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Abstract

Unlike linear car-following models, nonlinear models generally can generate more realistic traffic oscillation phe-

nomenon, but nonlinearity makes analytical quantification of oscillation characteristics (e.g, periodicity and ampli-

tude) significantly more difficult. This paper proposes a novel mathematical framework that accurately quantifies

oscillation characteristics for a general class of nonlinear car-following laws. This framework builds on the describ-

ing function technique from nonlinear control theory and is comprised of three modules: expression of car-following

models in terms of oscillation components, analyses of local and asymptotic stabilities, and quantification of oscil-

lation propagation characteristics. Numerical experiments with a range of well-known nonlinear car-following laws

show that the proposed approach is capable of accurately predicting oscillation characteristics under realistic physical

constraints and complex driving behaviors. This framework not only helps further understand the root causes of the

traffic oscillation phenomenon but also paves a solid foundation for the design and calibration of realistic nonlinear

car-following models that can reproduce empirical oscillation characteristics.
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1. Introduction

Traffic oscillations, also known as the “stop-and-go” traffic, refer to the phenomenon that vehicle movement in

congested traffic tends to alternate cyclically between “stop” (or slow movements) and “go” (or fast movements)

patterns. Traffic oscillations lead to a range of adverse consequences including safety hazards, travel delay, extra

fuel consumption, air pollution and driving discomfort. In the 1980s, empirical studies used loop detector data as

solid evidences of periodically oscillating patterns in congested traffic [1, 2, 3]. Later, in the synchronized flow

context [4, 5, 6], Helbing et al. [7] and Kerner [8] categorized observed oscillations into different patterns. Methods

to extract oscillation characteristics (e.g., frequency and amplitude) from traffic data have been proposed in the time

domain [9, 10, 11] and the frequency domain [12]. Empirical studies have also related traffic oscillations to highway

capacity drops [13, 14, 15], lane changes near merges and diverges [10, 15, 16, 17, 18, 19, 20], and roadway geometric

features [21].

Motivated by these empirical findings, intensive theoretical research has been conducted to investigate oscillation

formation and propagation mechanisms. Early studies on linear car-following models can be traced back to the 1950s
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[22, 23]. Later, various non-linear models (e.g., [24, 25]) were developed in hope to better reproduce traffic evolution.

For example, Bando et al. ([26, 27]) developed a nonlinear optimal velocity (OV) model to study the stop-and-go

traffic, which became the building block of a set of extended models [28, 29, 30, 31, 32]. Treiber et al. [33] proposed

an intelligent driver model (IDM) to qualitatively reproduce observed traffic oscillations on German freeways. The

IDM model has been revisited in a number of following studies, e.g., relating it to a macroscopic model [34] and

adjusting it to match observed patterns in more data sets [35, 36].

In spite of numerous attempts, however, few car-following models are able to quantitatively explain propagation

mechanisms of the observed traffic oscillation phenomenon. Although the oscillation behavior of linear car-following

models can be easily analyzed by frequency-domain analysis tools [22, 23], the results have very limited capabilities

of explaining real-world traffic oscillation evolution, primarily because of its exclusion of physical constraints (e.g.,

speed bounds) and nonlinear driving behaviors. For example, without imposing speed bounds, the magnitude of oscil-

lation may grow to infinity at an exponential rate. The hope for a better explanation of the stop-and-go phenomenon

lies on the development of more complex nonlinear car-following models. For example, recent studies that try to ex-

plain oscillation propagation with nonlinear car-following behavior include [37, 38, 39, 40, 41, 42, 43, 44]. See [45]

for a comprehensive review on this topic. However, due to the complexity from nonlinearity, these studies are mainly

based on either numerical simulations or linearization of models. It remains a challenge to analytically quantify the

global oscillation propagation properties of nonlinear car-following models. Without a clear connection between the

car-following models’ structure (and parameter setting) and their oscillation behavior, it is generally very difficult to

calibrate a suitable car-following model that matches the observed oscillation characteristics.

This paper aims to fill some of these gaps by proposing a mathematical approach that, for the first time, can

analytically quantify oscillation characteristics of general nonlinear car-following laws based on frequency response

of nonlinear systems. This framework starts with a novel transformation scheme that expresses a general car fol-

lowing law in terms of pure oscillation components. Then the describing function technique from nonlinear control

theory [46, 47] is applied to analyze the local and asymptotic stability properties and the propagation of oscillations.

This technique approximates the output of a nonlinear system by the fundamental frequency component (which is

computationally easy to characterize), and it allows us to derive a compact frequency response function of a nonlin-

ear car-following law. We illustrate the application of this analytical framework with a set of nonlinear car-following

laws, and the analytical predictions are compared with the results from numerical simulations. Numerical experiments

show that the proposed method provides an accurate prediction of oscillation propagation in a vehicle platoon. The

proposed framework can potentially enable the development of a guideline for designing and calibrating car-following

models that can reproduce empirically observed oscillation characteristics.

The remainder of the paper has the following structure. Section 2 introduces notation and proposes a new formu-

lation scheme that expresses a general class of car-following laws in terms of pure oscillation components. Section

3 describes the analytical mathematical framework, including the nonlinear car-following stability analysis and oscil-

lation propagation quantification. Section 4 illustrates the application of this framework to a number of well-known

car-following models; the performance of the proposed method is examined with numerical examples. Section 5

concludes this paper and briefly discusses possible future research directions.

2. Car-following Law Representation

Generally, vehicle trajectories exhibit both macroscopic and microscopic characteristics. Macroscopic character-

istics are specified by nominal states (e.g., average spacing, velocity and flow volume) that shall be consistent with

a traffic fundamental diagram [48]. Microscopic characteristics describe how actual vehicle trajectories deviate from

the nominal states as a result of car-following dynamics, and such characteristics can often be approximately specified

by oscillation properties (e.g., period and amplitude). The coupled oscillation and nominal state components make

it difficult to analyze and quantify traffic oscillation properties. Inspired by the “detrending” operations in traffic and

supply chain analysis (e.g., [12, 49]), this section proposes a decomposition method that extracts pure oscillation

components from vehicle trajectories, which further allows us to represent a general class of non-linear car-following

models in terms of only oscillation components. As such, the interference from nominal states is eliminated.
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2.1. Trajectory decomposition
As shown in Figure 1, we consider a platoon of vehicles in a single lane, l = 0, 1, ..., L, indexed from downstream

to upstream. In an infinite time horizon t ∈ R, let xl(t) ∈ R denotes the location of vehicle l at time t. The actual

trajectory of vehicle l can be denoted by a curve xl = {xl(t)}t∈R.2 Since vehicles normally do not move backwards,

xl(t) shall be monotonically non-decreasing with t.
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Figure 1: Decomposition of trajectories

Definition 1. We call y = {y(t)}t∈R an oscillatory time series if ∃P ∈ R+,−∞ < y(t) = y(t + P) < +∞,∀t ∈ R and∫ P
0

y(t) = 0, or equivalently y is comprised of a set of sinusoids (or frequency components) whose frequencies are all

multiples of 2π/P.

Definition 2. We say that a time series contains periodic patterns if it is a superposition of a time series of nominal

states (which represents the trend) and an oscillatory time series (which captures oscillations).

Definition 3. For two given time series y1 := {y1(t)}t∈R and y2 := {y2(t)}t∈R, their difference is defined as y1 − y2 :=

{y1(t) − y2(t)}t∈R.

[12] observed that a vehicle trajectory with well-developed oscillations demonstrates very salient periodicity and

can be approximated by a narrow band of frequency components after detrending (i.e., removing the nominal series).

As illustrated in Figure 1, we assume that trajectory xl is a superposition of a nominal series x̄l = {x̄l(t)}t∈R that

dictates the underlying macroscopic traffic characteristics (e.g, trend speed and average spacing) and an oscillatory

series x̂l = {x̂l(t)}t∈R that results from car-following dynamics. Since the macroscopic characteristics of vehicle

trajectories usually remain relatively stable in a short period of time, the linear regression line of a trajectory could

potentially be considered as its nominal series3 and the remaining components (i.e., by subtracting the nominal series

from the original trajectory) can be treated as the oscillatory part. In general, we use the average speed v̄ and a set

of average spacings {sl}∀l (i.e., sl := x̄l−1(t) − x̄l(t),∀t) to denote the macroscopic characteristics. For each vehicle l,
x̄l(t) = x̄0(0) + v̄t −∑l

l′=1 sl′ and hence x̂l(t) satisfies

x̂l(t) = xl(t) − x̄0(0) − v̄t +
l∑

l′=1

sl′ ,∀t ∈ R, l = 0, 1, · · · , L. (1)

Even for non-stationary traffic where macroscopic characteristics vary over time (e.g., transition from a free-flow

state to a congestion state), the macroscopic characteristics usually have a much slower evolving pace than traffic

oscillations. The above-mentioned decomposition scheme can be easily adapted to handle such cases by allowing

{x̄l}∀l to be non-stationary but slowly varying. The other decomposition steps remain unchanged.

2A realistic trajectory with finite length can be transformed into an infinite trajectory by padding its own copies or zeros.
3In case the macroscopic characteristics vary along the trajectories, we can either use the polynomial fitting method proposed by [12] to extract

x̄l, or simply divide xl into several segments by its macroscopic states so that each segment has relatively steady macroscopic characteristics.
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The above decomposition, albeit simple, can facilitate the analysis of traffic oscillations. For example, vehicle tra-

jectories can be plotted into oblique coordinates to remove nominal components and preserve oscillatory components,

so that we can easily use frequency analysis tools to measure oscillation characteristics. In addition, car-following

models can be calibrated in the oblique coordinates by fitting the oscillatory components only.

2.2. Car-following model

Let v∗ and v∗ respectively denote the minimum and maximum possible vehicle speeds.4 In our oscillation analysis,

we are only interested in the non-trivial case where v∗ < v̄ < v∗, because v̄ = v∗ or v̄ = v∗ implies that {xl}∀l are a

set of parallel straight lines without any oscillations. Recall that v̄ and sl reflect macroscopic traffic characteristics in

stationary traffic (i.e., when x̂l = {0}t∈R); for each l, we assume that they follow a velocity function Fl : R → [v∗, v∗],
such that v̄ = Fl(sl) (which can also be interpreted by a flow-density fundamental diagram from a macroscopic per-

spective). Here, we allow different vehicles to have different velocity functions so as to accommodate heterogeneous

driving behavior.5 When traffic is not stationary (i.e., when x̂l � {0}t∈R), Fl(sl) may slightly deviate from v̄.

We consider a class of car-following laws in the following form:{
dxl(t)

dt

}
t∈R
= Gl[{Fl(xl−1(t) − xl(t))}t∈R],∀l = 1, · · · , L (2)

where function Fl(xl−1(t) − xl(t)) is a target speed (based on the actual spacing) and Gl is an arbitrary linear operator

(which might include differential, integral and time shift operations). In our analysis, we assume that Fl satisfies the

following properties.

(i) Fl(s) increases over s ∈ R.

(ii) Fl(s) is Lipschitz continuous; i.e., there exists a scalar Kl ∈ R+ such that |Fl(s1)−Fl(s2)| ≤ Kl|s1− s2|,∀s1, s2 ∈ R.

(iii) Fl(s) is differentiable and strictly increasing when Fl(s) is in the open set (v∗, v∗), and for all v ∈ (v∗, v∗)
there exists one and only one s such that Fl(s) = v (or s = F−1

l (v)). We define s = limv→v+∗ F−1
l (v) and

s = limv→v∗− F−1
l (v).

Property (i) ensures that in congested traffic a lower vehicle density generally corresponds to a higher nominal speed.

Property (ii) is satisfied by all continuous fundamental diagrams. Property (iii) reflects on the fact that during con-

gestion a vehicle’s speed is normally sensitive to its spacing changes. Many well-known continuous fundamental

diagrams satisfy these three properties. For example, the Greenshield’s fundamental diagram [50] can be specified by

letting Fl(s) = max(v∗ − v∗s0
l /s, 0) where s0

l is the stopping distance and the Lipschitz scalar Kl = v∗/s0
l . The triangle

fundamental diagram [51, 52] can be specified by letting Fl(s) =
⌊
λl(s − s0

l )
⌋v∗

0
where λl is a sensitivity coefficient,


·�ba := mid(a, b, ·) and the Lipschitz scalar Kl is equal to λl.

We further assume that Gl satisfies the following two properties

(iv) The integral
∫

Gl is a low-pass filter; i.e., among all frequency components in its input time series,
∫

Gl amplifies

low-frequency components more than high-frequency components.

(v) For any constant c, Gl({c}t∈R) = {c}t∈R.

Since an integral operation itself is a low-pass filter, property (iv) can be easily satisfied if Gl is not dominated by a

differential operation. This is the case for most existing car-following laws. Property (v) explains the system’s nominal

behavior; i.e., it ensures that the macroscopic characteristics of the trajectories generated from (2) are consistent with

those predicted by the fundamental diagram Fl.

4The minimum speed v∗ is usually equal to 0 in the real world, but in our framework it may take any value.
5Actually, function Fl can be further generalized into a backlash nonlinear system [47] that contains two speed-spacing functions, one for

deceleration and the other for acceleration. For the illustration of the proposed framework, this paper only focuses on the simple function form of

Fl.
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Plugging (1) into (2) yields{
dx̂l(t)

dt

}
t∈R
= Gl [{Fl(x̂l−1(t) − x̂l(t) + sl) − v̄}t∈R] ,∀l = 1, · · · , L (3)

If we define a new function F̂l(s) := Fl[s+F−1
l (v̄)]− v̄ (note that F̂l(0) = 0), then (3) can be normalized as follows:{

dx̂l(t)
dt

}
t∈R
= Gl

[
{F̂l(x̂l−1(t) − x̂l(t) + s̄l)}t∈R

]
,∀l = 1, · · · , L. (4)

Here, s̄l = sl − F−1
l (v̄) is an unknown variable that denotes the deviation of the actual spacing from what the funda-

mental diagram would predict. Before calculating the value of s̄l, we first introduce the following proposition.

Proposition 1. Suppose F is continuous, increasing over (−∞,+∞) and strictly increasing over (a, c) for some given
a < c ∈ R, and y = {y(t)}t∈R is an oscillatory series. Then for any b ∈ (a, c), there exists one and only one scalar s
such that {F(y(t) + s) − F(b)}t∈R is an oscillatory series.

Proof. See Appendix A

If a < 0 < c, F(0) = 0, and y is an oscillatory time series, then we define a mapping s := S̄ (y, F) such that

{F(y(t)+ s)}t∈R is a nominal time series. For some special y and F, we can compute S̄ (y, F) analytically. For example,

if F is an odd function and y is a pure sinusoid, then S̄ (y, F) = 0. In general, however, there might not exist

an analytical method to compute S̄ (y, F). Rather, based on the monotonicity of F, we can obtain S̄ (y, F) from an

efficient bisecting search method, as follows

Step C0: Initialize s = 0, and return s if
∫ P

0
[F(y(t)+ s)]dt = 0; otherwise, let s− = a and s+ = 0 if

∫ P
0

[F(y(t)+ s)]dt >
0, or let s− = 0 and s+ = c otherwise. Specify a small positive error tolerance ε.

Step C1: Let s := (s+ + s−)/2. If |s+ − s−| < ε, return s; otherwise, go to Step C2.

Step C2: Let s− = s if
∫ P

0
[F(y(t) + s′)]dt < 0, or let s+ = s otherwise. Go to Step C1.

Now we discuss how to solve s̄l. According to (4), since x̂l is an oscillatory series, so is
{

dx̂l(t)
dt

}
t∈R. Property (v)

of Gl dictates that {F̂l(x̂l−1(t) − x̂l(t) + s̄l)}t∈R shall also be purely oscillatory. We know that x̂l−1 − x̂l is an oscillatory

series, function F̂ is continuously increasing over (−∞,+∞) and strictly increasing over
(
s − F−1

l (v̄), s − F−1
l (v̄)

)
,

s < F−1
l (v̄) < s, and F̂−1

l (0) = 0. Hence, for any given x̂l−1− x̂l and F̂l, Proposition 1 indicates that s̄l = S̄ (x̂l−1− x̂l, F̂l)

can be obtained by Algorithm C0-C2. Then formula (4) can be equivalently expressed in terms of the oscillatory

series only, as follows:

x̂l =

∫
Gl

[{
F̂l

(
x̂l−1(t) − x̂l(t) + S̄ (x̂l−1 − x̂l, F̂l)

)}
t∈R

]
dt,∀l = 1, · · · , L. (5)

Equation (5) can be used to express several well-known car-following models. The linear models [53, 22, 23] can

be obtained by letting v∗ → −∞, v∗ → +∞ and Fl be an identity function. The fundamental diagram based models

[54, 55, 56] and the OV models [26, 27] are also special cases of (5), with Gl being an identity mapping and an integral

operation, respectively (see Section 4 for more detailed discussion).

3. Oscillation Characteristics Analysis

This section proposes a mathematical framework that analyzes stability properties and oscillation propagation

characteristics for a class of nonlinear car-following laws (5). Stability analyses, including local and asymptotic

stabilities, qualitatively explain whether a car following law will amplify or dampen a small trajectory perturbation

over time and space. Local stability pertains to whether a perturbation at present will induce future fluctuations on

the same trajectory [23]. Asymptotic stability concerns whether perturbations in the leading trajectory will amplify
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across the following trajectories [22]. These traditional stability analysis methodologies are essentially the same

for both linear and nonlinear car-following models, except that nonlinear models are usually linearized before these

analyses.

If a car following law is both locally and asymptotically stable, it will dampen any perturbations from the leading

vehicle and therefore all following vehicles will always move smoothly. This, however, is not consistent with empir-

ical observations. Unstable models will amplify certain perturbations in the leading trajectory and certain oscillation

patterns will propagate across trajectories. We will propose an analytical approach that quantitatively predicts the

propagation of oscillation characteristics (e.g., periodicity and magnitude) in a vehicle platoon for an unstable non-

linear car-following law in the form of (2). This approach is built on the describing function method [47] from the

nonlinear control literature, which is often used to quantify oscillation responses of a nonlinear system for a given

sinusoidal input. With this method as a building block, the proposed approach is able to handle the nonlinearity in (2)

from a frequency domain perspective and yield an accurate analytical prediction of traffic oscillation propagation.

3.1. Stability analysis

This section introduces methods to analyze the local and asymptotic stability properties of car-following law (5).

The local stability pertains to whether the following vehicle’s trajectory can stabilize to its nominal state over time,

despite a small perturbation from its immediate preceding vehicle [23]. The asymptotic stability describes whether

perturbations from the leading vehicle’s trajectory will be amplified across vehicles upstream [22]. It shall be noted

that asymptotic stability is only well defined for car-following laws that are locally stable. For the convenience of the

notation, we denote the value of Gl(·) at t by Gl(·, t), i.e., Gl(·) = {Gl(·, t)}t∈R. Local stability analysis is generally

based on the linearization of car-following law (5). Define the Laplace transform of the linear operation Gl

GL
l (r) := lim

T→∞

∫ T
0

Gl({e−rt}, t)dt∫ T
0

e−rtdt
,∀r ∈ C, (6)

then the linearized characteristic equation of (5) in the Laplace space is defined as

GL
l (r)

r
dF̂l(s)

ds

∣∣∣∣∣∣
s=0

+ 1 = 0,∀r ∈ C, (7)

Equation (7) is the denominator of the close-loop transfer function for (5) (see [57] for the introduction to a close-loop

system). Car-following law (5) is locally stable if every solution r to (7) (which is a pole of the close-loop transfer

function) is within the left half complex plane; i.e., the real part of the solution is negative.

For a locally stable car-following law, asymptotic stability can be analyzed based on the frequency response gain

of the linearized car-following law (5). Define a complex function

Gl(ω) := GL
l ( jω) =

j
π

∫ π

−π
Gl({e−ωt}, t)e− jωtdωt,∀w ∈ R+. (8)

where j =
√−1 and Gl(ω, t) is the value of Gl({sin(ωt)}t∈R) at time t. Function (8) is the Fourier transform [58] of

the linear system Gl, which is also called the frequency transfer function. The measure for asymptotic stability can be

defined as follows ∣∣∣∣∣∣∣∣∣
Gl( jω) dF̂l(s)

ds

∣∣∣∣
s=0

Gl( jω) dF̂l(s)
ds

∣∣∣∣
s=0
+ jω

∣∣∣∣∣∣∣∣∣ ,∀ω ∈ R+. (9)

Car-following law (5) is asymptotically stable if the value of (9) is uniformly no larger than 1 for all ω ∈ R+.

3.2. Oscillation characteristic quantification

3.2.1. Limit cycle analysis for locally unstable car-following laws
For a locally unstable nonlinear car-following law (5), if the value of function Fl is bounded, a leading vehi-

cle’s perturbation shall just lead to bounded oscillation (or a limit cycle [47]) in the following vehicles’ trajectories
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(rather than increasing toward infinity). In this section we will show how to calculate the oscillation propagation

characteristics for nonlinear car-following law (5).

Let x̂l−1(t) = 0,∀t, and then (5) becomes

x̂l =

∫
Gl

[{
F̂l(−x̂l(t) + s̄l)

}
t∈R

]
dt,∀l = 1, · · · , L (10)

Assume time series x̂l can be approximated by a sinusoid {Al sin(ωt + φl)}t∈R with amplitude Al ∈ R+, frequency

ω ∈ R+ and phase angle φl ∈ [0, 2π). Hence {F̂l(−x̂l(t)+ s̄l)}t∈R shall also include frequency ω, but due to nonlinearity,

it may contain sinusoidal components of higher frequencies. Fortunately, these higher frequencies, if any, will likely

be dampened by the low-pass filter
∫

Gl. Thus, the describing function method [47] just considers the fundamental si-

nusoidal component of {F̂l(−x̂l(t)+ s̄l)}t∈R. Then, it can be derived that equation (10) can be approximately represented

in the frequency domain as follows,

Fl(Al) − − jω
Gl(ω)

≈ 0, (11)

where

Fl(A) : =

∫ π
−π

[
F̂l

(
A sin(t) + S̄ ({A sin(t)}t∈R, F̂l)

)]
e− jtdt∫ π

−π A sin(t)e− jtdt
(12)

=

∫ π

−π

[
F̂l(A sin(t) + S̄ ({A sin(t)}t∈R, F̂l)

]
e− j(t−π/2)dt,∀A � 0 ∈ C (13)

See Appendix B for the detailed derivation of (11).

Solving this complex-valued equation (11) (which is equivalent to two real-valued equations) yields the candidate

frequency ω and amplitude Al for the limit cycle in x̂l. In cases (11) cannot be solved analytically, we can solve it

numerically in the following way. Note that {Fl(Al)}Al∈R and {− jω/Gl(ω)}ω∈R are two curves on the complex plane.

Since |Fl(·)| ∈ [0,Kl], {Fl(Al)}Al∈R shall lie within a circle which has radius Kl and is centered at the origin. If

{− jω/Gl(ω)}ω∈R lies outside this circle, there is no solution to (11) and the car-following law should be locally stable.

Otherwise, we just need to find the intersection(s) of these two curves. For a given ω, it is easy to evaluate the transfer

function Gl(ω). For a given Al, it is also easy to evaluate Fl(Al) (from Algorithm C0-C2) to obtain S̄ ({Al sin(t)}t∈R, F̂l)

and then calculating (12). Hence, we can find the intersection(s) by enumerating a reasonable range of Al and ω
values.6 After obtaining such an intersection, we need to verify its stability; i.e., stable solution (ω, Al) shall satisfy

|Fl(Al−)| > | − jω
Gl(ω)
| for an Al− slightly smaller than Al and |Fl(Al+)| < | − jω

Gl(ω)
| for an Al+ slightly greater than Al. Only the

stable solution(s) is suitable for quantification of the oscillation characteristics for the limit cycle.

3.2.2. Oscillation propagation analysis for locally stable car-following laws
However, many car-following models capable of reproducing traffic oscillations are locally stable but asymptot-

ically unstable. For such car-following laws, we will propose a describing-function-based method to quantify oscil-

lation characteristics for each generated trajectory. These oscillation characteristics quantitatively predict how small

perturbations of vehicle 0 are amplified into fully-grown oscillations across the following vehicles l = 1, 2, · · · , L.

Suppose that x̂0 can be approximated by a single sinusoid of frequency ω. In car-following law (5), suppose that

the input x̂l−1 can be approximated by a sinusoid {Al−1 sin(ωt)}t∈R where Al−1 is the amplitude.7 Since x̂l is generated

from x̂l−1, it shall also preserve the same periodicity. The low-pass property of
∫

Gl says that x̂l shall also follow

a sinusoidal shape (although the phase angle might have changed). This means that all x̂l,∀l = 1, 2, · · · , L, can be

approximated by sinusoids of the same frequency ω. Suppose x̂l(t) is approximated with Al sin(ωt + φl) where Al and

φl are, respectively, the amplitude and the phase angle of x̂l. Then (5) can be represented as

{Al sin(ωt + φl)}t∈R ≈
∫

Gl

[{
|�Al|Fl(|�Al|)| sin

[
ωt + ∠(�Al) + ∠(Fl(|�Al|))

]}
t∈R

]
dt. (14)

6For most car-following laws in the literature, there is usually no more than one intersection.
7This expression does not include a phase angle because we can always shift the time axis to remove it.
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where �Al = Al−1 − Ale jφl . The frequency domain representation of (14) is

Ale jφl ≈ Gl(ω)

jω
Fl(|�Al|)�Al. (15)

or

Ale jφl

(
1 +
Gl(ω)

jω
Fl(|�Al|)

)
≈ Gl(ω)

jω
Fl(|�Al|)Al−1. (16)

If the oscillatory component of x̂l−1 is given as xl(t) = A sin(ωt), the oscillation characteristics Al and φl for x̂l

can be quantified using Equation (16). If the analytical solution is difficult to obtain, it can be solved numerically as

follows:

Step A0: Initialization. Let F 0 = Kl, k = 0.

Step A1: Let

Ak
l =

Gl(ω)F k

jω + Gl(ω)F k Al−1.

Step A2: Let F k+1 = βFl(|Al−1 − Ak
l |) + (1 − β)F k with a proper scalar β ∈ (0, 1).

Step A3: Stop if {Ak
l } converges, and output Al = |Ak+1

l | and φl = ∠(Ak+1
l ); otherwise, k = k + 1 and go to Step A1.

For any given ω and Al−1, the above approach can be used to obtain Al. Define the amplitude amplification ratio

R(Al−1, ω) := Al/Al−1. We can create a surface for the amplification ratio {R(Al−1, ω)}Al−1,ω∈R+ for all possible ω and

Al−1 values. If Fl is linear, the surface will no longer depend on Al and shall degrade to a single curve (i.e., the Bode

plot), which is exactly the frequency response (9). So we call this surface the generalized frequency response, which

can be used to quantify oscillation propagation for a given leading trajectory x̂0.

For a linear car-following model, propagation (and amplification) of each frequency component is independent,

and hence x̂0 can be decomposed into a set of individual sinusoids and the propagation of each sinusoid can be

independently quantified. As such, x̂l can be obtained by superposition of all these sinusoids. However, for a non-

linear model in the form of (5), different frequency components may significantly interfere with each other during

propagation. The propagation and growth of traffic oscillations can be quantified as follows.

In case x̂0 is a pure sinusoid, i.e., x̂0(t) = A0 sin(ωt), with a fixed frequency ω ∈ R+ and a very small amplitude

A0 ∈ R+, we can look up the corresponding amplification ratio at frequency ω in the generalized frequency response

surface and calculate the oscillation amplitude of the next vehicle trajectory. This can be repeated for all L vehicles to

obtain values for A1, · · · , AL. We can also repeat this for all ω ∈ R+, and we obtain an oscillation propagation surface

{Al}ω∈R+,l=0,··· ,L.

In real data, x̂0 is likely to include random perturbations rather than a pure sinusoid [12]. Since function F̂l is

differentiable around the origin, we can first treat the car-following law as a linear law when the oscillation magnitude

is small (e.g., for the first few downstream vehicles), and we use the above described decomposition-superposition

approach to quantify the oscillation propagation. As a result, the frequency components that result in highest values

on the generalized frequency response surface for small Al−1 will be amplified the most. We call these frequency com-

ponents “dominating.” Once the oscillation magnitude grows larger so that the nonlinear effect of the car-following

law is significant, we will approximate x̂l with a pure sinusoid (which shall be of one of the previous dominating

frequencies) and only analyze this frequency component for all the following trajectories.

4. Numerical Examples

The modeling framework proposed in Section 3 can obviously be applied to a wide range of car-following laws

(i.e., with different fundamental diagram function Fl and operator Gl). For illustration purposes, we will consider

a few well-known examples and compare the analytical oscillation propagation predictions with those observed in

numerical simulations.
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4.1. Examples of Fl and Gl

We will consider the following two types of Fl.

Newell’s Model. We first consider the case where function Fl is the velocity-spacing representation of a triangular

flow-density fundamental diagram [59]; see Figure 2.8 Parameters v∗ and s0
l are the free-flow speed (or the posted

speed limit) and the stopping distance, respectively. Scalar λl is a sensitivity factor that reflects the aggressiveness of

the driver [61]. The mathematical expression for Fl is

Fl(s) =
⌊
λl(s − s0

l )
⌋v∗

0
(17)

Note that expression (17) satisfies Properties (i)-(iii) with v∗ = 0 and Kl = λl. It is easy to show that

F̂l(s) = 
λl s�v∗−v̄
−v̄ . (18)

0

λl

v∗

s0l
s

F
l(
s)

Figure 2: Triangular fundamental diagram based Fl.

Then complex function Fl can be derived as follows,

Fl(A) :=
2

Aπ

[ Aλl

4

(
e− j(2φ+π/2) − e− j(2σ+π/2)

)
+ (v∗ − v̄ − λl s̄l)e− jφ

+(v̄ + λl s̄l)e− jσ + (v∗ − 2v̄)e jπ/2 +
λl

2
(φ − σ)

]
,∀A ∈ R+, (19)

where

σ =

{
sin−1

(−s̄l−v̄/λl
A

)
if − A < s̄l < A − v̄/λl;

−π/2 if A − v̄/λl ≤ s̄l < A.
,

φ =

{
sin−1

(−s̄l+(v∗−v̄)/λl
A

)
if − A + (v∗ − v̄)/λl < s̄l < A;

π/2 if − A < s̄l ≤ −A + (v∗ − v̄)/λl

8A triangular fundamental diagram is simple yet capable of explaining the constant backward wave speed observed in reality [60]. Note that it

is not differentiable everywhere.
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and s̄l = S̄ ({A sin(t)}t∈R, F̂l) can be obtained by solving the following equation via Algorithm C0-C2,

∫ π/2

−π/2
[F̂(A sin(t) + s̄l)]dt = −v̄

(
σ +
π

2

)
+ (v∗ − v̄)

(
π

2
− φ

)
+ s̄l(φ − σ) + A(cos(σ) − cos(φ)) = 0. (20)

Note that if 2v̄ = v∗,

Fl(A) =
2λl

π

[
sin−1

(
v∗/λl

2A

)
+

v∗/λl

2A

√
1 −

(
v∗/λl

2A

)2
⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

and S̄ ({A sin(t)}t∈R, F̂l) = 0.

OV Model. Another popular form of Fl can be drawn from the OV model [26, 27], as illustrated in Figure 3. Its

function form can now be specified as follows

Fl(s) =
v∗

2

(
tanh(

2λl(s − sm
l )

v∗
) + 1

)
, (21)

where sm
l is a scalar and tanh(z) = (ez − e−z)/(ez + e−z),∀z ∈ R is the hyperbolic tangent function. Equation (21) also

satisfies Properties (i)-(iii) with v∗ = 0 and Kl = λl. The shape of (21) is similar to that of (17), although the boundary

conditions of (21) are somehow unrealistic (e.g., equation (21) does not yield a positive stopping distance and the

target speed can never reach v∗ for any s). However, the differentiability of this function are favorable for stability

analysis [26].

0

λl

v∗

sml
s

F
l(
s)

Figure 3: Hyperbolic tangent based Fl.

The corresponding F̂l function can be shown to be

F̂l(s) =
v∗

2
tanh

(
2λl sl

v∗
+ tanh−1

(
2v̄
v∗
− 1

))
+

v∗

2
− v̄. (22)

In this case, Fl does not have an analytical expression in terms of ω, and hence we will numerically solve s̄l =

S̄ ({A sin t}t∈R, F̂l) from the following equation via Algorithm C0-C2:

∫ π/2

−π/2

[
v∗

2
tanh

(
2λlA sin(t)

v∗
+ tanh−1

(
v̄ − v∗

2

))
+

v∗

2
− v̄

]
dt = 0. (23)

Benchmark: Linear Model. For comparison purposes, we define a benchmark linear function Fl(s) as follows.

Fl(s) = λl(s − s0
l ), (24)
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which can be equivalently transformed into

F̂l(s) = λl s, (25)

and

Fl(A) = λl. (26)

Note that the slopes of (18), (22) and (25) are all the same at the origin. This implies that these three car-following

laws shall lead to similar oscillation propagation when oscillation magnitudes are very small.

We also consider the following two types of operator Gl:

Speed Following. In some car following models [22, 23, 54], Gl is a simple time shift operator,

Gl{y(t)}t∈R = {y(t − τl)}t∈R, (27)

where τl is the driver’s time lag. This operator implies each vehicle l will exactly follow the target speed based on the

spacing observed τl time ago. Equations (6) and (9) now become

GL
l (r) = e−rτl , (28)

and

Gl(ω) = e− jωτl . (29)

Speed Target. Operator Gl may also be drawn from the OV model such that the acceleration of a vehicle is propor-

tional to the difference of its actual speed and the target speed observed τl time ago. That is, if the following vehicle’s

current speed {y′(t)}t∈R = Gl({y(t)}t∈R), then

dy′(t)
dt
= α(y(t − τl) − y′(t − τl)), (30)

where α is a positive scalar. Equation (7) and (9) can be derived easily as follows

GL
l (r) =

α

rerτl + α
, (31)

and

Gl(ω) =
α

jωe jωτl + α
. (32)

In the following subsections we will analyze the four possible combinations of Fl and Gl.
9 For each case, we will

first examine the local and asymptotic stabilities, and then quantify oscillation propagation properties.

4.2. Case 1: Newell’s Fl and Speed Following Gl

From (18), we obtain the slope

dF̂l(s)

ds

∣∣∣∣∣∣
s=0

= λl.

To obtain the root(s) of (7), we need to solve
λle−rτl

r
+ 1 = 0. (33)

Obviously, for any root of (33), the real part is negative if and only if λlτl < π/2. Hence, as well known in the literature

[23], this car-following law is locally stable if the sensitivity scalar λl < π/(2τl).

With regard to asymptotic stability, (9) becomes∣∣∣∣∣ λl

jωe jωτl + λl

∣∣∣∣∣ . (34)

9Note that (5) becomes the OV car-following model in [27] if OV Fl and Speed Target Gl are combined.



Xiaopeng Li and Yanfeng Ouyang / Procedia Social and Behavioral Sciences 17 (2011) 678–697 689

The maximum absolute value of (34) over ω ∈ R+ is smaller than 1 if and only if λlτl < 0.5. Hence, as shown in [22],

this car-following law is asymptotically stable if λl < 1/(2τl).

It shall be noted that since (7) and (9) are based on a linearized car-following law, the stability results shall be the

same for other forms of F̂l(s) as long as the slope at s = 0 is preserved (e.g, (22) and (25)).

For a locally unstable car-following law, we can quantify its limit cycle characteristics with the method proposed

in Section 3.1. Figure 4 shows the numerical results for different v̄, λl and τl values. We see that for a given v̄, the

amplitude A increases with λl and τl. The oscillation period 2π/ω is around 4τl for all different settings (it is exactly

4τl when v̄ = 0.5v∗). These results are consistent with simulation outcomes.
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Figure 4: Limit cycle characteristics for Case 1 (v∗ = 50).

We can also quantify the oscillation propagation in a vehicle platoon. For illustration purposes, we set τl = λl = 1

and v∗ = 50. Now τl = 1/λl, which is consistent with the conjecture that the backward shock wave speed equals s0
l /τl

[61]. Since 0.5 < λlτ = 1 < π/2, the car-following law is locally stable but asymptotically unstable. Figure 5 plots

amplification ratio {R(Al−1, ω)}Al−1,ω∈R+ and oscillation magnitude {Al}ω∈R+,l=0,··· ,L that are obtained from Algorithm

A0-A3. We see that for a given frequency, the oscillation amplitude grows to a certain bound value and then flattens

out, which is consistent with empirical observations [12].

The results in Figure 5 give us a way to predict oscillation propagation for any leading vehicle trajectory x̂0;

some examples are shown in Figure 6. We conduct the simulation with the car-following model for a certain given

leading vehicle trajectory x0 (which is specified by x̂(t) and v̄ in Figure 6), and we obtain a platoon of trajectories of

the following vehicles. Then we decompose these trajectories into nominal and oscillatory components (see Figure

1), and plot the magnitudes of the oscillatory components from downstream to upstream as the blue solid curves in

Figure 6. Then we apply the proposed analytical approach to predict the oscillation magnitudes with the same input

x0, which are plotted as the green dashed curves. For comparison, we also plot the predictions from the corresponding

linear model as red dot-dashed curves. Note that in Figure 6, the oscillation magnitude is measured by the standard

deviation (STD) of x̂l (rather than Al) to accommodate non-sinusoidal x̂l. As we discussed in Section 3.2, when x̂0

is a pure sinusoid, the frequency of x̂l,∀l will remain the same; when x̂0 is a random time series, we analyze the first

5 vehicles with the decomposition-superposition approach across all frequency components and then focus on the

most dominating frequency component for the rest of following vehicles. We see that for different v̄ values and input

patterns, the predicted oscillation magnitudes generally are very close to those obtained in simulations; especially, they
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Figure 5: {R(Al−1, ω)}Al−1 ,ω∈R+ and {Al}ω∈R+ ,l=0,··· ,L surfaces for Case 1.

are almost overlapping when v̄ = v∗/2. Note how, in contrast, the linear model yields unbounded oscillation growth,

while the proposed approach has successfully produced the growing-and-flattening pattern of oscillation propagation

resulted from nonlinear car-following laws.

0 5 10 15
0

5

10

15

20

25

30

35

40

45

50
v̄ =0.4v∗

S
T
D

l

x̂0(t) =2sin(1t)

x̂0(t) =2sin(1.6t)

x̂0(t) random process

Simulated

Predicted

Linear model

0 5 10 15
0

5

10

15

20

25

30

35

40

45

50
v̄ =0.5v∗

S
T
D

l

x̂0(t) =2sin(1t)

x̂0(t) =2sin(1.6t)

x̂0(t) random process

Simulated

Predicted

Linear model

0 5 10 15
0

5

10

15

20

25

30

35

40

45

50
v̄ =0.6v∗

S
T
D

l

x̂0(t) =2sin(1t)

x̂0(t) =2sin(1.6t)

x̂0(t) random process

Simulated

Predicted

Linear model

Figure 6: Prediction of oscillation propagation for Case 1.

4.3. Case 2: Newell’s Fl and Speed Target Gl

Equation (7) becomes
λlα

r2erτl + αr
+ 1 = 0.

or

r2erτl + αr + λlα = 0. (35)
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Equation (35) does not have closed-form analytical solutions and shall be solved numerically. For illustration pur-

poses, we set τl = 0.10 The solution to (35) is

r = −α
2
±

√
α2 − 4αλl

2
,

which always has a negative real part. This implies this car-following model is always locally stable when τl = 0.

Regarding asymptotic stability, Equation (9) becomes∣∣∣∣∣∣−ω
2e jωτl + jαω
λlα

+ 1

∣∣∣∣∣∣
−1

. (36)

The maximum value of (36) has to be numerically solved too. When τl = 0, the maximum value of (36) over ω ∈ R+
is greater than 1 if α < 2λl (which is consistent with the results from [26]).

We now quantify the oscillation propagation when τl = 0, αl = 1, λl = 1 and v∗ = 50. The car-following

law under these parameters is also locally stable but asymptotically unstable. Figure 7 shows the amplification ratio

{R(Al−1, ω)}Al−1,ω∈R+ and oscillation propagation {Al}ω∈R+,l=0,··· ,L. The dominating frequencies in Figure 7 are generally

Figure 7: {R(Al−1, ω)}Al−1 ,ω∈R+ and {Al}ω∈R+ ,l=0,··· ,L surfaces for Case 2.

smaller than those in Figure 5, which implies that Speed Target Gl tends to generate a larger oscillation period. Figure

8 plots the predicted oscillation magnitudes for different v̄ and x̂0. Again, we see the predicted and simulated results

match each other and converge to a finite bound.

4.4. Case 3: OV’s Fl and Speed Following Gl

Since OV’s Fl has the same slope λl at the origin as that in Case 1, the stability analysis results shall be the same

as well. Again, we set τl = 1, λl = 1 and v∗ = 50. Figure 9 plots {R(Al−1, ω)}Al−1,ω∈R+ and {Al}ω∈R+,l=0,··· ,L. All surfaces

in Figure 9 are smoother than those in Figure 5 because OV’s Fl is smoother than Newell’s Fl. Figure 10 predicts

10Zero time lag has also been assumed in other oscillation analysis such as [26].
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Figure 8: Prediction of oscillation propagation for Case 2.

oscillation propagation for different v̄ and x̂0, which are consistent with simulation results. The magnitude growth

also seems smoother.

Figure 9: {R(Al−1, ω)}Al−1 ,ω∈R+ and {Al}ω∈R+ ,l=0,··· ,L surfaces for Case 3.

4.5. Case 4: OV’s Fl and Speed Target Gl

The car-following law in this case is exactly the OV model [26, 27], and the stability results shall be the same as

those in Case 2. While the parameters are the same as those in Case 2 (i.e., τl = 0, αl = 1, λl = 1 and v∗ = 50),

the {R(Al−1, ω)}Al−1,ω∈R+ and {Al}ω∈R+,l=0,··· ,L surfaces in Figure 11 are smoother than the counterparts in Figure 7. The

oscillation magnitude growth predictions in Figure 12 are again consistent with simulation results, and they also seem

smoother than those in Case 2.
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Figure 10: Prediction of oscillation propagation for Case 3.

Figure 11: {R(Al−1, ω)}Al−1 ,ω∈R+ and {Al}ω∈R+ ,l=0,··· ,L surfaces for Case 4.
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Figure 12: Prediction of oscillation propagation for Case 4.

5. Conclusion

This paper proposes a mathematical framework that is capable of characterizing traffic oscillation properties for

a general class of car-following models, allowing for both linear and nonlinear dynamics. This framework starts

with a new representation of car-following models using only oscillatory components in vehicle trajectories. A series

of analytical methods to analyze local and asymptotic stabilities are discussed. In addition, we propose a novel

systematic approach to quantify oscillation propagation period and magnitude across a platoon of vehicles for any

given leading vehicle trajectory. Numerical experiments show that the proposed analysis framework can accurately

quantify oscillation characteristics for a variety of car-following laws. In particular, our formulas can accurately

analyze nonlinear car-following behavior and realistically predict the amplification of oscillation magnitude, while

the traditional analysis based on linear models often leads to very unrealistic results. This proposed framework

provides a global and quantitative perspective of the effects of nonlinearity on traffic oscillation’s growth. It serves

as a methodological basis for the design of dynamics models that are able to capture actual oscillation propagation

mechanisms and reproduce empirically observed oscillation characteristics. Furthermore, this framework lays a solid

foundation for future development of proper control strategies to effectively dampen oscillation amplification and

mitigate traffic congestion.

This research can be extended in several directions. On the methodology side, this describing function tech-

nique can be extended to incorporate more frequency components in approximating an oscillatory process (see the

harmonic balancing method in [46]). Such extension can possibly further enhance the accuracy of the predicted os-

cillation characteristics. The form of the car-following model may also be further generalized. For example, we can

incorporate asymmetric driving behaviors and generalize function Fl into an asymmetric form [62]. This improvement

is promising since the describing function method has been successfully used to quantify the oscillation response of

an asymmetric nonlinear system [47]. On the application side, we are interested in applying this approach to empirical

traffic data (e.g. NGSIM trajectory data), in the hope of using this framework to explain oscillation patterns observed

in the field. The proposed framework may also serve as a building block to develop a guideline to map oscillation

characteristics directly to the structures of nonlinear car-following models. With such a guideline, we may be able

to effectively design or calibrate car-following models to reproduce any desired oscillation characteristics. This will

possibly pave the foundation for developing effective countermeasures to traffic oscillations.
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Appendix A. Proof for Proposition 1

Proof. Since y is an oscillatory series, let P denote its fundamental period. Then from Definition 1 we have −∞ <
y(t) = y(t + P) < +∞,∀t ∈ R and

∫ P
0

y(t) = 0. Then there exist y−, y+ ∈ R such that mint∈R y(t) = y− and maxt∈R y(t) =

y+. Since F is continuous and increasing,
∫ P

0
[F(y(t) + s)]dt shall also be continuous and increasing with s. Sine

F is strictly increasing in (a, c),
∫ P

0
[F(y(t) + s)]dt shall be strictly increasing over (a − y+, c − y−). It is obvious that∫ P

0
[F(y(t)+ s)]dt ≤ PF(a) < PF(b) for any s ≤ a−y+ and

∫ P
0

[F(y(t)+ s)]dt ≥ PF(c) > PF(b) for any s ≥ c−y−. Thus

there exists a unique s∗ ∈ (a− y+, c− y−) such that
∫ P

0
[F(y(t)+ s∗)]dt = PF(b), or

∫ P
0

(F(y(t)+ s∗)−F(b))dt = 0. Also,

it is obvious that {F(y(t) + s) − F(b)}t∈R is bounded and has period P. Hence {F(y(t) + s) − F(b)}t∈R is an oscillatory

series. This completes the proof.

Appendix B. Derivation of equation (11)

Property (ii) ensures that |Fl(A)| ∈ [0,Kl] for some Kl. Note that Fl(Aejφ) = Fl(A),∀φ ∈ R, and hence we can only

use Fl(A) with A ∈ R+. The fundamental sinusoidal component equals

−Al|Fl(Al)| sin
[
ωt + φl + ∠ (Fl(Al))

]
where function ∠(·) gives the phase angle of a complex variable. From (10) we obtain

{Al sin(ωt + φl)}t∈R ≈
∫

Gl
[{−Al|Fl(Al)| sin

[
ωt + φl + ∠ (Fl(Al))

]}
t∈R

]
dt. (B.1)
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The frequency domain representation of (B.1) is

Ale jφ ≈ Gl(ω)

jω
Fl(Al)(−Al)e jφ. (B.2)

which yields

Fl(Al) − − jω
Gl(ω)

≈ 0,

which is equation (11).


