On the sth Laplacian eigenvalue of trees of order $st + 1$∗

Oscar Rojo ∗,1

Departamento de Matemáticas, Universidad Católica del Norte, Casilla 1280, Antofagasta, Chile

Received 17 October 2006; accepted 16 March 2007
Available online 6 April 2007
Submitted by R.A. Brualdi

Abstract

Let $\lambda_1(\mathcal{G}) \geq \lambda_2(\mathcal{G}) \geq \cdots \geq \lambda_n(\mathcal{G}) = 0$ be the Laplacian eigenvalues of a simple undirected graph \mathcal{G}. Let $s \geq 2$ and $t \geq 2$ be integers and let $T_{s,t}$ be the rooted tree of three levels and order $st + 1$ such that the vertex root has degree s, the vertices in level 2 have degree t and the $s(t - 1)$ pendants vertices are in level 3. We prove that

$$\lambda_s(T_{s,t}) = \max\{\lambda_s(\mathcal{T}) : \mathcal{T} \text{ is a tree of order } st + 1\} = \frac{1}{2} \left(t + 1 + \sqrt{t^2 + 2t - 3} \right).$$

© 2007 Elsevier Inc. All rights reserved.

AMS classification: 05C50

Keywords: Graph; Tree; Laplacian matrix; Laplacian eigenvalues

∗ Work supported by Project Fondecyt 1040218, Chile.
∗ Fax: +56 55 355599.
E-mail address: orojo@ucn.cl
1 This research was conducted while the author was visitor at the Departamento de Matemáticas, Universidad Carlos III, Madrid, Spain.
1. Preliminaries

Let $\mathcal{G} = (V, E)$ be a simple undirected graph on n vertices. The Laplacian matrix of \mathcal{G} is the $n \times n$ matrix $L(\mathcal{G}) = D(\mathcal{G}) - A(\mathcal{G})$ where $A(\mathcal{G})$ is the adjacency matrix and $D(\mathcal{G})$ is the diagonal matrix of vertex degrees. It is well known that $L(\mathcal{G})$ is a positive semidefinite matrix and that $(0, e)$ is an eigenpair of $L(\mathcal{G})$ where e is the all ones vector. Let us denote the eigenvalues of $L(\mathcal{G})$ by $0 = \lambda_n(\mathcal{G}) \leq \lambda_{n-1}(\mathcal{G}) \leq \cdots \leq \lambda_2(\mathcal{G}) \leq \lambda_1(\mathcal{G})$.

In [5], some of the many results known for Laplacian matrices are given. Fiedler [2] proved that \mathcal{G} is a connected graph if and only if $\lambda_{n-1}(\mathcal{G}) > 0$. This eigenvalue is called the algebraic connectivity of \mathcal{G}.

We recall that a tree is a connected acyclic graph.

Let T be an unweighted rooted tree of k levels such that in each level the vertices have equal degree. We agree that the vertex root is at level 1. For $j = 1, 2, 3, \ldots, k$, let d_{k-j+1} and n_{k-j+1} be the degree of the vertices and the number of them in level j. Observe that d_k is the degree of the vertex root, $n_1 = 1$ and n_1 is the number of vertices in level k (the number of pendant vertices). We assume $d_k > 1$. Let $\Omega = \{j : 1 \leq j \leq k - 1, n_j > n_{j+1}\}$ and let $\sigma(A)$ denotes the set of eigenvalues of a matrix A. In [6, 2005], we characterized completely the eigenvalues of $L(T)$. They are the eigenvalues of leading principal submatrices of a nonnegative symmetric tridiagonal matrix of order $k \times k$. More precisely

Theorem 1 [6, Theorem 4]. If T_j is the $j \times j$ leading principal submatrix of the $k \times k$ symmetric tridiagonal matrix

$$
T_k = \begin{bmatrix}
1 & \sqrt{d_2-1} & \sqrt{d_3-1} & \cdots & \sqrt{d_{k-1}-1} & \sqrt{d_k} \\
\sqrt{d_2-1} & d_2 & \sqrt{d_3-1} & \cdots & \sqrt{d_{k-1}-1} & \sqrt{d_k} \\
\sqrt{d_3-1} & d_3 & \sqrt{d_4-1} & \cdots & \sqrt{d_{k-1}-1} & \sqrt{d_k} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\sqrt{d_{k-1}-1} & d_{k-1} & \sqrt{d_{k-2}-1} & \cdots & \sqrt{d_2-1} & \sqrt{d_1} \\
\sqrt{d_k} & \sqrt{d_k} & \sqrt{d_k} & \cdots & \sqrt{d_2-1} & d_1
\end{bmatrix},
$$

then

(a) $\sigma(L(T)) = (\cup_{j \in \Omega} \sigma(T_j)) \cup \sigma(T_k)$

and

(b) the multiplicity of each eigenvalue of the matrix T_j, as an eigenvalue of $L(T)$, is $n_j - n_{j+1}$ for $j \in \Omega$, and the eigenvalues of T_k, as eigenvalues of $L(T)$, are simple.

Let $s \geq 2$ and $t \geq 2$ be given integers. We denote by $T_{s,t}$ the rooted tree of three levels and order $st + 1$ such that the vertex root has degree s, the vertices in level 2 have degree t and the $s(t - 1)$ pendant vertices are in level 3. Let us illustrate the above notations and Theorem 1 with the tree $T_{3,5}$.

Example 1. For the tree $T_{3,5}$ we have $s = 3, t = 5, n_1 = (t - 1)s = 12, d_1 = 1, n_2 = s = 3, d_2 = t = 5, n_3 = 1, d_3 = s = 3$ and $\Omega = \{1, 2\}$. From Theorem 1
\[\sigma(L(T_{s,t})) = \sigma(T_1) \cup \sigma(T_2) \cup \sigma(T_3), \]

where

\[T_1 = [1], \quad T_2 = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} \quad \text{and} \quad T_3 = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 5 & \sqrt{3} \\ 0 & \sqrt{3} & 3 \end{bmatrix}. \]

Lemma 1 [3]. If \(A \) is an \(m \times m \) symmetric tridiagonal matrix with nonzero codiagonal entries then the eigenvalues of any \((m-1) \times (m-1) \) principal submatrix strictly interlace the eigenvalues of \(A \). In particular, the eigenvalues of such a matrix \(A \) are simple.

We are ready to characterize the eigenvalues of \(L(T_{s,t}) \) and their multiplicities.

Theorem 2. If

\[T_1 = [1], \quad T_2 = \begin{bmatrix} 1 & \sqrt{t-1} \\ \sqrt{t-1} & t \end{bmatrix} \quad \text{and} \quad T_3 = \begin{bmatrix} 1 & \sqrt{t-1} & 0 \\ \sqrt{t-1} & t & \sqrt{3} \\ 0 & \sqrt{3} & s \end{bmatrix}, \]

then

\[\sigma(L(T_{s,2})) = \sigma(T_2) \cup \sigma(T_3) \quad (1) \]
\[\sigma(L(T_{s,1})) = \sigma(T_1) \cup \sigma(T_2) \cup \sigma(T_3) \quad \text{if} \ t > 2. \quad (2) \]

(b) The largest eigenvalue of \(T_3 \) is the largest eigenvalue of \(L(T_{s,1}) \) and the largest eigenvalue of \(T_2 \) is the second largest eigenvalue of \(L(T_{s,1}) \).

(c) The following table gives the eigenvalues of \(L(T_{s,t}) \) together with their corresponding multiplicities which are indicated in the last column:

| \(\lambda_1(T_{s,t}) = \frac{1}{2} \left(t + 1 \pm \sqrt{t^2 + 2t - 3} \right) \) | \(\lambda_2(T_{s,t}) = \frac{s(t - 2)}{s - 1} \) |
| \(\lambda_3(T_{s,t}) = \cdots = \lambda_s(T_{s,t}) = \frac{1}{2} \left(t + 1 + \sqrt{t^2 + 2t - 3} \right) \) | 1 |

Proof. (a) If \(t = 2 \) then \(n_1 = n_2 = s \) and thus \(\Omega = \{2\} \). If \(t > 2 \) then \(n_1 = s(t - 1) > n_2 = s \) and thus \(\Omega = \{1, 2\} \). We now apply Theorem 1, part (a), to obtain (1) and (2).

(b) From Lemma 1, we have that the eigenvalue of \(T_1 \) strictly interlaces the eigenvalues of \(T_2 \) and the eigenvalues of \(T_2 \) strictly interlace the eigenvalues of \(T_3 \). Thus (b) is proved.

(c) The eigenvalues of \(L(T_{s,t}) \) are easily obtained solving the characteristic equations of \(T_1, T_2 \) and \(T_3 \). Finally, from Theorem 1, part (b), and the fact that the characteristic equations of \(T_1, T_2 \) and \(T_3 \) do not have common roots, (c) is proved. \(\square \)

Remark 1. The eigenvalues of \(L(T_{s,t}) \) in decreasing order are

\[\lambda_1(T_{s,t}) = \frac{1}{2} \left(s + t + 1 + \sqrt{(s + t + 1)^2 - 4(st + 1)} \right), \]
\[\lambda_2(T_{s,t}) = \lambda_3(T_{s,t}) = \cdots = \lambda_s(T_{s,t}) = \frac{1}{2} \left(t + 1 + \sqrt{t^2 + 2t - 3} \right). \]
\[
\lambda_{s+1}(\mathcal{F}_{s,t}) = \lambda_{s+2}(\mathcal{F}_{s,t}) = \cdots = \lambda_{s(t-1)}(\mathcal{F}_{s,t}) = 1,
\]
\[
\lambda_{s(t-1)+1}(\mathcal{F}_{s,t}) = \lambda_{s(t-1)+2}(\mathcal{F}_{s,t}) = \cdots = \lambda_{st}(\mathcal{F}_{s,t}) = \frac{1}{2} \left(t + 1 - \sqrt{t^2 + 2t - 3} \right),
\]
\[
\lambda_{st+1}(\mathcal{F}_{s,t}) = 0.
\]

Observe that
\[
\lambda_s(\mathcal{F}_{s,t}) = \frac{1}{2} \left(t + 1 + \sqrt{t^2 + 2t - 3} \right)
\]
for all \(s \geq 2 \).

The case \(s = 2 \) and \(t \geq 4 \) is studied by Shao et al. in [8]. They prove the following theorem.

Theorem 3 [8, Theorem 2.1(a)]. If \(\mathcal{F} \) is a tree of order \(2t + 1 \) with \(t \geq 4 \) then
\[
\lambda_2(\mathcal{F}) \leq \frac{1}{2} \left(t + 1 + \sqrt{t^2 + 2t - 3} \right),
\]
with equality if and only if \(\mathcal{F} = \mathcal{F}_{2,t} \).

Remark 2. A direct computation proves that (4) is also true for trees of order 5 \((t = 2)\) and order 7 \((t = 3)\) with equality if and only if \(\mathcal{F} = \mathcal{F}_{2,2} \) and \(\mathcal{F} = \mathcal{F}_{2,3} \) respectively. Therefore, if \(\mathcal{F} \) is a tree of order \(2t + 1 \) with \(t \geq 2 \) then
\[
\lambda_2(\mathcal{F}_{2,t}) = \max\{\lambda_2(\mathcal{F}) : \mathcal{F} \text{ is a tree of order } 2t + 1\}.
\]

In [8] the above mentioned authors propose the following conjecture.

Conjecture 1. Let \(t, s \) be positive integers with \(s \geq 3 \) and \(t \geq 2 \). Then
\[
\lambda_s(\mathcal{F}_{s,t}) = \max\{\lambda_s(\mathcal{F}) : \mathcal{F} \text{ is a tree of order } st + 1\}.
\]

In this paper, we prove that this conjecture is true.

2. The largest \(s \)th Laplacian eigenvalue of trees of order \(st + 1 \)

We recall the following facts.

Let \(\mathcal{G} \) be a graph and let \(\mathcal{G}' = \mathcal{G} + e \) be the graph obtained from \(\mathcal{G} \) by inserting a new edge \(e \) into \(\mathcal{G} \).

Lemma 2 [1, Theorem 2.1]. The Laplacian eigenvalues of \(\mathcal{G} \) interlace the Laplacian eigenvalues of \(\mathcal{G}' \):
\[
0 = \lambda_{n+1}(\mathcal{G}') = \lambda_n(\mathcal{G}) \leq \lambda_n(\mathcal{G}') \leq \cdots \leq \lambda_2(\mathcal{G}') \leq \lambda_2(\mathcal{G}) \leq \cdots \leq \lambda_1(\mathcal{G}) \leq \lambda_1(\mathcal{G}').
\]

From Lemma 2, we immediately have the following corollary.

Corollary 1. If \(\mathcal{G}_1 \) is a subgraph of order \(m \) of the graph \(\mathcal{G} \) then \(\lambda_k(\mathcal{G}_1) \leq \lambda_k(\mathcal{G}) \) for \(k = 1, 2, \ldots, m \).

Lemma 3 [4]. If \(A \) is an \(n \times n \) Hermitian matrix with eigenvalues \(\lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_1 \) and \(B \) is an \(m \times m \) principal submatrix of \(A \) with eigenvalues \(\mu_m \leq \mu_{m-1} \leq \cdots \leq \mu_1 \) then
\[
\lambda_{n-m+i} \leq \mu_i \leq \lambda_i \\
\text{for } i = 1, 2, \ldots, m. \text{ If } m = n - 1 \text{ then} \\
\lambda_{i+1} \leq \mu_i \leq \lambda_i \\
\text{for } i = 1, 2, \ldots, n - 1.
\]

Lemma 4 [7]. Let \(T \) be a tree of order \(n \). For any positive integer \(a \) there exists a vertex \(v \) of \(T \) such that there is one component of \(T - v \) with order not exceeding \(\max\{n - a - 1, a\} \) and all the other components of \(T - v \) have orders not exceeding \(a \).

Before to state the next lemma, let us denote by \(L_v(G) \) the principal submatrix obtained by deleting from the Laplacian matrix \(L(G) \) the row and column corresponding to the vertex \(v \) of \(G \).

Lemma 5 [8]. Let \(T = (V, E) \). Let \(v \in V \). Let \(T_1, T_2, \ldots, T_p \) be all the connected components of \(T - v \). For \(j = 1, 2, \ldots, p \), let \(v_j \) be the unique vertex in \(T_j \) such that \(vv_j \in E \) and let \(T_j' \) be the tree obtained from \(T_j \) by adding the vertex \(v \) and the edge \(vv_j \) to \(T_j \). Then, labeling the vertices of \(T \) such that \(v \) is the first one and, for \(1 \leq i < j \leq l \), any vertex of \(T_i \) preceedes any vertex of \(T_j \), we have

\[
L_v(T) = L_v(T_1') \oplus L_v(T_2') \oplus \cdots \oplus L_v(T_p') \tag{5}
\]

From now on, let

\[
b(t) = \frac{1}{2} \left(t + 1 + \sqrt{t^2 + 2t - 3} \right).
\]

Clearly, for \(t \geq 2 \), \(b(t) \) is a strictly increasing function and \(t < b(t) \). From (3), we recall that

\[
\lambda_s(T_{s,t}) = \frac{1}{2} \left(t + 1 + \sqrt{t^2 + 2t - 3} \right)
\]

for all \(s \geq 2 \).

Let us denote by

\[
\lambda_n(A) \leq \lambda_{n-1}(A) \leq \cdots \leq \lambda_2(A) \leq \lambda_1(A),
\]

the eigenvalues of an \(n \times n \) matrix \(A \) with only real eigenvalues.

Lemma 6. Let \(T \) be a tree of order \(r \) with \(r \leq t \) and let \(T' \) be the tree of order \(r + 1 \) obtained from \(T \) by adding a new vertex \(v \) to \(T \) and a new edge \(uv \) between \(v \) and some vertex \(u \) of \(T \). Then

\[
\lambda_1(L_v(T')) \leq b(t).
\]

Proof. Take two copies of the tree \(T' \). Let \(\mathcal{D} \) be the tree of order \(2r + 1 \) obtained by identifying the two vertices \(v \) in the two copies of \(T' \). Then

\[
L_v(\mathcal{D}) = L_v(T') \oplus L_v(T').
\]

From Lemma 3, we have

\[
\lambda_1(L_v(T')) = \lambda_2(L_v(\mathcal{D})) \leq \lambda_2(L_v(\mathcal{D})) \leq \lambda_1(L_v(\mathcal{D})) = \lambda_1(L_v(T')).
\]
Hence
\[\lambda_2(\mathcal{G}) = \lambda_2(L(\mathcal{G})) = \lambda_1(L_v(\mathcal{T}')). \]
Thus, by Theorem 3, we have
\[\lambda_1(L_v(\mathcal{T}')) = \lambda_2(\mathcal{G}) \leq b(r) \leq b(t), \]
and the proof is complete. □

We are ready to prove our main result in this paper.

Theorem 4. If \(s \geq 2 \) and \(t \geq 2 \) are given integers then
\[\lambda_s(\mathcal{T}_{st}) = \max\{\lambda_s(\mathcal{T}) : \mathcal{T} \text{ is a tree of order } st + 1\}. \]

Proof. By induction on \(s \). From Theorem 3 and Remark 2, the result is true for \(s = 2 \). Let \(s \geq 3 \).

We assume that
\[\lambda_{s-1}(\mathcal{T}_{s-1,r}) = \max\{\lambda_{s-1}(\mathcal{T}) : \mathcal{T} \text{ is a tree of order } (s-1)t + 1\}. \]

Let \(\mathcal{G} \) be a tree of order not exceeding \((s-1)t + 1\). Let \(\mathcal{T} \) be a tree of order \((s-1)t + 1\) obtained from \(\mathcal{G} \) by inserting new edges. From Corollary 1 and the hypothesis of induction, it follows that
\[\lambda_{s-1}(\mathcal{G}) \leq \lambda_{s-1}(\mathcal{T}) \leq \lambda_{s-1}(\mathcal{T}_{s-1,r}). \]

Since \(\lambda_{s-1}(\mathcal{T}_{s-1,r}) = b(t) \), we have
\[\lambda_{s-1}(\mathcal{G}) \leq b(t) \tag{6} \]
for all tree \(\mathcal{G} \) of order not exceeding \((s-1)t + 1\). Let \(\mathcal{T} \) be a tree of order \(st + 1 \). Let \(a = t \).

Then, \(\max\{st + 1 - t - 1, t\} = (s-1)t \). From Lemma 4, there exists a vertex \(v \) of \(\mathcal{T} \) such that there is one component of \(\mathcal{T} - v \), say \(\mathcal{T}_1 \), with order not exceeding \((s-1)t \) and such that all the other components of \(\mathcal{T} - v \), say \(\mathcal{T}_2, \ldots, \mathcal{T}_p \), have orders not exceeding \(t \). Let \(\mathcal{T}_1', \mathcal{T}_2', \ldots, \mathcal{T}_p' \) as in Lemma 5. Thus, \(\mathcal{T}_1' \) has order not exceeding \((s-1)t + 1 \) and \(\mathcal{T}_2', \ldots, \mathcal{T}_p' \) have orders not exceeding \(t + 1 \).

We apply (6) to the tree \(\mathcal{T}_1' \) to obtain
\[\lambda_{s-1}(L_v(\mathcal{T}_1')) \leq \lambda_{s-1}(\mathcal{T}_1') \leq b(t). \tag{7} \]
We now apply Lemma 6 to the trees \(\mathcal{T}_2', \ldots, \mathcal{T}_p' \) to get
\[\lambda_1(L_v(\mathcal{T}_j')) \leq b(t) \quad \text{for } j = 2, 3, \ldots, p. \tag{8} \]
We claim that
\[\lambda_{s-1}(L_v(\mathcal{T})) \leq \max\{\lambda_{s-1}(L_v(\mathcal{T}_1')), \lambda_1(L_v(\mathcal{T}_2')), \ldots, \lambda_1(L_v(\mathcal{T}_p'))\}. \tag{9} \]
Suppose that
\[\lambda_{s-1}(L_v(\mathcal{T})) > \max\{\lambda_{s-1}(L_v(\mathcal{T}_1')), \lambda_1(L_v(\mathcal{T}_2')), \ldots, \lambda_1(L_v(\mathcal{T}_p'))\}. \]
From this assumption and (5), we obtain that there are at most \(s - 2 \) many eigenvalues of \(L_v(\mathcal{T}) \) which can be greater than or equal to \(\lambda_{s-1}(L_v(\mathcal{T})) \). Clearly, this is a contradiction. Thus the inequality (9) is proved. From (9), (7) and (8), it follows that
\[\lambda_{s-1}(L_v(\mathcal{T})) \leq b(t). \]
Finally, from this inequality and the fact that \(\lambda_s(\mathcal{T}) \leq \lambda_{s-1}(L_v(\mathcal{T})) \), we have
\[\lambda_s(\mathcal{T}) \leq b(t) = \lambda_s(\mathcal{T}_{st}), \]
which completes the proof. □
Example 2. Let $n = 31$. Then

\[
\begin{align*}
\max\{\lambda_2(\mathcal{T}) : \mathcal{T} \text{ is a tree of order } 31\} &= \lambda_2(\mathcal{T}_{2,15}) = 15.9073 = b(15), \\
\max\{\lambda_3(\mathcal{T}) : \mathcal{T} \text{ is a tree of order } 31\} &= \lambda_3(\mathcal{T}_{3,10}) = 10.9083 = b(10), \\
\max\{\lambda_5(\mathcal{T}) : \mathcal{T} \text{ is a tree of order } 31\} &= \lambda_5(\mathcal{T}_{5,6}) = 6.8541 = b(6), \\
\max\{\lambda_6(\mathcal{T}) : \mathcal{T} \text{ is a tree of order } 31\} &= \lambda_6(\mathcal{T}_{6,5}) = 5.8284 = b(5), \\
\max\{\lambda_{10}(\mathcal{T}) : \mathcal{T} \text{ is a tree of order } 31\} &= \lambda_{10}(\mathcal{T}_{10,3}) = 3.7321 = b(3)
\end{align*}
\]

and

\[
\begin{align*}
\max\{\lambda_{15}(\mathcal{T}) : \mathcal{T} \text{ is a tree of order } 31\} &= \lambda_{15}(\mathcal{T}_{15,2}) = 2.6180 = b(2), \\
\end{align*}
\]

rounded to 4 decimal places.

Acknowledgement

The author thank the referee for the valuable comments which led to an improved version of the paper.

References