
Journal of Computational and Applied Mathematics 236 (2012) 2367–2377

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

The numerical solution of the non-linear integro-differential equations
based on the meshless method
Mehdi Dehghan ∗, Rezvan Salehi
Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., 15914, Tehran, Iran

a r t i c l e i n f o

Article history:
Received 19 June 2011
Received in revised form 9 August 2011

MSC:
65R20
45D05
45G10
47G20

Keywords:
Moving least square method
Fredholm integro-differential equation
Volterra integro-differential equation
Error analysis

a b s t r a c t

This article investigates the numerical solution of the nonlinear integro-differential
equations. The numerical scheme developed in the current paper is based on the moving
least square method. The moving least square methodology is an effective technique for
the approximation of an unknown function by using a set of disordered data. It consists
of a local weighted least square fitting, valid on a small neighborhood of a point and only
based on the information provided by its n closet points. Hence the method is a meshless
method and does not need any background mesh or cell structures. The error analysis
of the proposed method is provided. The validity and efficiency of the new method are
demonstrated through several tests.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Mathematical modeling of real problems usually results in functional equations, e.g. partial differential equations,
integral equations, integro-differential equations, stochastic differential equations, delay differential equations, partial
integro-differential equations, differential algebraic equations and others. Many mathematical formulations of physical
phenomena contain integro-differential equations. These equations arise in fluid dynamics, biological models, chemical
kinetic, ecology, control theory of financial mathematics, aerospace systems, industrial mathematics etc. Especially, one
always can describe a model which possesses hereditary properties by integro-differential equations in practice. Integro-
differential equations are usually difficult to solve analytically so it is required to obtain an efficient approximate solution.
Recently, much interest of scientists and engineers have been paid on nontraditional methods for nonlinear problems.
Nowadays the Chebyshev and Taylor polynomial approximation methods are used and the numerical solutions are
obtained in [1–3]. The Wavelet-Galerkin method is applied to solve the second kind integral equation [4]. In [5,6], the
variational iteration method (VIM) is considered to solve integral and integro-differential equations. In addition, iterative
and non-iterative methods for the solution of nonlinear Volterra integro-differential equations are presented and their local
convergence is proved. The iterative methods provide a sequence solution and make use of fixed-point theory whereas the
non-iterative ones result in series solutions and also make use of the fixed-point principles [7]. A one-step algorithm for the
construction of approximation solution of a Volterra integro-differential equation has been presented in [8]. The authors
of [9] have used the sine–cosine wavelets on interval [0, 1] to solve the integro-differential equations.

Moreover, the interested reader is referred to [10,11] for numerical or semi-numerical approaches in the solution
of integral equations, respectively. In recent years the meshless methods have gained more attention not only by

∗ Corresponding author. Fax: +98 21 66497930.
E-mail addresses:mdehghan@aut.ac.ir, mdehghan.aut@gmail.com, mdehghan_aut@yahoo.com (M. Dehghan), rsalehi@aut.ac.ir (R. Salehi).

0377-0427/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2011.11.022

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81145594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.cam.2011.11.022
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:mdehghan@aut.ac.ir
mailto:mdehghan.aut@gmail.com
mailto:mdehghan_aut@yahoo.com
mailto:rsalehi@aut.ac.ir
http://dx.doi.org/10.1016/j.cam.2011.11.022


2368 M. Dehghan, R. Salehi / Journal of Computational and Applied Mathematics 236 (2012) 2367–2377

mathematicians but also in the engineering community. Moving least-square methods are the basis of numerous mesh-free
approximation methods for the solution of partial differential equations that have recently been suggested by practitioners
as an alternative to the traditional finite element method. During the past decade the moving least square (MLS) method
proposed in [12] has become a very popular approximation scheme. We can find a wide range of applications in the
framework of function approximation and surface construction [13]. Recently, this method has been employed in response
surface models in order to accelerate optimization procedures [14], and stochastic analyses [15]. Further important
applications of meshless moving least square method are the diffuse element method (DEM) proposed in [16], the well-
known element-free Galerkin (EFG) method introduced in [17] and the meshless local Petrov Galerkin method developed
in [18]. We refer the interested reader to [19–24] for applications of meshless methods to partial differential equations.

In this article, we employ themeshlessmoving least squaremethod to solve the nonlinear integro-differential equations.
The moving least square methodology is an effective approach for the approximation of an unknown function by using a
set of disordered data. It consists of a local weighted least square fitting, valid on a small neighborhood of a point and only
based on the information provided by its n closet points. Themethod can easily be implemented and the technique is flexible
for most classes of integral equations, because of easy adaptation of the nodal density. Also we refer the interested reader
to [25].

The rest of this paper is organized as follows: the outline of the MLS method is discussed in Section 2. In Section 3, the
proposed method is employed on nonlinear Fredholm integro-differential equations. An error analysis of the method is
demonstrated in Section 4. In Section 5, the method is implemented for Volterra integro-differential equations. Several test
problems are solved and the results are shown in Section 6. Section 7 completes this paper with a brief conclusion.

2. The moving least square approximation

Themoving least square (MLS) approximationmay be considered as amember of the class ofmeshless schemes that have
the properties of local interpolation, high accuracy approximation and can easily be extended to n-dimensional problems.
The idea behind MLS consists of a better control of the shape function smoothness and continuity as opposed to the finite
element method (FEM). This is obtained through the use of the weight functions, that allows control of the locality and
the continuity of the approximation. The MLS method was started with Shepard’s method [26] and was extended by
McLain [27,28], Franke and Nielson [29] and Lancaster and Salkauskas [12]. Now we follow the well known works on MLS
to give an outline of this method.

Consider a sub-domain Ωx, the neighborhood of a point x and the domain of definition of the MLS approximation for
the trial function at x, which is located in the problem domain Ω . To approximate the unknown function, u in Ωx, over a
number of randomly located nodes xi, i = 1, 2, . . . , n, the MLS approximant uh(x) of u, ∀x ∈ Ωx, can be defined as

uh(x) = pT (x)a(x), ∀x ∈ Ωx, (2.1)

where pT (x) = [p1(x), p2(x), . . . , pm(x)] is a complete monomial basis of Pq of order m, and a(x) is a vector containing
coefficients aj(x), j = 1, 2, . . . ,m, which are functions of the space coordinate x. For a 1D example, the linear basis is
pT (x) =


1 x


, and the quadratic basis is pT (x) =


1 x x2


.

The coefficient vector a(x) is determined by minimizing a weighted discrete L2 norm, defined as

J(x) =

n
t=1

wi(x)(pT (xj)a(x) − ûi)
2

= [P · a − û]
T

· W · [P · a − û], (2.2)

where wi(x) is the weight function associated with the node i, xi denotes the value of x at node i, n is the number of nodes
in Ωx with wi(x) > 0, the matrices P and W are defined as

P =


pT (x1)
pT (x2)
...

pT (xn)


n×(m+1)

, W =

w1(x) · · · 0
...

. . .
...

0 · · · wn(x)


n×n

, (2.3)

and

û = [û1, û2, . . . , ûn]. (2.4)

Here it should be noted that ûi, i = 1, 2, . . . , n, in Eqs. (2.2) and (2.4) are the fictitious nodal values, and not the nodal values
of the unknown trial function uh(x) in general.

The stationarity of J in Eq. (2.2) with respect to a(x) leads to the following linear relation between a(x) and û,

A(x)a(x) = B(x)û, (2.5)



M. Dehghan, R. Salehi / Journal of Computational and Applied Mathematics 236 (2012) 2367–2377 2369

where the matrices A(x) and B(x) are defined by

A(x) = PTWP = B(x)P =

n
i=1

wi(x)pT (xi)p(xi), (2.6)

B(x) = PTW = [w1(x)p(x1), w2(x)p(x2), . . . , wn(x)p(xn)]. (2.7)

The MLS approximation is well defined only when the matrix A in Eq. (2.5) is non-singular. It can be seen that this is the
case if and only if the rank of P equals m. Computing a(x) from Eq. (2.5) and substituting it into Eq. (2.1) give

uh(x) = 8T (x) · û =

n
j=1

φj(x)ûj, x ∈ Ωx, (2.8)

where

8T (x) = pT (x)A−1(x)B(x), (2.9)

or

φj(x) =

n
i=1

pi(x)[A−1(x)B(x)]ij. (2.10)

φi(x) is usually called the shape function of the MLS approximation corresponding to the nodal point xi. The smoothness of
the shape functions φi(x) is determined by that of the basis functions and of the weight functions. Let Ck(Ω) be the space
of k-th continuously differentiable functions. If wi(x) ∈ Ck(Ω) and pj(x) ∈ C l(Ω) i = 1, 2, . . . , n; j = 1, 2, . . . ,m then
φx ∈ Cmin(k,l)(Ω). The partial derivatives of φi(x) are obtained as [17]

φi,k =

m
j=1

[pj,k(A−1(x)B(x))ji + pj(A−1
,k (x)B(x) + A−1(x)B,k(x))ji], (2.11)

where A−1
,k = (A−1),k represents the derivative of the inverse of Awith respect to xk, which is given by

A−1
,k = −A−1A,kA−1, (2.12)

where (),i denotes ∂()/∂xi.
The Gaussian weight function corresponding to the node i may be written as

wi(x) =


exp


−


di
α

2
− exp


−


hi
α

2
1 − exp


−


hi
α

2 , 0 ≤ di ≤ hi,

0, di ≥ hi,

(2.13)

where di = |x − xi| is the distance from node xi to point x, α is a constant controlling the shape of the weight function wi
and therefore the relative weights, and hi is the size of the support for the weight function wi and determines the support
of node xi.

3. The Fredholm integro-differential equation

In this section, we employ the MLS method for solving the 1D Fredholm integro-differential equation. The Fredholm
integro-differential equation can be considered as follows:ú(x) = F


x, u(x),

 b

a
K(x, t, u(t))dt


,

u(a) = u0,

(3.1)

where u is the unknown function, a and b are real finite numbers,K is the so-called kernel function,F : R×Cp
×Cp

−→ Cp

and kernel function K : R × R × Cp
−→ Cp are given continuous mappings and satisfying in the following conditions:

∥F (x, u1, u2) − F (x, ν1, ν2)∥ ≤ β1∥u1 − ν1∥ + β2∥u2 − ν2∥, ∀ u1, u2, ν1, ν2 ∈ Cp, (3.2)

∥K(x, u(x), θ1) − K(x, u(x), θ1)∥ ≤ c∥θ1 − θ2∥, ∀ θ1, θ2 ∈ Cp, (3.3)

∥K(x, u(x), θ)∥ ≤ c1∥θ∥, ∀ θ ∈ Cp, (3.4)

where β1, β2 and c are real constant values.



2370 M. Dehghan, R. Salehi / Journal of Computational and Applied Mathematics 236 (2012) 2367–2377

Now, to employ the MLS method let us consider n nodal points in the interval [a, b] as a = x1 ≤ x2 ≤ · · · ≤ xn = b.
Considering Eqs. (2.8) and (2.11), we replace uh and u′

h with u and ú in Eq. (3.1), respectively. Therefore Eq. (3.1) becomes

uh
′(x) = F


x, uh(x),

 b

a
K(x, t, uh(t))dt


, (3.5)

or correspondingly
n

i=1

φi,x(xj)ûi = F


xj,

n
i=1

φi(xj)ûi,

 b

a
K


xj, t,

n
i=1

φi(t)ûi


dt


, j = 1, 2, . . . , n. (3.6)

Choosing anm-point quadrature formula with the coefficients {ξj} and weights {ωj} in the interval [a, b] for solving integral
in (3.5) yield:

n
i=1

φi,x(xj)ûi = F


xj,

n
i=1

φi(xj)ûi,

m
k=1

ωk K


xj, ξk,

n
i=1

φi(ξk)ûi


, j = 1, 2, . . . , n. (3.7)

Finding the values of ûj by solving Eq. (3.7) with an appropriate procedure for investigating the solution of the non-linear
systems yields the following approximate solution:

u(x) ∼= uh(x) =

n
j=1

φj(x)ûj, ∀x ∈ [a, b]. (3.8)

4. The error analysis

In this section, the error estimate for the proposed method is obtained. Since the error estimate of the method is
strictly connected to the error estimate of the MLS method, first we introduce the error estimate of the MLS method.
Levin [13] studied the MLS method for a special weight function and gained the error estimate in the uniform norm for
the approximation of a regular function in N dimension but, author of [13] did not investigate the error estimate for the
derivatives. Authors of [30], proved theuniformnormerror estimate for the approximation of the first and secondderivatives
of a function with the MLS method in the one-dimensional case. Armentano [31] obtained the error estimates in the L2 and
L∞ norms for the first and second derivatives of a function approximated by the MLS method in the N-dimensional under
the optimal regularity assumptions. In [32] Zuppa proved the error estimates for approximation of the function and the
first and second order derivatives in L∞ norm. In [33] the authors report the error estimates for the MLS approximation in
the Hk norm in 1D when nodes and weight functions satisfy certain conditions, and then derive the convergence rate of a
MLS-based meshless Galerkin method, the Galerkin boundary node method, for general integral equations. In the current
work, we employ the results for error estimates of the MLS method in [32]. Furthermore the interested readers are referred
to the interesting papers [30–32,34].

4.1. Preliminaries

In the n dimensional space Rn, given anymulti-index β = (β1, β2, . . . , βn) ∈ Nn, |β| denotes the sum β1 +β2 +· · ·+βn,
and, if u is a sufficiently smooth function, Dβu denotes the partial derivative

∂ |β|

∂β1∂β2 · · · ∂βn
u.

LetΩ be an open bounded domain in Rn andQN denotes an arbitrarily chosen set ofN points of xα ∈ Ω referred to as nodes:
QN = {x1, x2, . . . , xN}, xi ∈ Ω.

Let IN := {Λj}
N
j=1 denotes a finite open covering of Ω consisting of N clouds Λj such that xj ∈ Λj and Λj is centered around

xj in some way and

Ω̄ ⊂

N
j=1

Λj.

The radius dj of Λj is defined as maxx∈∂Λj ∥x − xj∥.
A class of functions SN := {ωi}

N
i=1 is called a partition of unity subordinate to the open covering IN if it possesses the

following properties:
• ωi ∈ Cs

0(R
n), s ≥ 0, or s = ∞.

• supp(ωi) ⊆ Λi.
• ωi(x) > 0, x ∈ Λi.
•
N

i=1 ωi(x) = 1, ∀x ∈ Ω.

There is no unique way to build a partition of unity as defined above.



M. Dehghan, R. Salehi / Journal of Computational and Applied Mathematics 236 (2012) 2367–2377 2371

A function u is said to be of class Cp,1 in Ω if and only if u is of class Cp in Ω and the partial derivatives Dµu of u of order
p (|µ| = p) are Lipschitz continuous in Ω . The semi-norm |.|p,1 is defined as

|u|p,1 = sup


∥Dµu(x) − Dµu(y)∥
∥x − y∥

: x, y ∈ Ω, x ≠ y, |µ| = p


.

In order to have the moving least square approximation well defined we need that the minimization problem has a unique
solution at y ∈ Ω and this is equivalent to the non-singularity of matrix A(y). The error estimates are obtained [34] with
the following assumptions about the system of nodes and the weight function {QN , WN}.

Property Rq. For any x ∈ Ω , the normal matrix A(x) is non-singular.

Definition. Given x ∈ Ω , the set ST (x) := {i|ωi(x) ≠ 0} will be called the star at x [34].

Theorem 4.1. A necessary condition for PropertyRq is that for any x ∈ Ω

n = card(ST (x)) ≥ card(Pq) = m + 1.

For a point c ∈ Ω if ST (c) = {i1, i2, . . . , ik}, then the size of star ST (c) is defined by the number

h(ST (c)) = max{di1 , di2 , . . . , dik}.

Assumptions. The following assumptions are made about the parameters employed in the current work [34,35]. There
exist

(A1): An upper bound of the overlap of clouds:

M = sup
c∈Ω

{card(ST (c))}.

(A2): Upper bound for the condition number:

CBq = sup
c∈Ω

{CNq(ST (c))}, q = 1, 2,

where the numbers CNq(ST (c)) are computable measures of the quality of the star (ST (c)) were defined in Theorem 7
of [32].

(A3): An upper bound of the mesh-size of stars:

d = sup
c∈Ω

{h(ST (c))}.

(A4): An uniform bound of the derivatives of {ωj}. That is, a constant Gq ≥ 0, q = 1, 2, such that

∥Dµµj∥ ≤
Gq

h|µ|
, 1 ≤ |µ| ≤ q.

(A5): There exists number γ ≥ 0 such that any two points x, y ∈ Ω can be joined by a rectified curve Γ in Ω with length
|Γ | ≤ γ ∥x − y∥.

Considering the above mentioned conditions, Zuppa [32] proved the following theorem.

Theorem 4.2. There exist constants Cq, q = 1 or 2

C1 = C1(γ , n, M, G1, CB1),

C2 = C2(γ , n, M, G1, CB1, CB2),

such that, for each u ∈ Cq,1(Ω)

∥Dµu − Dµuh∥L∞(Ω) ≤ Cqdq+1−|µ|
|u|q,1, 0 ≤ |µ| ≤ q. (4.1)

Also, we assume the numerical quadrature satisfies the condition described in the following [35].
QA: There exists positive number η, small enough and independent of i and mesh-size, such that

ω

ϱ dx −


∗

ω

ϱ dx
 ≤ η|ω|∥ϱ∥L∞(ω), (4.2)

where the notation


∗
(, ) denotes the integrals which are computed using a quadrature formula and the constant η is a

bound for the error of the numerical quadrature formula [36].



2372 M. Dehghan, R. Salehi / Journal of Computational and Applied Mathematics 236 (2012) 2367–2377

4.2. The error estimate

Let us consider the non-linear Fredholm integro-differential equation (3.1) with conditions (3.2)–(3.4). By defining in the
Banach space Cp, the integral operator T (u(x)) as

T (u(x)) = u(a) +

 x

a
F


t, u(t),

 b

a
K(t, ξ , u(ξ))dξ


dt, [a, x] ⊆ [a, b], (4.3)

then the Banach fixed point theorem guarantees that, under certain assumptions ((3.2)–(3.4)), T has a unique fixed point,
that is, the Fredholm integro-differential equation has exactly one solution. Also, assume that u(x) is the solution of Eq. (3.1),
uh(x) is the solution of Eq. (3.5) and u∗

h(x) is the solution of Eq. (3.7).

Theorem 4.3. Let u ∈ Cq,1(Ω) where Ω is a bounded set in R. Assume that F and K satisfy the conditions (3.1)–(3.2) and
[a, x] ⊆ Ω = [a, b]. Also, assume that the numerical quadrature formula satisfies (4.2). Moreover, take a suitable approximation
uh of u. Then we have

∥T (u(x)) − T (u∗

h(x))∥L∞(Ω) ≤ M1|u|q,1 + M2∥u∥L∞(Ω). (4.4)

Consequently, we obtain

∥u − u∗

h∥L∞(Ω) ≤ M1 |u|q,1 + M2 ∥u∥L∞(Ω), (4.5)

where M1 = ((b − a)β1 + c(b − a)2β2 + β2 c1 η (b − a)2)Cqdq+1 and M2 = β2 c1 η (b − a)2.

Proof. In the proof, we use Theorem 4.2 and Lipschitz condition for F and K . From definition of T , we have

∥T (u(x)) − T (u∗

h(x))∥L∞(Ω) ≤ ∥T (u(x)) − T (uh(x))∥L∞(Ω) + ∥T (uh(x)) − T (u∗

h(x))∥L∞(Ω).

First, we obtained

∥T (u(x)) − T (uh(x))∥L∞(Ω) =

 x

a


F


t, u(t),

 b

a
K(t, ξ , u(ξ))dξ


− F


t, uh(t),

 b

a
K(t, ξ , uh(ξ))dξ


dt

L∞(Ω)

≤ (b − a)
F 

t, u(t),
 b

a
K(t, ξ , u(ξ))dξ


− F


t, uh(t),

 b

a
K(t, ξ , uh(ξ)) dξ


L∞(Ω)

≤ (b − a)


β1∥u(t) − uh(t)∥L∞(Ω) + β2

 b

a
K(t, ξ , u(ξ))dξ

−

 b

a
K(t, ξ , uh(ξ))dξ


L∞(Ω)



≤ (b − a)


β1∥u(t) − uh(t)∥L∞(Ω) + β2

 b

a
(K(t, ξ , u(ξ))

− K(t, ξ , uh(ξ))) dξ∥L∞(Ω)


≤ (b − a)(β1∥u(t) − uh(t)∥L∞(Ω) + c(b − a)β2∥u(x) − uh(x)∥L∞(Ω))

≤ Cq(b − a)(β1 + c(b − a)β2)dq+1
|u|q,1,

on the other hand we can write

∥T (uh(x)) − T (u∗

h(x))∥L∞(Ω) =

 x

a


F


t, uh(t),

 b

a
K(t, ξ , uh(ξ))dξ


− F


t, uh(t),

 b∗

a
K(t, ξ , uh(ξ))dξ


dt

L∞(Ω)

≤ β2(b − a)
 b

a
K(t, ξ , uh(ξ))dξ −

 b∗

a
K(t, ξ , uh(ξ))dξ


L∞(Ω)



M. Dehghan, R. Salehi / Journal of Computational and Applied Mathematics 236 (2012) 2367–2377 2373

≤ β2 η(b − a)2∥K(t, ξ , uh(ξ))∥L∞(Ω)

≤ β2 c1 η(b − a)2∥uh∥L∞(Ω)

≤ β2 c1 η(b − a)2(∥u∥L∞(Ω) + ∥u − uh∥L∞(Ω))

≤ β2 c1 η(b − a)2(∥u∥L∞(Ω) + Cq dq+1
|u|q,1).

Consequently, from the two last obtained inequalities, we can get the following inequality:

∥T (u(x)) − T (u∗

h(x))∥L∞(Ω) ≤ ∥T (u(x)) − T (uh(x))∥L∞(Ω) + ∥T (uh(x)) − T (u∗

h(x))∥L∞(Ω)

≤ Cq(b − a)(β1 + c(b − a)β2)dq+1
|u|q,1 + β2 c1 η (b − a)2(∥u∥L∞(Ω) + Cq dq+1

|u|q,1)

≤ ((b − a)β1 + c(b − a)2β2 + β2 c1 η(b − a)2)Cqdq+1
|u|q,1 + β2 c1 η (b − a)2∥u∥L∞(Ω)

≤ M1|u|q,1 + M2∥u∥L∞(Ω).

On the other hand from the fixed point property of u and u∗

h we have

∥u − u∗

h∥L∞(Ω) = ∥T (u(x)) − T (u∗

h(x))∥L∞(Ω)

≤ ((b − a)β1 + c(b − a)2β2 + β2 c1 η(b − a)2)Cqdq+1
|u|q,1 + β2 c1 η (b − a)2∥u∥L∞(Ω)

≤ M1|u|q,1 + M2∥u∥L∞(Ω).

This completes the proof. �

5. The Volterra integro-differential equation

Themethod can be easily extended for the Volterra integro-differential equations. For this purpose consider the following
Volterra integro-differential equationú(x) = F


x, u(x),

 x

a
K(x, t, u(t))dt


,

u(a) = u0.

(5.1)

Let us consider n nodal points in the interval [a, b] as a = x1 ≤ x2 ≤ · · · ≤ xn = b. Noting to Eqs. (2.8) and (2.11), uh and u′

h
are replaced with u and ú in Eq. (3.1), respectively. Therefore Eq. (5.1) becomes

uh
′(x) = F


x, uh(x),

 x

a
K(x, t, uh(t))dt


, (5.2)

or equivalently
n

i=1

φi,x(xj)ûi = F


xj,

n
i=1

φi(xj)ûi,

 x

a
K


xj, t,

n
i=1

φi(t)ûi


dt


, j = 1, 2, . . . , n. (5.3)

The integral domain [a, x] must be transferred to a fixed interval [a, b]. For this purpose, the following transformation has
been considered

ρ(x, θ) =
x − a
b − a

θ +
b − x
b − a

a. (5.4)

Employing this transformation, Eq. (5.3) becomes
n

i=1

φi,x(xj)ûi = F


xj,

n
i=1

φi(xj)ûi,

 b

a
KĎ


xj, ρ(xj, θ),

n
i=1

φi(t)ûi


dθ


, j = 1, 2, . . . , n, (5.5)

where

KĎ
=

x − a
b − a

K.

Applying anm-point quadrature formula with coefficients τk and the weights ωk in the interval [a, b] in Eq. (5.3) yields
n

i=1

φi,x(xj)ûi = F


xj,

n
i=1

φi(xj)ûi,

m
k=1

ωk KĎ


xj, ρ(xj, τk),

n
i=1

φi(ρk)ûi


, j = 1, 2, . . . , n. (5.6)

Solving Eq. (5.6) with an appropriate numerical solver for the nonlinear systems, we can obtain the values of ûj. Then the
value of u(x) is approximated by

u(x) ∼= uh(x) =

n
j=1

φj(x)ûj, ∀x ∈ [a, b]. (5.7)



2374 M. Dehghan, R. Salehi / Journal of Computational and Applied Mathematics 236 (2012) 2367–2377

Table 1
Maximum absolute errors, ratio of error and CPU times used for different values of N .

N Linear (q = 1) Quadratic (q = 2)
∥e∥L∞ Ratio Time ∥e∥L∞ Ratio Time

5 8.12 × 10−4 – 0.37 9.63 × 10−4 – 0.42
9 2.11 × 10−4 3.85 0.41 1.28 × 10−4 7.54 0.58

17 5.79 × 10−5 3.53 0.56 2.87 × 10−5 4.45 0.73
33 1.51 × 10−5 3.95 0.89 5.61 × 10−6 5.12 1.27
65 3.60 × 10−6 4.19 0.96 2.39 × 10−6 2.35 1.54

129 9.05 × 10−7 3.98 1.41 1.28 × 10−6 1.86 2.15

6. Numerical results

In this section, the numerical results for the one-dimensional Fredholm and Volterra integro-differential equations have
been depicted. To measure the accuracy of the method, the maximum error has been used with the following definition:

Maximum error : ∥e∥∞ = max
j

|u(j) − uexact(j)|. (6.1)

To show the rate of convergence of the new method, the values of ratio with the following formula have been reported

Ratio =
∥eN−1

∞
∥

∥eN
∞

∥
.

For the testswe used the linear and the quadratic basis andGaussianweight function. In the following computations,we take
d = hN =

1
N−1 , α =

0.6
N−1 where these values are obtained experimentally. In addition, the influence domain of the node xi is

the support of the weight function ωi(x). Also, for the numerical quadrature rule we used the seven-point Gauss–Legendre
quadrature formula. In the case of Volterra integro-differential equations, the approximate values and errors are tabulated
for x = 2.

6.1. The Fredholm integro-differential equation

6.1.1. Example 1
Consider the integro-differential equation

ú(x) = −u(x) +

 1

0
u(t)2dt +

1
2
(e−2

− 1),

u(0) = 1.

The exact solution is

u(x) = e−x.

The maximum error values and CPU times are given for different values of N in Table 1. Moreover, the rate of convergence
is shown in Table 1 for both linear and quadratic cases. The ratio numbers show the quadratic convergence of the method
in the linear case. But increasing the condition number CN2 causes increasing of the errors at the boundary which effects
on the global errors in the quadratic case.

6.1.2. Example 2
As the second problem, consider the following equation

ú(x) = 1 −
1
3
x3 +

 1

0
x3 u(t)2 dt,

u(0) = 0,

where the unknown function is

u(x) = x.

Tomeasure the accuracy of the studied approach, themaximumerrors, CPU times and the rate of convergence are presented
in Table 2. Like the first example in this example, the obtained results show that the rate of convergence increases in the
linear case, but because of the effect of the condition numberCN2, the convergence rate of the quadratic case is not gradually
increasing like the linear case.



M. Dehghan, R. Salehi / Journal of Computational and Applied Mathematics 236 (2012) 2367–2377 2375

Table 2
Maximum absolute errors, ratio of error and CPU times used for different values of N .

N Linear (q = 1) Quadratic (q = 2)
∥e∥L∞ Ratio Time ∥e∥L∞ Ratio Time

5 3.26 × 10−3 – 0.45 1.72 × 10−3 – 0.35
9 8.44 × 10−4 3.87 0.46 2.11 × 10−4 8.12 0.39

17 2.16 × 10−4 3.90 0.51 1.83 × 10−4 1.15 0.42
33 5.32 × 10−5 4.07 0.62 4.10 × 10−5 4.47 0.51
65 1.27 × 10−5 4.18 1.09 2.63 × 10−5 1.56 0.68

129 3.19 × 10−6 3.98 2.83 6.48 × 10−6 4.06 1.42

Table 3
Maximum absolute errors, ratio of error and CPU times used for different values of N .

N Linear (q = 1) Quadratic (q = 2)
∥e∥L∞ Ratio Time ∥e∥L∞ Ratio Time

5 2.02 × 10−4 – 0.39 1.34 × 10−4 – 0.38
9 5.07 × 10−5 3.98 0.58 1.71 × 10−5 7.86 0.55

17 1.26 × 10−5 4.01 0.69 2.15 × 10−6 7.94 0.55
33 2.97 × 10−6 4.25 0.76 2.64 × 10−7 8.12 0.79
65 6.88 × 10−7 4.32 1.01 3.22 × 10−8 8.20 1.21

129 1.51 × 10−7 4.56 2.19 3.87 × 10−9 8.33 3.31

Table 4
Maximum absolute errors, ratio of error and CPU time used for different values of N .

N Linear (q = 1) Quadratic (q = 2)
∥e∥L∞ Ratio Time ∥e∥L∞ Ratio Time

5 2.83 × 10−3 – 0.42 2.21 × 10−4 – 0.58
9 7.22 × 10−4 3.92 0.68 3.41 × 10−5 6.49 0.79

17 2.25 × 10−4 3.21 0.76 9.98 × 10−6 3.41 1.16
33 6.93 × 10−5 3.25 0.87 3.26 × 10−6 3.06 1.85
65 2.19 × 10−5 3.16 0.95 1.87 × 10−6 1.75 2.15

129 6.58 × 10−6 3.33 1.40 1.26 × 10−6 1.48 2.91

6.1.3. Example 3
In this example, let us consider the following equation

ú(x) = u(x) +
1

x + 1
−

1
2
x − ln(x + 1) +

1
(ln(2))2

 1

0

x
t + 1

u(t)dt,

u(0) = 0,

with the exact solution

u(x) = ln(x + 1).

The maximum error, CPU times and the rate of convergence are shown in Table 3. As we expected from theory, the error
increases with the order O(h2) in the linear case approximately.

6.2. Volterra integro-differential equation

6.2.1. Example 4
In this example consider the following integro-differential equation

ú(x) = 1 −
x
2

+
x e−x2

2
+

 x

0
x t e−u2(t)dt,

u(0) = 0.

The exact solution of this problem is

u(x) = x.

Table 4, shows the maximum errors, CPU times and the rate of convergence for different values of N .



2376 M. Dehghan, R. Salehi / Journal of Computational and Applied Mathematics 236 (2012) 2367–2377

Table 5
Maximum absolute errors, ratio of error and CPU times used for different values of N .

N Linear (q = 1) Quadratic (q = 2)
∥e∥L∞ Ratio Time ∥e∥L∞ Ratio Time

5 4.25 × 10−3 – 0.34 4.86 × 10−2 – 0.45
9 1.34 × 10−3 3.16 0.53 6.79 × 10−3 7.15 0.58

17 3.58 × 10−4 3.75 0.64 9.93 × 10−4 6.84 0.77
33 8.28 × 10−5 4.32 0.97 2.13 × 10−4 4.06 1.27
65 2.35 × 10−5 3.53 1.08 3.27 × 10−5 6.50 1.79

129 6.04 × 10−6 3.82 1.69 5.04 × 10−6 6.53 2.34

Table 6
Maximum absolute errors, ratio of error and CPU times used for different values of N .

N Linear (q = 1) Quadratic (q = 2)
∥e∥L∞ Ratio Time ∥e∥L∞ Ratio Time

5 5.84 × 10−3 – 0.45 1.96 × 10−4 – 0.46
9 1.75 × 10−3 3.33 0.57 2.42 × 10−5 8.11 0.58

17 4.88 × 10−4 3.59 0.65 3.48 × 10−6 6.94 0.73
33 1.30 × 10−4 3.74 0.72 6.55 × 10−7 5.31 0.87
65 3.21 × 10−5 4.05 1.68 5.75 × 10−7 1.14 1.66

129 8.19 × 10−6 3.93 4.83 6.05 × 10−7 0.95 5.61

6.2.2. Example 5
Let us consider this integro-differential equation

ú(x) = −
x2

3
+

4
3
e−u(x)

+

 x

1

1
x
t eu(t)dt,

u(1) = 0,

where the unknown solution is

u(x) = log(x).

Themaximum errors, CPU times and rate of convergence are reported in Table 5. The ratio of errors increases approximately
in the linear case and degrades in the quadratic case as it is expected.

6.2.3. Example 6
As the last example, we consider the following Volterra integro-differential equation

ú(x) = 2x −
1
2
sin(x4) +

 x

0
x2 t cos(x2 u(t))dt,

u(0) = 0,

where the unknown solution is

u(x) = x2.

In Table 6, the maximum error and ratio estimate the accuracy of the method. The results show the efficiency of the method
to approximate the nonlinear integro-differential equations.

7. Concluding remarks

In this paper the moving least square method with the point collocation approach presented for solving the nonlinear
Fredholm and Volterra integro-differential equations. Error analysis was provided for sufficiently smooth kernel and source
functions. TheMLSmethod is ameshless based techniquewhich does not need any domain discretization for approximation.
The method can be easily implemented and its algorithm is simple and efficient to approximate the unknown function. The
MLS method is a flexible approach to select the nodal density. The numerical results for different examples are reported
which show the efficiency of the method for solving various types of nonlinear integro-differential equations.

Acknowledgments

The authors thank the anonymous reviewers for the constructive comments and suggestions.



M. Dehghan, R. Salehi / Journal of Computational and Applied Mathematics 236 (2012) 2367–2377 2377

References

[1] A. Akyüz, M. Sezer, A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations in the most general form, Int.
J. Comput. Math. 84 (2007) 527–539.

[2] B. Bülbül, M. Sezer, Taylor polynomial solution of hyperbolic type partial differential equations with constant coefficients, Int. J. Comput. Math. 88
(2011) 533–544.

[3] I.P. Streltsov, Approximation of Chebyshev and Legendre polynomials on discrete point set to function interpolation and solving Fredholm integral
equations, Comput. Phys. Comm. 126 (2000) 178–181.

[4] K. Maleknejad, M. Tavassoli Kajani, Solving second kind integral equation by Galerkinmethods with hybrid Legendre and Block–Pulse functions, Appl.
Math. Comput. 145 (2003) 623–629.

[5] N. Bildik, A. Konuralp, S. Yalçnbaş, Comparison of Legendre polynomial approximation and variational iteration method for the solutions of general
linear Fredholm integro-differential equations, Comput. Math. Appl. 59 (2010) 1909–1917.

[6] S.H. Wang, J.H. He, Variational iteration method for solving integro-differential equations, Phys. Lett. A 367 (2007) 188–191.
[7] J.I. Ramos, Iterative and non-iterative methods for non-linear Volterra integro-differential equations, Appl. Math. Comput. 214 (2009) 287–296.
[8] A. Feldstein, J.R. Sopka, Numerical methods for nonlinear Volterra integro-differential equations, SIAM J. Numer. Anal. 11 (1974) 826–846.
[9] M. Tavassoli Kajani, M. Ghasemi, E. Babolian, Numerical solution of linear integro-differential equation by using sine-cosine wavelets, Appl. Math.

Comput. 180 (2006) 569–574.
[10] K. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, 1997.
[11] A.M. Wazwaz, A First Course in Integral Equations, World Scientific Publishing, 1997.
[12] P. Lancaster, K. Salkauskas, Surface generated by moving least squares methods, Math. Comp. 37 (1981) 41–58.
[13] D. Levin, The approximation power of moving least-squares, Math. Comp. 67 (1998) 17–31.
[14] P. Breitkopf, H. Naceur, A. Rassineux, P. Villon, Moving least squares response surface approximation: formulation and metal forming applications,

Comput. Struct. 83 (2005) 11–28.
[15] C. Bucher, M. Macke, T. Most, Approximate response functions in structural reliability analysis, in: P. Spanos, G. Deodatis (Eds.), Proceedings of the

Fifth Computational Stochastic Mechanics Conference, Rhodos, Greece, June 21–23, 2006, Balkema, 2006.
[16] B. Nayroles, G. Touzot, P. Villon, Generalizing the FEM: diffuse approximations and diffuse elements, Comput. Mech. 10 (1992) 7–18.
[17] T. Belytschko, Y.Y. Lu, L. Gu, Element-free Galerkin methods, Internat. J. Numer. Methods Engrg. 37 (1994) 29–56.
[18] S.N. Atluri, T. Zhu, A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics, Comput. Mech. 22 (1998) 17–27.
[19] M. Dehghan, A. Shokri, A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions, Math. Comput.

Simul. 79 (2008) 700–715.
[20] M. Dehghan, D. Mirzaei, Meshless local Petrov–Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with

arbitrary wall conductivity, Appl. Numer. Math. 59 (2009) 1043–1058.
[21] M. Dehghan, A. Ghesmati, Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation,

Eng. Anal. Bound. Elem. 34 (2010) 324–336.
[22] M. Dehghan, R. Salehi, A boundary-only meshless method for numerical solution of the Eikonal equation, Comput. Mech. 47 (2011) 283–294.
[23] M. Dehghan, R. Salehi, The solitarywave solution of the two-dimensional regularized long-wave equation in fluids and plasmas, Comput. Phys. Comm.

182 (2011) 2540–2549.
[24] M. Tatari, M. Dehghan, On the solution of the non-local parabolic partial differential equations via radial basis functions, Appl. Math. Model. 33 (2009)

1729–1738.
[25] D. Mirzaei, M. Dehghan, A meshless based method for solution of integral equations, Appl. Numer. Math. 60 (2010) 245–262.
[26] D. Shepard, A two-dimensional interpolation function for irregularly spaced points, in: Proc. 23rd Nat. Conf. ACM, ACM Press, New York, 1968,

pp. 517–524.
[27] D.H. McLain, Drawing contours from arbitary data points, Computing 17 (1974) 318–324.
[28] D.H. McLain, Two dimensional interpolation from random data, Computing 19 (1976) 178–181.
[29] R. Franke, G. Nielson, Smooth interpolation of large sets of scattered data, Internat. J. Numer. Methods Engrg. 15 (1980) 1691–1704.
[30] M.G. Armentano, R.G. Durán, Error estimates for moving least square approximations, Appl. Numer. Math. 37 (2001) 397–416.
[31] M.G. Armentano, Error estimates in Sobolev spaces for moving least square approximations, SIAM J. Numer. Anal. 39 (2001) 38–51.
[32] C. Zuppa, Error estimates for moving least square approximations, Bull. Braz. Math. Soc. (N.S.) 34 (2003) 231–249.
[33] X. Li, J. Zhu, A Galerkin boundary node method and its convergence analysis, J. Comput. Appl. Math. 230 (2009) 314–328.
[34] C. Zuppa, Good quality point sets and error estimates for moving least square approximations, Appl. Numer. Math. 47 (2003) 575–585.
[35] I. Babuška, U. Banerjee, J.E. Osborn, Q. Zhang, Effect of numerical integration on meshless methods, Comput. Methods Appl. Mech. Engrg. 198 (2009)

2886–2897.
[36] N.S. Kambo, Error of the Newton–Cotes and Gauss–Legendre quadrature formulas, Math. Comp. 24 (1970) 261–269.


	The numerical solution of the non-linear integro-differential equations based on the meshless method
	Introduction
	The moving least square approximation
	The Fredholm integro-differential equation
	The error analysis
	Preliminaries
	The error estimate

	The Volterra integro-differential equation
	Numerical results
	The Fredholm integro-differential equation
	Example 1
	Example 2
	Example 3

	Volterra integro-differential equation
	Example 4
	Example 5
	Example 6


	Concluding remarks
	Acknowledgments
	References


