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Abstract

Gd–La codoped TiO2 nanoparticles with diameter of 10 nm were successfully synthesized via a sol–gel method. The photocatalytic activity of
the Gd–La codoped TiO2 nanoparticles evaluated by photodegrading methyl orange was significantly enhanced compared to that of undoped or
Gd or La mono-doped TiO2. Ti

4þ may substitute for La3þ and Gd3þ in the lattices of rare earth oxides to create abundant oxygen vacancies and
surface defects for electron trapping and dye adsorption, accelerating the separation of photogenerated electron–hole pairs and methyl orange
photodegradation. It is believed that the formation of an excitation energy level below the conduction band of TiO2 from the binding of electrons
and oxygen vacancies decreases the excitation energy of Gd–La codoped TiO2, resulting in versatile solar photocatalysts. The results suggest that
Gd–La codoped TiO2 nanoparticles are promising for future solar photocatalysts.
& 2015 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

It is widely recognized that the photocatalytic technology
from semiconductor materials provides a feasible route to
environmental pollution control and energy harvesting [1–6].
Among plentiful semiconductor materials, titania (TiO2) nanos-
tructures are believed to be the most promising catalysts in
photocatalysis, hydrogen generation, and anode electrodes of
photovoltaic cells because of their versatile properties in nature:
clean, non-polluting, inexhaustible, biocompatible, and low-
price [7]. However, the main drawbacks of TiO2 nanostructures
that limit their commercial applications are the fast recombina-
tion of photogenerated electron–hole pairs and the UV-response
only due to their wide bandgap energy [8]. By addressing
these issues, many attempts have been made to enhance the
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photocatalytic activity of TiO2 nanostructures by improving the
electron–hole separation and extending the optical absorption to
the visible-light region by surface modification, structure
optimization, doping of noble metal or nonmetal elements.
Different from the traditional approaches of extending

absorption wavelength range of TiO2 photocatalysts, we have
recently investigated Gd–La codoped TiO2 nanostructures as
efficient solar phosphors. The codoped La and Gd elements
serve as intermediums, which are substituted by Ti to create
abundant oxygen vacancies and surface defects for efficient
separation of photogenerated electron–hole pairs and dye
adsorption. More importantly, the oxygen vacancies can easily
bind with electrons to form an excitation energy level below
the conduction band of TiO2, which results in an efficient
solar-light absorption. The early works on using rare earth
doped TiO2 as photocatalysts were mainly focused on the
doping of TiO2 by mono-rare earth element, such as Gd [9],
La [10], Yb [8], Er [11], or Ce [12]. However, the doping of
TiO2 by mono-rare earth either enhances the separation of
photogenerated electron–hole pairs or extends absorption
wavelength span of TiO2. By combining TiO2 base with
bi-rare earth elements, the limits of mono-doping issues can
be efficiently compensated.
Elsevier B.V. All rights reserved.
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In search for more promising photocatalysts, here we report
the study of Gd–La codoped TiO2 nanostructures as efficient
solar photocatalyst candidates for dye photodegradation. To
the best of our knowledge, there are still few reports on the
employment of Gd–La codoped TiO2 nanoparticles as solar
photocatalysts.

2. Experimental

2.1. Synthesis of Gd–La codoped TiO2 nanoparticles

Gd–La codoped TiO2 nanoparticles were synthesizedvia a sol–
gel method. In details, 10 ml of tetra-n-butyl titanium was
dissolved in a mixture of 80 ml of anhydrous ethanol, 1 ml of
concentrated nitric acid and 2 ml of deionized water and stirred
for 1 h at room temperature. Under vigorous agitation, lanthanum
nitrate and gadolinium nitrate were added to the above mixture
according to stoichiometric molar proportion. After 1 h, a stable,
transparent solution was obtained. The resultant gel was further
prepared by keeping the sol at room temperature for 4 h. After
being dried at 80 1C for 12 h, the powders were milled and
calcined in a muffle furnace of 450 1C for 3 h at a heating rate of
2 1C min�1.Finally, the Gd–La codoped TiO2 photocatalysts
were obtained and kept in a sealed vessel for future characteriza-
tions. As references, the undoped, Gd or La mono-doped TiO2

nanoparticles were also prepared under the same conditions.

2.2. Photocatalytic performances of the Gd–La codoped TiO2

photocatalysts

The photodegradation reactions were carried out under
atmospheric condition using 500 W xenon lamps as UV-light
source. A 420 nm cutoff filter with more than 90% transmis-
sion was employed in order to obtain visible light, and
simulated AM 1.5 G solar illumination at 100 mW cm�2 from
a xenon arc lamp (CHFXM500,Trusttech Co., Ltd., China) as
sunlight source at ambient conditions. The irradiation distance
between lamp and the sample was 10 cm. 0.1 g of Gd–La
codoped TiO2 photocatalysts were added into a cylindrical
glass vessel containing 100 ml of MO aqueous solution with a
concentration of 20 mg L�1. Before exposing the sample to
the light source, the MO aqueous solution was agitated
thoroughly with the catalyst slide in the dark for 30 min to
reach the adsorption equilibrium of the dye on the catalyst. At
an interval of 10 min and UV-irradiation, the photodegradation
reaction was ceased and the solution was centrifuged, whereas
the interval was 20 min at visible-light irradiation. The residual
dye concentration in the supernatant was measured by a UV–
vis spectrometer (Lambda850) at maximum absorption wave-
length of 460 nm for MO. As a comparison, the photocatalytic
activities of undoped, La or Gd mono-doped TiO2 were also
measured under the same conditions.

2.3. Characterizations

The morphology was observed on a TEM (JEM2010,
JEOL).The crystal structure of the as-prepared catalysts were
characterized by an XRD [X'pert MPD Pro, Philips, Nether-
lands with CuKα radiation (λ¼0.15418 nm) in the 2θ range
from 51 to 701 operating at 40 kV accelerating voltage and
40 mA current]. The optical absorption spectra were recorded
on a UV–vis spectrophotometer (Agilent 8453) at room
temperature. Fourier transformed Raman spectroscopic mea-
surements in the ultraviolet light were performed on a
Renishawin via Reflex Raman Spectrometer. High-resolution
gratings were used to give a spectral resolution of 2 cm�1. The
spectra were recorded at room temperature from 3200 to
100 cm�1 using 16 scans with an exposure time of 1 s per
scan. XPS experiments were carried out on an RBD upgraded
PHI-5000C ESCA system (Perkin-Elmer) with Mg Kα radia-
tion (hν¼1253.6 eV). In general, the X-ray anode was run at
250 W and the high voltage was kept at 14.0 kV with a
detection angle at 541. The pass energy was fixed at 23.5,
46.95 or 93.90 eV to ensure sufficient resolution and sensitiv-
ity. The base pressure of the analyzer chamber was about
5� 10–8 Pa. The sample was directly pressed to a self-
supported disk (10� 10 mm2), mounted on a sample holder,
and then transferred into the analyzer chamber. Binding
energies were calibrated by using the containment carbon
(C1s¼284.6 eV).

3. Results and discussion

3.1. Morphology characterizations

Fig. 1a and c shows representative TEM images of undoped
and Gd–La codoped TiO2 nanoparticles, respectively. These
particles exhibit average sizes from a few nanometers to
several tens nanometers. Fig. 1b shows HRTEM image of
undoped TiO2 nanoparticles. There is no lattice distortion in
current nanoparticle and all atoms are well-aligned in the
lattice. The lattice spacing of (101) atomic plane is 0.35 nm.
The corresponding FFT pattern from the particle shown in
Fig. 1b is demonstrated as inset in Fig. 1b. Gd–La codoped
TiO2 nanoparticles show different HRTEM view in Fig. 1d
compared to that of undoped TiO2 nanoparticles. The crystal
ionic radius of Ti4þ , La3þ , and Gd3þ are 0.068, 0.115, and
0.0938 nm respectively. Due to the fact that the radius of Ti4þ

is much less than that of La3þ and Gd3þ , Ti4þmay enter the
La3þ and Gd3þ lattices during synthesis, which induces a
great deal of lattice distortions and plenty of defects at and
under surface of Gd–La codoped TiO2 nanoparticles. The
corresponding FFT pattern formed in Fig. 1d shows that the
Gd–La codoped TiO2 is a polycrystalline structure.

3.2. Structural analysis

XRD was usually employed for identification of the crystal
phase as well as crystallite size of TiO2. The diffraction peaks
at 2θ¼25.3, 37.0, 37.7, 38.6, 48.0, 53.9, 55.1, 62.7, and 68.8
in the spectrum of undoped TiO2 are identified and attributed
to the diffraction faces of (101), (103), (004), (112), (200),
(105), (211), (204), and (116), respectively. The results show
that the crystal phase of undoped TiO2 is anatase (Fig. 2).



Fig. 1. (a,b) TEM and HRTEM images of undoped TiO2 nanoparticles, inset is corresponding to FFT in (b); (c,d) TEM and HRTEM images of Gd–La codoped
TiO2 nanoparticles, inset is corresponding to FFT in (d).
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Fig. 2. XRD patterns of undoped and Gd–La codoped TiO2 nanoparticles.
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No diffraction peaks of rutile phase are detected in the XRD
pattern. The crystallite size can be determined from the
broadening of corresponding XRD peaks by Scherrer formula
[13]

L¼ Kλ

β cos θ
ð1Þ

where L is the crystallite size, λ is the wavelength of the X-ray
radiation (CuKα¼0.15418 nm), K is usually taken as 0.89, and
β is the line width at half-maximum height (FWHM). In
addition, the crystal lattice distortion (Δd/d) can also be
evaluated from the following equation [14]:

Δd
d

¼ β

4tgθ
ð2Þ

At the first glance, all the diffraction peaks belonging to the
diffraction faces of anatase TiO2 can be detected in the Gd–La
codoped TiO2photocatalysts. However, the relative intensity of
diffraction peak belonging to (101) face of anatase TiO2 phase
dramatically decreases after being codoped by Gd and La ions,
indicating an inhibition effect of phase transformation from
amorphous to anatase TiO2. Moreover, the crystallite size of
the Gd–La codoped TiO2 has an order of decreasing with
increase of La dosage at a Gd content of 0.4% (Table 1),
suggesting that the doping of La in TiO2 can hinder the growth
of crystallite size due to the segregation of dopant cations at
the grain boundary [15]. It has been well known that the ionic
radii of La3þ (0.115 nm) and Gd3þ (0.0938 nm) are much
bigger than that of Ti4þ (0.068 nm), suggesting that La3þ or
Gd3þ ions cannot enter into TiO2 crystal lattice to substitute
for Ti4þ . However, there is a slight difference in the lattice
parameters “a” and “c” between undoped and Gd–La codoped
TiO2 photocatalysts and the values of all the Gd–La codoped



Table 1
Structure parameters obtained from XRD patterns of undoped and Gd–La codoped TiO2 photocatalysts.

Samples FWHM (deg) 2θ (deg) Crystallite size (nm) Δd/d a (nm) c (nm)

Undoped TiO2 0.32 25.33 25.19 0.0062 0.4983 0.4985
0.5%Gd–2.0%La/TiO2 1.58 25.27 5.10 0.031 0.4972 0.4973
1.0%Gd–2.0%La/TiO2 1.60 25.43 5.04 0.031 0.4953 0.4954
1.5%Gd–2.0%La/TiO2 1.51 25.48 5.34 0.029 0.4943 0.4944
2.0%Gd–2.0%La/TiO2 1.62 25.51 4.98 0.031 0.4937 0.4939
0.4%Gd–0.8%La/TiO2 1.38 25.60 5.84 0.027 0.4920 0.4922
0.4%Gd–1.0%La/TiO2 1.38 25.53 5.83 0.025 0.4933 0.4935
0.4%Gd–1.5%La/TiO2 1.44 25.48 5.60 0.028 0.4943 0.4944
0.4%Gd–2.0%La/TiO2 1.46 25.44 5.52 0.028 0.4951 0.4952
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Fig. 3. Raman spectra of the undoped, 1.5% La doped, 0.4% Gd doped, and
0.4% Gd–1.5% La codopedTiO2 nanoparticles.

Table 2
Assignments of Raman bands (cm�1) of undoped, 1.5% La doped, 0.4% Gd
doped, and 0.4% Gd–1.5% La codoped TiO2 nanoparticles.
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TiO2 are less than that of undoped TiO2. At the interfaces,
Ti4þ may substitute for La3þ and Gd3þ in the lattices of rare
earth oxides to decrease the lattice parameters [16], which is
consistent with the morphology analysis.

Crystallographic structure of the Gd–La codoped TiO2

nanoparticles was judged by Raman spectroscopy and shown
in Fig. 3. As a comparison, the Raman spectra of the undoped,
1.5% La doped, and 0.4% Gd doped TiO2 were also con-
ducted. The Raman bands at 148, 395, 514, and 639 cm�1 in
the codoped TiO2 are attributed to Eg(1), B1g(1), A1g/B1g(2),
and Eg(3) modes of anatase phase of TiO2 (Table 2), respec-
tively. The conclusion is consistent with that of XRD analysis.
No Raman peaks corresponding to Gd2O3 and La2O3 can be
detected in the doped TiO2, indicating that Ti4þ may be
present in the substitutional positions in the crystal lattices of
Gd2O3 and La2O3. However, the mode positions have shifted
in comparison with undoped TiO2. It is attributed to the
decrease in crystallite size (Table 1) and lack of adjacent atoms
for the surface atoms. Therefore, the surface atoms are in a
relaxation state and the red-shift results from a surface
relaxation effect [17].
Undoped 1.5% La
doped

0.4% Gd
doped

0.4% Gd–1.5% La
codoped

Mode

148 146 145 146 Eg(1)
395 397 397 397 B1g(1)
514 516 516 516 A1g,

B1g(2)
639 643 643 641 Eg(3)
3.3. Photocatalytic activity

Fig. 4a–c shows the decrease of MO concentration at
various irradiation times. Under UV-irradiation, MO molecules
were photodegraded slowly due to the photosensitization of
undoped TiO2. The photocatalytic activities of the Gd and La
doped TiO2 at various dosages were also depicted as refer-
ences to evaluate the activity of the doped TiO2, showing
significant enhancement in photocatalytic activity. It was found
that 0.4% Gd–1.5% La codoped TiO2 presented the highest
photocatalytic activity, which would be an optimum dose for
the Gd–La codopedTiO2. Similarly, when under visible and
solar light irradiations, the presence of undoped TiO2 had no
notable effect on the photodegradation of MO, whereas the
0.4% Gd and 1.5% La doped TiO2 exhibited much higher
photocatalytic activity than that of undoped TiO2. However,
the photocatalytic activity was further enhanced by codoping
0.4% Gd and 1.5% La into TiO2. But the increment of the
doping dosage did not necessarily suggest a better photocata-
lytic activity, for the redundant doping ions would become the
recombination center of the photogenerated electrons and
holes, which was unfavorable for the photodegradation.
The kinetics of the photodegradation of MO in the presence

of the undoped, 0.4% Gd doped, 1.5% La doped, and 0.4%
Gd–1.5% La codoped TiO2 were also studied. The ln(C/C0) of
these samples present good linear reaction with the irradiation
time (shown in Fig. 4(d) and (e)), which means that the
photodegradation of MO obeys the rules of a first-order
reaction kinectics � ln(C/C0)¼kt. The reaction rate constants
k of the photodegradation of MO from 0.4% Gd–1.5% La
codoped TiO2 is the highest. Therefore, we can conclude that
0.4% Gd–1.5% La codoped TiO2 nanoparticles are believed to
be the best solar photocatalysts.



Fig. 4. Time course of the decrease in the concentration for the photodegradation of MO by undoped,Gd doped, La doped, and Gd–La codoped TiO2 nanoparticles
under (a) ultraviolet, (b) visible, and (c) solar irradiations. (d) and (e) are the relationships between ln(C0/C) and time under visible and solar irradiations,
respectively.
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The surface chemical state of Gd–La codoped TiO2 catalysts
and their effect on the photodegradation performance were also
studied in this work. As can be seen from Fig. 5, Ti 2p3/2 peak
was detected and there was a slight shift to the lower binding
energy direction when codoped, from 458.9 ev to 457.7 ev,
which indicated the transformation from Ti4þ to Ti3þ in the
surface of the photocatalyst [18]. Similarly, the O 1s peak
located at 530.5 eV agreed with the electron binding energy for
TiO2 in the undoped TiO2, whereas the peak position at
529.1 eV in Gd–La codoped TiO2 meant the presence of Ti2O3

[16]. The generated Ti3þ can act as defects in the TiO2

catalysts. These defects can inhibit the recombination of
electron–hole pairs and therefore expand the lifetime of the
charges [19], which mean a higher photocatalytic activity.

The photocatalytic performance can also be confirmed by
the UV–vis diffuse reflection spectrum in Fig. 6. After doping,
a blue-shift, attributing to the quantum size effect [14], was
detected, suggesting that the doping of La, Gd, or Gd–La could
give rise to new spectrum phenomena as well as inhibit the
growth of anatase crystallite. The results were in good
agreement with XRD analysis. Moreover, the absorption
intensity was significantly enhanced by doping rare earth
elements, specially the codoping of Gd–La, which indicated
the photogeneration of more electron–hole pairs under the light
irradiation and explained the high photocatalytic performance.

In addition, it has been reported that there is an important
effect of La element on dye adsorption in La doped TiO2

because La elements can form complexes with various Lewis
bases e.g. acids, amines, aldehydes, alcohols, thiols, etc.
[9,20]. Moreover, the incorporation of Gd3þ into TiO2 can
shorten the distance of charge transfer and therefore enhance
photocatalytic activity [9]. Under the irradiation of solar light,
the charges can be easily photogenerated because of the
decrease of bandgap, as depicted in Fig. 7. They are also the
reasons to improve the photocatalytic activity via doping.
4. Conclusions

The fabrication of efficient Gd–La codoped TiO2 nanopar-
ticles for photocatalysts have been demonstrated. The photo-
catalytic degradation of MO revealed that Gd–La codoped
TiO2 can work more efficiently as photocatalysts in compar-
ison to undoped and Gd or La doped TiO2 nanoparticles. Ti

4þ

substitute for La3þ and Gd3þ in the crystal lattices of La2O3

and Gd2O3 to create abundant oxygen vacancies and surface
defects. The oxygen vacancies can easily bind electrons to
form an exciton energy level below the conduction band of
TiO2, resulting in an efficiently photocatalytic activity under
solar light irradiation. However, the surface defects provide
active sites to adsorb MO molecules which shortens the
transfer distance of photogenerated charges. A preliminary
research on photocatalytic performances reveals a significant
enhancement in the photodegradation of MO under solar
irradiation by Gd–La codoping and obeys the rules of a first-
order reaction kinectics. The insight into the effect of lower
exciton energy on charge separation and excitation was pro-
posed, providing a promising platform for fabricating highly
efficient solar photocatalysts or anodes for photovoltaic cells.
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