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SUMMARY

Akt deficiency causes resistance to replicative senescence, to oxidative stress- and oncogenic Ras-induced
premature senescence, and to reactive oxygen species (ROS)-mediated apoptosis. Akt activation induces
premature senescence and sensitizes cells to ROS-mediated apoptosis by increasing intracellular ROS
through increased oxygen consumption and by inhibiting the expression of ROS scavengers downstream
of FoxO, particularly sestrin 3. This uncovers an Achilles’ heel of Akt, since in contrast to its ability to inhibit
apoptosis induced by multiple apoptotic stimuli, Akt could not inhibit ROS-mediated apoptosis. Furthermore,
treatment with rapamycin that led to further Akt activation and resistance to etoposide hypersensitized
cancer cells to ROS-mediated apoptosis. Given that rapamycin alone is mainly cytostatic, this constitutes a
strategy for cancer therapy that selectively eradicates cancer cells via Akt activation.
INTRODUCTION

The serine/threonine kinase Akt is activated by extracellular

signals that activate phosphatidylinositol 3-kinase (PI3K), which

generates PI(3,4,5)P3 (PIP3). Akt activity is negatively regulated

by phospholipid phosphatases that negate the activity of PI3K,

such as the tumor suppressor PTEN. In mammalian cells, there

are three separate genes encoding the three mammalian Akt iso-

forms (Akt1–3). Akt activity is also downregulated by activation of

its downstream effector mTORC1, which in turn induces a nega-

tive feedback mechanism that inhibits Akt activity (reviewed in

Bhaskar and Hay, 2007).

Hyperactivated Akt both provides protection from apoptosis

and promotes uncontrolled cell-cycle progression (Kandel

et al., 2002), two major prerequisites for cancer susceptibility,

and this may explain, at least in part, its frequent activation in
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human cancers (reviewed in Bhaskar and Hay, 2007). However,

the most evolutionarily conserved function of Akt is in the control

of energy metabolism, which in mammalian cells is coupled to its

ability to inhibit apoptosis and to promote cell-cycle progression

(reviewed in Plas and Thompson, 2005; Robey and Hay, 2006).

The coupling between energy metabolism and life span is well

documented, and calorie restriction has been shown to extend

life span in a wide spectrum of organisms. Attenuated insulin

signaling through PI3K and its downstream effector, Akt, is asso-

ciated with a decline in energy metabolism and an increase in life

span. In C. elegans, increased life span associated with impaired

PI3K/Akt signaling requires the presence of the forkhead tran-

scription factor DAF-16. There are four mammalian homologs

of DAF-16: FOXO1, FOXO3a, FOXO4, and FOXO6 (Greer and

Brunet, 2005). Akt directly phosphorylates DAF-16 and its mam-

malian homologs, and this phosphorylation excludes them from
SIGNIFICANCE

Oncogenic and oxidative stress-induced senescence attenuates tumorigenesis. Here we show that Akt mediates this
premature senescence. Akt exerts its effects on senescence by elevating intracellular reactive oxygen species (ROS).
The elevation of ROS induced by Akt also sensitizes cells to ROS-mediated cell death and can therefore be exploited for
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that display hyperactive Akt. As a proof of concept for this strategy, we show that a ROS inducer preferentially suppresses
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the nucleus, thereby inhibiting their transcriptional activity (Greer

and Brunet, 2005). Thus, the activity of DAF-16 and its mamma-

lian homologs is increased when Akt activity is reduced.

The accumulation of somatic damage is considered a major

determinant of life span at both the organismal and cellular levels.

This damage is caused mainly by the accumulation of reactive

oxygen species (ROS) (Chance et al., 1979), which are natural

byproducts of oxidative energy metabolism. Damage induced

by ROS, including DNA lesions, protein oxidation, and lipid

peroxidation, is determined by both the rate of energy metabo-

lism and the activity of ROS scavengers such as superoxide

dismutase (SOD) and catalase that degrade hydrogen peroxide.

Multiple experiments have shown that ROS play a critical role in

determining life span and cellular senescence in mammalian cells

(reviewed in Balaban et al., 2005). The senescence of mouse em-

bryonic fibroblasts (MEFs), which have long telomeres, is likely to

occur via accumulation of ROS when grown at ambient oxygen

levels (Parrinello et al., 2003). Consistently, earlier observations

showed that human diploid cells undergo senescence at a lower

rate under low-oxygen conditions (Packer and Fuehr, 1977).

Here we provide genetic evidence that Akt determines replica-

tive senescence of mammalian cells in culture and mediates

premature senescence induced by activated Ras or oxidative

stress. Additionally, Akt activation is sufficient to induce prema-

ture senescence. In the course of these studies, we found that

Akt also sensitizes cells to ROS-mediated apoptosis. We showed

that Akt exerts its effect by increasing intracellular levels of ROS

through an increase in oxygen consumption and the inhibition of

FoxO transcription factors.

Despite its ability to inhibit apoptosis, Akt could not protect

against ROS-mediated cell death but rather sensitized cells to

this cell death. Thus, we uncovered the Achilles’ heel of Akt,

which can be exploited for cancer therapy to selectively kill

cancer cells with hyperactive Akt. Most importantly, we showed

that rapamycin, which is usually cytostatic, sensitizes cells to

ROS-mediated cell death because it also activates Akt via the

inhibition of a negative feedback loop (Bhaskar and Hay, 2007;

Harrington et al., 2005; Hay, 2005). Thus, by combining rapamy-

cin and a ROS inducer, it is possible not only to evade chemore-

sistance mediated by Akt activation but also to selectively kill

cancer cells with hyperactive Akt. In addition, our demonstration

that rapamycin-treated cells are sensitized to ROS-induced cell

death provides a strategy that would substantially increase the

efficacy of rapamycin treatment.

RESULTS

Akt Regulates Cellular Life Span
We used wild-type (WT) or Akt1 and Akt2 double-knockout

(Akt1/2 DKO) MEFs to determine the role of Akt in the regulation

of cellular life span. MEFs were subjected to 3T3 protocol to cal-

culate population doubling level (PDL). Senescence-associated

b-galactosidase (SA-b-Gal) staining and bromodeoxyuridine

(BrdU) incorporation were used as readouts for senescence.

As shown in Figure 1A, WT MEFs began senescing after passage

13, whereas Akt1/2 DKO MEFs began senescing after passage

16. This was also confirmed by the cells’ enlarged and flattened

cell morphology (data not shown), by SA-b-Gal staining (Fig-

ure 1B), and by BrdU incorporation (Figure 1C). Notably, we
C

have previously shown that Akt1/2 DKO cells divide more slowly

than WT cells (Skeen et al., 2006); therefore, we passaged the

cells every 5 days instead of every 3 days. As shown in Figure 1D,

the senescence of Akt1/2 DKO still lagged behind WT MEFs.

These results provided evidence that Akt determines the cellular

life span and replicative senescence of MEFs.

Figure 1. Akt Regulates Replicative Senescence

(A) Cells were subjected to the 3T3 protocol as described in Experimental

Procedures. Cells were counted at each passage every 3 days, and the pop-

ulation doubling level (PDL) was calculated for wild-type (WT) and Akt1/2 null

(Akt1/2 DKO) primary mouse embryonic fibroblasts (MEFs). Data represent the

mean ± SEM of three independent experiments.

(B) Primary MEFs were stained for senescence-associated b-galactosidase

(SA-b-Gal) activity at passage 8 (before visible signs of senescence), at

passage 13 (when WT cells began to exhibit proliferative arrest), and at

passage 17 (when Akt1/2 DKO cells began to exhibit proliferative arrest).

Left: representative photographic images of cells stained for SA-b-Gal activity

at passages 8, 13, and 17. Right: SA-b-Gal-positive cells were counted in at

least five fields of triplicate plates. Data represent the mean ± SEM of three

independent experiments. **p < 0.01, ***p < 0.001 versus WT; #p < 0.05,

###p < 0.001 versus passage 8.

(C) Proliferation rate of primary MEFs as measured by BrdU labeling for 24 hr

prior to fixation and staining. BrdU incorporation was carried out as described

in Experimental Procedures and determined by counting at least 150 cells from

at least five fields in triplicate plates. Data represent the mean ± SEM of three

independent experiments. **p < 0.01, ***p < 0.001 versus WT; #p < 0.05,

###p < 0.001 versus passage 8.

(D) Cumulative PDL of WT and Akt1/2 DKO primary MEFs as described in

(A), except that cells were split and counted every 5 days. Data represent the

mean ± SEM of at least three independent experiments.
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The results obtained with MEFs were corroborated using

human foreskin diploid fibroblasts (HDFs). The knockdown of

Akt1 alone in HDFs minimally impaired proliferation rate but

markedly attenuated cellular senescence as measured by popu-

lation doublings (see Figure S1A available online).

Akt Regulates Cellular Life Span and Intracellular ROS
Levels by Mediating Oxygen Consumption and Inhibiting
FoxO Transcription Factors
Life span in culture of MEFs, and to some extent HDFs, is coupled

to oxygen consumption and intracellular ROS (Parrinello et al.,

2003). We therefore determined the role of Akt in these two

parameters. Oxygen consumption was impaired in Akt1/2 DKO

cells (Figure 2A) and was accelerated in cells expressing acti-

vated Akt (Figure 2B) and in Pten�/� cells (Figure 2C). We next

determined whether Akt could affect intracellular levels of ROS

and found that Akt1/2 DKO MEFs had significantly lower ROS

levels compared with WT MEFs (Figure 2D), whereas cells ex-

pressing activated Akt (Figure 2E) and Pten�/� cells (Figure 2F)

had significantly higher levels of ROS. These results indicated

that Akt regulates intracellular ROS levels. We had previously

shown that activation of Akt increases ATP production by both

glycolysis and oxidative phosphorylation (Gottlob et al., 2001).

Because ROS are byproducts of oxidative phosphorylation,

Figure 2. Akt Regulates Oxygen Consumption and

Reactive Oxygen Species Generation

(A–C) Rates of oxygen consumption in WT or Akt1/2 DKO

MEFs (A), Rat1a cells or Rat1a cells expressing activated

Akt (Rat1a-mAkt) (B), and Pten+/� or Pten�/� MEFs (C) were

measured as described in Experimental Procedures. Immuno-

blots show the relative levels of phosphorylated Akt (p-Akt

Ser473) and total Akt in all cell lines. *p < 0.05, **p < 0.01

versus WT (A), Rat1a (B), and Pten+/� (C).

(D–F) Akt mediates the generation of reactive oxygen species

(ROS). Data are expressed as arbitrary units after being

normalized to protein concentration.

(D) ROS levels in WT and Akt1/2 DKO MEFs incubated in 10%

FBS or in 0% FBS overnight. Left: representative images of

cells stained with dichlorofluorescein (DCF). Right: quantifica-

tion of ROS levels. *p < 0.05, ***p < 0.001; NS, not significant.

(E) ROS levels in Rat1a and Rat1a-mAkt cells. *p < 0.05 versus

Rat1a.

(F) ROS levels in Pten+/� and Pten�/� MEFs. *p < 0.05 versus

Pten+/�.

All data represent the mean ± SEM of at least three indepen-

dent experiments.

Akt-induced ROS levels could be dependent in

part on Akt-mediated oxygen consumption. To

show that the decrease in oxygen consumption in

Akt1/2 DKO MEFs correlates with a decrease in

ROS production, we substituted glucose with

galactose in the cell culture media. This substitution

decreases the generation of ATP from glycolysis,

forcing cells to increase respiration (Rossignol

et al., 2004; Warburg et al., 1967). Indeed, the

substitution of glucose with galactose increased

oxygen consumption in Akt1/2 DKO MEFs, with

concomitant increase in ROS generation (Fig-

ures S2A and S2B). These results provided indirect

evidence suggesting that the decrease in oxygen consumption in

Akt1/2 DKO MEFs contributes to the reduced ROS levels.

To exclude the possibility that the reduced ROS levels

observed in Akt1/2 DKO MEFs were due to the decrease in their

proliferation rate, we immortalized both WT and Akt1/2 DKO

MEFs with SV40 large T. The SV40 large T-immortalized WT

and Akt1/2 DKO MEFs proliferated at a similar rate (Figure S2C),

yet the Akt1/2 DKO MEFs still displayed decreased oxygen con-

sumption and ROS levels (Figures S2D and S2E). Also, when WT

and Akt1/2 DKO MEFs were grown to confluency and stopped

dividing (Figure S2F), oxygen consumption and ROS levels re-

mained reduced in the Akt1/2 DKO MEFs (Figures S2G and

S2H). These results indicated that the reduced ROS levels in

Akt1/2 DKO MEFs are not a consequence of their attenuated

proliferation.

Because FoxO transcription factors are downstream effectors

of Akt and have a conserved role in ROS regulation via the regu-

lation of detoxifying enzymes (Greer and Brunet, 2005), we exam-

ined the contribution of FoxO to the reduced ROS levels in Akt1/2

DKO MEFs. FoxO transcriptional activity was elevated in Akt1/2

DKO MEFs (Figure S3). Consistently, levels of both manganese

superoxide dismutase (MnSOD) and catalase, two known targets

of FoxO (Kops et al., 2002; Nemoto and Finkel, 2002), were

elevated in Akt1/2 DKO MEFs (Figure 3A). Moreover, when
460 Cancer Cell 14, 458–470, December 9, 2008 ª2008 Elsevier Inc.
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Figure 3. FoxO Transcription Factors Regulate the Generation of ROS and Replicative Senescence Downstream of Akt

(A) Catalase and manganese superoxide dismutase (MnSOD) are upregulated in Akt1/2 DKO MEFs and are downregulated by dominant-negative FoxO1

(DN-FoxO). The generation of cells expressing DN-FoxO is described in Experimental Procedures. Proteins extracted from exponentially growing DN-p53-

immortalized WT and Akt1/2 DKO MEFs overexpressing GFP (control vector) or DN-FoxO-GFP were subjected to immunoblotting using antibodies specific

for catalase, MnSOD, Cu/ZnSOD, or b-actin as a loading control.

(B) DN-FoxO restores intracellular levels of ROS in Akt1/2 DKO cells. ROS were quantified in WT and Akt1/2 DKO MEFs overexpressing GFP or DN-FoxO-GFP

after incubation of cells with rhodamine 123 as a sensor of ROS production (described in Experimental Procedures). Data represent the mean ± SEM of three

independent experiments. *p < 0.05 versus GFP-WT; #p < 0.05 versus GFP-Akt1/2 DKO.

(C) Wild-type (FoxO3a+/+) and FoxO3a null (FoxO3a�/�) primary MEFs were analyzed for replicative senescence using the 3T3 protocol. Data represent the

mean ± SEM of three independent experiments.

(D) SA-b-Gal activity in primary FoxO3a+/+ and FoxO3a�/� cells. Assay was performed at 3, 10, and 17 days in culture. *p < 0.05, **p < 0.01 versus FoxO3a+/+;

##p < 0.01 versus day 3. Data represent the mean ± SEM of three independent experiments.

(E) Cell proliferation was assessed by BrdU incorporation at the time points in (D). *p < 0.05 versus FoxO3a+/+; #p < 0.05 versus day 3. Data represent the mean ±

SEM of three independent experiments.

(F) Level of ROS in primary FoxO3a+/+ and FoxO3a�/� cells at the time points in (D). Data are presented as arbitrary units after being normalized to protein

concentration. *p < 0.05, **p < 0.01 versus FoxO3a+/+; #p < 0.05 versus day 3. Data represent the mean ± SEM of at least three independent experiments.

(G) Levels of Sesn1, Sesn2, and Sesn3 mRNA as determined by quantitative RT-PCR. WT MEFs immortalized with DN-p53 and stably expressing FoxO1AAA-ER

were treated with 4-hydroxytamoxifen (4-OHT) followed by RNA analysis as described in Supplemental Experimental Procedures. ***p < 0.001 versus control.

Inset: immunoblot showing induction of Sesn3 protein level after FoxO1AAA-ER activation by 4-OHT.

(H) Level of Sesn3 mRNA in WT and Akt1/2 DKO MEFs immortalized with DN-p53, as assessed by quantitative RT-PCR. **p < 0.01 versus WT. Data represent the

mean ± SEM of three independent experiments.

(I) Level of Sesn3 mRNA in WT and FoxO3a�/� MEFs immortalized with DN-p53. All RNA analyses were performed in triplicates. **p < 0.001 versus WT. Data

represent the mean ± SEM of three independent experiments.

(J) Knockdown of Sesn3 in Akt1/2 DKO MEFs elevates ROS levels to those in WT cells. Left: levels of Sesn3 mRNA in WT, Akt1/2 DKO, and Akt1/2 DKO-SESN3

KD MEFs as assessed by quantitative RT-PCR. *p < 0.05, ***p < 0.001 versus control siRNA in WT; ##p < 0.01 versus control siRNA in Akt1/2 DKO. Data represent

the mean ± SEM of three independent experiments. Right: levels of ROS in WT, Akt1/2 DKO, and Akt1/2 DKO-SESN3 KD MEFs as assessed by DCF

fluorescence.
dominant-negative FoxO1 (DN-FoxO), containing only its DNA-

binding domain, was expressed in Akt1/2 DKO cells, MnSOD

and catalase levels were reduced to their levels in WT cells,

although we did not find a further decrease in the levels of these

enzymes in WT cells expressing DN-FoxO. Importantly, we iden-
C

tified an additional mechanism by which FoxOs could affect intra-

cellular ROS levels. We found that sestrin 3 (Sesn3) expression

was highly induced by activated FoxO (Figure 3G). The ability of

FoxO to elevate Sesn3 RNA and protein is conserved in rodent

and human cells (C.-C.C. and N.H, unpublished data). Sesn3 is
ancer Cell 14, 458–470, December 9, 2008 ª2008 Elsevier Inc. 461
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a member of a family of proteins that also includes sestrin1

(Sesn1) and sestrin2 (Sesn2). All three members have been

shown to decrease intracellular ROS and to confer resistance

to oxidative stress (Kopnin et al., 2007), probably by regenerating

overoxidized peroxiredoxins that deoxidize ROS (Budanov et al.,

2004). Sesn1 and Sesn2 are p53 target genes and are responsible

for the resistance to oxidative stress induced by p53 both in vitro

and in vivo (Budanov et al., 2002; Matheu et al., 2007; Sablina

et al., 2005). Sesn3 expression is not regulated by p53, but its

overexpression has been shown to reduce ROS induced by acti-

vated Ras (Kopnin et al., 2007). Therefore, FoxO-induced Sesn3

expression could contribute to the regulation of intracellular ROS

and to resistance to oxidative stress. Indeed, we found that

Sesn3 expression was elevated in Akt1/2 DKO MEFs (Figure 3H)

and was reduced in FoxO3a�/� MEFs (Figure 3I). Furthermore,

the knockdown of Sesn3 in Akt1/2 DKO cells restored ROS levels

to the levels observed in WT cells (Figure 3J). These results sug-

gest that Sesn3 is a major regulator of intracellular ROS down-

stream of Akt and FoxOs. Since all of the MEFs used in these

studies were immortalized with DN-p53, the effect of FoxO and

Akt on Sesn3 expression is clearly p53 independent. Consistent

with ability of FoxO to elevate the expression of ROS scavengers

in Akt1/2 DKO MEFs, we found that DN-FoxO restored ROS

levels in Akt1/2 DKO MEFs (Figure 3B).

To further assess the role of FoxO in the regulation of life span

in culture, we utilized FoxO3a null MEFs, as FoxO3a is the major

FoxO isoform expressed in MEFs (data not shown). By following

replicative senescence of primary WT and FoxO3a�/� MEFs, it

was evident that FoxO3a�/� MEFs senesced much faster than

WT MEFs (Figure 3C). Furthermore, we found that FoxO3a�/�

MEFs senesced spontaneously after a few days in culture.

When FoxO3a�/� MEFs were plated at low density and were al-

lowed to grow for 17 days, they underwent senescence, whereas

WT cells did not senesce (Figures 3D and 3E). This was corre-

lated with the accumulation of ROS in FoxO3a�/� cells when

compared with WT cells (Figure 3F).

Akt Deficiency Exerts Resistance to Premature
Senescence Induced by Oxidative Stress
and by Activated Ras
Having determined the role of Akt and FoxO in replicative senes-

cence, we sought to determine the role of Akt in premature

senescence induced by oxidative stress. We first examined the

ability of WT and Akt1/2 DKO primary MEFs to senesce upon ex-

posure to H2O2. Exposure to sublethal concentrations of H2O2

increased intracellular levels of ROS in WT MEFs (Figure 4A)

and decreased life span in culture as assessed by enlarged and

flattened cell morphology, SA-b-Gal staining (Figure 4B), and

BrdU incorporation (Figure 4C). In Akt1/2 DKO MEFs, however,

ROS levels were markedly lower upon exposure to H2O2 (Fig-

ure 4A), and likewise, Akt1/2 DKO MEFs were markedly resistant

to premature senescence as compared with WT MEFs (Fig-

ures 4B and 4C). Notably, intracellular ROS levels continued

to increase after H2O2 treatment (Figure 4A); this is probably

due to the activation of Akt by H2O2 (see below). The requirement

of Akt for oxidative stress-induced senescence was also

corroborated in HDFs (Figures S1B and S1C).

The resistance of Akt1/2 DKO MEFs to oxidative stress-

induced senescence was abrogated by the overexpression of
462 Cancer Cell 14, 458–470, December 9, 2008 ª2008 Elsevier Inc
DN-FoxO or the knockdown of FoxO3a (Figures S4A–S4C).

Furthermore, the knockdown of Sesn3, which is a FoxO target

(Figures 3G–3I), abrogated the resistance of Akt1/2 DKO MEFs

to oxidative stress-induced premature senescence (Figure 4D).

Conversely, expression of activated FoxO1 in p27�/�MEFs con-

ferred relative resistance to premature senescence (Figures S4D

and S4E). For this experiment, we used p27�/� cells to avoid

cell-cycle arrest induced by activated FoxO (Greer and Brunet,

2005). Similar results were obtained when p27�/� MEFs were

compared with Akt1�/�p27�/�MEFs (Figures S4F–S4H). The de-

ficiency of Akt1 in p27�/� cells was sufficient to exert resistance

to H2O2-induced senescence, although to a lesser extent than

observed when both Akt1 and Akt2 were deleted in the WT

background. Activated FoxO reduced ROS levels and exerted

resistance to H2O2-induced senescence in p27�/� MEFs similar

to that observed in Akt1�/�p27�/� MEFs in the absence of

activated FoxO (Figures S4F–S4H).

Oncogenic Ras induces premature senescence of primary

cells (Serrano et al., 1997), which has been shown to be medi-

ated at least in part via elevated intracellular ROS levels (Lee

et al., 1999). We therefore examined the ability of activated

Ras (H-RasV12) to induce senescence in Akt-deficient cells.

As expected, activated Ras elevated ROS levels in WT cells,

but this elevation was markedly reduced in Akt1/2 DKO MEFs

(Figure 4E). Expression of DN-FoxO in Akt1/2 DKO MEFs in-

creased ROS levels that were induced by activated Ras

(Figure S5A). Consistent with previous results (Lee et al.,

1999), Ras-induced premature senescence was preceded by

reduced MnSOD levels (Figure S5B) and was inhibited by the

antioxidant N-acetyl-L-cysteine (NAC) (Figures S5C and S5D).

Accordingly, Akt1/2 DKO MEFs were relatively resistant to

premature senescence induced by activated Ras (Figures 4F

and 4G).

Premature senescence induced by activated Ras is depen-

dent on p53 activation and the increase in p19ARF and p16 (re-

viewed in Schmitt, 2007). We therefore analyzed p53 activation

and p19ARF and p16 levels, as assessed by serine 15 phosphor-

ylation of p53, in WT and Akt1/2 DKO MEFs following activated

Ras expression (Figure 4H) or exposure to H2O2 (Figure 4I). As

expected, p19ARF expression was elevated with concomitant ac-

tivation of p53 and induction in p16 levels in WT cells, but these

were substantially diminished in Akt1/2 DKO cells. Conversely,

the activation of Akt, which is sufficient to induce premature

senescence (Figures 5E and 5F), elevated the phosphorylation

of p53 and the expression of p19ARF and p16, which were dimin-

ished in the presence of NAC (Figure S5I). Thus, Akt deficiency

inhibits p53 phosphorylation and the induction of p19ARF and

p16 by activated Ras or oxidative stress, while the activation of

Akt is sufficient to induce p19ARF and p16, p53 phosphorylation,

and premature senescence.

The resistance of Akt1/2 DKO MEFs to premature senescence

induced by activated Ras was also dependent on FoxO, be-

cause activated FoxO1 increased this resistance in WT MEFs

(Figures S5E and S5F). Consistently, we found that FoxO3a�/�

MEFs were hypersensitized to premature senescence induced

by H2O2 or activated Ras (Figures 5A–5D).

Taken together, these results provide compelling evidence

that both oxidative stress- and activated Ras-induced premature

senescence are dependent on Akt, which exerts its effects via an
.
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Figure 4. Akt Deficiency Exerts Resistance to H2O2- and Ras-Induced Premature Senescence

(A–C) Premature senescence of primary WT and Akt1/2 DKO MEFs was induced with 75 mM H2O2 as described in Experimental Procedures. At days 3, 10, and

17 after treatment, cells were analyzed for ROS production (A), SA-b-Gal activity (B), and BrdU incorporation (C). In (B), left panel shows representative images

of cells stained for F-actin/DAPI (fluorescence) and SA-b-Gal activity (bright-field) at day 17, and right panel shows quantification of SA-b-Gal-positive cells.

*p < 0.05, ***p < 0.001 versus WT; #p < 0.05, ##p < 0.01 ###, p < 0.001 versus day 3.

(D) Knockdown of Sesn3 overrides the resistance of Akt1/2 DKO MEFs to H2O2-induced senescence. Premature senescence of primary WT and Akt1/2 DKO

MEFs was induced with 75 mM H2O2 as described in Experimental Procedures, and at day 0, cells were transfected with siRNAs. Cells were then analyzed

for SA-b-Gal activity at day 7 posttransfection. ***p < 0.001 versus WT; #p < 0.05 versus Akt1/2 DKO.

(E–G) Primary WT and Akt1/2 DKO MEFs were infected with empty vector (hygromycin) or H-RasV12-expressing retroviruses. At days 3, 10, and 17 postselection

(see Experimental Procedures), the cells were analyzed for ROS production (E), SA-b-Gal activity (F), and BrdU incorporation (G). *p < 0.05, **p < 0.01,

***p < 0.001 versus WT-Hygro; ##p < 0.01, ###p < 0.001 versus Akt1/2 DKO-Hygro; zzp < 0.01, zzzp < 0.001 versus WT-Ras; yp < 0.05, yyp < 0.01, yyyp < 0.001

versus day 3.

(H) Immunoblot showing expression of Ras, p53 phospho-Ser15, total p53, p19ARF, and p16 following expression of H-RasV12 in WT or Akt1/2 DKO MEFs.

(I) Immunoblot showing expression of p53 phospho-Ser15, total p53, p19ARF, and p16 following addition of H2O2 to WT or Akt1/2 DKO MEFs.

All data represent the mean ± SEM of at least three independent experiments.
increase in oxygen consumption and inhibition of FoxO

transcription factors.

Akt Sensitizes Cells to Oxidative Stress-Induced Cell
Death—The Achilles’ Heel of Akt
Exposure of immortalized MEFs expressing DN-p53 to increas-

ing amounts of H2O2 induced cell death (Figure 6A). We ex-

pected that WT cells would be more resistant to apoptosis

than Akt1/2 DKO cells. Indeed, Akt1/2 DKO cells were more

sensitive than WT cells to etoposide-induced cell death (Fig-

ure S9A). Surprisingly, however, we found that Akt1/2 DKO cells

were more resistant than WT cells to cell death induced by

increasing concentrations of H2O2. The increased sensitivity
C

of WT cells to H2O2-mediated cell death was likely due to the

activation of Akt and the subsequent phosphorylation and

inactivation of FoxO transcription factors, thereby downregulat-

ing detoxifying enzymes (Figure 6B). Oxidative stress leads to

the activation of Akt either by inactivating PTEN (Leslie et al.,

2003) or by the activation of p66shc (Nemoto and Finkel,

2002), or both. In the absence of Akt1 and Akt2, FoxO transcrip-

tion factors were not significantly inhibited by H2O2, thereby

maintaining relatively high levels of detoxifying enzymes

(Figure 6B). Indeed, expression of DN-FoxO (Figure S6A) or

knockdown of FoxO3a (Figure S6B) increased the susceptibility

of Akt1/2 DKO MEFs to cell death, whereas expression of acti-

vated FoxO in p27�/� MEFs rendered them more resistant to
ancer Cell 14, 458–470, December 9, 2008 ª2008 Elsevier Inc. 463
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H2O2-induced cell death (Figure S6C). Cells expressing acti-

vated Akt and Pten�/� cells were more susceptible to H2O2-

induced death (Figures 6C and 6D). To determine whether

scavengers of ROS, regulated by FoxO, are responsible at least

in part for the resistance of Akt1/2 DKO MEFs to H2O2-induced

cell death, we knocked down Sesn3 expression in Akt1/2

DKO MEFs or overexpressed catalase in WT MEFs. Knock-

down of Sesn3 increased the sensitivity of Akt1/2 DKO MEFs

to H2O2 (Figure S6D). Overexpression of catalase decreased

the sensitivity of WT MEFs to H2O2 (Figure S6E), but not to

the level observed in Akt1/2 DKO MEFs. These results suggest

that multiple ROS scavengers induced by FoxO are responsible

for the resistance of Akt1/2 DKO MEFs to H2O2-induced cell

death.

Similar results were obtained when the cells were treated with

b-phenylethyl isothiocyanate (PEITC), a natural compound found

in consumable cruciferous vegetables that is known to increase

intracellular ROS levels (Yu et al., 1998). Increasing amounts of

PEITC were markedly less effective at killing Akt1/2 DKO cells

than WT cells, whereas they were much more effective at killing

Pten�/� cells than Pten+/� cells (Figures S7A and S7B). Similar

results were observed with other rodent (Figure S7C) or human

(Figure S7D) cells expressing activated Akt. We concluded that

despite the ability of activated Akt to protect against cell death

induced by a variety of stimuli, it cannot protect against ROS-

induced cell death. Therefore, because Akt activation increases

intracellular ROS levels and impairs ROS scavenging, it not only

cannot protect from but also sensitizes to ROS-induced cell

death. Thus, these observations uncovered the Achilles’ heel

of Akt.

Figure 5. FoxO3a�/� MEFs Are Sensitized to H2O2-

and Ras-Induced Premature Senescence

(A and B) Primary FoxO3a+/+ and FoxO3a�/� MEFs were

treated with 75 mM H2O2. At days 3, 10, and 17 posttreatment,

cells were analyzed for SA-b-Gal activity (A) and BrdU

incorporation (B).

(C and D) Primary FoxO3a+/+ and FoxO3a�/� MEFs were

infected with retrovirus expressing H-RasV12. At days 3, 10,

and 17 postselection, cells were analyzed for SA-b-Gal activity

(C) and BrdU incorporation (D). For (A)–(D), *p < 0.05, **p < 0.01

versus FoxO3a+/+; #p < 0.05, ##p < 0.01, ###p < 0.001 versus

day 3.

(E) Activated Akt induces premature senescence of MEFs.

Primary WT MEFs were infected with retrovirus expressing

inducible myristoylated Akt (mAkt-ER). After selection, cells

were either left untreated or treated with 4-OHT. At days 3,

12, and 20 postincubation with 4-OHT, cells were analyzed

for SA-b-Gal activity. **p < 0.01, ***p < 0.001 versus vehicle

control; #p < 0.05, ##p < 0.01, ###p < 0.001 versus day 3.

Data represent the mean ± SEM of at least three independent

experiments.

A Strategy to Selectively Eradicate Cancer
Cells with Hyperactivated Akt by Inducing
ROS in Combination with Rapamycin
Akt is frequently activated in human cancers

(reviewed in Bhaskar and Hay, 2007; Hay, 2005)

and thereby promotes resistance to therapeutic

agents that induce apoptosis. Therefore, the hyper-

sensitivity of activated Akt-expressing cells to ROS-induced cell

death might be exploited to selectively eradicate and to over-

come chemoresistance of cancer cells with hyperactivated Akt.

Rapamycin analogs, which are currently being used in clinical

trials, are mostly cytostatic. One concern in using rapamycin

analogs for cancer therapy is that they could also increase cell

survival via the hyperactivation of Akt. This elevated Akt activity

is due to the inhibition of the negative feedback loop induced by

mTORC1 to inhibit Akt activity (reviewed in Bhaskar and Hay,

2007; Harrington et al., 2005; Hay, 2005). However, by activating

Akt, rapamycin could further sensitize cells to ROS-induced cell

death, and thus, the combination of rapamycin and oxidative

stress might not only circumvent resistance to cell death but

also selectively kill cells treated with rapamycin.

To explore this possibility, we first used rodent cells to provide

a proof of concept. As shown in Figure S8, rapamycin alone did

not induce cell death, but pretreatment with rapamycin aug-

mented the ability of H2O2 to induce apoptosis. Although rapa-

mycin treatment increased H2O2-induced apoptosis in both

WT and Akt1/2 DKO cells, the level of WT cell apoptosis was sig-

nificantly higher (Figure S8A). By contrast, rapamycin increased

resistance to etoposide (Figures S9A). Furthermore, activated

Akt-expressing cells were more sensitive than control cells to

cell death induced by the combination of rapamycin and H2O2,

(Figure S8B), indicating that this cell death is dependent on Akt

activity. By contrast, cells expressing activated Akt were more

resistant to etoposide, and rapamycin increased this resistance

(Figure S9B). Next, we evaluated the effect of rapamycin treat-

ment in combination with PEITC levels that by themselves in-

duce moderate levels of apoptosis (Figure S7). The combination
464 Cancer Cell 14, 458–470, December 9, 2008 ª2008 Elsevier Inc.
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Figure 6. Akt Sensitizes Cells to Oxidative Stress-

Mediated Apoptosis in a FoxO-Dependent Manner

(A) Akt deficiency exerts resistance to oxidative stress-

induced apoptosis. DN-p53-immortalized WT and Akt1/2

DKO MEFs were treated with increasing concentrations of

H2O2 (0.1–1 mM) for 2 hr, and apoptosis was quantified by

DAPI staining. **p < 0.01, ***p < 0.001 versus WT.

(B) Oxidative stress increases the phosphorylation of Akt and

FoxO and reduces the expression of MnSOD. DN-p53-immor-

talized WT and Akt1/2 DKO MEFs were treated with 500 mM

H2O2 for 10 min, rinsed, and then incubated for 2 hr prior to

cell lysate preparation. The immunoblot shows levels of phos-

phorylated Akt (Ser473) and total Akt, phosphorylated FoxO3a

(Ser253) and total FoxO3a, MnSOD, and b-actin as a loading

control.

(C and D) Activation of Akt sensitizes cells to H2O2-induced

cell death.

(C) Apoptosis after treatment of Rat1a or Rat1a-mAkt cells

with increasing concentrations of H2O2 for 2 hr. *p < 0.05,

**p < 0.01 versus Rat1a.

(D) Apoptosis after treatment of Pten+/� or Pten�/� MEFs

with increasing concentrations of H2O2 for 2 hr. **p < 0.01,

***p < 0.001 versus Pten+/�.

Data represent the mean ± SEM of three independent

experiments.
of rapamycin and PEITC significantly increased the moderate

levels of apoptosis induced by 3 mM and 6 mM PEITC and was

even more effective at the selective killing of both rodent and hu-

man cells with activated Akt (Figure S10). Likewise, U251 human

glioblastoma cells deficient in PTEN were relatively sensitive to

PEITC and PEITC plus rapamycin (Figure 7A; Figures S11A

and S11B). Re-expression of WT PTEN in these cells rendered

them more resistant to PEITC, whereas re-expression of mutant

PTEN maintained their sensitivity (Figure 7A; Figures S11A and

S11B). The selective killing of cells with activated Akt was dem-

onstrated by using a mixed population of Rat1a cells in which

only about half of the cells coexpressed activated Akt and eGFP.

When exposed to PEITC plus rapamycin, most of the dead cells

were GFP positive, clearly demonstrating selective killing (Fig-

ure 7B). This is consistent with the further activation of activated

Akt by rapamycin (Figures S12A and S12B). Notably, rapamycin

also increased the susceptibility of cells without hyperactive

Akt to killing by PEITC, and this is consistent with the ability of

rapamycin to activate Akt in these cells (Figure S12C).

To examine the efficacy of this strategy in cancer cells with hy-

peractive Akt, we used two ovarian cancer cell lines: TOV21G, in

which Akt is hyperactivated even in the absence of serum, and

TOV112D, in which Akt is not hyperactivated (Figure 7C). In

both cell lines, rapamycin alone did not induce cell death,

whereas PEITC alone induced substantially more TOV21G cell

death compared with TOV112D. The combination of PEITC and

rapamycin significantly increased TOV21G cell death and to

some extent increased TOV112D cell death (Figure 7C; Fig-

ures S11C and S11D). This is consistent with the further activa-

tion of Akt by rapamycin in TOV21G (Figure S12B). Furthermore,

knockdown of Akt1 and Akt2 in TOV21G cells decreased intra-

cellular levels of ROS (Figure S13) and markedly decreased the

cells’ susceptibility to cell death caused by PEITC or PEITC

plus rapamycin (Figure 7D). The susceptibility to apoptosis cor-

related with Akt activity because Akt2 knockdown alone did not

significantly decrease total Akt activity as measured by FOXO
C

phosphorylation (Figure 7D) and also did not decrease suscepti-

bility to apoptosis. However, knockdown of Akt1 or both Akt1 and

Akt2, which markedly decreased Akt activity, also substantially

decreased susceptibility to apoptosis induced by PEITC or

PEITC plus rapamycin.

TOV21G cells were significantly more resistant to etoposide-

induced apoptosis than TOV112D cells (Figure S14A). However,

expression of activated Akt in TOV112D cells rendered them

more resistant to etoposide but more sensitive to PEITC (Fig-

ures S14B and S14C). While rapamycin increased sensitivity to

PEITC, it decreased sensitivity to etoposide (Figures S14A and

S14B). We concluded that PEITC could be used to selectively

kill cells expressing hyperactive Akt or cells treated with rapamy-

cin due to the ability of rapamycin to activate Akt.

To verify the in vitro results in vivo, we employed xenografts of

cancer cells in athymic mice. We first determined tumor growth

of TOV112D and TOV112D (mAkt) cells. As shown in Figure 8A,

the growth of TOV112D tumors was relatively sensitive to etopo-

side when compared with TOV112D (mAkt) tumors, which dis-

play an almost complete resistance to etoposide. By contrast,

TOV112D (mAkt) tumors were markedly more sensitive to PEITC

than TOV112D cells. We then studied the effect of PEITC and

rapamycin on the growth of tumors induced by TOV21G cells

(Figure 8B). Rapamycin or PEITC alone moderately attenuated

the growth of the tumors. However, the combination of PEITC

and rapamycin suppressed tumor growth and eradicated the

tumors. Analyses of tumor sections at the endpoint of the exper-

iment showed that PEITC alone induced profound cell death as

assessed by cleaved caspase-3, whereas rapamycin alone,

which elicited an increase in Akt activation, did not induce cell

death but markedly inhibited BrdU incorporation (Figures 8C

and 8D). At the endpoint of the experiment, no tumors were

found after treatment with both PEITC and rapamycin, and there-

fore tumor sections were not available for analysis. We therefore

analyzed tumor sections 28 days after inoculation of the cells,

and it was evident that cell death, as measured by cleaved
ancer Cell 14, 458–470, December 9, 2008 ª2008 Elsevier Inc. 465
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Figure 7. Rapamycin Sensitizes Cells to PEITC-

Induced Apoptosis in an Akt-Dependent Manner

(A) PTEN-deficient U251 glioblastoma cells or U251 cells

expressing G129R PTEN mutant are more sensitive to PEITC-

induced apoptosis than U251 cells expressing WT PTEN.

Rapamycin (RAPA) sensitizes U251 as well as U251-PTEN

cells to PEITC-induced apoptosis. *p < 0.05, **p < 0.01,

***p < 0.001 versus control cells (U251 pBP); ##p < 0.01,

###p < 0.001 versus PEITC in the absence of rapamycin.

Data represent the mean ± SEM of three independent

experiments.

(B) Preferential killing of cells expressing activated Akt by the

combination of rapamycin and PEITC. A mixed population of

Rat1a (45.60% ± 1.30% of total cells) and Rat1a-mAktGFP

(53.48% ± 1.33% of total cells) was treated with 6 mM PEITC

for 6 hr after preincubation with 100 nM rapamycin for 3 hr.

Following incubation, cells were collected and subjected to

flow cytometry to assess cell death as described in Experi-

mental Procedures. The percentage of cell death was calcu-

lated within each cell population and is presented as the

mean ± SEM of at least three independent experiments.

*p < 0.05, ***p < 0.001.

(C) The combination of rapamycin and PEITC preferentially in-

duces apoptosis in ovarian cancer cells with hyperactive Akt.

TOV21G and TOV112D ovarian cancer cells were preincu-

bated with 100 nM rapamycin for 3 hr before treatment for

17 hr with 5 or 10 mM PEITC. Apoptosis was then assessed

by DAPI staining. Data represent the mean ± SEM of at least

three independent experiments. Inset shows an immunoblot

probed with anti-phospho-Akt (Ser473) and anti-pan-Akt in

a protein extract from serum-deprived TOV21G or TOV112D

cells. *p < 0.05, **p < 0.01 versus TOV21G; #p < 0.05, ##p <

0.01 versus PEITC in the absence of rapamycin.

(D) Knockdown of Akt isoforms reduces the susceptibility of

TOV21G cells to apoptosis induced by the combination of

rapamycin and PEITC. Left: expression of Akt1, Akt2, and total

Akt activity as measured by FOXO3a phosphorylation in control shLacZ-, shAkt1-, shAkt2-, and shAkt1 + shAkt2-expressing TOV21G cell lines. Right: quanti-

fication of apoptosis induced by rapamycin + PEITC in the different knocked-down cells, presented as the mean ± SEM of at least three independent experi-

ments. ***p < 0.001 versus TOV21G (shLacZ); #p < 0.05, ##p < 0.01, ###p < 0.001 versus PEITC in the absence of rapamycin.
caspase-3, was profoundly higher after administration of both

PEITC and rapamycin than after administration of PEITC alone

(Figure 8D). Thus, these results recapitulate our in vitro observa-

tions in vivo and reinforce the notion that rapamycin alone is

mostly cytostatic, whereas PEITC inhibits tumor growth by

eliciting cell death, overriding the resistance to cell death medi-

ated by activated Akt. In these studies, we could not compare

TOV21G cells to TOV21G cells in which Akt genes were knocked

down because the latter could not form tumors within the time

frame of the experiment. Collectively, these results provide a

proof of concept in vivo that cell death induced by oxidative

stress can selectively attenuate growth of tumor cells with hyper-

activated Akt, and that the combination of oxidative stress and

rapamycin could be an effective strategy to selectively eradicate

tumors that display hyperactive Akt.

DISCUSSION

We show here that Akt deficiency inhibits replicative and prema-

ture senescence induced by oxidative stress and activated Ras,

whereas Akt activation induces premature senescence. The

effect of Akt on cellular senescence is mediated by intracellular

ROS. Akt elevates ROS levels by two mechanisms. First, the
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increase in oxygen consumption by Akt also increases ROS

generation. Second, Akt impairs ROS scavenging by inhibiting

FoxO transcription factors. FoxOs decrease ROS and inhibit cel-

lular senescence, while the deficiency of FoxOs increases ROS

and cellular senescence. The role of Akt and FoxO in cellular

senescence can be extended to human cells because although

telomerase activity is a major determinant of human cell life

span, oxygen consumption also appears to play a role in their

life span in culture (Packer and Fuehr, 1977). Indeed, we showed

that HDFs deficient in Akt have an extended life span in culture

and are more resistant to oxidative stress-induced senescence.

Therefore, at least at the cellular level, the role of Akt and FoxO in

regulating life span is conserved in mammals. Moreover, in addi-

tion to ROS scavengers known to be regulated by FoxOs, we

found that FoxO1 elevates the expression of Sesn3, which has

been shown to reduce intracellular ROS levels by regenerating

overoxidized peroxiredoxins that deoxidize ROS (Budanov

et al., 2004). Consistently, Sesn3 levels were elevated in Akt1/2

DKO MEFs, and the reduction of Sesn3 levels in these cells

increased intracellular ROS to a level similar to that observed

in WT cells (Figures 3G–3J). These results suggest that

Sesn3 is a major determinant of ROS levels regulated by FoxO

and Akt.
.
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Figure 8. In Vivo Therapeutic Activities of PEITC and PEITC Combined with Rapamycin

(A) In vivo therapeutic activity of PEITC compared to etoposide (ETOP) in mice inoculated with TOV112D ovarian cancer cells or TOV112D (mAkt) cells. Forty-two

nude mice were injected subcutaneously on both left and right flanks with TOV112D or TOV112D (mAkt) cells and randomly divided into three groups per cell line

(14 mice per group, 28 tumors per group) for treatment with PEITC, etoposide, or solvent control. Graph presents the growth of tumor size for the respective

treatments relative to in control mice. Red arrow indicates the start of treatment (day 13 postinoculation with tumor cells).

(B) In vivo therapeutic effect of rapamycin + PEITC in mice inoculated with TOV21G ovarian cancer cells. Thirty-six nude mice were injected subcutaneously on

both left and right flanks with TOV21G cells and randomly divided into four groups (9 mice per group, 18 tumors per group) for treatment with PEITC, rapamycin,

combination of rapamycin + PEITC, or solvent control. Graph presents tumor growth rate in each group. Red arrow indicates the start of treatment (day 13 post-

inoculation with tumor cells). Data in (A) and (B) represent the mean ± SEM of three independent experiments.

(C) Cross-sections of tumors collected from the experiment described in (B). At day 50 postinoculation with tumor cells, cross-sections of tumors were subjected

to BrdU staining (left), staining with anti-phospho-Akt (middle), and staining with anti-cleaved caspase-3 (right). Scale bars = 40 mm.

(D) Histograms showing quantification of the positively stained cells in (C) and of cleaved caspase-3 staining in tumor sections collected 28 days after inoculation.

Results are expressed as the percentage of positively stained cells and are presented as the mean ± SEM percentage of positively stained cells of three sections

from three treated mice. Stained and total cells were counted in four random fields of each section. *p < 0.05, **p < 0.01, ***p < 0.001 versus vehicle; zzp < 0.01

versus rapamycin alone; ##p < 0.01 versus PEITC alone.

(E) Schematic summarizing the mechanisms by which Akt activation elevates ROS levels and sensitizes cells to either senescence or apoptosis. Activated Akt

induces ROS by increasing oxygen consumption combined with the inhibition of FoxO transcription factors. FoxOs elevate the expression of ROS scavengers, in

particular sestrin 3 (Sesn3), which is elevated in Akt-deficient cells. ROS could further activate Akt, which in turn further increases ROS levels. The elevation of

ROS then sensitizes cells to either senescence or apoptosis depending on p53 status. Rapamycin, which inhibits mTORC1, further activates Akt as consequence

of the negative regulatory loop inhibition.
A similar paradigm exists in response to lethal doses of oxi-

dants. While Akt deficiency inhibits, Akt activation accelerates

cell death induced by ROS, and the activation of FoxO inhibits

this cell death. These results are consistent with the observation

that hematopoietic stem cells in FoxO-deficient mice are sensi-

tive to oxidative stress (Tothova et al., 2007). Although ROS can

also induce necrotic cell death, we found that under our condi-

tions, most of the cells died by apoptosis as assessed by nuclear

condensation and fragmentation. The mechanisms by which

activated Akt induces ROS, which in turn sensitize cells to either

senescence or apoptosis, are summarized schematically in

Figure 8E.
C

The Role of Akt in Energy Metabolism—Pro- and
Anticancer
The effect of Akt on tumorigenesis could be mediated through its

effect on energy metabolism (Robey and Hay, 2006). Here we

showed that Akt activation increases ROS levels, partially via

its role in energy metabolism. The increase in ROS levels medi-

ated by Akt could contribute to tumorigenesis by increasing mu-

tation rate and genetic instability. However, at the same time, this

also could be a barrier to tumorigenesis because an increase in

intracellular ROS levels mediated by Akt renders cells more

susceptible to premature senescence unless they acquire an

immortalizing mutation such as p53 dysfunction. Cells in which
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Pten is deleted are also more susceptible to premature senes-

cence, and therefore the deletion of p53 markedly increases

tumorigenesis mediated by the deletion of Pten (Chen et al.,

2005). Our results suggest that the senescence induced by

Pten deletion is likely due to the activation of Akt and the increase

in intracellular ROS.

Because elevated levels of ROS increase Akt activity

(Figure 6B), it is possible that Akt could induce a vicious cycle

of further and sustained Akt activation concomitant with a

sustained increase in intracellular ROS levels, and therefore

a sustained increase in a mutation rate. If cells escape the barrier

of senescence, this could be a major contributing factor for

tumorigenicity induced by Akt activation. However, here again

this contribution of Akt to tumorigenesis is also its Achilles’

heel. Despite the ability of activated Akt to inhibit apoptosis in-

duced by a variety of apoptotic stimuli, it cannot protect against

lethal doses of ROS, and this could be exploited for cancer

therapy.

It was previously shown that oxidative stress can induce

selective killing of cells expressing Bcr-Abl or activated Ras (Tra-

chootham et al., 2006). However, because of the antiapoptotic

activity of Akt, it was not predicted that activation of Akt also

sensitizes cells to oxidative stress-induced cell death. In fact,

our results suggest that Akt activation by Ras is likely the reason

why cells expressing activated Ras are sensitized to killing by

oxidative stress. This might also apply to Bcr-Abl, because

Bcr-Abl also can activate Akt (Skorski et al., 1997).

Future Implications: A Strategy that Selectively
Eradicates Cancer Cells with Activated Akt
Akt is perhaps the most frequently activated oncoprotein in hu-

man cancers. Akt is activated by multiple mechanisms, including

Pten mutations, p110-activating mutations, Ras activation, and

receptor tyrosine kinase activation (reviewed in Bhaskar and

Hay, 2007; Hay, 2005). Thus, Akt is an attractive target for cancer

therapy. Although we have previously provided a proof of con-

cept that partial ablation of Akt or the deletion of Akt1 is sufficient

to impede tumor development without having other severe phys-

iological consequences (Chen et al., 2006; Ju et al., 2007; Skeen

et al., 2006), there is still a concern that ablation of Akt might lead

to undesired physiological consequences such as diabetes.

Thus, a strategy to selectively eradicate cancer cells with hyper-

activated Akt is highly desirable. Our observation that cancer

cells expressing activated Akt are selectively killed by oxidative

stress circumvents this concern. Furthermore, our results show

that rapamycin treatment, which by itself is only cytostatic,

also increases Akt activity, which in turn increases resistance

to etoposide but further sensitizes cells to oxidative stress-

induced apoptosis.

We have provided a proof of concept for this strategy in vivo in

a xenograft model by showing that the combination of the ROS

inducer PEITC and rapamycin can completely eradicate the

growth of tumors in which Akt is hyperactivated. Furthermore,

we showed that tumors expressing activated Akt are more resis-

tant to etoposide but more sensitive to PEITC than tumors that

do not express activated Akt. We did not intend to determine

an exact regimen for this strategy, but we found that, at least at

the cellular level, the ROS inducer 2-methoxyestradiol (2-ME)

(Hileman et al., 2004), which is currently being used in clinical
468 Cancer Cell 14, 458–470, December 9, 2008 ª2008 Elsevier Inc
trials, is also effective in the selective killing of cells with hyperac-

tivated Akt (Figure S15). Thus, this strategy could not only elim-

inate the concern that rapamycin treatment activates Akt but

also take advantage of this phenomenon to selectively eradicate

rapamycin-treated cancer cells. The combination of rapamycin

and oxidative stress could be an attractive general strategy for

cancer therapy, not necessarily only for cancer cells with hyper-

activated Akt, particularly since rapamycin analogs are already

being used in advanced stages of clinical trials.

EXPERIMENTAL PROCEDURES

Cells and Viruses

Primary MEFs were harvested from E13.5 embryos as described previously

(Skeen et al., 2006). Experiments using primary cells were performed no later

than passage 3. Experiments were also performed on WT, Akt1/2 �/�,

FoxO3a+/+, and FoxO3a�/� MEFs immortalized by DN-p53 as described pre-

viously (Skeen et al., 2006). Other cell lines used were Pten+/�p53�/� and

Pten�/�p53�/� MEFs, Rat1a, HEK293, the glioblastoma cell line U251, and

the ovarian cancer cell lines TOV112D and TOV21G. Cells were maintained

in DMEM supplemented with 10% FBS. TOV112D and TOV21G cells were

grown in M199/MCDB medium (1:1) with 15% FBS.

Retrovirus and lentivirus infection and generation and knockdown proce-

dures are described in Supplemental Experimental Procedures.

Population Doubling

Serial 3T3 cultivation was carried out as described previously (Pantoja and

Serrano, 1999). Briefly, cells (2 3 105/60 mm plate) were grown for 3 or

5 days. Cells were split every 3 or 5 days and replated at the same density

(2 3 105). This procedure was repeated for 20 passages. The increase in pop-

ulation doubling level (PDL) was calculated using the formula PDL = log(nf/n0)/

log2, where n0 is the initial number of cells and nf is the final number of cells.

Data were expressed as cumulated PDL from three independent experiments

using three pairs of MEFs.

SA-b-Gal Staining

Cells were plated at low density (8000 cells/35 mm plate), fixed, and stained for

SA-b-Gal as described in Dimri et al. (1995) and Serrano et al. (1997) at differ-

ent time points as indicated.

BrdU Labeling

To determine actively replicating cells, BrdU incorporation assays were

performed as described in Skeen et al. (2006).

Oxygen Consumption Assay

For oxygen consumption measurement, cells were grown overnight. Cells

were then harvested, washed with PBS, and resuspended in 500 ml of fresh

DMEM. The rate of oxygen consumption was measured at 37�C using a Strath-

kelvin Model 782 oxygen meter equipped with a Clark-type oxygen electrode.

Results are expressed as nanomoles of oxygen consumed per minute per

million cells.

Measurement of ROS

Intracellular ROS generation was assessed using 20,70-dichlorofluorescein

diacetate (Molecular Probes). For details, see Supplemental Experimental

Procedures.

Western Blot Analysis

For western blot analysis, 106 cells were plated in 10 cm plates and grown

overnight. Whole-cell extracts were prepared in lysis buffer as described in

Hahn-Windgassen et al. (2005).

Real-Time PCR and Primers

See Supplemental Experimental Procedures.
.
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Hydrogen Peroxide-Induced Senescence

Primary MEFs plated at 40% confluency were treated for 2 hr with 75 mM H2O2

in DMEM containing 10% FCS (day�9). Cells were then washed, incubated in

fresh medium for 7 days, and treated a second time for 2 hr with 75 mM H2O2

(day �2). Cells were then washed, incubated in fresh medium for 48 hr, and

subcultured at low confluency (day 0) for up to 17 days. At days 3, 10, and

17, cells were checked for SA-b-Gal activity, BrdU incorporation, and ROS

production, and cell lysates were prepared for western blotting.

Ras-Induced Senescence

Primary MEFs (1.5 3 105/60 mm plate) were infected with pBabe-Hygro or

pBabe-Hygro-H-RasV12 retroviruses and selected with 150 mg/ml hygromycin

for 36 hr. At the end of selection, cells were grown for 48 hr and subcultured for

experiments (day 0).

Activated Akt-Induced Senescence

Primary MEFs (1.5 3 105/60 mm plate) were infected with pBabePuro-mAkt-

ER retrovirus and selected with 2 mg/ml puromycin for 72 hr. At the end of se-

lection, cells were allowed to grow for 48 hr and subcultured for experiments

(day 0). To induce mAkt activity, cells were incubated with 300 nM 4-hydrox-

ytamoxifen (4-OHT) for 48 hr.

Apoptosis Assays

Cells were plated at 40% confluence, allowed to grow overnight, and then

subjected to the following treatments: (1) increasing concentrations of H2O2

(100 mM to 1 mM) in DMEM for 2 hr; (2) exposure to 100 nM rapamycin for

3 hr prior to addition of H2O2; (3) exposure to PEITC as described in the figure

legends; (4) exposure to 100 nM rapamycin for 3 hr prior to addition of PEITC.

To quantify apoptosis, cells were then fixed for DAPI staining as described

previously (Kennedy et al., 1999). PEITC/rapamycin-induced apoptosis in

Rat1a-mAktGFP cells is described in Supplemental Experimental Procedures.

Xenograft Studies

Male athymic mice (6–8 weeks old) were purchased from Charles River Labo-

ratories. TOV21G, TOV112D, and TOV112D (mAkt) cells (2 3 106/0.1 ml PBS)

were injected subcutaneously on both left and right flanks of each mouse.

Mice were equally randomized into different treatment groups (see figure

legends). When tumors reached a volume of 10–15 mm3, animals were treated

with PEITC (35 mg/kg), rapamycin (2 mg/kg), etoposide (10 mg/kg), combina-

tion of rapamycin and PEITC (1:1), or combination of rapamycin and etoposide

(1:1) as indicated from Monday to Friday by intraperitoneal injection. For

further details, see Supplemental Experimental Procedures. All animal exper-

iments were performed in accordance with the animal care policies of the

University of Illinois at Chicago and were approved by the Animal Care

Committee of the University of Illinois at Chicago.

Histopathology and Immunohistochemistry

Tumors were collected at the indicated time points, rinsed in PBS, and fixed

in 4% paraformaldehyde overnight. Following fixation, fixed tissues were

processed and embedded in paraffin. Immunohistochemistry assays were

performed as described in Chen et al. (2006). Primary antibodies included

anti-cleaved caspase-3 (Asp175) and anti-phospho-Akt (Ser473) (Cell Signal-

ing). Biotin-conjugated secondary antibody kits, avidin-biotin complexes, and

diaminobenzidine were purchased from Vector Laboratories. For quantifica-

tion, cells were counted from four fields at 4003 magnification.

BrdU Incorporation Assay in Mice

BrdU incorporation assays were performed as in Chen et al. (2006). Briefly,

mice were injected intraperitoneally with 0.5 mg of BrdU per 10 g of body

weight 2 hr prior to sacrifice.

SUPPLEMENTAL DATA

The Supplemental Data include Supplemental Experimental Procedures,

Supplemental References, and fifteen figures and can be found with this article

online at http://www.cancercell.org/supplemental/S1535-6108(08)00370-X.
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