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ABSTRACT. — We describe a new approach to interpolate by the complex method quasi-
Banach couples formed by real-intermediate spaces. End-point cases are also considered, and
applications are given to fun:tion spaces and to operator spaces. © Elsevier, Paris.

0. Introduction

Among the known relationships between real and complex interpolation
methods, the following formula due to Lions, BERGH and KARADzZOV
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18 F. COBOS. I. PEETRE AND L. E. PERSSON

(see [1], Theorem 4.7.2) is specially useful in characterizing complex
interpolation spaces

(1 (Ao, A1)s,. g~ (Ao. Ade, o ]n = (Ao, A1)a

Here (Agy, Ap) is any Banach couple, 0 < #y, 61, A < 1, § =
(1 =Xy + M1, 1 < qu, 1 < oo, assuming however that ¢y and ¢
are not both equal to oc, and 1/q = (1 — X)/qy + M q1.

In this paper, we investigate the validity of (1) and its end-point versions
for quasi-Banach couples. This question has already been studied by
several authors (see, for example, [4], [5] and [11]) and the outcome has
found important applications in determining complex interpolation spaces
between quasi-Banach couples (for instance, H,-spaces with p < 1).

The usual approach to this problem in the literature is based on the
definition of the complex method. However, our techniques rest on the
construction of the real interpolation space. So, we prove the left side
inclusion in (1) by realizing (Ag, A1)y, as a J-space. This gives a
new proof for a result in [4]. For the right side embedding we use the
description of (A, A1)y 4 by means of the K-functional.

This new approach also works in the end-point cases, that is to say,
when we take A; instead of (Ay. A1)g, ,,. In particular, we show that
for all « € Ay N Ay we have

Nalliae oo < Mllaliga, 40, ,. 410

where 0 < 6, A < 1, 0 < ¢ < oc and (Ay, A1) is a quasi-Banach couple
satisfying a quite natural hypothesis (see condition (h) in the next section).
For the special case ¢ = 1, this formula was obtained by PIsiEr [11],
page 115, under a rather restrictive assumption on the couple (Ao, A1).

Ideas similar to those developed here have been used in [5] and [3] to
investigate the connection between real and complex interpolation spaces
for some particular Banach couples.

In the last section of the paper, applications are given to function spaces
and to operator spaces. We also show that complex reiteration formula is
valid for quasi-Banach couples formed by real interpolation from a couple
satisfying (h).
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ON THE CONNECTION BETWEEN REAL AND COMPLEX INTERPOLATION 19

1. Interpolation of quasi-Banach couples

We start by reviewing the interpolation methods that we shall deal with.
Let (Ag, A1) be a quasi-Banach couple, let 0 < # < 1 and 0 < ¢ < oc. The
real interpolation space (Ag, A1)y, consists of all elements o € Ag + A;
having a finite quasi-norm

“(1,”9_(1 = (ZI/EZ (2—61/K(21/’ a))rj)l/‘l

(the sum should be replaced by the supremum if ¢ = oc). Here, for
0 <t < oo, we put

K {(t.a) = K (t.a: Ay, A1) = inf {||ag|| 4, +t|latl4, :a = ap+ar,a; € A;}

The space (Ay. A1)y, can also be described by means of the ./-functional
J(t a) = J(t. a; Ao. Ar) = max {l|alLs,. Halls, b

It turns out that a € (Ay, A1), if and only if a can be represented
in the form

D>
a= E u,  (convergence in Ay + Aq)
V=—x

with (’ll,,,) C Ayg N A; and

(2) (Zj:_x‘ (2_911 J (21/’ uy))g)l/q < %o.

Moreover, taking the infimum of the values of the sum (2) over all
representations of a as above, we get a quasi-norm equivalent to || - ||y .
In the sequel, we denote by || - ||g., any of these two quasi-norms. This
however will not cause any confusion. See [1] and {14] for full details
on this construction.

In order to introduce the complex interpolation space [Ag, A1)y, consider
the open strip S = {z € C; 0 < Rez < 1} and let F(S) be
the space of all scalar valued functions f continuous and bounded on
S ={z€C; 0<Rez <1} and analytic on S. Denote by F (Ag, A1)
the collection of all functions f that can be written as a finite sum
f(z)= Zi\,:l fr (2) ar where fi. € F(S) and a;. € Ag N A1. We put

Ifllr = max sup.eg [If (is)ll4y, supser If (1 +is)ll.4, }
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20 F. COBOS, J. PEETRE AND L. E. PERSSON

and for all a € Agp N A7 let

lallgy = inf {{|fll7 : f(#) =a, f€F (A A1)}.
Since the maximum principle may fail for functions taking values in
a quasi-Banach space, the functional || - || is, in general, only a
semi-quasi-norm. Let
N = {(L € Ag N Ay ”““[H] = U}.
then (A9 N A1/N, || - [|jg)) is a quasi-normed space. We define [Ag. Ai]s
as the completion of (Ay N A1/N, || - [ljg) (see [4D).

Observe that for Banach couples we recover the usual complex
interpolation method (see [1] and [14]). In the present quasi-Banach
context, the presence of the quotient Ayg N A;/N and the subsequent
completion produce important obstructions in developing the theory. We
shall discuss this matter a little later in this section.

Proceedings as in the Banach case, one can check that if (By, B1) is
another quasi-Banach couple and 7" : A; — B; is a linear operator with
|lelj”B] < Mj||(lj||,;7 (=0, 1), then for 0 < # < 1 and a € Ay N 43
we have ‘

ITalls, 5., <My~ M{llallja, 4., -

We can then extend T' : (Ao N Ay, || - [ljg) — [Bo. Bils to an operator
acting from [Ay, Ailg into [By, Big that we still denote by the same
letter 7. Subsequently, we refer to this result as the interpolation theorem.
Due to the quotient and extension involved in it, we must be more careful
when using the interpolation theorem than in the case of Banach spaces.

The next property can be also established as in the Banach case: Let
0< 8 <1and f e F (A, Ap), then

@) logllf Ol < [ Toglf is)la, P 0. 5)ds

e O

+ [ ol (1 is)la, Py (6. 5) ds.

¢

Here P; (6, s) are the Poisson kernels for S. Thus

/ Po(6, s)ds = 1 — 6, /'Pl(e,s)dsze.

o =G jee
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ON THE CONNECTION BETWEEN REAL AND COMPLEX INTERPOLATION 21

1-6)as 8:3s

Take now «, 8 > 0. Since the functions e and ¢”7° are convex,
using [12], Lemma 2.1.1 (or [2], Prop. 3) it follows from inequality (3) that

: h 1-6¢ 1/a
@) ||f(9)|l[9] < (—1-:-_—9 g Hf(zs)“(%_ )“P() (07 s) ds>
. 1/4
(% (/_x’ £ (L +is)l Py, 3)d3> .

Let us analyze the relationship between [Ap, A1}y and spaces Ag N A4,
Ag + Ai1. Here we are going to exhibit important differences to the Banach
case.

If a € Ay N Ay, it is easy to see that

&) lallg < max {lla|l4,, llall4,} = llallina, -

But the quasi-norm of [Ay, A1)y may be identically zero (see [13], § 3).
If for a given couple (Ay. A1) it turns out that || - || is a quasi-norm,
then we have the continuous (and dense) inclusion

AyNA] — [AU, Ally.

On the other hand, |Ag, A1)y may not be identifiable to a subspace of
Ap+ A;. This problem may arise even if (49N Ay, || - [|jg)) is continuously
embedded in Ay + A; because the extension of this map to [Ap, A1)y may
fail to be one to one.

One has some control on [Agy, Ajly if the couple (A, A;) satisfies the
following condition (see [9], § 5):

(h) There exists 0 < #) < 1 and C > 0 such that for all f & ]:"(A(), Ar)
and all 0 < t < ¢

K (t, J (60)) < C sup.eps {K (¢, f(2))}-

Here 08 stands for the boundary of S and F (A, A1) is defined similarly
to F (Ap, A1) but allowing now the vectors ay. to belong to Ag + Aj.

Indeed, let us first show that if (h) holds for some 6y € (0, 1) then
it holds for every # € (0, 1) and with the same constant: Take any
f € F(Ap, A1) and let g be a conformal map of S onto itself such that
g(fo) = 6. Then f(f) = f(g(f)) and f o g belongs to F (Ay, A1)
as well. Where
K (t, f(8)) = K(t, /(g(60))) <C sup.cps {K (¢, f(g(2)))}

=C SUPweos {K (tv f (w))}
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22 F. COBOS, J. PEETRE AND L. E. PERSSON

Now, given any a € Ay N A, we can check that
llall 1,44, = K (1, a) < Cllal|jq

or even the stronger inequality

lalle. = sup,ez (27" K (2", a)) < Cllalljg

by using the same arguments as in the Banach case (see [1], Theorem
4.7.1). The constant C in these inequalities is the same as the one in (h).
As a consequence, we see that || - ||[] is @ quasi-norm in this case and so
Ag N Ajp is densely and continously embedded in [Ay, A;]g.

For v € Z, put
F,=(Ap+ 41, K (2", )

and consider the couple (F,, F,,). The K-functional for (F,,, F),) is related
to the quasi-norm || - ||r, = K (2", -; A, A1). Namely,

K (t, a; F,, F,) <min (1, t)|jellr, <cK(t, a; F., F.).

Here c is the constant in the quasi-triangle inequality for || - ||r, (ie.
¢ = max{c4,, ¢4, } where ¢4, is the corresponding constant for A It
is clear that if (Ag, A;) satisfies (h) with constant C then (F,,, F,) also
satisfies (h) now with the constant M = ¢ . Our previous considerations
show that for any a € F), it holds

lallr, <cdllallr,+r <cMlallg, r,), <cMlalrnr, =cMla|r,.

Hence, for every # € (0. 1), we have

(6) [E/a E/]H = E/

with equivalence of quasi-norms. Furthermore, composing functions of

F (F,, F,) with conformal mappings of S onto itself one can check that
[E/-, FI/]H = [E/a Fz/]l}

with equality of quasi-norms for any 6, n € (0, 1).

For later use we calculate now the space [27"* F,, 27" F]5. Here
50, 81 € R and by 277% F,, we mean the space

(Ao + Ay, 277 K (2, Ag, Ar)).
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ON THE CONNECTION BETWEEN REAL AND COMPLEX INTERPOLATION 23

First note that i (Ag, A;) satisfies (h) then the couple
(2770 F,, 27" F,) also satisfies (h), because this couple has the
same constant in (h) as the couple (F,, F,), this again in view of
the formula

K (t, a; 27" F,, 7" F,) = 27" K (127" 7%, a; F,, F,).

Since the transformation f (z) — 27¥% (1=3)=¥%1= £ (2} is an isometry
between F (27V* F,,27"% F,)and F (F,, F,)), for every a € F,, we have

/SI

lalliz-vs0 p,.2-0 1) = 27" Nl £ ~ 27 NlallF, -
Here s = (1 — 0) sy + # s1 and, as we showed in (6), the constants in the
equivalence ~ only depend on the couple (Ag, A1). Therefore

(7) [2_.1/.%0 Rl’ 2—1/.91 E/]H — 2—-1/.5‘ -FV~
Examples of couples satisfying hypothesis (h) are (L,,, L, ) and
(Hpy, Hp,) (see [9], § 5).

For more information on the complex method for quasi-Banach couples
we refer to [4], [12], (7], [13], (2]

2. Connections between real and complex interpolation

Let (A, )vez be a sequence of quasi-Banach spaces, let c4 be the
constant in the quasi-triangle inequality of || - || 4, and suppose that

sup,ez {ca, } < 0.

For 0 < ¢ < o0, we denote by £, (A, ) the usual vector-valued £,-space
defined by means of the sequence (A, ), that is to say,

£,(4) = {(a): ay € Ay and||(a)lle, (1,) < o0}

where

elle, 4y = o Ml )M

(with the usual supremum interpretation for the case g = 00).

The following result will be important in our later considerations. The
proof is similar to the one in the case for Banach couples, but in the present
situation some new difficulties arise in carrying over the arguments.
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24 F. COBOS, J. PEETRE AND L. E. PERSSON

LemMma 1. — Ser {(A,, By)}uez be a sequence of quasi-Banach couples
such that

(8) sup,ez {ca,, cp | <o
let 0 <0 <1,0<q, @1 < oo, assuming however that qy and qy are not
both equal to oo, and let 1/q = (1 —6)/q0 + 0/q1.

Denote by D the set of all sequences a = (a,) having only a finite
number of coordinates a,, 7 0 and with a,, € A, N B, or every v € 1.
Given any a € D, we have

9) Nalli,, (4010, Bl < llalle, 4, B30 -

Moreover, if for each couple (A,,, B,) the functional || - ||jg) is a quasi-norm
in A, N B, then

(10) ({q ([A,,, Bv]ﬁ) = [qu (A,,), éql (B,,)].q.
Proof. — Assumption (8) gives that

supyez {c1,.8,],} < ¢
so the quasi-Banach space ¢, ([A,, By]s) is well-defined.

Inequality (9) follows by the same argument as in [14], Theorem
1.18.1/Step 2.

In order to establish (10), let us first show that for any ¢ = (a,) €
é(jo (AV) N ‘gq] (Bz/) we have

(1 lalle, ((1,.8.00 < lalli,, a0y, (B -

Let f = (f,) € F({y (An). £y, (By,)) with f, € F(A,. B,) and
fv (0) = a, for every v € Z. The choice a = qo/(1 —#0). 5 = q1/8
in (4) yields

"G (1_('})/‘11;
1 14
Ifo (O, 8,00 < <—1 y / 1 @)Y Po (8. ) dS)

1 [~ . 8/
' (5 / If (1 +is)l5 Pr (8, 5) ds) .

2
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ON THE CONNECTION BETWEEN REAL AND COMPLEX INTERPOLATION 25

Hence, using Holder’s inequality with (1—6)q/qo+6 q/q1 = 1, we derive

>0 1 x e (1-8) ¢/ qo
lalle, (4,.B.16) < [Zxc—o@<1—__@/ | ||f,/(7,5)||ﬁ’vp()(9,s)ds)
1 aCc ) fq/qi11/4q
: (5 / I fir (1 + zs)““ P (0, 3)ds> ]

(1—9 / Z,, £ ()| Py (8, 5) ds )(I—H)/qo
( / Z ny 14is)|4 Py (6, 5) ds)‘*/m

- 4
< (supser | (i) H(%(Au))l H(SupseR“f (1+“’)||( (B.))
< WANF (o)t (BY-

Taking the infimum (11) follows.

By assumption, for zach couple (A,, B,) the functional || - || is a
quasi-norm in A, N B,. This implies that A4, N B, is dense in [A4,, B, |y
for each v € Z and so D is dense in £, ([A,, Bulg).

On the other hand, as a consequence of (11), we find that
I+ ey, (Auy.0,, (B, 18 @ quasi-norm in £y, (Ay) N £y, (By). Whence
Ly, (Ay) Nty (By) is dense in [£,, (Ay), £y, (By)]p. Next we show that
any element of £, (A, ) N4, (B,) can be approximated by elements of
D, which implies that D is also dense in [£y, (A,), £y, (By)]s.

Given a = (a,) € {4, (A,) N4y, (B,), let us associate to a the sequence
(a') of elements of D defined by

n n . n ay if 'U} S n
a' = (a,) with a) = .
0 otherwise

We know that at least one of the g; is finite. Let it be go. Then
la—-a"|l, (4,) =0 as n—oc.
Moreover

le —a"lle,, () < llalle, (8
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26 F. COBOS, J. PEETRE AND [.. E. PERSSON

Hence

1-6 o
la = a"llie,, oty (B < lla=a"ll 70 lla=a®ll7 (s,
oy l=6 [ YV oo ~
< lla—a H[qU ) ““”(‘ql g,y — 0 as n—oc.

The density of D is [{,, (A.), {4, (By)]s and ¢, ([A,, By ]y) together with
(9) and (11) give equality (10). The proof is complete. W

Next, consider a quasi-Banach couple ( Ay, A1) fulfilling hypothesis (h)
and, for v € Z and sy, s1 € R, put

QW = (A() 1 Ay, 2“%‘1’[((21’7 ))

As we checked in Section 1, in this hypothesis, for each couple
(277" F,,, 27" F,,) the functional || - |4 is a quasi-norm in 27" F;, N
271" F,,. Besides, the constants in the quasi-triangle inequality satisfy

Sup,ez {¢2-s0v F,. C2-n1v p, } <max{cy,, ca,} < oc.
Hence, as a direct application of (7) and of Lemma 1 we obtain
COROLLARY 2. — Let 0 < qp, q1 < 20 or 0 < g9 < 00 and ¢1 = o<,
let —00 < 89, 51 < 00, 0 < 0 <1, 1/g=(1-8)/q +8/qx and
s = (1—6)sy+ 6s1. Then
(i [l (275 F,). by, (27 F)lg = £, (27 F).

In particular, for Ay = A1 = C, we get with equality of quasi-norms

(11) [qu (2—5011)q qu (2—-’5111)]9 — gq (2—5‘1/)'
Now we are in a position to establish

THEOREM 3. — Let (Ay, A1) be a quasi-Banach couple satisfying (h).
Let 0 < 6y, 01, A< 1,0< qy, g1 < o0 orQ < gy < oo andq =oc. Put
0= (1=X)bg+ 01, 1/qg=(1-N)/g+ A q and E; = (Ay, A1)s,.q,.
Then there exists a constant M such that for all a € Eg N Ey we have

llall 1o, 4130, < llallig,. £, -
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ON THE CONNECTION BETWEEN REAL AND COMPLEX INTERPOLATION 27

Proof. — Write as before
27V F, = (Ao + A1, 277K (27, 4)).

Realizing E; = (Ay, A1)y, q, as a K-space, we see that the operator R
associating to each a € E; the constant sequence R(a) = (..., a,qa,,...)
is bounded from

Ey— 4y (27" F,) and E1—{, (27" F)

and its quasi-norm is <{ 1 in both cases. Therefore, interpolating by the
complex method, we cbtain that

R : [Ey, By — [ly 27" F)), £y, (277" F))

is bounded as well. We can identify the last space by using Corollary 2/(i).
Hence

R : [Ey, E1]y — 4, (27" F,)

is bounded. In other words, there is a constant M > 0 such that for all
a € Eyn Ey we have

lall 4o, 4000, = IR, 2-ov ) < Mllalig,. £y, - W

The same method works in the end-point case where we replace
(AO? Al)(ﬂ.lh by Al:

THEOREM 4. — Let (B, A1) be a quasi-Banach couple fulfilling condition
(h). Let 0 < p < 1, 0 < g < oo and put

A = (B, A1)y.q-

If0< 6 <1and1/p=(1-6)/q then there is a constant M such that
for all a € Ay N A1 we have

lall 1o, A1)e, < Mllallpay. 4, -

Proof. — Given A > 0, we now denote by A F), the space B + 4
quasi-normed by A K (2", -; B, A;). We get again that the operator

R N A() — fq (2—”” Fy)

is bounded. Moreover, a direct estimate shows that

R: A — (. (27VF,)

BULLETIN DES SCIENCES MATHEMATIQUES



28 F. COBOS. J. PEETRE AND L. E. PERSSON

is bounded. So, interpolating and using Corollary 2/(i) we derive the
boundedness of

R - [AO./ AI]H - [Eq (2—1)11 E/)s Ex. (2~1/ E/\)]H — {{1, (2—((1—47’)!]4-8)1/ I;V)'
Whence there is a constant M such that for all « € A9 N A; we have

HG’II(BU%)H,—(»),,+u_,) <M ||a||[4’1t)~~‘11}(}'

On the other hand, according to the reiteration theorem for the real method
({1], Theorem 3.11.5), we have

(B, A1) (1-6)yro.p = ((B. A1) .o A1)ep = (Ao, Aoy
which establishes the result, W

In the special case ¢ = 1, Theorem 4 was proved by PIsiER [11],
p. 115-116, under rather restrictive assumptions on the spaces involved.

As CWIKEL, MILMAN and SAGHER showed in [4], Theorem 3, the converse
inequality of Theorem 3 holds without requiring any condition on the
couple (Ag, A1). Next we indicate another approach to Cwikel-Milman-
Sagher result. This time the proof is based on the description of the
real interpolation space as a J-space, but however we still need the first
step of the proof in [4]. Our approach is “dual” of the one developed in
Theorem 3 and it also works in the end-point case.

THEOREM 5. — Let (Ay, A1) be a quasi-Banach couple. Let

0<6y, 61, A<1,0<qy, q1 <oc,or0<qy<ocandqu =0o0. Put
f=(1—Nby+ M, 1/g=(1=X)/q+ A/qu and Ej = (Ao. A1)g,. 4,
Then there exists a constant C such that for all o € Ay N A1 we have

lallig,. 23, < C llallit,. a0, -

Proof. — We start by observing that there is a constant C' depending
only on the couple (Ay, A;) such that for each a € Ag N Aj there is a
sequence (u,) C AgN Ay (C Eyn Ep) with only a finite number of terms
different from zero, such that

pe
a= E U
=X

1/q

(z" (2"“".1(2"',fft,,))'f> < Cllall(,. 4000,

and

v=—2
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ON THE CONNECTION BETWEEN REAL AND COMPLEX INTERPOLATION 29

where
J(2¥, up) = J (27, wy; Ao, A1)
Indeed, choose N & N sufficiently large so that
27all4y < Nallay. 41,
and
—(1-9) (N -1
2~ =N Wally, < alls. 41,
For |v| < N we can find a decomposition a = ay.» + a1.» such that
lao, vl 4, +2"llarvlla, <2K(2". a)

while if |v] > N we write

a if v>N 0 if v>N
0. = 0 if v<-=N' v = a if v<-N’

Let

Uy = Q0. p — A0, p—1 = A1, p—1 — Q1 v, vel.

Then (u,) C Ag N A; and

,
a— E u, = 0
v=s

for s < =N < N < r. Moreover, if —-N +2 <v <N — 1 we see that

T(2. uy)

< max{cy, (lav. vl 1, + lao.v-1ll1,): 27 ca, (llar.s
< max{cy,, cq,} (2K (27, ) +4K (2", a))
<6 max{cy,, cq, } B (2", a).

4+ et p—1ll4,)}

while

72V uy) < e, (lalla, +4K 2V, a)),
T ) S er, @K@, a)+ 27 alLy, ).

d
an J(2, uy) =0 if v>N+1 or v< —N.
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30 F. COBOS, J. PEETRE AND L. E. PERSSON

Hence

> —6v v q
> @I w)

N
< (6 max{cy,. ca,})? Zu:—N+1 (27" K (2", a))"

U/ —ON —(1—B) (N—-1 (

+ch 27 Jaollao)? + ¢, 27U ag |4,
I

<C HO’H(AO

A)o.q

Given any a € Ay N Ay choose a representation ¢ = Y ,_ ___ u, as

above and consider the operator 1" associating to any sequence of scalars
(A,) the vector of Ay + A; defined by

x A Uy

T =Y T2, u)

where it is understood that the v-th term is omitted if v, = 0. The
description of E; = (Ag, A1)e.,, as a J-space gives that

)\1/ Uy o0 6, )\1/ Uy aiN1/4;
< 2 v v vt
At )
X 9. s} 1/(11
S(Z,,:_x (")) = Bl -

Thus T : £, (2-%v) — E; is bounded with quasi-norm < 1. Interpolating
by the complex method, we find that

T : by (27%7), 4y, (2777)]x — [Eo, En]

is bounded as well. It follows then from the equality

£(2707) = (£, (27%), £y, (27*")]x (Corollary 2/(ii))

that the operator
T : ¢,(27%) = [Eo, Eal»

is bounded. Since (J (2", w,)) has only a finite number of terms
J(2Y, u,) # 0, it is clear that
o

T(J(2", u,)) = Z Uy, = a

V=—02x
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and therefore we conclude that

Nallig,. £, < HT 27 wle, 2-ov) < Cllallao. 415, - ®
In the end-point case we have

THEOREM 6. — Let (B, A1) be a quasi-Banach couple, let 0 < n, § < 1,

0 < g < oo and put
A() = (B, Al)n?(l'
If Ay is r-normed and 1/p = (1 — 60)/q+ 0/r, then there exists a constant
C such that for every a € BN Ay, we have
el 4a)s < Cllallia,. 41y, -
Proof. — The reiteration theorem yields
(A(]a Al)(‘).p = ((B, Al)l},qa Al)(),p = (B, Al)(l—é))n+9,p'

So our aim is to prove that

(12) ”a’”[rlo. .41]9 S C”a”(B. .‘11)(1_9).,7_;.9“, M

We know that there is a constant C such that for any a € B N A; there
exists a sequence (u,) C BN Aj (C Ap N A;y) with only a finite number
of non-zero terms such that

20
a = E Uy,
y=—00

and

x —((1~ v p
o @O 1@ )Y < Cllalls, 4,

p=—02C (1-8)n+6.p

where J (2", w,) = J (2", w,; B, A1).
Given any a € BN A; and any representation a = Y .. ___ U, as
above, consider the opzrator T' defined by means of this representation

0 Ay Uy
T ()\x/) = ZV:—DC J(2V, 'U»u)

where it is again understood that the v-th term is omitted if u, = 0. We
see that 7' is bounded with quasi-norm < 1 acting from £, (27") into
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Ayg = (B, A1),,4- On the other hand, taking into account that Ay is

r-normed we obtain
ZQC /\1/ Uy S ZX‘ /\V (% " r
v=—oc J (2”’ u,,) v=—oc || J (2”. 'Uq,,) 4,
x - m1/r
S (ZV:—-X (2 |/\V|) )

4

Hence
T:1,27")— Ay

is bounded, having quasi-norm < 1. Interpolating by the complex method

T - 611 (2“((1—(‘))11-{-('1)1/) — [gq (2—111/)’ Er (2—1/)]9 N [A()a Al]()

is also bounded. Then inequality (12) follows from the fact that
(J(2¥, uy)) has only a finite number of terms different from zero and
therefore

TUR w)=Y  w=a B
V=—2xXx
3. Applications

Theorems 3 and 6 allow us to determine complex interpolation spaces
as soon as the corresponding real interpolation spaces are known.

As a first application we show that the reiteration formula is valid
for quasi-Banach couples formed by real interpolation from a couple
satisfying (h).

COROLLARY 7. — Let (Ay, A1) be a quasi-Banach couple satisfving (h).
Let 0 < mp,m < 1,0 < qop < 00,0 < q1 < oc and put

Ej = (Ao, At)y;.q,-
If0 <6y, 61, A\ <1and 6 = (1~ X)by + A1, then
[[Eo, Erle,- [Eo, Exle s = [Eo, Eals.
Proof. — Put

n=(1-8)n +fmn. g=(1~0)/q+8/q.
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Since g < 00, Ag N Aj is dense in (Ag, A1), We claim that Ag N Ay
is also dense in [Ep, Fils.

Indeed, according to Theorem 3, || - ||jg] is a quasi-norm in Ey N Ej.
Thus Ey N Ej is dense in [Ey, E1]g. Hence we only need to show that
Ay N Ay is dense in Eg N Ej for || - ||jg. Using the fundamental lemma

[1], Lemma 3.3.2, given any
a€ EyNk = (A[h Al)'lo.(lo n (A07 Al):h,ql:

we can find (v,) C Ap N Az such that

HU"HEl = lv"”(AQ.Al)el,qlzJ S 4Ha‘l|(:1()._-ll)glyql;,(
and
a—uvllg, <4 27V K (2¥, a))T Yo 0 as n— .
0 v|>n
Since

lla - vnH:Eo. e = lla - 'Un“}z—oﬁ lla - Unn{;f]
density of Ag N Ay in Ey N Eq follows.
By Theorems 3 and 5, we have then

[EO» El](f = [(AU«, A])uo.qos (A(]s Al)rh.ql]ﬁ = (AOa Al)r}.q-
Another application of Theorems 3 and 5 yields
[E()s EI]H‘, = (AO-, Al)/ljwj
where
pi=(1=60)m+0;m and 1/pj=(1-0;)/q+0;j/q (j=0.1).

Finally, using for the third time Theorems 3 and 5, we conclude

[Eo, E1le,» [Eo. Exle Ix = [(Aos A1)pooper (Aos A1)l
= (A()a Al)l].p = [EO, E}]g. |

Next we consider applications to some concrete spaces.
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As we said in Section 1, the couples (L,,. L,, ) and (H,,, H), ) satisty
condition (h). Since the real interpolation spaces for these couples are
known (see [1] and [6]), by using Theorem 3 and 5 we may conclude that

(13) [Ll’o ffo> L[’l (11]9 = LI’- q
and
(14) [Hl'u o> Hl’l 01]9 = HI’-(I

provided that 0 < py, p1, o < o©, 0 < ¢q1 < o0, 0 < 6 < 1,
1/p=(1-8)/po+6/p1 and 1/¢ = (1 — 8)/q0 + 8/q1. Here L, , is
the Lorentz function space and H,, , consists of all tempered distributions
f on R" such that

supssg {t™ "loe x fI} € Ly 4

where ¢ is a sufficiently regular function with [, ¢ (z)dz # 0 and
¢t (x) = ¢ (x/t) (see [6]). For p = g these are the usual H, classes.

In order to derive an interpolation result for Morrey type spaces, we first
prove the following auxiliary lemma. Its validity in the Banach case was
pointed out in [8], (99). We require here the extension to quasi-Banach
couples.

LeMMA 8. — Let X be any set, let wy, w1 be positive weights on X and
let (Ao, A1) be a quasi-Banach couple. Denote by LT (Aj) the collection
of all functions a : X — A; such that

lallzs 4,y = suprex {w) (@)lla(@)ll4,} < oo

Then, if 0 < 8 < 1 and a € L3S (Ao) N LY

o wy

(A1), we have

lallz~_, (e ) < lallzs (a0 25 (oo -

(=

F(LE (Ao), LX (A1) with f(8, z) = a(z). Using (4) with o
1/(1 — 8) and B = 1/6, we have

Proof. - Given a € Lg, (Ao) N Ly (A1) take any f €
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ol ot = s0p b~ @) ud Dl @, 0.}
0 1 1 E r;o 1_9
<sp{ (125 [ @ o ol s ds)
r€X - -0
1> i
(5/ wy @)I|f (1 + s, o], Pr (6, s)ds) }
1 o) 1-¢
< (125 [ 1oz, anP 6. ) ds)
) e 9
(5 [ 1 aislis om0 9s)
< (s 1 i)l (10 (sup I (14 i) (400)” < 1 [
sER sER

This gives the result. W

Let now Cp be any open subset of R". For 0 < p < 00, 0 < ¢ £
and A € R, we denote by L{” %Y the Morrey space over Cy. We refer
to [8], § 8.A, for the precise definition and properties of these spaces. We
only recall that if X i3 the set of all cubes C (z, p) C Cy with center is
some z € Cy and edge length equal to p, then £7°%*) can be identified
with a subspace of L%, ./, (Lp.4) by associating of each f € £p-a-N)
the map from X into L, , defined by

C(:’;a [)) — fc - fc.
Here f¢ is the restriction of f to C(z, p) and fc is the mean value
of f in C(x, p).
Combining (13) and Lemma 8, it is easy to see that if 0 < py, p1,
go < o0, 0 < q1 <oc, =00 < Ag, A1 < oo and 0 < 6 < 1, then for all
f e Llpo-to-2o) my £pea1- M) e have

(15) [l o < MlIfllizea 00, cora ),

where

1/p=(01-6)/po+0/p1, 1/g=(1-0)/q+0/q,
Ap=(1-0)M/po+ 6 /p1.
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Our last application refers to Schatten-von Neumann classes S;, ;. Let
and K be Hilbert spaces. Recall that the class S, , consists of all compact
operators T € L(H, K) such that its sequence of singular numbers
(sn (T)) belongs to the Lorentz sequence space 1, ,. The quasi-norm of
Sp.q 1s given by

ITls,., = (32, (07 su (D)n 1)V,

The class S, ), is usually denoted by S,.

We claim that under the same hypothesis on parameters as in (13),
we have

(16) {SI)Q,QO? Spl‘ql}(i = Sp.q~

Indeed, take r9 < pp, p1 < r1, 0 < mo, m < 1 with 1/p; =
(1 —=mn;)/ro +nj/r1 (7 =0, 1). As it is well-known (see {1} or [14])

(17) SI'_7~(IJ = (S"U’ Srl)’Ijﬂ(lJ'

Hence using Theorem 5 it follows from (17) that for all T' € .S;, = S5;,NS;,
we have

(18) ITN(S,, 0y Sorole < M1T s, ,

In order to check the reverse inequality, take any 7' € Sy, 4, N Sp,. -
According to the spectral theorem we can find orthonormal systems (z,,)
in H and (y,) in K such that

T= Z 5n 'a -'L'n> Yn -

Consider the map D assoc:latmg to each operator Re€ L(H, K) the
sequence of inner products

D(R) = ((Rxn,» yn>)-
By [10], Theorem 2.11.18,
D2 Spaq; = g,

is bounded for j = 0, 1. Whence, interpolating by the complex method
and using (13), we get that

,
D [SPO-(IO? Spvanle — by.q
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is bounded as well. Since

D(T) = (s (T))

we derive that for all T € S, 4, N Sp,.q it holds

(19)

ITlls,, <M|ITls

Po. 20" Sm,ql]ﬂ )

To finish the proof it remains to check that S, (C S, 4 N Sp,.q,) i8
dense in both spaces of formula (16).

The density in S, , is clear. On the other hand, (19) shows that
IR Sy, a,]s 18 @ quasi-norm in Sp, 4, V5, ¢, . Therefore, repeating
the argument at the beginning of the proof of Corollary 7, we conclude
that S,, is also dense in [S,, 4o, Spi.q]e-
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