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Fix a finite interference set T of nonnegative integers, 0 e T. A T-coloring of a 
simple graph G = (V, E) is a function f:  V ~ {0, 1, 2 . . . .  } such that for {u, v} 
E(G), Xf(u) - f(v)] ~ T. Let c% denote the optimal span of the T-colorings f of 
the complete graph Kn, that is, % = minf{max,,,. ~ vlf(u) - f (v )]} .  It was shown 
by Rabinowitz and Proulx that the asymptotic coloring efficiency rt(T):= 
l imn~=(n/% ,) exists for every set T. We prove the stronger result that the 
difference sequence {~n+l - % } ~ - 1  is eventually periodic for any T. The entire 
sequence o- := (%),~-i is determined by a finite number of coloring strategies. The 
greedy (first-fit) T-coloring of K n also leads to an eventually periodic sequence. 
We prove these results by studying a special directed graph D(T). Earlier work of 
Cantor and Gordon on sequences with missing differences in T is discussed in 
connection with T-coloring. © 1994 Academic Press, Inc. 

1.  I N T R O D U C T I O N  

I n  t h e  c h a n n e l  a s s i g n m e n t  o r  T - c o l o r i n g  p r o b l e m  i n t r o d u c e d  by  H a l e  

[4], a n  i n t e g e r  b r o a d c a s t  c h a n n e l  is a s s i g n e d  to  e a c h  o f  s e v e r a l  l o c a t i o n s  so  

t h a t  i n t e r f e r e n c e  b e t w e e n  n e a r b y  l o c a t i o n s  is a v o i d e d .  T h e  i n t e r f e r e n c e  is 

m o d e l e d  by  a f i n i t e  s e t  T o f  n o n n e g a t i v e  i n t e g e r s ,  i n c l u d i n g  0, o f  f o r b i d -  
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den channel differences. Let the simple graph G = (V, E)  be formed by 
the channel location set V with edge set E containing nearby (interfering) 
pairs of locations. Then a valid channel assignment, called a T-coloring, is 
a function f :  V ( G ) ~  {0, 1, . . .} ,  such that for {u, v } ~  E(G), we have 
If(u) - f ( v ) l  ~ T. The T-span of f is the difference of the largest and 
smallest colors used in f(V). The T-span of G, denoted Spy(G) , is the 
minimum span of any T-coloring f of G. To compute the T-span of a 
graph, we need only consider T-colorings f that use 0, and for these f the 
T-span is simply max~ f(v) .  Conventional vertex coloring is the case 
T = {0}, where spy(G) = x(G) - 1. 

Early results on T-colorings were obtained by Cozzens and Roberts [2] 
(also see [11]). Among their findings is that for all graphs G with largest 
clique size w(G), 

SPT( K~(o)) <-- SPT( G) < SPT( Kx(G) ). 

In particular, if x(G) = o)(G), then S p y ( G )  = SPr(Kx(G)). Many examples 
of sets T have been found for which every graph G satisfies Spy(G) = 
sPT(Kx(a)), SO that the chromatic number determines the T-span [2, 6, 7, 
10]. It is clear then that the computation of the T-spans of cliques plays a 
fundamental role in the theory of T-colorings. 

In this article we study the infinite optimal sequence 

~r := (o-~)~=,, where o-. := Spy(K.), 

and its difference sequence 

Ao- = (Ao-)~=2, where Zl~rn -- or, - ~r,_ 1. 

The sequence o- clearly begins with 0 and is strictly increasing. In the 
literature on T-coloring, Rabinowitz and Proulx [9] introduced the asymp- 
totic coloring efficiency rt(T):= limn_~oo(n/~rn), which measures the pro- 
portion of all available integers that are used asymptotically in optimal 
T-colorings of Kn. They proved that the limit exists and is a rational 
number at most ½, except it is 1 when T = {0}. 

In Section 2 we introduce our main tool, which is a special directed 
graph D(T) with arclengths such that the optimal T-colorings are equiva- 
lent to shortest walks in D(T). Several revealing examples of optimal 
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sequences are presented.  The graphs D(T) are used in Section 3 to derive 
the existence and rationality of rt(T). We find it more  natural to work 
with its reciprocal, R = R(T) .= lim n _~=(o-n/n), which has a nice interpre- 
tation as the minimum average step length of any cycle in D(T). Included 
among some other remarks about rt(T) is the fact that rt(T)>>_ I/JT], 
which follows from the simple new bound, o-~ < (n - 1)ITI. 

Since T-colorings of K~ correspond to sequences of n integers, it is 
natural to consider increasing infinite sequences S of nonnegative integers 
such that no two terms differ by an element of T. In this form the problem 
was already studied by number  theorists, a fact which was not realized by 
graph theorists until this work was recently brought to our attention. 
Motzkin [8] proposed studying the supremum /x(T) of the asymptotic 
upper  densities of these sequences S. Let ~- = t(T) := max{t : t ~ T}. 
Cantor and Gordon [1] proved in 1973 that there exists a periodic 
T-coloring sequence S CG, with period at most 2 ~, such that S cC has 
density/x(T).  Our  description of rt(T) in terms of the average step length 
allows us to conclude what one would expect, that rt(T) a n d / x ( T )  are the 
same. So results on sequences with missing differences can be applied to 
T-colorings. 

The results ment ioned above concern the asymptotic behavior of  the 
optimal sequences o-. Our main result deals with o-~ in general. In Section 
4 it is shown that the difference sequence A~r is eventually periodic, which 
means that after some number  of terms, the sequence Ao- consists of a 
repeating pattern.  Further,  the period and the initial segment length can 
be bounded in terms of ~-. 

We compare  the optimal T-span o-~ to the greedy (first-fit) span yn of 
K , ,  which is obtained by coloring the vertices sequentially, always using 
the lowest nonnegative integer that will not create a difference in T. We 
form the sequence y := (y,)~=l.  In general, greedy coloring is worse than 
optimal coloring, even in the asymptotic sense. Using D(T), we see easily 
that the difference sequence for greedy colorings, Ay = (A%)~=2, where 
Ay, = y~ - yn_ i, is eventually periodic. It is comparatively easy to show 
this, since the greedy T-coloring of K n begins with the greedy T-coloring 
of K~_ ~. This is not the case for the optimal sequence o-, which does not 
itself correspond to a valid T-coloring sequence. We present an example in 
which no single coloring strategy is optimal for all n or even for all 
sufficiently large n. 

We show in Section 5 that for any T there is a finite set of coloring 
strategies such that for all n, o-n is attained by some strategy in the set. 
The strategies are eventually periodic T-colorings. This generalizes our 
main result, that Ao- is eventually periodic, but unlike before, this ap- 
proach does not yield a bound on the period and when it starts. 

The paper  concludes with some directions for future research. 
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2. T-SEQUENCES AND DIRECTED T-GRAPHS 

Consider any set T with ~- = ~-(T) > 0. We construct a directed graph, 
denoted by D(T), such that directed walks starting from a certain vertex 
correspond to good T-colorings of complete graphs. 

A T-sequence of order n >_ 1 is a sequence of n positive integers, 
S = (al ,  a2, a3, . . . ,  an), such that a i _< 7 + 1 for all i and for any 1 < m'  
< m < n, ~im=m, ai f~ T. We consider the empty sequence, denoted by A, 
to be a T-sequence of order O. Let sum(s) denote the sum of the terms of 
sequence s. For example, if T = {0, 1, 4, 5}, then (3, 3, 3, 3) is a T-sequence 
(with order 4 and sum 12) but (2, 2, 6, 2) is not. 

A good T-coloring of K n is a T-coloring that begins with 0 and has no 
jump between consecutive terms exceeding ~-(T) + 1. Good T-colorings of 
K n correspond to T-sequences of order n - 1 and vice versa, by taking the 
elements of the sequence to be the jumps between consecutive labels in 
the coloring. The T-span of a good T-coloring is the sum of its correspond- 
ing T-sequence. For example, when T = {0, 1, 4,5}, the T-coloring 
{5, 8, 17, 19} of K 4 can be translated and its jump of 9 can be compressed 
to yield the good T-coloring {0,3,9, 11}, which corresponds to the T- 
sequence (3,6,2) .  This coloring has span 11, which is still not 
optimal for K 4. 

Clearly, every optimal T-coloring for K n using 0 is good, so it suffices to 
consider only good T-colorings of K n. Therefore,  we see that for n >__ 0, 
O'n + 1 is the minimum sum of any T-sequence of order n. 

Let s = (a 1 . . . . .  a n) be a T-sequence. Every T-sequence s ' =  
( a l , . . . ,  an+ 1) consists of s together with an+ ~ > 0 such that for all q with 
1 _< q _< n + 1, we have ~-n+l L. i=qa i q~ T. We define p(s) to be the subse- 
quence (aq, a q + l , . . .  , a n) where q is the smallest value such that ~_~n=qa i 
< ~'. So p(s) consists of precisely the terms in s that affect the possible 

values for a n + t in s'. 
We are now ready to define the directed graph D(T) together with its 

associated arclength function. Its vertex set V(D) consists of all T- 
sequences s with sum(s) < ~-. Its arc set E(D) consists of an arc (u, p(s)) 
of length b from each u = ( a l , . . . , a  n) ~ V(D) to p(s) for each T- 
sequence s of the form (a 1 . . . .  , an, b), where 1 < b < r + 1. Note that 
there is an arc from each vertex to A of length z + 1, including a loop at 
A. In fact, all arcs entering a single vertex v have the same length, which 
we denote by l(v). 

Each T-sequence of order n > 0 corresponds to one and only one 
directed n-step walk (i.e., a walk with n arcs) starting from A in D(T). 
The sum of the T-sequence is the total length (sum of arclengths) of the 
corresponding walk W in D(T), denoted l(W). 
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PROPOSITION 1. Given T and n > 0, 

o-,,+1 = min{/(Wn) : W n is an n-step directed walk starting at A}. | 

EXAMPLE 1. Recall the standard example T = {0, 1,4,5} (Hale [4]). 
The graph D( T )  is shown in Fig. 1, including its arclengths. It  is routine to 
verify that the shortest walk in D(T)  from A with n steps is [A(2)] for 
n = 1 and [A(3)(3) . . .  (3)] for n > 1. The corresponding T-sequences are 
(2) and ( 3 , 3 , . . . ) ,  which yield the optimal sequence and difference se- 
quence 

o -=  ( 0 , 2 , 6 , 9 , 1 2  . . . .  ) 

ao- = ( 2 , 4 , 3 , 3 , 3  . . . .  ). 

For comparison, note that the greedy coloring gives 

y = ( 0 , 2 , 8 , 1 0 , 1 6 , 1 8  . . . .  ) 

AT = ( 2 , 6 , 2 , 6 , 2  . . . .  ). 

EXAMPLE 2. Consider T = {0,4}. Figure 2 shows D(T).  One can 
calculate from D(T)  that the greedy coloring is always optimal: 

o- = y = ( 0 , 1 , 2 , 3 , 8 , 9 , 1 0 , 1 1 , 1 6  . . . .  ) 

& r = k y =  ( 1 , 1 , 1 , 5 , 1 , 1 , 1 , 5  . . . .  ). 

Indeed, for any r, the set T = {0, r} has been shown to have the property 
that the greedy coloring is optimal (Raychaudhuri  [10]). The optimal 
sequence repeats the pat tern of r - 1 l ' s  followed by r + 1. Even with 
the assistance of the graph D(T),  this observation is not immediate for 
general r:  One must carefully check the walks, which is in fact equivalent 

6 
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FIo. 1. The  graph D(T) for T = {0, 1,4, 5}. The optimal cycle is indicated with a bold arc 

582a/68/1-12 
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Fio .  2. The  g raph  D(T) for T = {0, 4}. 

to doing the original T-colorings. Liu [6, 7] gave a shorter proof using 
graph homomorphisms. 

EXAMPLE 3. Let T = {0, 2, 4, 6, 7, 9, 12}. Greedy T-coloring in this case 
obtains 

3' = (0, 1, 11, 14, 19, 22, 27, 30 . . . .  ) 

= ( 1 , 1 0 , 3 , 5 , 3 , 5 , . . . ) .  

Another T-coloring in this case is 

a = (0 ,3 ,8 ,11 ,16 ,19 ,24 ,27  . . . .  ) 

Aa = ( 3 , 5 , 3 , 5 , 3 , 5 , . . . . ) .  

By the T-graph shown in Fig. 3, one can obtain the optimal T-sequence: 

or = (0 ,1 ,8 ,11 ,16 ,19 ,24 ,27  . . . .  ) 

Ao-= ( 1 , 7 , 3 , 5 , 3 , 5 , 3 , 5  . . . .  ). 

EXAMPLE 4. Let T = [0, 15] - {4, 5, 8, 11}, with D(T) as shown in Fig. 
4. The greedy T-coloring is easily found to be 

~/= (0, 4, 8, 24, 28, 32, 48, 52, 56, 72 , . . .  ) 

Ay = (4, 4, 16, 4, 4, 16, 4, 4, 16 , . . .  ). 
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Fro. 3. The graph D ( T )  for T = {0, 2, 4, 6, 7, 9, 12} with arclengths omitted and arcs into 
vertex A not shown. 

5 

FIG. 4. The graph D(T )  for T = [O, 15] - {4,5,8,11}. Arcs into A have length l6. 
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Two more T-colorings are given by a and /3 below: 

oz = (0, 5, 16, 21, 32, 37, 48, 53, 64, 69 . . . .  ) 

zla = (5, 11, 5, 11,5, 11,5, 11 . . . .  ) 

/3 = (0, 4, 8, 24, 29, 40, 45, 56, 61,72, 77 , . . .  ) 

zl/3 = (4, 4, 16, 5, 11,5, 11, 5, 11, 5, 11 . . . .  ). 

One can check that the optimal sequence is derived from the combination 
of the three sequences above. 

~r = (0, 4, 8, 21, 28, 32, 45,52, 56, 69 , . . .  ) 

Ao '=  ( 4 , 4 , 1 3 , 7 , 4 , 1 3 , 7 , 4 , 1 3  . . . .  ). 

No single strategy is optimal for all n, nor even for all sufficiently large n. 
Another  feature of this example is that most terms of A~r belong to the set 
T of forbidden differences. 

3. THE ASYMPTOTIC COLORING EFFICIENCY 

Rabinowitz and Proulx [9] discovered the existence and rationality of 
the asymptotic coloring efficiency rt(T). There is a nice interpretation for 
rt(T) in terms of the graph D(T) that leads to an easier direct proof. Our 
proof involves searching for a cycle (closed directed walk with no repeated 
vertices except its ends) of minimum average length per step. The proof in 
[9] also uses cycles, but our graph and arguments (derived independently) 
are considerably simpler. We find it more convenient to work with the 
reciprocal limit, R(T):= lira n _~=(%/n). For any walk W in D(T), let 
l(W) and s(W) denote its length and number of steps (arcs). Let its 
average length be i(W) ,= l(W)/s(W). The ,~alk is simple if no vertices 
are repeated. 

THEOREM 2. For any T, the limit R(T)= l i m , , ~ ( ~ , / n )  exists and 
equals minci(C),  the minimum taken over all cycles C in D(T). For 
T = {0}, R(T) = 1; otherwise R(T) > 2. 

Proof. If T = { 0 ) ,  then ~r n = n -  1, so that R(T)= 1. In this case, 
D(T) consists of a loop at A with length 1, and we have minci (C)  = 1 = 
R(T). 

Suppose now that "r(T) >_ 1. Let i* := minci(C),  the minimum taken 
over the (finite) collection of nonempty cycles in D(T), and let C* be a 
cycle attaining the minimum. For n >_ [V(D)], we can construct a walk W,,, 
on n steps as follows: Take a simple walk P from A to some vertex u of 
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C*, with P otherwise avoiding C*. Then  cycle a round  C* until n steps 
have been  taken. I f  we combine  any incomplete  trip a round  C* at the end 
of  Pn with P,  we obtain a simple walk Q. This gives 

o. n <_ l(Wn) = l ( Q )  + (n  - s ( Q ) ) ] * ,  

so that  for all n, we have o- n __< c a + n]*, where  c 1 = cl(T) is constant.  
On  the o ther  hand,  consider  a shortest  walk on n steps starting at A, 

call it Qn = [Avlv2 . . .  vn]. We can decompose  Qn into cycles C i and a 
simple walk Q', so that  E(Q n) = E(Q')  u E(C  1) U E ( C  2)  (J  " - "  t._) E(Cm). 
This gives o- n = l(Qn)>_ F.'i~=ll(C i) >_ ( n -  s(Q'))]*. Thus,  for all n we 
have o- n > Cz + hi*, where  c 2 = c2(.T) is a constant .  

We  have shown that  lo- n - n l * l  is bounded,  and hence  R ( T ) =  
limn ~=(~n/n) = ]*. Let  T'  := {0, r}, where  ~" = ~-(T). Then  for all m, we 
see that  s p r ( K  m) >_ spr,(K,~). From Example 2 we calculate that  R(T ' )  = 
2, so that  R ( T )  > 2. I 

As noted  in the Int roduct ion,  Cantor  and Gordon  [1] proved that  for 
any set T, there  is a periodic T-sequence S c6 cG ~ - = {an }~=0, with asymptotic 
density, deno ted  by 6(sC6) ,  equal to ix(T). 

COROLLARY 3. For any T, tx(T) = r t (T)  = 1 /R(T) .  

R Proof. Referr ing  to the p roof  of  T he o re m  2, let S R = {~n},~=0, where 
R l(Wn). Then  r t (T)  l / ] ( C * )  S(SR), which is at most  the supre- O{ n ~ ~ 

m u m  /x(T) over all sequences.  Now / x ( T ) =  6(S CG) = l i m n _ ~ ( n / a c G ) ,  
which is at most  l ima_s(n /o -n)  = rt(T), since the optimal span ~r n _< CG O / n  • 

I 
We next sketch a very short  p roof  of  the existence of  the limit R(T)  = 

1 / r t ( T )  due to Michael  Filaseta (private communicat ion) .  Observe that  
the sequence (o-Jn)  is bounded  since for all n, 0 <_ % / n  < ~- + 1. Then  if 
the sequence  ( ~ , / n )  does not  have a limit as n ~ ~, it must  have at least 
two accumula t ion  points. But one can show that  this cannot  happen  by 
proper ly  applying the e lementary  fact that  O'm+ ~ > O'~ + O'~ for all m, n >_ 
1. Thus  R ( T )  = l imn_~=(o 'Jn)  exists. 

Can to r  and G o r d o n  [1] de te rmined  / x ( T ) =  r t (T)  for IT] < 3, which 
was independent ly  rediscovered by different methods  by Rabinowitz  and 
Proulx [9]. Hara lambis  [5] and Rabinowitz  and Proulx [9] obta ined partial 
results for IT[ = 4. Tesman  [13] (cf. Liu [7]) discovered that  the set 
T = {0} U [a, b], where  1 < a _< b, has R(T)  = (a + b ) /a ,  so all rationals 
x _> 2 are achieved by appropr ia te  sets T. 

Some results of  Cantor  and Gordon  [1] apply to infinite as well as finite 
coloring sets T. We cite one such result here  because of  its possible 
connect ion  to o ther  results in the T-coloring li terature: If  T = {0, tl, t 2 , . . .  } 
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and d is a positive integer, then /x(T) = tx(dT), where dT := 
{0, dt 1, dt 2 . . . .  }. Stewart and Tijdeman [12] also consider Motzkin's prob- 
lem when the forbidden difference set is infinite. They give conditions on 
infinite sets T sufficient fo r / z (T)  > 0. 

We next present a bound on the asymptotic coloring efficiency in terms 
of IT[. 

THEOREN 4. For any T and n, ~r n < yn < (n - 1)1Zl. Hence, r t(T)  > 
1 / ITI ,  which is attained by T = {0, 1 . . . . .  r}. 

Proof. Fix the set T and n. When K n is greedily T-colored, some label 
in the interval [0, (n - 1)[ TI] is available for the nth vertex, since for each 
i = 1, 2 , . . . ,  n - 1, precisely I TI integers differ from the label at vertex i 
by an element from the forbidden difference set T. Thus, y~ < (n - 1)[TI. 
Since an optimal coloring is no worse than the greedy one, % _< "/n" For 
T = {0,1,. .  ., r}, we have o-~ = (n - 1)(r + 1) = (n - 1)ITI. | 

Since any graph G satisfies spr(G) < spr(Kx(~) ,  it follows immediately 
from Theorem 4 that spr(G) < [TI(x(G) - 1), a result of Tesman [13, 
p. 23] that generalizes the ~r~ bound in Theorem 4. Tesman's proof 
depended on several other results. The bound on yn in Theorem 4 is 
simple, yet apparently new. We now refer to the examples from Section 2 
and their corresponding figures. In Example 1, we easily find that the loop 
at 3, which has i = 3, is an optimal cycle. We see from the optimal 
sequence or that R ( T ) =  3. What is particularly interesting about this 
example is that greedy is not asymptotically optimal: it grows at the rate 
( 2 +  6 ) / 2 = 4 .  

One can calculate directly from the optimal sequence for Example 2 
that R = 2. The optimal cycle is the one used by greedy coloring, 
[a(1)(1, 1)(1, 1, 1)a],  with i = (1 + 1 + 1 + 5 ) /4  = 2. 

The optimal cycle in Example 3 is [(3, 5)(3, 5, 3)(3, 5)], so the minimum 
average length in this case is (3 + 5 ) / 2  = 4 = R(T).  The cycles 
[A(4)(4, 4)A] and [(5)(5, 11)(5)] attain the optimal value of (4 + 4 + 16)/3 
= (5 + 11) /2  = 8 = R ( T )  in Example 4. 

4. E VE NT UAL  PERIODICITY 

In all of the examples above, the optimal difference sequence ao- is 
periodic or quickly becomes periodic. We prove the eventual periodicity 
for general T, our main result, in Theorem 5 below by using the graphs 
D(T) .  The examples also suggest that the greedy difference sequence A T 
is eventually periodic, which we prove for general T in Theorem 6 below. 

THEOREM 5. Given T, the sequence Ao- describing the optimal T-color- 
ing of  complete graphs is eventually periodic. 
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Proof. If  T = {0}, then % = n - 1, and ao- = (1, 1, 1 . . . .  ) is periodic. 
For  the rest of  the p roof  suppose that  r = r (T)  >_ 1. Let  c = c(T)  be the 
maximum order  of  a vertex (T-sequence)  in V(D),  and let (bl, b 2 . . . .  , b c) 
be such a.vertex. Note  that  0 < c < ¢ - 1. We  require the following fact. 

CLAIM. For any two vertices u, v in V( D ), there is a walk from u to v of  
exactly c + 1 steps with length < 4r. 

Proof o f  Claim. Let  v = (a  1 . . . .  ,ar), where  r is the order  of  v. If  
r = c, then 

[ uA(  a l ) (  al, a 2 ) . . .  ( al, a2, . . . , ac_ a)V] 

is a w a l k w i t h  c +  1 s t e p s  and length < ( r +  1 ) + r -  1 = 2 r .  If  v has 
o rder  r < c - 1 then the walk 

[ u A ( b l ) ( b l ,  b 2 ) . . .  (b  1, b 2 . . . .  , b c _ r _ i ) A ( a l ) ( a i ,  a 2 ) . . ,  v] 

consists of  c + 1 steps and has length < 4r ,  since steps into A have 
length r + 1 and paths f rom A out  to vertices have length at most  r - 1. 

I 
We now show that  Ao- is eventually "periodic. For  any v ~ V(D) and 

n > 1, define 

f n ( v )  := m i n { l ( W )  : W  is a walk f rom A to v of  n - 1 steps}. 

W h e n  no such walk W exists, fn(V) is taken to be ~o. By Proposi t ion 1, we 
get 

~r~ = sPT( Kn) = 

We then define 

gn(V) := f ~ ( v )  -- O'n, 

min f ~ ( v ) .  (1) 
v ~ V ( D )  

which is > 0 for all v. (2) 

Let  A ( v )  denote  the set {w: (w, v) ~ E(D)}.  We recall that  every arc 
into v has the same length l(v), so that  we can recursively compute  the 
values of  fn: 

fn+l(V) = l ( v )  + min f n (w) ,  
w~A(v)  

= l ( v )  + min gn(W) + o',,. (3) 
w~A(v)  

Hence ,  

ern+ , = m i n f ~ + l ( v  ) 
u 

= m i n { l ( v )  + min g,,(w) + %} ,  (4) 
v wEA(v)  

do'n+ , =~rn+ 1 -o -n  = m i n { l ( v ) +  min g n ( w ) } .  (5) 
w~A(v)  
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By the claim, for any w, v ~ V(D) ,  

L+c+I (W)  _~<L(U) -[-4% 

which implies by minimizing over v that for all w, 

f n + c + l ( W )  ~ O" n -}- 4";. 

Also, for all w', 

o" n + c + 1 < o-n+c+ I <fn+c+~(w' ) .  

Therefore,  for any w, w' ~ V(D) ,  

I f~+c+l(w)  - f ~ + c + l ( w ' ) l  < 4z - (c + 1) < 4z - 1. 

Since gn+c+i (w ' )=  0 for some w', it follows that for all w, 0 < 
g n + c + l ( W ) < 4 z -  1. So there exist nl,  n 2 with c +  1 < n ~  < n  2 <  
(4r )  Iv(D)l + c + 1, such that gnl(W) = g~2(w), for all v ~ V(D) .  By Eq. (5), 
we get Ao-nl+l = Ao-~2+l. By Eqs. (2) and (3), we obtain for all v and n, 

g~+l(V) = l ( v )  + min g n ( w )  - zlo-,+l. 
w~A(v )  

This implies g n l + l ( W )  = gn2+l(W) , for all w ~ V(D) .  Repeating the above 
procedure,  we obtain, for all k >_ 1, Ao-~+k = Ao-~2+k. Therefore,  Ao- is 
eventually periodic with period at most (n e - hi)  _< (4"r) IV(m/, and its first 
period is completed after at most its first n 2 _< (4"r) IV(D)l+" terms. | 

THEOREM 6. Given T, the sequence A y  describing the greedy T-coloring 
o f  complete graphs is eventually periodic. 

Proof. The greedy T-coloring of K~ uses label 0 at the first vertex and 
never jumps more than z + 1, so it corresponds to a walk [ A V l . . .  vn_ l] of 
n - 1 steps in D ( T ) .  When Kn is T-colored, the lowest available color is 
used for the next vertex. In D ( T )  this corresponds to proceeding to the 
vertex v~ that is closest to V._l, i.e., along the shortest outgoing arc. 
When n > IV(D)[,  there exist i < j  _< IV(D)[ such that v i = c, s. Leaving 
either v i or vs., greedy goes to the same vertex, so that v i+ ~ = v j+ 1, and by 
induction, greedy cycles with period j - i. | 

5. OPTIMAL STRATEGIES 

The examples in Section 2 suggest that a finite number  of periodic 
coloring techniques suffice to achieve the opt imum o- n for all n. We now 
verify this. 
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We define a strategy S = (W, C) to be a walk W in D(T)  starting at A 
together with an optimal cycle C (thus i ( C ) =  2 * =  R(T))  that starts 
and ends at a vertex v on W. Note that the vertex of at tachment  v need 
not be at the end of W. The strategy then specifies, for each n, a walk of 
n steps as follows: Given n, let j be the smallest integer _> 0 such that 
n < s (W)  + j(s(C)). Form walk W, by taking the first n steps along the 
walk consisting of W with j repetitions of cycle C inserted at the first 
occurrence of v. The strategy S generates a coloring sequence a ( S ) =  
(ao(S), a~(S) , . . .  ), where an(S) = l(W~_). Clearly a (S)  is eventually peri- 
odic with period s(C) and an(S) ~ nl* = nR(T),  as n ~ oo. A strange 
thing about our definition of strategies is that the sequence a (S)  will not 
be increasing in general, since we may have an+l(S)  < a n ( S ) w h e n  n = 
s(W) + j(s(C)). 

THEOREM 7. For any set T, there is a finite collection of T-coloring 
sequences, {a(i) : i E I}, where each Aa(i)  is eventually periodic, such that 
for all n, the optimal value cr = SPr(Kn) is min i ~ tan(i). Further, we may 
assume for all i that the average of the terms in one period of Aa(i)  is 
R(T)  = l*. 

Proof. Fix the set T and n. We show that there is a shortest walk of n 
steps for D(T)  that is specified by a strategy (W, C), with s (W)  bounded in 
terms of T independently of n. This will imply the theorem since the 
number  of strategies (W, C) with bounded s (W)  is finite for given T. 

Let Qn be a shortest walk of n steps for D(T). As in the proof  of 
Theorem 2, Qn decomposes into a simple walk Q' and cycles C i which 
begin and end at their vertices of attachment.  Form a walk W 1 using the 
edges from Q' and from one copy of each distinct cycle appearing in the 
Ci's. The walk W 1 reaches every vertex in Qn. 

Suppose there is an optimal cycle C among the Ci's, and let its vertex of 
a t tachment  b e  v. Then no non-optimal cycle D appears  more than s(C) 
times among the Ci's, or else we could replace s(C) copies of D in the list 
of cycles in Qn not used for W l by s(D) copies of C. Then reattaching the 
cycles in this list to W 1 would create a walk on n steps with length less 
than l(Qn) , contradicting the optimality of Qn- Similarly, we can repeat-  
edly replace s(C) appearances  of the optimal cycle D in the list by s(D) 
appearances  of C. This shows that there is an optimal walk Rn in which 
no cycle besides C appears  in the decomposition more than s(C) times. 
Reat taching all cycles besides copies of C, if any, gives a decomposition of 
R n into a walk W2, with s(W 2) bounded in terms of C, and copies of C. 
Attaching the copies of C at the first occurrence of v produces an optimal 
walk of n steps specified by the strategy (W2, C). 

There  remains the case in which no cycle C i for Q,  is optimal. Let C be 
any optimal cycle for D(T).  We can view Q,  as specified trivially by the 
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strategy (Q~, C). It then suffices to show that s(Q,) = n is bounded in 
terms of T. Let D be any C i and suppose it appears N times in the 
decomposition after W 1 is removed. If N is not too small, we may replace 
the N copies of D by some number of copies of C, together with at most 
2~- arcs to go from W 1 to C and back and at most s(C) extra arcs (e.g., 
loops at A) to produce a walk S n of exactly n steps. Because i (D) > ](C) 
and because l(Sn) > l(Q,), N is bounded in terms of C, D, ~-. Doing this 
for all D, we see that s(Qn) is bounded for given C, ~-, i.e., in terms of T 
alone. | 

6. DIRECTIONS FOR F U T U R E  RESEARCH 

Given a cycle C* in the graph D(T) with the smallest average step 
length, a sensible approach for T-coloring large complete graphs is to take 
a path from A over to C* and wind around C* repeatedly. In fact, 
starting anywhere in C* and winding around repeatedly corresponds to a 
periodic T-coloring that achieves R(T) and so differs from o- by at most a 
constant for all n. Cantor and Gordon [1] showed how to reduce such a 
periodic T-coloring to one that still achieves R(T) and has period at most 
2 ~. However, since V(D) can be very large in general, it may not be 
practical to actually locate an optimal cycle in D(T). 

Our proof of Theorem 6 shows that the period for greedy coloring and 
the number of terms before periodicity begins are bounded above by 
I V(D)l, which in turn is bounded for all T with given largest element r. In 
the worst case, when T = {0, ~-}, IV(D)[ is the number of compositions of 
integers < r, a very large number. For the optimal sequence Ao-, the 
period and the number of terms before it starts are bounded in the proof 
of Theorem 5 by (4~-)lv~/))( In all examples we have constructed, zly and 
Ao- become periodic very quickly, after a number of terms on the order of 
~-. It is important then to try to improve our discouragingly large bounds 
on the period and when it begins. 

The proof of eventual periodicity in Theorem 5 depends on a repetition 
of all values of the function g. However, one does not have to compute all 
of these values. One can recognize the repeating pattern and guarantee its 
repetition, looking only at o-, after seeing only a bounded number of initial 
terms of ao-, where the bound depends on T. 

Considerable effort [3, 6, 7, 10, 13] has been devoted to studying sets T 
such that greedy is always optimal, i.e., y = o-. In both Example 3 and 
Example 4 the greedy coloring, while not optimal, is asymptotically opti- 
mal, i.e., Yn ~ o-, as n ~ oo. This occurs precisely when the greedy algo- 
rithm acting on D(T) arrives at a cycle that has optimal average step 
length. Whenever this occurs, y~ - o-~ is bounded independently of n. It 
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w o u l d  b e  i n t e r e s t i n g  to  d e t e r m i n e  t h e  s e t s  T fo r  w h i c h  g r e e d y  is a s y m p t o t -  

ica l ly  o p t i m a l .  
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