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The non-canonical IKK kinase TBK1 serves as an important signal transmitter of the antiviral interferon response,
but is also involved in the regulation of further processes such as autophagy. The activity of TBK1 is regulated by
posttranslational modifications comprising phosphorylation and ubiquitination. This study identifies
SUMOylation as a novel posttranslational TBK1modification. TBK1 kinase activity is required to allow the attach-
ment of SUMO1 or SUMO2/3 proteins. Since TBK1 does not bind to the E2 enzyme Ubc9, this modification most
likely proceeds via trans-SUMOylation.Mass spectrometry allowed identifying K694 as the SUMOacceptor site, a
residue located in the C-terminal coiled-coil domainwhich is exclusively responsible for the associationwith the
adaptor proteins NAP1, Sintbad and TANK. SUMO modification at K694 contributes to the antiviral function of
TBK1 and accordingly the viral protein Gam1 antagonizes this posttranslational modification.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Pathogen-associated patterns (PAMPs) and damage-associated
molecular patterns (DAMPs) are sensed by specific receptors which
lead to the stimulation of the innate immune system [1]. The activated
receptors induce signaling cascadeswhich trigger the activation of specif-
ic transcription factors such as nuclear factor κB (NF-κB) and interferon
regulatory factors (IRFs). The signaling pathways activating these tran-
scription factors are intertwined at the level of the canonical IκB kinases
(IKKs) and the non-canonical IKK-related kinases IKKε and TBK1 (IκB
kinase ε/TANK-binding kinase 1) [2,3]. The kinase domains of IKKε and
TBK1 share a 64% sequence identity among each other, whereas they
exhibit only a 30% identity to the classical IKKs. Similar to the canonical
IKKs, IKKε and TBK1 have an N-terminal kinase domain followed by a
ubiquitin-like domain (ULD), a leucine zipper (LZ) and a helix-loop-
AMPs, damage-associatedmo-
regulatory factors; IKKs, IκB ki-
LD, ubiquitin-like domain; LZ,
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itrilotriacetic acid
49 641 9947589.
giessen.de (M.L. Schmitz).
helix (HLH) region [4]. The C-terminal region comprises two coiled-coil
(CC) regions and CC2 is responsible for binding to the adaptor proteins
TANK (TRAF familymember-associatedNF-κB activator), Sintbad (similar
to NAP1 TBK1 adaptor) and NAP1 (NAK-associated protein 1) [5–8].
The adaptor proteins assemble the non-canonical IKKs together with fur-
ther interaction partners into distinct, alternativemultiprotein complexes
[9]. Although lacking intrinsic enzymatic activities, the adaptor proteins
are essential for the activation of their client kinases [6,8,10,11]. Activa-
tion of TBK1 occurs in proinflammatory signaling cascades triggered
either by membrane-bound toll-like receptors (TLRs) or by cytosolic re-
ceptors for viral nucleic acids such as RIG-I (retinoic acid-inducible gene
I) . These receptor-induced signaling pathways lead to local clustering
of TBK1 molecules via adaptor proteins and trans-autophosphorylation
of TBK1 dimers at a single phosphoacceptor site in the activation loop.
The activation of TBK1 also relies on the inducible attachment of K63-
linked ubiquitin chains [12] that allow for protein/protein interactions
with further proteins such as NEMO (NF-κB essential modulator) [13].

Major phosphorylation targets of TBK1 are the transcription factors
IRF3 and IRF7, which dimerize upon phosphorylation, translocate to
the nucleus and lead to expression of type I interferons (IFNs) [14].
These cytokines were named for their ability to interfere with viral pro-
liferation and serve to restrict virus replication and spreading [15].
Accordingly, viruses such as the Rift Valley fever (RVF) virus have devel-
oped strategies to disable the production and activities of IFNs [16,17].
We have previously found that TANK and also IKKε can be modified
by the attachment of SUMO (small ubiquitin-related modifier), which
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belongs to the family of ubiquitin-like proteins [18,19]. SUMOmodifica-
tion of a target protein typically does not lead to its degradation, but
rather regulates its activity, protein/protein interactions or localization
[20]. The three expressed members of the SUMO family comprise
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SUMO1 and the almost identical isoforms SUMO2 and SUMO3 which
are referred to as SUMO2/3 [21]. An isopeptide bond connects the
very C-terminal glycine residue of SUMO with a lysine in the target
protein. This process critically depends on the activating E1 enzyme (a
heterodimer between SAE1 and SAE2) and the SUMO E2 conjugating
enzyme Ubc9 (ubiquitin-conjugating 9) [22]. The transfer of Ubc9-
bound SUMO to the target protein is typically facilitated by SUMO E3
ligases, but the SUMO conjugating process as such also occurs in the
absence of E3 ligases [23,24]. SUMO peptides are removed from their
substrate proteins by sentrin/SUMO-specific proteases (SENPs) which
also function in the proteolytic processing of the precursor SUMO pro-
teins to the mature form, exhibiting their C-terminal diglycine motifs
[25]. SUMO is attached to hundreds of different proteins that are impor-
tant for large variety of fundamental processes such as signal transduc-
tion, chromatin packaging, transcription and DNA repair. Accordingly,
aberrant SUMOylation has been implicated in a variety of diseases [20].

Here we show that TBK1 is SUMOylated in a kinase-dependent fash-
ion at K694 within the adaptor-binding CC2 region. TBK1 can be modi-
fied by SUMO1 as well as by SUMO2/3, independent from an apparent
interaction with Ubc9. TBK1 SUMOylation is important for the antiviral
function of the kinase and accordingly the viral protein Gam1 prevents
this posttranslational modification.

2. Materials & methods

2.1. Antibodies, plasmids and reagents

All the information is given in the supplementary Table 1.

2.2. Cell culture and transfections

Human embryonic kidney HEK293T cells and TBK1−/− IKBKE−/−

mouse embryonic fibroblasts (MEFs) were grown in DMEM containing
10% FCS and 1% (w/v) penicillin/streptomycin at 37 °C and 5% CO2. Cells
were seeded in 6 cm dishes and transfected with 2 μl of transfection re-
agent (Rotifect or PEI, 1 mg/ml) per μg plasmid DNA. After pipetting up
and down, complex formation occurred in serum- and antibiotic-free
DMEM during 20 min at room temperature. Meanwhile medium was
removed from the cells and replaced by antibiotic-free DMEM contain-
ing FCS. After adding the transfection mixture, the cells were incubated
3–5 h before the medium was changed and the cells were further
grown.

2.3. Cell lysis protocols and Ni-NTA affinity purification

Whole cell lysates were prepared by lysing the cells in a buffer con-
taining the non-ionic detergent NP-40 (20mMTris/HCl pH 7.5, 150mM
NaCl, 1mMphenylmethylsulfonyl fluoride, 10mMNaF, 0.5mMsodium
orthovanadate, leupeptin (10 μg/ml), aprotinin (10 μg/ml), 1% NP-40
Fig. 1. TBK1 is modified by SUMOylation. (A) Myc–TBK1 and its kinase inactive versions
(TBK1–K38A or TBK1–S172A) were coexpressed with His-SUMO1 or His-SUMO1–G97A
in 293 T cells as shown. A fraction of cells was lysed in 1 × SDS sample buffer and used
for the analysis of protein expression and the phosphorylation of the TBK1 substrate
IRF3 with specific antibodies by immunoblotting. Another fraction of cells was lysed in
denaturing Gu-HCl lysis buffer to maintain SUMOylation, followed by the enrichment of
SUMOylated proteins on Ni-NTA agarose beads. Eluates were analyzed for the occurrence
and SUMOylation of TBK1 by immunoblotting. Please note that also unSUMOylated TBK1
alone can already bind to Ni-NTA columns. (B) 293 T cells were transfected to express
Myc–TBK1 and His-SUMO1 or His-SUMO1–G97A along with expression vectors encoding
Ubc9 and SENP1 as shown. SUMOylated proteinswere purified onNi-NTA beads and sub-
jected to immunoblotting using the indicated antibodies. An aliquot of cells was lysed in
SDS sample buffer and analyzed for protein expression by Western blotting. (C) Cells
were transfected to express His-tagged SUMO1, SUMO1–G97A, as well as tagged versions
of Ubc9 and SENP1 as shown. A fraction of the cell lysate was purified on Ni-NTA beads to
enrich SUMOylated proteins, expression andmodification of the proteinswas analyzed by
immunoblotting as shown. The results shown are representative of at least three indepen-
dent experiments.
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either alone or together with GFP–SUMO1 or GFP–SUMO2. TBK1 SUMOylation was
revealed by Western blotting. Western blots were repeated three times, with a represen-
tative image shown.
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Fig. 3. Trans-SUMOylation between TBK1 and TANK. (A) GFP–TBK1 or GFP–PIAS2 were
coexpressed with HA–Ubc9 as shown. The HA-tagged Ubc9 was immunoprecipitated and
the boundGFP-taggedproteinswere detected by immunoblotting as shown. (B) The indicat-
ed constructs were coexpressed in 293 T cells and cells were either lysed in 1× SDS sample
buffer to test protein expression or in Gu-HCl buffer followed by enrichment of SUMOylated
proteins on Ni-NTA beads. SUMOylation of TANK and protein expression was detected with
specific antibodies as shown. A non-specific band (n.s.) is indicated. The results shown are
representative of four (A) and two (B) independent experiments.
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and 10% glycerol). For that, cells were first washed with cold PBS,
scraped off and collected in a tube. After centrifugation (1000 ×g,
2 min), the cell pellet was resuspended in NP-40 lysis buffer and incu-
bated 20 min on ice. The lysates were cleared by centrifugation and su-
pernatants were transferred into a fresh tube. Lysates were either used
for immunoprecipitation or directly mixed with 5× SDS sample buffer
and subjected to SDS-PAGE and Western blot analysis. Hexahistidine
(His)-tagged SUMOproteinswere affinity purifiedunder denaturing con-
ditions by nickel nitrilotriacetic acid (Ni-NTA) pull-down. Cell pellets
were lysed in 800 μl Ni-NTA lysis buffer (6 M Gu-HCl; 10 mM Tris;
100 mM NaH2PO4 pH 8.0). After shearing the DNA by sonication (2 ×
20 s), the samples were cleared by centrifugation (15 000 ×g, 10 min,
4 °C). The supernatants were mixed with 50 μl prewashed Ni-NTA aga-
rose (Qiagen) and incubated for 3 h at RT on a rotating wheel. Beads
were washed in successive washing steps in 1 ml Ni-NTAwashing buffer
(8MUrea; 10mMTris/HCl, pH6.3; 100mMNaH2PO4; 0.1%TritonX-100)
and finally eluted by boiling the beads in 50 μl 2.5 × SDS sample buffer
containing 200 mM imidazole as described [19].
2.4. Immunoprecipitation experiments and Western blotting

For immunoprecipitation, cleared cell extracts lysed in NP-40
buffer were filled up to a volume of 600 μl with NP-40 buffer and
supplemented with 1 μg precipitating antibody or control IgG. After
adding 25 μl protein A/G agarose (Santa Cruz), the samples were
incubated for 4 h at 4 °C on a rotating wheel. Agarose beads were
then washed four times with 1 ml cold NP-40 buffer by inverting
the tube five times followed by centrifugation (2000 ×g, 1 min). Pre-
cipitated proteins were eluted by adding 2× SDS sample buffer.
Equal amounts of protein were separated by SDS-PAGE, followed
by semidry blotting to a polyvinylidene difluoride membrane
(Millipore) as previously described [19].
2.5. Purification of SUMOylated TBK1 and mass spectrometry

Myc–TBK1–Ubc9 was coexpressed with the trypsin-cleavable His-
SUMO1–Q94P/T95R in 293 T cells and purified by immunoprecipitation
using anti-Myc antibodies. Prior to electrophoresis, proteins were incu-
bated at 95 °C in 1× SDS sample buffer. Then 1 μl of an acrylamide solu-
tion (40%) was added and incubated at room temperature to alkylate
cysteine residues for 30 min and directly loaded onto the gel. After elec-
trophoresis, proteins were stained with Coomassie Brilliant Blue for
15 min and the TBK1 bands were digested by trypsin as described [26].
Gel pieces were destained two times with 200 μl 50% ACN, 25 mM
ammonium bicarbonate at 37 °C for 30 min and then dehydrated
with 100% ACN. Solvent was removed and gel pieces were dried in a vac-
uum centrifuge and about 20 μl 12 ng/μl sequencing grade Trypsin
(Promega) in 10% ACN, 25 mM ammonium bicarbonate were added.
Gels were rehydrated in trypsin solution for 1 h on ice and then covered
with 10% ACN, 25mMammoniumbicarbonate. Digestionwas performed
over night at 37 °C and then stopped, followed by three rounds of peptide
extraction by adding 50 μl of 50% ACN, 0.1% TFA and incubation at 37 °C
for 1 h. Dried peptide extracts were redissolved in 30 μl 2% ACN, 0.1%
TFA for 20 min and agitating at 800 rpm, then centrifuged at 20,000 ×g
and an aliquot of 20 μl was transferred to a HPLC vial. A sample aliquot
containing about 100 fmol of a single protein was injected into a nano-
flow ultra-high pressure liquid chromatography system (RSLC, Dionex).
The outlet of the LC systemwas directly connected to the nano-ESI source
(Thermo Fisher Scientific) of an LTQ Orbitrap Velos mass spectrometer.
The top 10most intensive ions of charge two or three and aminimum in-
tensity of 2000 were selected for CID fragmentation and subsequent MS/
MS analysis. Raw data were processed using Proteome Discoverer soft-
ware (version 1.3, Thermo Fisher Scientific) and the Mascot search
algorithm.
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2.6. Reconstitution of MEFs with TBK1

TBK1−/− IKBKE−/− MEFs were reconstituted with wildtype and
K692/4R TBK1 using a lentiviral vector system (290-pHAGE-
hEF1aCAR-PGK puro). To produce lentiviral particles, 293 T cells were
transfected with the empty vector or the TBK1 constructs together
with the helper plasmids pMDLg/pRRE, pRSV-Rev and pHCMV-G. 48 h
after transfection, viruses were harvested, cleared by centrifugation
and filtration and MEFs were infected in the presence of 5 μg/ml
polybrene (Sigma) for 12 h. One day after infection, the cells were
selected with 4 μg/ml puromycin (Invivogen).

2.7. Infection with Rift Valley fever virus

MEFswere grown to 80% density and inoculatedwith RFVvirus lack-
ing the NSs virulence factor [27] at an MOI of 0.01. Virus yields in the
supernatants were determined by plaque assay as described [16].

3. Results and discussion

3.1. SUMOylation of TBK1

Since we had previously identified SUMO modification of IKKε [18]
and TANK [19], we were interested to determine whether also TBK1
would undergo this posttranslational modification. To address this ques-
tion we coexpressed active wildtype (wt) TBK1with His-tagged SUMO1
or a conjugation-defective SUMO1mutant where the C-terminal glycine
was changed to alanine (G97A). After denaturing lysis and purification of
His-tagged proteins on Ni-NTA columns, Western blotting allowed de-
tecting the SUMOylated form of TBK1, as revealed by the occurrence of
a slower migrating band (Fig. 1A). SUMOylation did not occur in kinase
inactive versions of TBK1 that were either mutated in the ATP-binding
lysine (TBK1–K38A) or in the activation loop (TBK1–S172A) (Fig. 1A).
As expression of TBK1 alone is sufficient to trigger its kinase activity by
trans-autophosphorylation [28], this finding suggests that only active
TBK1 can be modified by SUMOylation. The kinase dependency could
be due to conformational changes within TBK1, as structural data show
that TBK1 activation reorganizes the kinase domain into an active config-
uration while maintaining the compact dimer conformation [12,28,29].
It was then interesting to identify a physiologically relevant stimulus
that can regulate the SUMOylation status of TBK1. Neither activation of
TLR3 or TLR4 nor overexpression of various proteins, participating
in multiple signaling pathways or that have been described to interact
with TBK1, had an effect on TBK1 SUMOylation (supplementary
Fig. 1A,B). Also a SUMO E3 ligase, responsible for increased TBK1
SUMOylation could not be identified (supplementary Fig. 2A,B). On the
other hand, coexpression of the isopeptidase SENP1 abolished the
SUMOylation of TBK1, whereas overexpression of the SUMO E2 enzyme
Ubc9 triggered its SUMOylation, clearly demonstrating that TBK1 ismod-
ified by this posttranslational modification (Fig. 1B). It was also impor-
tant to investigate the SUMOylation status of the endogenous kinase.
As isopeptidases efficiently remove the SUMO moiety in standard lysis
buffers [30], we planned to purify SUMO-modified TBK1 under fully
denaturing conditions. Towards this goal, cells were transfected to ex-
press His-tagged SUMO1 together with Ubc9, followed by enrichment
Fig. 4.Mapping of the TBK1 SUMOylation site. (A) 293 T cells were transfected to expressMyc–T
convenient detection of SUMOylated peptides after tryptic digestion. Ni-NTA purification was
immunoblotting with the indicated antibodies. The positions of mono- and multiSUMOylated
in 293 T cells and purified by immunoprecipitation with anti-Myc antibodies, followed by S
Bands were excised and analyzed by mass spectrometry. The results shown are representativ
with trypsin and analyzed by LC-MS as described in Section 2. Part of the extracted ion chr
SUMOylated (Ctrl) peptide is indicated. Other m/z values correspond to different peptides of
and subjected to MS/MS analysis in the mass spectrometer. MS and MS/MS data were searc
amino group of lysine residues. The peptide KLkEEmEGVVK was identified containing the mo
The SUMOylated lysine residue is shown as a small character in bold and italics. Themethionine
of TBK1. The activation loop phosphorylation (P) and SUMO acceptor sites (S) are indicated, th
of SUMOylated proteins on Ni-NTA columns. Immunoblotting using a
TBK1-specific antibody allowed the detection of SUMO modification for
the endogenous TBK1 protein, as indicated by the occurrence of an
upshifted band (Fig. 1C). This band did not appear in the presence of
overexpressed SENP1 or the conjugation-defective SUMO1 mutant
(Fig. 1C), confirming that it corresponds to the SUMOylated form of the
kinase.

In order to further increase the SUMOylation level of TBK1, its C-
terminus was directly fused to Ubc9, a method that has been described
previously [31]. The TBK1–Ubc9 fusion protein showed strongly elevat-
ed SUMOylation (Fig. 2A) and coexpression of SUMO1 resulted in the
occurrence of additional upshifted bands which may reflect exaggerat-
ed TBK1 SUMOylation. The TBK1–Ubc9 fusion protein was not only
modified by SUMO1 but also by the paralogue SUMO2 (Fig. 2B). This
is in line with the finding that many substrates can be modified by
SUMO1 as well as by SUMO2/3 [32]. Consistent with the notion of
an overlapping function of the different SUMO isoforms, SUMO1-
deficient mice are viable, indicating a compensatory function of
SUMO2/3 [33,34]. Since Ubc9 typically binds to its client proteins [35]
we were interested to test the interaction between TBK1 and this E2
enzyme by coimmunoprecipitation experiments. While Ubc9 showed
a clear interaction with its reported interaction partner PIAS2 [36], no
interaction occurred for TBK1 (Fig. 3A). This could be explained either
by a very weak interaction that is not stable enough to be maintained
during the process of coimmunoprecipitation. Alternatively, it is con-
ceivable that SUMOylation ismediated by trans-SUMOylation, a process
where the enzymatic machinery attached to a protein also acts on its
interaction partner, thereby allowing the SUMOylation of all partners
within a protein complex [37]. To test the potential occurrence of such
a process, the TBK1–Ubc9 fusion protein was coexpressed with its
interactor TANK and His-tagged SUMO1. Following the enrichment of
SUMOylated proteins on Ni-NTA columns the detection of TANK
showed a strongly enhanced TANK SUMOylation only in the presence
of TBK1–Ubc9, but not by an enzymatically inactive TBK1–Ubc9mutant
(Fig. 3B). These data suggest that the SUMOylation of one protein in a
protein complex containing TBK1 and an interaction partner could
indeed be due to trans-SUMOylation. In such a scenario the TBK1 inter-
action partners would provide the indirect contact with Ubc9 and their
respective E3 ligases.

3.2. SUMOylation of TBK1 occurs at K694

It was then interesting to identify the SUMO attachment site in TBK1
by a straightforward approach using mass spectrometry. Since tryptic di-
gestion of wildtype SUMO1 is not suitable for mass spectrometric analy-
sis, the C-terminal TGG sequence was mutated to RGG in order to allow
trypsin digestion [38]. Besides the SUMO1–T95R mutation, a Q94P point
mutation was introduced that was shown to avoid proteolytic cleavage
of SUMO1 by SENPs and thus increases the stability of the SUMOylated
TBK1 [39]. To confirm the effective attachment of His-SUMO1-Q94P/
T95R to TBK1–Ubc9, these constructs were transfected in 293 T cells.
Ni-NTA purification followed byWestern blotting showed that the conju-
gation of His-SUMO1-Q94P/T95R to TBK1–Ubc9 was as efficient as the
His-SUMO1 wildtype protein (Fig. 4A). Coexpression of TBK1–Ubc9
with the trypsin-cleavable His-SUMO1 mutant allowed the large-scale
BK1–Ubc9 alongwithHis-SUMO1or the His-SUMO1-Q94P/T95Rmutantwhich allows the
performed to enrich SUMOylated proteins. Eluates and input samples were analyzed by
TBK1 are indicated. (B) Myc–TBK1–Ubc9 was coexpressed with His-SUMO1-Q94P/T95R
DS-PAGE and Coomassie staining. Molecular weights of marker proteins are indicated.
e of three (A) and two (B) independent experiments. (C) The bands were in-gel digested
omatogram covering the precursor ions of the SUMOylated (SUMO1) peptide and not
the analyzed sample. (D) The SUMOylated precursor ion of m/z 710.38 (C) was isolated
hed against the human data base entries with the double glycine modification at the ε-
dification at K694. The b- and y-ions are indicated in the spectrum and in the sequence.
residuewas oxidized and thus also shown as small character. (E) Schematic representation
e large K at position 694 marks it as the main SUMOylation site.
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purification of SUMOylated TBK1 by immunoprecipitation. SDS-PAGE
analysis and Coomassie brilliant blue staining showed highly purified
Myc–TBK1–Ubc9 and its SUMO1 conjugated form (Fig. 4B). Bands were
subjected to in gel-digestion with trypsin and peptides were analyzed
by mass spectrometry (Fig. 4C,D). These experiments identified TBK1–
K694 as the major SUMO1 attachment site, while minor SUMOylation
was also measured at K691 or K692.

All of the identified sites are located in the second coiled-coil domain
of TBK1, as schematically shown in Fig. 4E. Yeast two-hybrid experi-
ments have shown that the C-terminal 43 residues of TBK1 (which con-
tain K694) are sufficient for TANK binding [7]. A further study showed
the critical relevance of this CC2 region also for the interaction with
the TBK1 adaptor proteins NAP1 and Sintbad [6]. Accordingly, deletion
of the C-terminal 30 (TBK1-ΔC30) or 55 (TBK1-ΔC55) amino acids of
TBK1 precluded the interactionwith TANK (Fig. 5A). It was further test-
ed whether these C-terminal deletion mutants can still be modified by
SUMOylation. Coexpression of these mutants with SUMO1 and subse-
quent analysis of TBK1 SUMOylation showed that deletion of the C-
terminal 30 amino acids still allowed for this posttranslationalmodifica-
tion (Fig. 5B). In contrast the TBK1-ΔC55 mutant representing the re-
gion between positions 1 and 674 and thus lacking K694 was not
SUMOylated, in linewith themass spectrometricmapping experiments.
We then tested TBK1 point mutants where the major and minor SUMO
attachment sites at K694 and K692 where mutated to arginine. Muta-
tion of K694 was sufficient to largely prevent SUMOylation (Fig. 5C),
thus confirming its relevance as the main SUMOylation site. TBK1 can
also bemodified by ubiquitination [12], a posttranslationalmodification
known to be able to compete with SUMO1 for attachment to the same
acceptor lysine [40].We explored this possibility, but the ubiquitination
pattern of the SUMOylation-deficient K694/2R mutant resembled that
of the wildtype kinase (supplementary Fig. 3), suggesting that the
SUMO attachment sites of TBK1 cannot be modified by ubiquitination.
3.3. Functional relevance of TBK1 SUMOylation

The functional role of TBK1–K694 was revealed in a study showing
that mutation of this residue still allowed interaction with NAP1 but
precluded binding of TANK or Sintbad [6]. The same study also showed
in reconstitution experiments that mutation of K694 largely prevented
LPS-induced IFN-β induction, suggesting that adaptor binding is impor-
tant for TBK1 function. Also themutation of the corresponding region in
IKKε showed the relevance of the CC2 region for its ability to trigger the
production of type I IFN [41]. Biochemical data suggest that TBK1 does
not form a single largemultiprotein complex containing all adaptor pro-
teins, but rather forms distinct complexes with each adaptor [6,42,43].
Accordingly, competition experiments show amutually exclusive bind-
ing of the adaptors to TBK1 homodimers [9]. These findings are corrob-
orated by immunofluorescence experiments that revealed distinct
intracellular localization of TANK, NAP1 and SINTBAD [6]. Our data
suggest that SUMOylation of TBK1 at K694 would sterically prevent
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association of adaptor proteins such as TANK, as schematically displayed
in Fig. 6A. In support to this model, the enforced interaction between
TBK1 and TANK upon overexpression of this adaptor protein resulted
in strongly diminished TBK1 SUMOylation (Fig. 6B). In such a scenario
SUMOylation of TANK would serve as a repellent that prevents adaptor
protein binding, thus allowing dynamic exchange of TBK1 between dif-
ferent multiprotein complexes. These distinctly assembled complexes
can then regulate TBK1 for its specific functions in diverse processes
ranging from innate immunity to cell proliferation and autophagy.
This is reminiscent to the function of TANK SUMOylation, which
weakens the interaction with IKKε and thus allows regulating this pro-
tein/protein interaction [19]. Alternatively, SUMOylation often func-
tions as an attractant that functions to enhance protein/protein
interactions by SUMO binding to a SUMO interacting motif. However,
we failed to detect SUMO-binding of TBK1 and TANK in GST pull-
down assays (supplementary Fig. 4), while the control protein Daxx
showed SUMO1-binding activity as reported [44]. These results lend
further support to the concept that SUMO modification of TBK1 does
not serve as a glue but rather as a repellent for protein/protein interac-
tions. TBK1 is an essential component of the host cell machinery leading
to the production of antiviral type I interferons [45] and accordingly var-
ious TBK1 functions are frequently disabled by proteins encoded by dif-
ferent viruses [46]. We thus screened a number of different viral
proteins (listed in supplementary Table 2) for their ability to influence
constitutive TBK1 SUMOylation. We found that the adenoviral protein
Gam1 inhibited SUMOylation of TBK1, while amutant Gam1 containing
helix-disrupting proline residues had no effect (Fig. 7A). This inhibitory
effect is most likely due to the reported inhibitory activity of Gam1 on
SAE1/SAE2 activity [47]. It was then interesting to investigate the role
of TBK1 SUMOylation for virus replication. MEFs deficient for TBK1
and IKKε were reconstituted to stably express TBK1 or TBK1–K692/4R.
These cells were either left untreated or infected with an IFN-sensitive
RVF virus mutant at an MOI of 0.01, and virus yields were measured
2 days later. These experiments showed that mutation of the SUMO
attachment site strongly impaired the ability of TBK1 to reduce RVF
virus titers (Fig. 7B). Given the contribution of TBK1 SUMOylation for
its antiviral activity, it will be interesting to study whether also further
viral proteins have the ability to interfere with the SUMOylation status
of TBK1. In summary, this study shows that the function of TBK1 is not
only regulated by phosphorylation and ubiquitination [45,46], but also
by SUMOmodification. TBK1 serves distinct functions in different signal
transduction pathways ranging from autophagy to epithelial–mesen-
chymal transition and cell survival [46]. It is tempting to speculate
that all these different functions are mediated by binding to different
adaptor complexes and that the SUMOylation of TBK1 in the
adaptor-binding domain may ensure the availability of unbound
TBK1 that dynamically shuttles between different complexes. As
the signal-dependent relocalization of TBK1 dictates its biological
role and substrate specificity [6,28] it will be interesting to study
the potential contribution of TBK1 SUMOylation to these processes
in the future.
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