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In this work we propose a modified holographic softwall model, analytically solvable, to calculate the 
masses of lightest scalar glueball and its radial excitations and of higher spin glueball states for both 
even and odd spins. From these results we obtain their respective Regge trajectories, associated with the 
pomeron for even spins and with the odderon for odd spins. These results are in agreement with those 
calculated using other approaches.
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1. Introduction

Since 1997 the AdS/CFT or Anti de Sitter/Conformal Field The-
ory correspondence [1–5] provides new techniques and method-
ologies to deal with non-abelian gauge theories. The AdS/CFT cor-
respondence relates a conformal supersymmetric Yang–Mills (SYM) 
theory with symmetry group SU(N) for large N (N → ∞) in a 
flat Minkowski spacetime with 3 + 1 dimensions, with a I I B su-
perstring theory in a curved space 10 dimensions, which is five 
dimensional anti de Sitter space times a five dimensional hyper-
sphere, or simply, AdS5 × S5.

Since the super Yang–Mills theory is a conformal field theory it 
cannot be directly related to theories with mass or energy scales 
such as QCD. After breaking conveniently the conformal symmetry 
one can build phenomenological models that may describe some 
(non-perturbative) properties QCD approximately. The models con-
structed in this way are generically known AdS/QCD models.

Some works have dealt with this issue [6–9]. In these two last 
works, which introduced the idea of what is now called the hard-
wall model, a hard cutoff was introduced at a certain value zmax of 
the holographic coordinate z of the AdS5 space and this space was 
reduced to just a slice in the region 0 ≤ z ≤ zmax .

Another holographic AdS/QCD model was proposed introduc-
ing a prescribed background dilatonic field to play the role of a 
soft cutoff instead of the AdS slice. This is known as the softwall 
model and was successful in describing vector mesons [10] and 
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their Regge trajectories which are linear in contrast with the ones 
coming from the hardwall model. It was extended to describe light 
glueball states in [11].

An interesting modification of the softwall model is to impose 
that the dilatonic field became dynamical satisfying the Einstein 
equations in five dimensions. This dynamical softwall model has 
been used to describe the mass of the scalar glueball state and its 
radial excitations with good agreement with lattice data [12]. This 
dynamical model does not have analytical solutions so one has to 
lean on numerical analysis.

In this work, we are going to consider a modified softwall 
model inspired on its dynamical version but which has analyti-
cal solutions. We apply this model to calculate glueball masses for 
the scalar case and its radial excitations, and high even and odd 
spins and construct their Regge trajectories associated with the 
pomeron and the odderon. Before going into this modified softwall 
model we start extending the original softwall model for higher 
spin glueballs.

2. Higher spin glueballs in the softwall model

In order to describe higher spins in the softwall (SW) model we 
start with the following action

S =
∫

d5x
√−ge−�(z)

[
gmn∂mG∂nG + M2

5G
2
]
, (1)

where the field G is related to the scalar glueball state with mass 
M5 in the AdS5 space, defined by the metric:

ds2 = gmndxmdxn = R2

2
(dz2 + ημνdyμdyν) , (2)
z
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where m, n = 0, 1, 2, 3, 4 refer to five dimensional space, and 
μ, ν = 0, 1, 2, 3 refer to four dimensions with ημν =
diag(−1, 1, 1, 1). Here, the dilatonic field is prescribed as

�(z) = kz2 (3)

exactly as in the original softwall model [10]. Actually, the above 
action differs from the one presented in [11] to describe scalar 
glueballs by the presence of the mass term in five dimensions. This 
term is important here to include higher spin states as we discuss 
below. The corresponding equations of motion are:

∂m[√−g e−�(z)gmn∂nG] − √−ge−�(z)M2
5G = 0 , (4)

that can be written, after a convenient decomposition of the 5-d 
glueball wave function G(z, xμ) = v(z) exp iqμxμ , where v(z) =
ψ(z)(z/R)3/2 exp 1

2 (kz2), as “Schrödinger-like” equation

−ψ ′′(z) +
[

k2z2 + 15

4z2
+ 2k +

(
R

z

)2

M2
5

]
ψ(z) = −q2 ψ(z) (5)

which has a well known solution:

ψn(z) = Nn zt(M5)+ 1
2 1 F1(−n; t(M5) + 1,kz2)exp{−kz2/2} (6)

where Nn is a normalization constant, t(M5) =
√

4 + R2M2
5, and 

1 F1(−n, a, x) is the Kummer confluent hypergeometric function. 
The corresponding “eigenenergies” −q2 = −qμqμ are identified 
with the 4-d glueball squared masses

m2
n =

[
4n + 4 + 2

√
4 + M2

5 R2

]
k; (n = 0,1,2, · · ·). (7)

It is known through the AdS/CFT correspondence how to relate the 
operator in the boundary theory with fields in the AdS5 × S5 space. 
The conformal dimension � of a boundary operator is given by:

� = 2 +
√

4 + R2M2
5 (8)

For a pure SYM theory defined on the boundary, one has that the 
scalar glueball state 0++ is represented by the operator O4, given 
by:

O4 = Tr(F 2) = Tr(F μν Fμν) (9)

which has conformal dimension � = 4. So, the lightest scalar glue-
ball 0++ is dual to the fields with zero mass (M2

5 = 0) in the AdS5
space, then Eq. (7) becomes:

m2
n = [4n + 8] k; (n = 0,1,2, · · ·). (10)

This is the result found in [11] that represents the equation for 
the Regge trajectory for the lightest scalar glueball (n = 0) and its 
radial excitations n = 1, 2, · · · .

In the references [18] and [19] the masses of higher spin glue-
balls and the Regge trajectories related to the pomeron and the 
odderon were calculated using the holographic hardwall model fol-
lowing [20]. The idea is to insert J symmetrized covariant deriva-
tives in a given operator with spin S so that the total angular 
momentum after the insertion is S + J . In the case of the oper-
ator O4 = F 2, one gets:

O4+ J = F D{μ1···Dμ J } F , (11)

with conformal dimension � = 4 + J and spin J . The reference 
[18] used this approach to calculate the masses of glueball states 
0++ , 2++ , 4++ , etc. and to obtain the Regge trajectory for the 
pomeron in agreement with those found in the literature.
Then, for even spin glueball states using the SW model after 
the insertion of symmetrized covariant derivatives, and using that 
� = 2 +

√
4 + R2M2

5 (eq. (8)), one has:

M2
5 R2 = J ( J + 4) ; (even J ) . (12)

Inserting this result in Eq. (7), one gets:

m2
n =

[
4n + 4 + 2

√
4 + J ( J + 4)

]
k; (n = 0,1,2, · · · ,even J ) ,

(13)

and for the particular cases of non-excited states (n = 0), one has:

m2
n =

[
4 + 2

√
4 + J ( J + 4)

]
k ; (even J ). (14)

On the other side, for odd spin glueballs, following [19], the 
operator O6 that describes the glueball state 1−− is given by

O6 = SymTr
(

F̃μν F 2
)

, (15)

and through insertion of symmetrized covariant derivatives one 
has

O6+ J = SymTr
(

F̃μν F D{μ1···Dμ J } F
)

, (16)

with conformal dimension � = 6 + J and spin 1 + J . Following this 
approach in the hardwall model [19], the masses of glueball states 
1−− , 3−− , 5−− , etc. and the Regge trajectory for the odderon were 
obtained in agreement with those found in the literature.

Then, for the case of the odd spin glueballs states, as � = 2 +√
4 + R2M2

5 (eq. (8)), one finds

M2
5 R2 = ( J + 6)( J + 2) ; (odd J ), (17)

so that one can read for the non-excited odd spin glueball states 
(n = 0)

m2
n =

[
4 + 2

√
4 + ( J + 6)( J + 2)

]
k; (odd J ). (18)

A discussion of these results together with a numerical analysis 
will be presented in section 4.

3. The modified softwall model

In order to obtain the modified softwall model, let us start de-
scribing briefly the dynamical softwall model discussed in [12]. 
The 5D action for the graviton–dilaton coupling in the string frame 
is given by:

S = 1

16πG5

∫
d5x

√−gs e−2�(z)(Rs + 4∂M�∂M� − V s
G(�))

(19)

where G5 is Newton’s constant in five dimensions, gs is the metric 
tensor in the 5-dimensional space, � is the dilatonic field and V s

G
is the dilatonic potential. All of these parameters are in the string 
frame. The metric tensor has the following form:

ds2 = gs
mndxmdxn = b2

s (z)(dz2 + ημνdxμdxν); bs(z) ≡ e As(z)

(20)

following the notation of the previous section.
Performing a Weyl rescaling, from the string frame to the Ein-

stein frame, one can obtain the equations of motion for the dilaton 
�(z) and the metric represented by the function As(z) which is 
a set of coupled differential equations. Going back to the string 
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frame and choosing �(z) = kz2, as in the original softwall model, 
one has the solutions (see the Appendix A):

As(z) = log

(
R

z

)
+ 2

3
�(z) − log

[
0 F1

(
5

4
,
�2

9

)]
, (21)

which means that the metric (20) is a deformed AdS space and

V s
G(�) = exp{−4

3
�}

[
−12 0 F1(1/4, �2

9 )2

R2

+ 16 0 F1(5/4, �2

9 )2�2

3R2

]
(22)

so that this potential generates the desired dilaton.
Let us now describe the scalar glueball in 5D with the action in 

the string frame exactly as in Eq. (1) but with the metric replaced 
by (20), and the corresponding equations of motion are:

∂M [√−gs e−�(z) gMN∂NG] − √−gse−�(z)M2
5G = 0 . (23)

One can solve the equations of motion using again the ansatz

G(z, xμ) = v(z)eiqμxμ
, (24)

and defining v(z) = ψ(z)eB(z)/2 where

B(z) = �(z) − 3As(z) , (25)

so that one gets a Schrödinger-like equation:

−ψ ′′(z) +
[

B ′ 2(z)

4
− B ′′(z)

2
+ M2

5

(
R

z

)2

e4kz2/3A−2

]
ψ(z)

= −q2ψ(z) , (26)

where A = 0 F1(5/4, �2/9). This equation was solved numerically 
in [12].

Inspired by this dynamical model, and seeking for analytical so-
lutions, we propose a modified softwall model whose action is 
given by Eq. (1), with metric given by (20) and the dilaton �(z)
still given by (3) but with the function As(z) replaced by:

As
M(z) = log

(
R

z

)
+ 2

3
�(z). (27)

Looking at (20) and (27) one can note that this modified softwall 
model is no longer AdS5. This is also true for the dynamical soft-
wall model. But for z → 0 which means the UV limit in both cases, 
it can be seen that As(z)|z→0 → As

M(z)|z→0 ∝ log
( R

z

)
. This means 

that the geometry still remains AdS5 in the UV limit when As(z) is 
replaced by As

M(z).
Then eq. (26) can be read as:

−ψ ′′(z) +
[

k2z2 + 15

4z2
− 2k + M2

5

(
R

z

)2

e4kz2/3

]
ψ(z)

= (−q2)ψ(z). (28)

This equation is a Schrödinger-like equation with effective poten-
tial given by

V(z) =
[

k2z2 + 15

4z2
− 2k + M2

5

(
R

z

)2

e4kz2/3

]
.

This is still not exactly solvable so we expand the exponential in 
the last term in the brackets and just retain terms up to first order 
in the parameter k [13]. This procedure gives us the equation
−ψ ′′(z) +
[

k2z2 + 15

4z2
− 2k + M2

5

(
R

z

)2

+ 4kz2

3
M2

5

(
R

z

)2
]

× ψ(z) = (−q2)ψ(z) , (29)

which is exactly solvable and represents the modified softwall 
model that we consider here, which can also be written as

−ψ ′′(u) +
[

u2 + t2 − 1
4

u2

]
ψ(u) =

[−q2

k
+ 2 − 4

3
R2M2

5

]
ψ(u) ,

(30)

where u = √
k z2 and t =

√
4 + R2M2

5. From the eigenenergies and 
associating −q2

n with the square of the masses of the 4D glueball 
states, one has:

m2
n =

[
4n + 2

√
4 + M2

5 R2 + 4

3
R2M2

5

]
k; (n = 0,1,2, · · ·), (31)

and the eigenfunctions are still given by (6).
So, for the lightest scalar glueball 0++ dual to the fields with 

zero mass (M2
5 = 0) in the AdS5 space, the Eq. (31) becomes:

m2
n = [4n + 4] k . (32)

For even spin glueball states we have M2
5 R2 = J ( J + 4) as in 

our previous discussion on the original softwall model and just 
computing the masses for non-excited states (n = 0), one gets:

m2
n =

[
2
√

4 + J ( J + 4) + 4

3
J ( J + 4)

]
k ; (even J ). (33)

For odd spin glueball states, with M2
5 R2 = ( J + 6)( J + 2), one 

has

m2
n =

[
2
√

4 + ( J + 6)( J + 2) + 4

3
( J + 6)( J + 2)

]
k ; (odd J ).

(34)

A comparison between these results and the ones from the 
original SW model will be presented in the next section.

4. Numerical analysis

Now we are going to obtain numerical values for the various 
masses discussed in this work. For comparison, we show in Table 1
the values of the masses for the scalar glueball and its excitations 
calculated from the lattice.

Let us start with the predictions for the scalar 0++ state. We 
begin with the result of Eq. (10) from the original SW model 
that represents the equation for the Regge trajectory for the light-
est scalar glueball (n = 0) and its radial excitations (n = 1, 2, · · ·). 
Calculating these masses for various values of k from 0.37 to 
1.00 GeV2 one gets the results shown in Table 2. Comparing these 
values with the ones shown in Table 1, one sees that in general 
these masses do not fit those from the lattice. However, note that 
for k = 0.67 GeV2 one fits the masses of the three excited states 
n = 1, 2, 3, but not the ground state n = 0.

On the other hand, the masses derived from the Regge tra-
jectory (32) using the modified SW model and k = 0.2, 0.85 and 
1 GeV2 are presented in the Table 3. Note that for k = 0.85 GeV2

the agreement with lattice is good.
Now, let us move to the case of high even spins. The masses 

found from Eq. (14) in the original softwall model for higher spins 
with even J and k = 1 and 2 GeV2 are shown in the Table 4. From 
the results with k = 2 GeV2 one can derive the Regge trajectory for 
even glueball states associated with the pomeron:
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Table 1
Lightest scalar glueball and its radial excitation masses expressed in GeV from lattice.

Ref. [14] Ref. [15] Ref. [16] Ref. [17] Ref. [17]

J PC Nc = 3 Nc = 3 anisotropic lattice Nc = 3 Nc → ∞
0++ 1.475(30)(65) 1.730(50)(80) 1.710(50)(80) 1.58(11) 1.48(07)
0++∗ 2.755(70)(120) 2.670(180)(130) 2.75(35) 2.83(22)
0++∗∗ 3.370(100)(150)
0++∗∗∗ 3.990(210)(180)
Table 2
Masses mn expressed in GeV for the glueball states J PC of the lightest scalar glue-
ball (n = 0) and its radial excitations (n = 1, 2, 3) from the original SW, using the 
Eq. (10) for various values of k from 0.37 to 1.00 GeV2.

Glueball states J PC k

0++ 0++∗ 0++∗∗ 0++∗∗∗

n 0 1 2 3

mn 1.72 2.11 2.43 2.72 0.37
mn 2.32 2.83 3.27 3.66 0.67
mn 2.53 3.10 3.58 4.00 0.80
mn 2.83 3.46 4.00 4.47 1.00

Table 3
Masses expressed in GeV for the glueball states J PC of the lightest scalar glueball 
and its radial excitations from the modified softwall model using Eq. (32) for k =
0.2, 0.85 and 1 GeV2.

Glueball states J PC k

0++ 0++∗ 0++∗∗ 0++∗∗∗

n 0 1 2 3

mn 0.89 1.26 1.55 1.79 0.20
mn 1.84 2.61 3.19 3.69 0.85
mn 2.00 2.83 3.46 4.00 1.00

Table 4
Masses expressed in GeV for the glueball states J PC with even J from the original 
SW using Eq. (14) with k = 1 and 2 GeV2 and from the modified SW using Eq. (33)
with k = 0.2 GeV2.

Glueball states J PC k

0++ 2++ 4++ 6++ 8++ 10++

Masses 2.83 3.46 4.00 4.47 4.90 5.29 1.00
Masses 4.00 4.90 5.67 6.32 6.93 7.48 2.00
Masses 0.89 2.19 3.30 4.38 5.44 6.49 0.20

J (m2) = 0.25m2 − 4 , (35)

where J is the glueball state spin and m2 is the glueball state mass 
squared. This Regge trajectory has a good slope but the intercept 
is not in agreement with the literature [21].

From the modified SW model, the masses found from Eq. (33)
for higher spins with even J and k = 0.2 GeV2 are also shown in 
the Table 4. From these results one can derive the Regge trajectory 
for even glueball states which can be associated with the pomeron:

J (m2) = (0.23 ± 0.02)m2 + (0.82 ± 0.51) . (36)

The errors for the slope and the intercept come from the linear fit. 
This Regge trajectory is in agreement with that presented for the 
pomeron [21].

A last comment about even glueball states: one can choose an-
other set of states, for example, 2++, 4++, 6++, 8++ , from Table 4
with k = 0.20 GeV2, and find the following Regge trajectory:

J (m2) = (0.24 ± 0.02)m2 + (1.15 ± 0.36) , (37)

which is still compatible with [21] and [23] where it was argued 
that the state 0++ does not belong to the pomeron’s Regge trajec-
tory.
Table 5
Masses expressed in GeV for the glueball states J PC with odd J from SW using 
eq. (18) and k = 1 and 2 GeV2 and from the modified SW using eq. (34) and k =
0.2 GeV2.

Glueball states J PC k

1−− 3−− 5−− 7−− 9−− 11−−

Masses 3.74 4.24 4.69 5.10 5.48 5.83 1.00
Masses 5.29 6.00 6.63 7.21 7.75 8.24 2.00
Masses 2.82 3.94 5.03 6.11 7.19 8.26 0.20

Let us now discuss the case of odd spins. The masses found 
from Eq. (18) for the original SW model for higher odd J spins 
with k = 1 and 2 GeV2 are shown in the Table 5. From the results 
for k = 2 GeV2 one can derive the Regge trajectories for odd glue-
ball states associated with the odderon:

J (m2) = 0.25m2 − 6 . (38)

This Regge trajectory is not in agreement with the ones presented 
in [22].

The masses found from the modified softwall model for higher 
odd spins, given by Eq. (34), with k = 0.2 GeV2 are also shown in 
the Table 5. From these results one can derive the Regge trajectory 
for odd spin glueball states associated with the odderon:

J (m2) = (0.17 ± 0.01)m2 + (0.40 ± 0.44) . (39)

The errors for the slope and intercept come from the linear fit. This 
Regge trajectory for the odderon is in agreement with that pre-
sented in [22], within the nonrelativistic constituent model. One 
can also choose another set of odd glueball states, for example, 
1−−, 3−−, 5−−, 7−−, 9−− with k = 0.2 GeV2 and find the follow-
ing Regge trajectory:

J (m2) = (0.18 ± 0.01)m2 + (0.02 ± 0.40), (40)

which is also compatible with [22] within the nonrelativistic con-
stituent model. In Ref. [22] it was argued that the odd spin glueball 
state 1−− might not belong to the Regge Trajectory associated with 
the odderon. In contrast, in this work, all Regge trajectories associ-
ated with the odderon contained the odd spin glueball state 1−− .

At this point, one can note that the value chosen for the free 
parameter k is not the same for scalar glueball and the higher 
spin glueballs. For the scalar glueball state and its radial excita-
tions, the value of k that provided a good Regge trajectory was k =
0.85 GeV2. On other hand, for higher spin glueball states, the value 
of k that provided good Regge trajectories was k = 0.20 GeV2. This 
difference points to a limitation of the modified softwall model but 
seems to be acceptable since we are dealing with a phenomeno-
logical model.

5. Conclusions

In this work we used first the original softwall model to de-
scribe high spin states glueballs and obtained not so good results. 
Then we proposed a modified softwall model inspired by a dynam-
ical model presented in [12]. From this modified softwall model we 
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obtained good results for the Regge trajectories of the scalar glue-
ball state and its radial excitations and the Regge trajectories for 
the pomeron and the odderon, in good agreement with the litera-
ture [14–17,21–23].

An important thing to be commented is about the even spin 
glueball states. Due to the fact that in this work we use the free 
parameter k = 0.2 GeV2, to get the Regge trajectories, the mass of 
scalar glueball 0++ is lower than those found in Table 1, but the 
Regge trajectory related to the pomeron is fine, if you compare 
with [21]. One can wonder if this scalar glueball state can be re-
lated with lowest “exotic” scalar mode as pointed out in [24].

The modified softwall model, in the sense used in this work, 
i.e., solving the problem analytically, is faster than numerical ap-
proach and provides satisfactory results. As a further work, we 
will analyze the complete solution of the problem, i.e., solving the 
problem numerically to see if there will be any corrections in the 
results.
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Appendix A. Einstein frame and equations of motion

It is easier to solve the equations of motion in the Einstein 
frame, which can be defined as, with respect to the string frame:

g E
mn = gs

mne− 2
3 �, V E

G = e
4
3 �V s

G , (41)

bE(z) = bs(z)e− 2
3 �(z) = e AE (z), AE(z) = As(z) − 2

3
�(z) . (42)

Then, from action (19) one can obtain the following set of coupled 
equations (see [12] for more details):

−A′′
E + A′ 2

E − 4

9
�′ 2 = 0 , (43)

and

�′′ + 3A′
E�′ − 3

8
e2AE ∂�V E

G (�) = 0 . (44)

Solving this set of coupled differential equations with the quadratic 
dilaton background given by (3) one finds the solutions:

AE(z) = log

(
R

z

)
− log (0 F1(5/4,

�2

9
)) (45)

and

V E
G (�) = −12 0 F1(1/4, �2

9 )2

R2
+ 16 0 F1(5/4, �2

9 )2�2

3R2
(46)

One can use (41) and (42) to recover the string frame expres-
sions for As(z) and V s

G(�), given by (21) and (22), respectively, 
valid for the dynamical softwall model.
For our purpose, in the phenomenological modified softwall 
model, in order to keep this model analytically solvable, we re-
place As(z) showed in (21) by As

M(z) in (27). Consequently the 
potential V s

G(�) for the modified softwall model is now given by 
V s

M(�) = exp{− 4
3 �}16�2/3R2.

As a last comment, AE (z), V E
G (�) and �(z) have to satisfy the 

eqs. (43) and (44). As we are using an approximation, in order to 
get an analytical model, it should be clear that As

M (z), in fact, does 
not satisfy exactly the eq. (43).
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