vee&; (11)
(¢) The mapping result satisfies:
Y FE(AX") =4, and F} (4. x")20VaeL . (12)
act)

In the definition, assumption (a) implies that if flow on link a increases, then the resulting distributed outflows on
other links with the same tail node will tend to increase, namely, OF" (ﬂf , X ) / ox,;" >0, forall g,ec L, and a#e
. Assumption (b) ensures that when a link’s cost increases to infinity, its flow tends to zero and the resulting
outflows converge to a stable pattern. Assumption (c) ensures the link flow conservation.
Following the formulation proposed in Smith and Mounce (2011), the outflow dynamics at node i can be
represented by:
d is i qs ois is
dtx (p[F (/1,. ,X ) X J 13)
where parameter 0 < ¢ <1 represents the link flow change rate. Let the cardinality ‘Ef = n, denote the number of
links with tail node i . Dynamical system (13) is constructed for describing link flow evolution in a continuous-time
space. When it is applied to discrete-time day-to-day traffic assignment, this system provides a link flow update
process as:

X (1) =X (1) + @ F (4 (1+1),x (1)) =x" (1) ], VieN. (14)
Note that on the right-hand-side of Eq. (14), the inflow variable A’ (t+1) is a result of the link flow pattern
X; (t+1) on “day” 7+1 to ensure the flow conservation, i.e.:
A(t+)=d + D x)(t+1), VieN. (15)
ael;
Note that the inflow variable 4’ (z+1) is a function of the result of updated link flow pattern X(l+ 1). Therefore,
the day-to-day flow update is an implicit nonlinear equation system that seems difficult to solve. However, with the
acyclic network representation and topological orderings of nodes and links, the values 4, (t + 1) can be determined
by the Gauss-Seidel method.

Equation system (14) and (15) defines the generalized flow splitting model as it determines how link flows split
at the node level. The inflow variables A’ (z+1) in the model play the key role in maintaining the flow
conservation, and the outflow distribution function F' (ﬂj,x” characterizes travelers’ path decision behavior at
nodes. When the outflow distribution function is specified based on different path choice decision assumptions, a
variety of day-to-day traffic assignment models can be developed. We illustrate this process in the next section.

3.3. Applications of the generalized flow splitting model

The proposed flow splitting model (14) and (15) provides a general structure to describe link flow evolution. The
model can have various presentations when the flow distribution function F' (/I;Y,x"") is specified differently.
Applying the behavioral assumptions used in the SRM and the LBM, two different flow splitting models can be
developed. It also illustrates that the proposed model can serve as a bridge connecting the SRM and the LBM.
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3.3.1. Proportional-adjustment flow splitting model

To illustrate how to develop a day-to-day traffic assignment model by using the generalized flow splitting model
(14) and (15), the first example uses the same path choice behavior assumption as the SRM, i.e., traffic flow swaps
from one outgoing link to another at a rate which is proportional to the generalized cost difference between these
two links. Let:

F' (/1,? (t+1),x" (t)) =x" (1) + A7 (x)x" (1), (16)
where A?(x) is defined by (3). Let ¢ =1 in equation (14), then we have the same SRM proposed by Smith and
Mounce (2011). Note that the formulation of flow distribution function (16) does not involve the inflow variable
4, (t + 1) . Therefore,

D (t+1) =D X (1) =4 () = A (14 1) =d + D Xl (1 +1), (17)
el eel eel;
if total inflow at node i is changed. Flow conservation cannot be maintained and the ad-hoc flow adjustment
process (8) is still required.
To ensure the flow conservation, flow distribution function (16) can be revised by including the inflow variable
as follows:

FI(A (e+1).x" (1)) =/1/1(;(’;)1)[x (£)+ A (x)x" (1)]. (18)

Based on equality (18), summing up all outflows from node i shows that:

Zxé”&'(t+1):w~2xé”() A(t+1)=d; + ) x (1+1) (19)

eelf /11' (t) eel; eel;
Therefore, the proportional-adjustment flow splitting model (18) maintains flow conservation. Although equation
(18) contains an implicit variable /Il_(t—ir 1) , it can be solved by the Gauss-Seidel method when the sub-network is
acyclic. However, as the inflow variable li(t) appears as a denominator, the flow splitting model (18) is not well
defined if 4, (t) =0. Therefore, the assumption that each non-destination node has a positive demand is needed. In
the next section, another flow splitting model is developed by applying the path choice behavior assumption used in
the LMB (He et al. 2010), where the assumption of positive demand on the non-destination nodes is no longer
needed.

3.3.2. Projection-type flow splitting model

Although the LBM is constructed on a link-path network representation, its modeling concept can be used in
developing a flow splitting model following the structure of (14) and (15). The basic idea is to consider each node as
an origin and its outgoing links as “paths” connecting to the destination. Each node has the “demand” as its current
inflow A’ (¢) defined by (15).

The LBM in He et al. (2010) is formulated as:

x(t+1):x(t)+qo[y(x(t))—x(t)} , (20)

where y represents the “target flow” determined by the minimization problem:
min fr(x(1)) y+(1- B)|y (1) an

and the feasible set IT = {y|Af =y, Of =d.f > 0} represents the link flow pattern that satisfies flow conservation in
the relationship with the path flow pattern, and the relationship between path flow and OD demand. As discussed by
Han and Du (2012), the “target flow” y can be represented by using the projection operator as:

¥(x(1)) =Pry (x() =72 (x(1)). (22)
where y = / 2(1 - ﬁ) Then, the flow conservation is guaranteed by projecting the flow pattern onto the link flow

feasible set I1. The same concept can be used to develop an alternative flow splitting model based on (14).
In the flow splitting model, specify the outflow distribution function by using the projection operator as:

FH(A (6+1),x (1)) = Py, [ (1) =€ (1) ] (23)
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where ¢ (¢) is the flow-weighted path cost vector on day . Each entry of the vector, i.e. ¢} (1), Vae L is
defined by (5) and (6). The feasible outflow set Q" (7+1) for node i onday 7+1 is defined by:

Q" (t+1) { |y ]eR" Zye A (t+1),p >0v¢eeﬁ} (24)

As the feasible outflow set Q" (7+1) involves the total inflow A4 (¢+1), it is defined implicitly on day 7+1.
Similar to the determination of A7 (z+1), Q™ (¢+1) can be constructed by using the Gauss-Seidel method due to
the acyclic network structure. With the specified outflow distribution function (23), a projection-type flow splitting
model can be formulated as:

X (t+1)=x" (¢ )+(p[Pr ) [ ”(t)—;/c"’s(t)J—xi’s(t)}, Vie N . (25)

In the projection-type flow splitting model (25), a sequence of quadratic programming problems (21) needs to be

solved to redistribute the outflows at each node. Note that the number of downstream links of each node i, i.e., n,

is a small number. Therefore, solving the quadratic programming problem (21) is easy when the inflow Zl.(t + 1) is
determined by the Gauss-Seidel method.

Let Q denote a feasible link flow set that includes all link flows. Any x/* €Q, ie N,ae L, must satisfy
x.* 20 and the following conditions:
> d,, ifi=s

Dot =y X =4-d,, ifi=r VieN. (26)
esh e<li 0, otherwise
As the inflow variable is defined as 4’ = Z , we can see that when a link flow pattern x = é r}satlsﬁes the
feasible link flow set Q" defined by (24), it automatlcally satisfies the link flow feasible set Q2 ned by (26).

The definition of feasible set Q helps in analyzing the properties of the day-to-day traffic assignment model (25).
One main property of the projection-type flow splitting model is presented as follows.
Proposition 1. A stable point of the day-to-day model (25) solves the variational inequality problem:

N
(x—x) c(x)ZO, VxeQ. 27)
Proof. If X is a stable point of the day-to-day model (25), then:
Pr. [xi"‘* —}/c(xi"‘* )] =x"" Vie Nand Vs (28)

which implies that Pr, Lx* - ;/c(x*);L— x =0. Based on the work of Gowda and Pang (1993), X" solves a variational
inequality problem as shown in (2 |

As ¢ x’) represents a generalized link cost defined by (5) and (6), the variational inequality (27) is not a typical
formulation for solving deterministic user equilibrium (UE). Whether the stable point of the day-to-day model (25)
satisfies UE depends on the properties of the generalized cost function ¢(x"

4. Model properties

Smith and Mounce (2011) analyze the properties of the SRM (1) based on the assumption of separable link cost
functions. Here, we derive properties of the generalized flow splitting model, which assist in further analyzing the
properties of any specific day-to-day traffic assignment model developed based upon the general modeling
framework (13). These properties do not rely on the separability of link cost functions.

This section first focuses on the flow conservation of the proposed generalized flow splitting model, since this
property is difficult to maintain when path flow variables are absent. Comparing the proposed flow splitting model
(13) with the SRM (1), the major difference is the existence of the inflow variable A, defined by (9), which
essentially assists in preserving the flow conservation at every node. The flow conservation of the generalized flow
splitting model (14) is summarized into the following proposition.

Proposition 2. The generalized flow splitting model, defined by (14), maintains the link flow feasibility, i.e.,
x(tg)e Q for all ¢, as long as the initial link flow pattern x(O) is feasible.
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Proof. Assume the day-to-day link flow pattern x(¢) follows the generalized flow splitting model (14). We need to
prove that if x(t) eQ , then x(t+1) €. Assume that the feasible link flow pattern on day ¢, x(z), has been
decomposed by destination s at each node i denoted by X (Z) .As x(t) €, it implies that:

di+ D X (1)=4 ()= D xi* (¢), Vie N. (29)

act; act;

As all nodes in the network g have a topological order, the intermediate inflow )ﬁ on day 7+1 can be updated in
the topological order using definition (9). Define the intermediate exit flows X % (t+ 1) F' (lf (t+ 1) ( )) ,
£ (t + 1) > (). By assumption (c) in the definition of the flow distribution function, it satisfies:

di+ D X (1) =4 (1+1)= Y % (1+1), Vie N. (30)
ael; aelf
Let 0 <@ <1. Adding (29) to (30) with weights ¢ and 1-¢ provides
d+ Y [(1- 1)+ (1+1)] = Z[ t)+ox (t+1)], Vie N. (31)
acl;
According to the flow splitting model (14), Eq. (31) is equlvalent to:
di+ Y X (t+1)= D Xl (1+1), VieN. (32)
ael; aely
The above equation shows that x™* (¢+1) satisfies flow conservation and x* (¢+1)>0. Thus, x(t+1) €Q. This
proposition is proved by mathematical induction. [ ]

Proposition 2 is also labeled as the invariance property in Han and Du (2012) and Guo et al. (2013). Through the
proof, it can be seen that assumption (c) in the definition of the outflow distribution function plays the critical role in
maintaining the flow pattern’s feasibility. In the proportional-adjustment flow splitting model, assumption (c) is
satisfied by the introduction of the normalized term ii(t+l) / ﬂi(t) in (18). In the projection-type flow splitting
model, assumption (c) is satisfied by the projection operator in (25).

We now focus on analyzing the structure of the generalized cost function c(x) used to specify the outflow
distribution function. Note that each entry of the cost vector c(x) ,le. ¢ (X) represents a flow-weighted path cost
from the tail node of link a to destination s, as defined by (4), (5) and (6). The cost vector ¢ x) is used in both the
proportional-adjustment flow splitting model and the projection-type flow splitting model. Its value directly impacts
the splitting rates in the model formulation. Analyzing the structure of the flow-weighted path cost c(x assists in
deriving the properties of the generalized flow splitting model and constructing day-to-day traffic assignment
models.

Note that the flow splitting proportion p; defined by Eq. (4) is not well defined when the tail node of link 5 has
zero total inflow. Here, we redefine the flow splitting proportion p, as:

AT, if AT >0
s_{'xb/z’l i Gﬁ. (33)

i

Pr 1/n,, otherwise
The main difference between Eq. (4) and Eq. (33) is that p; is defined as 1/ n, when the total inflow is zero. Under
this definition, the node potential ¥° is an arithmetic average of the generalized costs of its downstream links when
the inflow is zero. With a well-defined flow splitting proportion (33), the assumption of positive demand at each
non-destination node is no longer needed.
Proposition 3. The generalized link cost ¢(x ), defined by (5), (6), and (33) has a concise representation:
c(x)zQ(x)t(x), (34)
where Q(x) is a positive definite matrix for all feasible link flows x €().
Proof. For each acyclic sub-network gs, define a flow transfer matrix P = (Pa‘b) , which is a |E‘ X’£| square matrix.
Each element of the flow transfer matrix P indicates how much flow, in terms of proportion, will transfer from link
a to link b. According to (33), if @ and b are adjacent links, i.e., ae€ Q,beﬁf of a node i e \/, then element
P, in the flow transfer matrix can be defined by:

. s_{x;‘/l,f‘k if 47 >0 35)

b — b T . .
¢ " |l/n,, otherwise
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If @ and b are not adjacent, then P, =0. As sub-network G is acyclic, all links in the sub-network have a
topological ordering. Thus, the flow transfer matrix P is strictly upper triangular, i.e., its diagonal and lower
triangular elements are all zeros.

Similar to the determination of the weight matrix in solving stochastic user equilibrium problem in Bell (1995),
each element of the product PP = P? indicates the flow transfer proportion from link a to link b through a path
containing exactly two nodes; and each element of matrix PP” = P’ indicates the flow transfer proportion from link
a to link b through a path containing exactly three nodes; and so forth. As each decomposed sub-network is
acyclic, there exists a path 7 in the sub-network gsthat contains the largest number of nodes. Denote the number of
nodes on path 7 as K. Then, for any integer n> K, P"=0.

Based on the definition equations (5) and (6) for c(x) ,l.e.:

¢(x)=7,(X)+7 and ¥ =3 (5 (x)+Y) P}, (36)
the relationship between ¢(x) and (x) can be derived as:
c(x)=[l+P+P2+...+PK]*1-(X), (37

where I represents the identity matrix. Denote Q =1+P+P”+ ...+ P*, then we have the relationship (34).

As the sub-network is acyclic, matrix P” is strictly upper triangular with all elements smaller than one, for all
positive integers n. Therefore, matrix Q(x is an upper triangular matrix, whose diagonal elements are ones. It
implies that Q(x) is positive definite with eigenvalues all equivalent to one for any flow pattern x . This completes
the proof. u
Remark 1. For a large network, it is difficult to determine the value of K to compute Q(x) , as finding the longest
path is not easy. However, as discussed by Bell (1995), the expansion

(1-P) =1+P+P*+... (38)

provides an easy way to compute Q(x), as P" =0 when n> K. Therefore, finding K is not necessary, and
Q(x) can be determined by Q(x)=(I-P x) .We use a simple example to illustrate the key idea shown in
Proposition 3. Suppose we have an acyclic network illustrated by Fig. 2. The flow splitting proportion p, defined
by (33) ensures that link flow conservation at node i, i.e., Zae  P. =1. The update of link flow may follow the
proportional-adjustment flow splitting model or the projection-type flow splitting model.

For the acyclic network shown in Fig. 2, the flow transfer matrix P can be constructed to establish the
relationship between incoming and outgoing flows of a node, as:
[0 p, p;,00000
Py ps0 00

Ds P70
1

(39

o o0 o0 o o o o
cC o0 o o o o o
o 0o o0 o o o o o
oo o0 o o o o
o~ o o = 9 o o o
0 © - - O ° o o ©

0
0
0
0
0
0
0

S O O O o O
S © O o o o
S o o o O

(=]
(=]
(==

00 00 O

As previously discussed, the flow transfer matrix P is upper triangular. The first row of matrix P shows that if link
1 carries one unit of flow, p, and p, units of flow transfer from link 1 to links 2 and 3, respectively.

For this example, we can directly observe that the longest path in the network contains five nodes. Therefore, the
matrix Q=I+P+P>+P’+P*+P°. Or, we can compute Q by Q= (I - P)i1 . As matrix I—P is upper triangular
and sparse, its inverse is easy to compute. Matrix Q can be computed using either method, as:

(=]
(=]
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Pi x /VQ>\&
Dy 9
’L& }\
O 5
6
Ps 7

Fig. 2. A ten-link network.

L p, Py PPy PiPs PsPe PPy PaPy Dy Ps |
01 0 D, Ds 0 0 P 1 0
00 1 0 0 D P, 0 0 1
00 0 1 0 0 0 1 1 0
oo 0 o 1 0 0 0 1 0 (40)
<o 0 0 0 1 0 0 0 1
00 0 0 0 0 1 0 0 1
00 0 0 0 0 0 1 1 0
00 0 0 0 0 0 0 1 0
|00 0 0 0 0 0 0 0 1 |

Matrix Q shows the current demand distribution information and is called the demand distribution matrix in this

study. The i th row of matrix Q indicates how flow on link ;i will be distributed on downstream links. For
example, if one unit of flow departs from r, p, of it traverses through link 2, and p, p,of it traverses through link
4. Similarly, if one unit flow is on link 3, then p, of it traverses through link 6, and all of it traverses through link
10. Each column ; of Q indicates that the current flow on link ; is from which upstream links. For example, if we
look at the 8th column of Q, it shows that p, p, of flow on link 1 traverses to link 8, p, of flow on link 2 traverses
to link 8, and all flow on link 4 traverses to link 8.
Remark 2. As the demand distribution matrix is derived by considering all possible paths connecting from each
node to the destination, the product of Qd preserves flow conservation automatically. Thereby, using the product
Qd to formulate the outflow distribution function /' does not require the implicit inflow variable A’ (t+ 1). This
attractive property enables the construction of day-to-day traffic assignment models with a simple representation.

The ad-hoc flow adjustment (8) used in the SRM is to update the outflow distribution at each node by using the
transfer matrix P . As the longest path contains a finite number of links, the update process can be terminated in a
finite number of steps. The outputs of the process (8) are the elements in the demand distribution matrix Q when all
non-destination nodes have positive demand.

With the relationship between the generalized link cost ¢(x ) and link cost function r(x) defined by (34), some
important properties of the link cost function = (x) can be maintained. This is important in applying the generalized
link cost c(x5 to develop flow splitting models and analyzing the properties of the model. We summarize these
properties as follows.

Proposition 4. If performance function T(X) is Lipschitz continuous and strongly monotone, then the generalized
link cost c(x) , defined by (5), (6), and (33), is Lipschitz continuous and strongly monotone as well.

Proof. We first prove the Lipschitz continuity of ¢, x). Let qae(x)denote the element in matrix Q(x) indicating
the flow distribution from link a to link e. Accroding to Proposition3, ¢(x)=Q(x)t(x). Therefore:
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e (x)=2 4. (x)7.(x). (41)

ecl
where Oﬁq;(x)ﬁl for all x. Note that a linear combination of Lipschitz continuous functions is Lipschitz
continuous. Let L <oo be the Lipschitz constant for the link cost function 7,(x), Vee L. Then, ¢ (x) are
Lipschitz continuous with the Lipschitz constant L, :Zgﬁ Cq;e(x)L@ , Vae L. As the number of links in the
network is finite and ¢;, (x)<1, L <oo.
Next, we prove the strong monotonicity of c(x). By the chain rule, the Jacobian of the generalized link cost
c(x) can be derived as:

| Ve(x)=Q(x)Vr(x)+VQ(x)t(x). (42)
Note that Q(X) = (I - P(x)) , thus Q(x) I- P(x)) =1, or Q(x) —Q(X)P(X) =1. By the chain rule:
VQ(X)—VQ(X)P(x)—Q(x)VP(X):0. (43)

It implies that VQ(x)=Q(x)VP(x)(I—- P(x))_1 . Replace (I —P(x))_1 by Q(x), VQ(x)=Q(x)VP(x)Q(x).

According to the definition of P(x), each non-zero element in row i carries flow from link i . Therefore,
Q(X)VP(X =VP(x). In addition, note that VQ(x) is a three-dimensional matrix. Let VQ'(x) denote the
Jacobian of the ith row of VQ(X). Note that VQ(X) = Q(x)VP(x)Q(x)z VP(X)Q(X). Then the first i rows of
VQng are all zeros. VQ(x)t(x) is a strictly upper triangular matrix with all elements positive. Therefore,
VQ(x)t(x) is a positive semi-definite matrix for all x.

A link cost function 7(x) is strongly monotone if and only if Vt(x) is uniformly positive definite for all x, i.e.,
x'Vr(x)x > ,0||x||2 for all x (Facchinei and Pang, 2003). As shown by Proposition 3, Q(x) is positive definite for
all x. As Vr(x) is positive definite, Q(x)V7(x) is positive definite.

Due to (42), Ve(x) is a combination of a positive definite matrix Q(x)Vz(x) plus a positive semi-definite
matrix VQ(x)t(x). Therefore, Ve(x) is a positive definite matrix and ¢(x) is strongly monotone for all x . [
Corollary 1. If link cost function 'r(x) is strictly monotone, then the generalized link cost c(x), defined by (5),
(6), and (33), is strictly monotone.

Proof. This corollary holds readily as strong monotonicity implies strict monotonicity. [ ]

The Lipschitz continuity and strong monotonicity presented in Proposition 4 are important properties in
analyzing the uniqueness of a stable point, the system stability and convergence to user equilibrium, for example, in
the studies of Nagurney and Zhang (1997) and He and Liu (2012). The propositions presented in this section can
serve as preliminaries for deriving the properties of the stable point and asymptotic stability property for the
generalized flow splitting model in the future. The relationship between the flow transfer matrix P and demand
distribution matrix Q, as discussed in Remarks 1 and 2, offers an easy way to implement the flow splitting model.
We use a numerical example to demonstrate this in the next section.

5. Numerical example

By applying the relationships derived in Proposition 3, Remark 1 and Remark 2, a day-to-day traffic assignment
process built upon the generalized flow splitting model (14) and (15) contains the following three main steps:

Step 1: Based on the current link flows x(t) , compute the link cost function ‘r(x t)). Compute the current flow
transfer matrix P(x(¢)) and the demand distribution matrix Q(x(t)) = (l - P(x(t))s . Update the generalized link
cost function c(x l)) as c(x(t)) = Q(x(t )‘r(x(t)) ;

Step 2: Compute the “target flow” y(7+1) using the outflow distribution function, y(r+1)=F (/1 (t+1), x(t)) ;
Step 3: Update link flow x(¢+1)=(1-¢)x(¢)+y(+1); go to Step 1.

The main step in this day-to-day traffic assignment process is Step 2, where a set of outflow distribution
problems needs to be solved. Note that though we separate the update of the “target flow” y (t + 1) and the updated
link flow x(t + 1) into two steps, both of them can be solved simultaneously by following the Gauss-Seidel method
due to the acyclic network structure, i.e., alternatively updating y'(z+1) and x'(+1) in the sequence of
topological ordering of nodes.

In what follows, we demonstrate how to construct a new day-to-day traffic assignment process based on the
proposed general model. The main task is to specify the outflow distribution function in Step 2. Here, we adopt the
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same path choice behavior assumption used in Smith and Mounce (2011), i.e., travelers’ path choice at node i
depends on the generalized cost c(x(t)) on the outgoing links of node i .

In Step 2, the flow swapping matrix A can be first computed based on the current link flow pattern x(t) and
corresponding generalized link cost pattern c(x(t)) =Q(x)7(x). An intermediate flow pattern §(7+1) can be
computed by:

&(t+1):x(t)+yA(x)x. (44)
Note that the flow swapping matrix A is computed based on c(x(t)) =Q(x)t(x) with p_defined by (33) instead
of (4). Therefore, it is well defined under the condition that total the inflow of a node is zero. As §f(t + 1) does not
consider upstream link flow changes, it does not preserve flow conservation. However, the intermediate flow pattern
y (t + 1) provides the information on the tendency of travelers’ path swapping behavior at each individual node. The
intermediate flow pattern § (7 + 1) helps in constructing the outflow distribution function F .
_ Using the intermediate flow pattern y(t+1) and the definition of splitting rate (35), the flow transfer matrix
P ()7 (t+ 1)) can be computed, which summarizes the travelers’ path swapping behavior at nodes. Then, the demand
distribution matrix Q can be computed by Q(§(z+1))= [I—P(y(t+1))] according to Remark 1. The “target
flow” y(¢+1) is determined by the flow distribution function:
y(t+1)=F(h(t+1),x(¢))=Q(5 (¢ +1))d. (45)
where d represents the demand vector. Note that the flow distribution function F in (45) does not contain the
inflow variables A explicitly to ensure the flow conservation. This is because the demand distribution matrix Q
implicitly covers all paths connecting any node pairs, as discussed in Remark 2. After we have the “target flow”
y(z+1), the link flow pattern on day 7+1 is updated by:
x(t+1):(l—go)x(t)+(py(t+l). (46)

Next, the ten-link network shown in Error! Reference source not found. is used to illustrate the applicability of
the new proportional-adjustment flow splitting model based on Eq. (45). Assume only one OD pair (r,s) in the
network with one unit travel demand. The free flow travel time is set as one unit of time for all links. Link capacities
are set as one unit. The link cost function is assumed to follow the BPR function:

r, (xa)=r3[1+0.15(2”J ] 47)

where z-g represents free flow travel time and C | represents link capacity.

In the newly constructed flow splitting model (45) and (46), parameter ¢ is set as 1 and parameter y is set as
0.4. As only one unit of demand is generated from origin r, the demand vector d =[1,0,0,0,0,0,0,0, O,O]T . Let the
initial link flows on the first day be x, =x, =x, =x; =x, =1 and all other link flows be zero. Note that, in the
SRM, the node potentials of ¥; and Y, are not well defined due to zero outflows at nodes 3 and 6 and Eq. (4). By
contrast, in the proposed generalized splitting model, the flow transfer matrix is defined by (35) which is well
defined for nodes with zero outflows.

1.2
1 -
=& Link 1
0.8 .
% —@— Link 2
E;; 0.6 —#— Link 3
£ .
0.4 =3¢ Link 4
== Link 5
0.2 .
=0 Link 6
O -
1 3 5 7 9 11 13 15 17 19 21
Day

Fig. 3. Link flow evolution.
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\ (a) Path cost evolution (b) Path flow evolution
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Path 3 0.4
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A\ ------- Path 4 02 | oot TR Path 4

1 3 5 7 9 1113 1517 19 21 1 3 5 7 9 11 13 15 17 19 21
Day Day

Fig. 4. (a) Path cost evolution; (b) Path flow evolution.

The link flow day-to-day evolution results based on the flow splitting model (45) and (46) are summarized in Fig.
3. Note that the network is symmetric, namely, x, =x,(7), x,(¢)=x,(¢), x,(¢)=x,(t), and x,(¢)=x,(7) .
Hence, Fig. 3 only presents the link flow evolution on links 1, 2, 3, 4, 5, and 6.

As shown in Fig. 3, the flow on link 4 decreases from one day to the next since the path cost through link 4
remains the highest throughout the day-to-day traffic assignment process. On the contrary, the flow on link 5 keeps
increasing as the path cost through link 5 remains the lowest.

As p=1, x(t+l):y(t+1):()(§f(t+l))d.A In addition, because d =[1,0,0,0,0,0,0,0,0 0] the link flow on
each day is characterized by the first row of Q(A (t+1)) For this example the first row of Q( (t+l)) has the
specific form: q=[4,,4,.43,44: 95296979599 910] =[1 Pa» s> P2 Pas P2 Ds> s Ps> Psy» PoPs> P> 3] according to
(40). Note that p,+p, =1, p,+p;=1, and p6 +p, =1 . Therefore, ¢,+¢q,= p,+p,=1=q,, q,+q; =
PrPi+PrPs= Py =4, q6+q7 p3p6+p3p7 Py=4ys 4o+ = P, + s =1=¢,. In summary, the link flow
pattern on each day maintains flow conservation.

To evaluate the convergence of the day-to-day traffic assignment, the evolutions of path flow and path cost are
evaluated. Denote Path 1 as the link sequence {1, 2, 4, 8, 9}, Path 2 as the link sequence {1, 2, 5, 9}, Path 3 as the
link sequence {1, 3, 6, 10}, and Path 4 as the link sequence {1, 3, 7, 10}. As illustrated in Error! Reference source
not found., the cost of Path 1 remains the highest while its flow keeps reducing to zero. Flow on Path 2 keeps
increasing as its cost remains the lowest. Flows on paths 3 and 4 gradually reduce after peaking in the early
assignments. The path cost differences between Paths 2, 3 and 4 keep shrinking from day to day, indicating that the
traffic flow pattern evolves toward user equilibrium. As the model (45) and (46) is built upon the same behavioral
assumption as the SRM using proportional adjustment defined by A(X) , its convergence to user equilibrium has
been proved by Smith and Mounce (2011).

6. Concluding remarks

In this paper, a generalized flow splitting model is developed, which can serve as a modeling framework for
discrete-time day-to-day traffic assignment. The representation of the generalized flow splitting model relies on the
specification of outflow distribution function that can be specified by adopting various path choice behavior
assumptions. We provide two examples where the outflow distribution function is specified using the concept of
proportional adjustment and projection operator, respectively. As these models are defined on decomposed acyclic
sub-networks, the orderings of nodes and links provide attractive mathematical properties in updating the day-to-day
link flows. Particularly, the invariance property of the proposed model, and the Lipschitz continuity and strong
monotonicity of the generalized cost function are proved rigorously. A numerical example illustrates the ease of
developing the flow splitting model and its convergence to user equilibrium flow pattern.

In future research, the sufficient conditions can be derived for the asymptotic stability of the generalized flow
splitting model, i.e., what kinds of outflow distribution functions can preserve system stability? By doing so, we can
ignore the tedious stability analysis as long as the distribution function satisfies the sufficient conditions. In addition,
efficient algorithms for determining an acyclic sub-network should be considered before applying the proposed
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model to day-to-day traffic assignment on large-scale networks. Finally, routing and control variables can be
introduced into the formulation of the generalized flow splitting model.
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