Falls Efficacy Scale International (FES-I) in Greek community-dwelling adults living in rural, urban areas and Greek islands

Y. Dionysiotisa,b,c, A. Papachristosc, G. Skaranavosc, P. Papageleopoulusd
a 1st Department of Orthopaedics, General University Hospital “ATTIKON”, Athens, Greece
b Rehabilitation Center “Aghios Loukas”, Trikala, Chaidari, Athens, Greece
c Rehabilitation Center “KENTAVROS”, Volos, Greece
dCorresponding author.

Introduction.– Fear of falling assesses both easy and difficult physical activities and social activities. The purpose of the study was to use the Greek version of the Falls Efficacy Scale among various populations in Greece and assess the differences. To obtain a total score for the FES-I simply one adds the scores on all the items together, to give a total that will range from 16 (no concern about falling) to 64 (severe concern about falling).

Methods.– Two hundred four community-dwelling adults aged between 50 and 85 years living in rural, urban areas and Greek islands completed the Greek version of Falls Efficacy Scale-International (FES-I) either in postal self-completion format or by structured interview.

Results.– Subjects were concerning less about physical activities at home, and concern about more demanding physical activities mainly outside the home. In the islands FES-I score was found lower compared to mainland while in the mainland scores found higher in rural areas.

Conclusions.– The Falls Efficacy Scale-International (FES-I) is a short, easy to administer tool that measures the level of concern about falling.

http://dx.doi.org/10.1016/j.rehab.2014.03.611

Comparative study between two clinical tests of balance and stabilometric examination in a population of elderly people with dementia

J. Lebraud, A. Tchalla, B. Borel, J.-C. Daviet, S. Mandgout

Laboratoire HAVAE, Limoges, France

*Corresponding author.

Keywords: Balance; Stabilometry clinical trials; Dementia

Objective.– To determine a test of balance adapted for a population of elderly with dementia, in order to assure a better coverage in the prevention of falls.

Method.– Twenty-three subjects diagnosed with a dementia (81 ± 6 years), realized two clinical evaluations allowing to appreciate their balance: Tinetti Test (TT), Berg Balance Scale (BBS). These evaluations were compared with a balance test realized on a stabilometry platform. The examination was realized eyes opened and eyes closed. Two parameters were held in analyses: the variance of speed of movements from center of pressure according to the average position Y (VFY) and the report of the length according to the surface (LFS).

Results.– A significant relationship is observed between LFS and the results of 3 tests (TT, r = -0.62, P = 0.01; BBS, r = -0.65, P = 0.006) only during the test realized blindly. Similar results are obtained with VFY (TT, r = -0.56, P = 0.03; BBS, r = -0.63, P = 0.009).

Discussion.– BBS seems to be the best adapted clinical evaluation to estimate the balance for the elderly with dementia. The stabilometry examination would be a good complement allowing to objectify the postural capacity of these subjects and to adapt better their coverage in the prevention of falls.

http://dx.doi.org/10.1016/j.rehab.2014.03.612

Validation of an ambulatory device for the study of visual compensation in ataxic patients

A.F. Gomes Paiva a,b,*, B. missaoui b, M. Mane b, P. Thoumie b
a Université Paris-sud 11, Bagnolet, France
b Pôle de MPR, Hôpital Rothschild, AP–HP, France
*Corresponding author.

Keywords: Eye-tracker; Visual compensation; Ataxic neuropathy

Objective.– Visual control during dynamic activities of gait is called visual navigation. The aim of this study is to analyze the visual compensation in proprioceptive sensory deficits using a new technology: the eye-tracker.

Patients and methods.– Three groups were selected: 10 healthy young subjects, 10 elderly subjects and 10 subjects with ataxic neuropathy. The experimental protocol consists of walk in three different corridors wearing the eye-tracker. This device includes a camera mounted directly on glasses which allows gaze direction analysis during gait. As for gaze direction we analyzed the time spent looking at the floor.

Results.– The reproducibility of the path performed by the subjects was measured by repeated measures Anova with a F(2;27) value of 2.124, P = 0.09. We observed a significant difference between the two groups of health subjects and the patients with a P value of <0.0001.
Discussion. – The eye-tracker proves to be a useful device for visual compensation analysis during gait, at the same time reproducible and sensitive to the pathology tested in this study.

http://dx.doi.org/10.1016/j.rehab.2014.03.614

P342-e
Gait biomechanics and neurorehabilitation: Time for individualized practice?
O. Dobrushina *, I. Sidyakina, P. Snopkov , T. Shapovalenko
Treatment and Rehabilitation Center of the Ministry of Health, Moscow, Russia
*Corresponding author.

Keywords: Gait; Biomechanics; Hemiparesis

Introduction. – Despite the recognition of the benefits of gait analysis, appropriate examinations are thought to be too sophisticated for clinical practice. The study was conducted to test the feasibility of recently developed systems for biomechanics analysis in neurorehabilitation.

Methods. – Thirty patients (26 men) aged 55.2±15.2 years with central hemiparesis were included in the study. Paresis grade averaged 3.7±0.9, Ashworth spasticity index — 1.1±1.2, Rivermead mobility index — 11.8±2.9, Gyroscopic TRUST, tension-sensing Diasled systems, stabilometric platform Balance Master, Raptor motion videoanalysis system (“gold standard”) were studied.

Results. – The following predictors of Rivermead mobility index were identified: amplitude of motion in hip and knee at the paretic (AUC 0.82 and 0.7) and the non-paretic side (AUC 0.88 and 0.72), walk asymmetry (time of the second double support, AUC 0.63). No significant differences between Raptor and TRAST results were observed. The shortness of Balance Master platform caused huge amount of false positive results. Diasled system revealed a shift of the center of mass to the non-paretic side, which resolved with treatment.

Discussion. – Portable systems for gait analysis provide clinically significant information. Their use in neurorehabilitation is feasible for the goal of physiotherapy individualization and objective assessment of rehabilitation efficacy.

http://dx.doi.org/10.1016/j.rehab.2014.03.615

P343-e
Relationship between dynamic balance and stance phases during gait in normal ageing
V. Achache *, F. Fontaine , V. Chadebec , V. Quentin , R. Poquignon , E. Durand
Hôpitaux de Saint-Maurice, Saint-Maurice, France
*Corresponding author.

Keywords: Balance; Gait; Ageing; Posturography

Introduction. – In old subjects, keeping a good balance is fundamental to maintain a functional independence. The purpose of this study was to evaluate the relationship between dynamic standing balance and single and double support phases during gait.

Method. – Twenty asymptomatic subjects over 60 years old and twenty under 60 years old participated in this study. Static balance, dynamic balance and spatiotemporal gait parameters were recorded using a WinFDM Zebrix® platform. Antero-posterior (AP) and circular (Circ) dynamic balance parameters were quantified. A cognitive test (Codex) was performed in the group of older subjects.

Results. – It has been found a change in the spatiotemporal gait parameters and balance with age. A multivariate analysis showed that most of the changes were related to an impairment of cognitive functions (Codex), but not the AP and Circ index. Relationships were found between the AP index and the percentage of double support phase ($r = -0.65$).

Discussion. – The change in spatiotemporal gait parameters and balance with age is associated with the appearance of cognitive impairments, but not with dynamic balance parameters for which impairments of proprioceptive, visual and vestibular systems could be preponderant.

http://dx.doi.org/10.1016/j.rehab.2014.03.616

P344-e
A new dynamic posturography method to quantify the quality of balance
H. Kharboutyly , A. Flavia Gomes Paiva , P. Thoumie
a ISIR-UPMC, Paris, France
b Paris Sud 11 STAPS, France
Pôle de MPR, Hôpital Rothschild, AP–HP, France
Assistmov SAS, France
*Corresponding author.

Keywords: Dynamic posturography; Balance evaluation

Objective. – To quantify the quality of balance in patients suffering from sensory or motor problems, using a new method of dynamic posturography.

Methods. – We compared posturography measurements of 3 groups: 8 subjects with neuropathy sensitive, 8 subjects with myopathy and 8 healthy subjects. IsiMove platform was used to measure posturography parameters. The protocol consists of 5 exercises that are repeated for five frequencies (0.1 Hz to 0.5 Hz). The exercises are applied in a sequential manner: anterior posterior tilt, mediolateral rotation, anterior posterior translation, vertical rotation and mediolateral translation. A normal range was developed with surface measurements in healthy subjects. A subject will note 5 if the value of the measured surface is in the normal range; 2 if the value is outside and 0 if he does not perform the exercise. Each subject will have a final score of quantification (the sum of scores for each exercise).

Results and discussion. – Patients with neuropathy have obtained scores between 0 and 107; patients with myopathy have obtained scores between 0 and 95, while all normal subjects have scores of 125. We chose a schematic star that can analyse the quality of balance by comparing the three groups.

http://dx.doi.org/10.1016/j.rehab.2014.03.617

P345-e
How gait parameters of the adolescents differ from the adult population. Cohort study using an accelerometer
A.S. Rosa Elisabetta Di Rauso *, P. De Blasis , F. Gimigliano
Seconda Universita degli Studi di Napoli, Neaples
*Corresponding author.

Introduction. – The aim of our study was to compare gait parameters of an adolescent population with the gait standardized parameters of the adult Italian population using an accelerometer.

Methods. – We used the BTS G-WALK, it uses an inertial sensor to determine spatio-temporal parameters of gait. For each adolescent data about cadence and gait cycle duration, together with other gait parameters, were collected. We excluded all those who were affected by muscle-skeletal, vestibular or neurological disease. BTS gave us the gait standardized parameters for adults.

Results. – Of the 290 adolescents, 207 (97F, 110 M) were included in our analysis. Our data show that cadence and gait cycle duration seem to improve with age. The mean cadence in adolescents population was 1.25 s while in the adult population is 1.12 s.

Conclusion. – The results show an increase of cadence and reduction of gait cycle duration when the age increase. This might suggest a correlation between these parameters and muscle-skeletal development in the adolescent population.

http://dx.doi.org/10.1016/j.rehab.2014.03.618

P346-e
Reproducibility of main posturographic and gait parameters in lower limb amputees
A. Admirat*, M.P. de Angelis, B. Sibille, B. Saurel, D. Perennou
Institut de Rééducation, CHU de Grenoble, Echirolles, France
*Corresponding author.