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Abstract

Inclusion regions for the spectrum of a hypertournament mategxe obtained, based on a
complex curve that relates the real and imaginary parts of the eigenvalues. These results gener-
alize and in certain cases improve the work of S. Kirkland [Linear and Multilinear Algebra 30
(1991) 261]. The bounds obtained depend on the variance of the score vector; their tightness
is investigated using the notion of numerical range. © 2001 Elsevier Science Inc. All rights
reserved.
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1. Introduction

Both a tournament matrix and its corresponding directed graph arise as a record
of the outcomes of a round robin competition. The need and desire to come up
with player ranking schemes has motivated an extensive study of the combinato-
rial and spectral properties of tournament matrices and their generalizations (see
[2,3,10-12]). Hypertournament and generalized tournament matrices not only pro-
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vide a means for inquiring into the properties of tournament matrices but also are the
source of matrix analytic challenges of independent interest.

We proceed with some basic definitions and notation needed to describe our re-
sults. Let.Z, (R) be the algebra of alt x n real matrices. MatrixA € .#,(R) is
called anh-hypertournamerif it has zero diagonal entries antl+ A' = hht — I
for some non-zeré € R*. Whenh = 1, the all ones vector, am-hypertournament
matrix A satisfiesA + A' = J — I, whereJ denotes the all ones matrix. If all the
entries of al-hypertournament matrid € .#,(R) are in{0, 1}, thenA is called a
tournament matrixand if all the entries oA are non-negative, thef is called a
generalized tournament matrix

Maybee and Pullman [10] show that evdmhypertournament matrix is (diag-
onally) similar to al-hypertournament matrix. Thus, the discussion of the spectral
properties of am-hypertournament matrix can be reduced to the casehypertour-
nament matrices. Itis further shown in [10] that/2 < Rex < (n — 1)/2 whenev-
er is an eigenvalue of alrhypertournament matrix. Moreover, the eigenvalues of
a generalized tournament matrix satifliy 1| < (1/2) cot(zr/(2n)) (see [4]).

For the purposes of our work, we introduce the quantity

(5

associated with thecore vectos = A1 of ann x n 1-hypertournament matriA.
Notice the interpretation of\A) as the variance of the score vector. Thus we refer
to v(A) as thescore variancef A. Moreover, it can be verified that

t 2
v(1a1)=sn—s—7(’1 41).

If Ais ann x n generalized tournament matrix, thercOv(A) < (n2 — 1)/12. The
score variance (4) is zero whenA is a tournament matrix and in each row of
A, the number of off-diagonal zeros is equal to the number of ones. Al4d
(n? — 1)/12 whenA is triangular.

In this paper, we continue the work in [7] by providing inclusion regions for the
spectra ofl-hypertournament matrices. These inclusion regions are described by a
curve relating the real part and the imaginary part of an eigenvalue to each other and
to the score variance. The bounds we obtain imply bounds in [7] on the real parts
of the eigenvalues of &hypertournament matrix, and also give information on the
imaginary parts as well. Our approach relies on Schur’s Lemma and basic facts about
thenumerical rangealso known as théeld of value}of a matrixA,

F(A) = [v*Av € C: v € C" with v*v = 1}.

2

Recall that a matrixA € .#, (R) with non-negative entries is callgimitive if
there is a positive integer such that all the entries of* are positive. Further-
more, by the Perron—Frobenius theorem, a primitive entrywise non-negative matrix
A has a (simple) real positive eigenvalusuch thafo > |A| for all eigenvalues. of
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A[1]. The eigenvalue is known as thderron valueof A, and the corresponding
eigenvector, called theerron vectoy can be taken to have all positive entries.

An n x n tournament matribA corresponds to a round robin competition involv-
ing n players, witha;; = 1 if playeri defeats playej, anda;; = 0 otherwise (tie
games are not allowed). In the case tAas primitive, a ranking scheme of Kendall
and Wei (see [11], for example) considers the sequénte)/(1TA%1) (k € N); it
turns out that this sequence converges to the Perron vecdondfich is then used to
rank the players. Further, the rate of convergence is governed by the quantjties
wherep is the Perron value oA and is a non-Perron eigenvalue &f Section 3
applies some of the results of Section 2 to the problem of bounding the quantities
A1/ p.

2. 1-Hypertournament matrices

Suppose that e .#,(R) is al-hypertournament matrix and |&t = (A + A')/2
andK = (A — AY)/2 be the Hermitian and the skew-Hermitian parpfespective-
ly. Clearly, A= H + K andH = (J — I)/2. The matrixH has exactly two eigen-
valuesi1 = (n — 1)/2 with multiplicity 1 andx, = —1/2 with multiplicity n — 1.
The vector(1/4/n)1 is a unit eigenvector oH corresponding to.1. By Schur’s
Lemma [5, Theorem 2.3.1], there exists a unitére .4, (R), whose first column
is (1/4/n)1 such that

U'HU = diag{(n — 1)/2, —1/2, -1/2, ..., —1/2}.
Moreover, it is easy to see that
t _ O —I/lt
UKU = [u Ky |’

wherekq € .#,_1(R) is skew-Hermitian and € R"* 1. Consequently
t | m=1/2 —ut
UAU_[ h K- 21| (1)
The following theorem is the main result of this section.

Theorem 1. Let A € .4, (R) be al-hypertournament matrix with score variance
V(A). Letx be an eigenvalue of A such thatt (n — 1)/2 andRex # —1/2, and
letd =n —1—2ReA. Then

V(A) d)

n—d 4 2)

(Imn?<d <

Proof. SinceA — Al is singular, by Eq. (1), the matrix

t [m—-1/2—1 —ut
U(A_“)U—[ " Kl—(1/2+)»)1}
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is also singular. It follows that the Schur complement of the leading entry is singular
[5, p. 21], that is, C= o (S), the spectrum of

S=Ki— <}+A> I —
2 (n—21/2—x
The Hermitian and skew-Hermitian parts®ére
M = ﬁgmk)zuut - <% + Re)») 1
and
4ilm A i

N =Ki—iImAl 4 oAt 3
1 T2 aamaz™ 3)

respectively. Since (S) C F(S) and F(M) = ReF(S) (see [6, Properties 1.2.5,
1.2.6)), it follows that Oc F (M), which, in turn, implies

1 t
—+Rex e F(uu).

2d
2 d2 + 4(m )2
SinceF (uu') coincides with the intervdD, u'u]

1 + Re) < 2d (u'u)
2 S A2+ 4(ma)?

or equivalently

(Imu2<d wu__d
S \n—-d 4)°

()

For the real parts of the eigenvalues and for any purely imaginary eigenvalues of
A, we have the following results.

Observe that
2
=V(A)

2
1
utu =

1
—K1
Jn

and the proof is complete. [

Corollary 2. Let A € .#,(R) be al-hypertournament matrix with score variance
V(A) < n?/16. Then for every eigenvalueof A

Re. ¢ (n — 2 /nZ_16WA) n—2++/n2— 16V(A))
4 : 4 :

Proof. Suppose that is an eigenvalue oA. Since

n—2—yn2—-16v(A) n-1
<
4

2 s

—-1/2 <
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consider Re. #+ —1/2 andx # (n — 1)/2. Then by (2)

V(A) d
d(n—d_Z) >0,

whered =n — 1 - 2ReA > 0. Hence
V(A) d

1+2Rex 47 7
that is

—2 —1
(Rer)? — <”T> Rek + V(A) — ”T > 0.

Since (A) < n?/16, the proof is complete. [J

Remark 1. Corollary 2 is a special case of [7, Theorem 1]. There, under the same
assumptions as in Corollary 2, it is shown tAdtas one real eigenvalue

n—2+/n?2—16v(A n—1:|
4 )

p(A) € |: 5

andn — 1 complex eigenvalues with real parts in the interval

{_} n—2—n2— 16V(A)]
Z .

29

Corollary 3. Let A € .#,(R) be al-hypertournament matrix with score variance
V(A) > (n — 1)/4. Then for any purely imaginary eigenvalue=ir (r € R) of
A, Ir] < V/(n = DIV(A) — (n — 1)/4].

Proof. Follows directly from (2)forRe. =0andd =n —1. O

Prompted by (2), we define trghell of a 1-hypertournament matrii to be the
curve

F(A)={x+iyeC: x,yeIRandyZ:d(v(A) _f)}7

n—d 4
whered = n — 1 — 2x. This curve is symmetric with respect to the real axis and is
asymptotic to the line Re= —1/2. It is clear that"(A) depends only on the order
n and the score variancegA) of the matrixA. Moreover,I'(A) always intersects
the real axis at the poirtz — 1)/2. If in addition, WA) < n2/16, thenI'(A) also
intersects the real axis at the poilits— 2 + \/n2 — 16v(A)) /4.

If v(A) < n?/16, thenl(A) has two branches (one bounded and one unbounded),
and if V(A) >n?/16, then I'(A) consists of one unbounded branch. By
Theorem 1, the shell'(A) yields a localization of the spectrum afspecified by
(2) (see Example 1).
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Consider now 4-hypertournamentmatriz € .4, (R) with score variance(a) >
0, and the function

_ 2
Fo) = nv(A) _ (n 4t)

Observe that for = 2x + 1,

—V(A), te(@On]

f(2x+1)=(n—1—2x)(
x € (=1/2, (n — 1)/2].

V(A n—1-2
2x+1 4 ’

Moreover, f(¢) is decreasing or0, n] if and only if 13 — nt2 + 2nv(A) > 0 on
(0, n]. The latter inequality holds if and only if it holds at the minimugn= 2n/3.
Hence,f (1) is decreasing on the intervé, »] if and only if v(A) > 2r2/27. In this
case the curv&(A) N {z € C: Imz > 0} is decreasing (seE(B) in Fig. 1).
If v(A) < n?/16, we are interested only in valuesrauch that

2 —nt +4v(A) > 0
(these values correspond+d /2 < x < (n — 2 — /n?2 — 16V(A))/4). But then we
haver® — nr? > —4nv(A), and since < n/2 forx < (n — 2 — /n2 — 16v(A))/4,

12— nt? + 2nv(A) = 2v(A)(n — 2t) > 0.

Consequently, if ¢A) € (0, n?/16), then the curve

r(A)m{zea:: Imz >0, Rez<<n—2—m)/4}

is decreasing (see the unbounded branch(df) in Fig. 1).
Ifv(A) € [n%/16, 2n2/27], then one can see that the cufel) N {z € C: Imz >
0} is decreasing, then increasing, and then decreasing again (Fig. 2).

Example 1. AandB are two 8x 8 1-hypertournament matrices with score variances
V(A) = 2.25 and \(B) = 6.75. The shelll'(A) in Fig. 1 consists of one bounded

.
° ’ O

IMAGINARY ~ AXIS
IMAGINARY ~ AXIS

L L " s " r L " n L
15 2 25 3 a5 4 4 3 2 2 3 4 5 6 7

= 05 0 05 1 -1 0 1
REAL AXIS score vaniance v(A) = 2.25 REAL AXIS scor vanance v(B) = 6.75

Fig. 1. The shelld’(A) andI'(B) for different score variances.
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IMAGINARY  AXIS
L ° u o
a4
IMAGINARY  AXIS
L - S

»
1
3

2 3 4
score variance v(B) = 4.32

0 1 2 3 4 5 2 -1 ) 1
REAL AXIS score variance v(A) = 4 REAL AXIS

Fig. 2. The shelld”(A) andI'(B) for score variances om?2/16, 2n2/27].

and one unbounded branch. The bounded branch surrounds a real eigenvalue of
and the unbounded branch isolates the rest of the spectrémTdfe shelll'(B) is
connected and all the eigenvaluesbére located in the region betweé&iB) and

the line Reg = —1/2.

Example 2. AandB are two 8x 8 1-hypertournament matrices with score variances
V(A) = 82/16 = 4 and (B) = 4.32. Their spectra and shells are sketched in Fig. 2.
Furthermore, the following results hold.

Corollary 4. Let A € .#,(R) be al-hypertournament matrix with score variance
V(A) < n?/16. If A has k eigenvalues with non-negative pattenk < (n + 2 —

V/nZ —16W(A))/2.

Proof. The matrixA has a real eigenvalygA4) > (n — 2+ /n2 — 16V(A))/4 (see
Remark 1) and exactly — k eigenvalues with real parts in the interyall/2, 0).
Since tracéd) = 0, we have that

n—2+dﬁ—1wm)<n—k
4 X

2 3

which implies that

2— 2 _16v(A
n+ \/112 V( ). 0

k<

Note that Corollary 4 implies a result of Katzenberger and Shader [9] for a
1-hypertournamentmatriX, namely that if A) < (n — 1)/4, thenAis non-singular.

Corollary 5. Suppose that € .#,(R) is al-hypertournament matrix with(A) <
(n — 2)/2. Then A has at least — 2 eigenvalues with negative real parts ahdr 2
real positive eigenvalues.
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Proof. Since(n — 2)/2 < n2/16, by Corollary 5

n+2—Vn2—8n+16_

k
= 2

3. O

We next characterize the case of equality in (2).

Theorem 6. Let A € .#,(R) be al-hypertournament matrix with score variance
V(A) > 0, and letx be an eigenvalue of A. Then equality hold¢2)if and only if
V(A) < n?/16andx is real and equal to either

n—2+/n?2—16v(A) or n—2—n?2—16v(A)
4 4 '

Further, equality holds in(2) for some eigenvalue if and only if A has- 2 eigen-
values having real parts equal te1/2 .

Proof. Let A be an eigenvalue &% and letS, M andN be as defined in the proof of
Theorem 1. Equality in (2), namely

V(A) d)

2 _
(ImA) _d<n—d Z

holds if and only if

1 2d (u'u)
_ R A= —— -
2 TR = e aima2

or equivalently, if and only if the matriM is singular negative semidefinite. In this
case, the eigenvaluedo (M) is simple and corresponds to the eigenvectdn
(). Moreover, the matris is singular and since @ 0F (S) (the boundary of the
numerical range), 0 must be a normal eigenvalug(ske [6, Theorem 1.6.6]); every
corresponding eigenvector belongs to

null(M) N null(N) = sparfu}.
Hence,u is an eigenvector dfl in (3) corresponding to the eigenvalue 0. Further-
more, the vectou is an eigenvector of the rank one matrix

4Ima t

—S———— S uu

d? + 4(Im »)2
corresponding to the simple eigenvalue

41ma(utu)

d? +4(Imx)2’

As a consequence, the quantity
4ilma@u'u)  ilmai(n —2—4Rep)
d2 +4(0mur)2 d

ilmaA
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is an eigenvalue of the matrik; in (1) with corresponding eigenvector Thus
u'Kqu __ilmA(n —2—4Rep)
utu d '
The same arguments appliedite o (A) yield
u'Kyu _ilm A(n —2—4Re))
utu d
and hence Im = 0. Thus the existence of eigenvalueslm) hinges on the equa-
tionind (hered =n —1—21)

v(A)  dY
d(n—d_z>_o

having real solutions. If ¢4) > n2/16, this equation has no real solutions. Other-
wise, the real solutions lead to eigenvalues as stated in the theorem.
If equality holds in (2) for some eigenvalue then from our argument above,
L is one of(n — 24 /n?2 — 16V(A))/4 and(n — 2 — /n?2 — 16V(A))/4, and in [8]
it is shown that this implies thah hasn — 2 eigenvalues having real parts equal
to —1/2. Conversely, ifA hasn — 2 eigenvalues having real parts equakt/2,
then by [7, Theorem 2]A has two eigenvalues with real parts equalito- 2 +
Vn? —16V(A))/4 and(n — 2 — \/n?2 — 16V(A)) /4, respectively. From (2) it follows
that those eigenvalues are necessarily real, so that equality holds in (2) for both
eigenvalues. [

3. Generalized tournament matrices

Let A € ./ ,(R) be a generalized tournament matrix, i.e., all the entries aife
non-negative and + A' = J — I. By Pick’s inequality (see [4]), every eigenvalue
A of A satisfies|Imi| < (1/2) cot(x/(2n)). Hence, it is natural to ask where the
shell I'(A) intersects the horizontal line Im= (1/2) cot(x/(2n)). In essence, we
are asking fox € R such that

V(A)  (n—1-—2x)2
2c+1 4 ‘

1 b4
Lettingy = 2x + 1, we have
y3 — Zny2 + <n2 + cot? (%) + 4V(A)) y —4nv(A) =0.

Observe that the left part of this equation is increasing as a functipred, »]; it
follows from the Implicit Function theorem that
0y
V(A)
Thus, the largest possible root will occur whe(y is as large as possible, i.e.,
whenA s triangular, in which case() = (n2 — 1)/12. Considering this maximum

>0
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possible value of ¢A4), we investigate the asymptotics ofasn — oo. It follows
that

b4 nc—1 n—n
y3—2ny2+ <n2~|—0012 <—>~|— )y— =0,
2n

which, in turn, implies

(X>3_ 2(%)2+ <1+ cof(rr/(2n)) N n®— 1) y E o

n n2 3n2 ) n 3n2
Asymptotically we have /n — &, where
4 1 1
3_ o2 I WA
§ 2$+<1+ﬂ2+3)§ 3=0

Solving this cubic giveg§ =0.2588, so that for largg, y is asymptotic to @588:.
As a consequence, for all sufficiently langethe shelll'(A) of ann x n generalized
tournament matridA intersects the line Im = (1/2) cot(rr /(2n)) somewhere in the
zone

{z € C: —1/2 < Rez < 0.12951).

The Kendall-Wei ranking method for tournament matrices (see [11]) relies on
the power method as a justification. The following results show that when the score
variance is not too big, convergence of the power method is quite fast.

Theorem 7. Let A € .4, (R) be a generalized tournament matrix with> 12 and
score variance

1 ) 4n?
—dn 43+ — ).
2(n+2)(n " +ﬂ2>

If 1 is an eigenvalue of A such thBeir < (n — 2 — /n2 — 16V(A))/4, then

V(A) <

A < ‘—% + '5 cot(g—n) .

Proof. Since—1/2 < Rex the inequality is straightforward if Re< 1/2, so sup-
pose that 12 < Rex < (n — 2 — /n?2 — 16V(A))/4. By Theorem 1, it follows that

V(A) (n — 1)?
A2 = (Ren)? + (Ima)?2 < —22 — 1DRex — V(A) — .
A1 = (Rer)” + (ImA) 2ReA+1+(n ) (A) 7
Hence, it is enough to prove that
nv(A) (n — 1)2 1 i 7|2
S — 1Rex — V(A) — < |-+ ~cot(— 4
TRer 1 T DReA V(A = > T3¢0 <2n) )
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Observe that
1 i NG 1
——+-cot( — )| = —5——"—.
‘ 22 <2n) 4 sirf (s /(2n))

Considering the left part of (4) as a function of Ret is easy to see that it is concave
up with at most one critical point. Thus, (4) will hold for

_2_ 2 _
Re)\e[} n—2 w/;; 16v(A)}

27

provided that it holds for Re = 1/2 and Re.. = (n — 2 — /n2 — 16V(A))/4.
Notice that for Re. = 1/2, inequality (4) can be written as

nV(A)+n—1_V(A)_(n—1)2< 1
2 2 4 7 4sirf(z/(2n))

or equivalently

V(A)<< 1 ><n2—4n+3+ 1 )
“\n-2 2 2 sirt(/(2n)) )

This is implied by our hypothesis.
ForRer = (n — 2 — /n?2 — 16V(A))/4, (4) is written as

2nv(A) N (n—1)(n—2—n?2—16VA) V(A) — (n — 1)2
n—+/n2 —16V(A) 4 4
1

<4g¥mﬂh»’

which is equivalent to

n2—2n+2 (n—2)/n2—16v(A) 1
— —VA) < —5——.
8 8 4 sirt(w/(2n))

Since ¥2 < (n — 2 — /n? — 16V(A))/4,V(A) > (n — 2)/2. Moreover, our hypoth-
esisimpliesthat¢A) < (3n)/4 as well. After straightforward computations, we find
that

n2—2n+2 (- 2)v/n? — 16v(A)
8

8

<n2—8n—|—2—(n—2)«/n2—12n

— V(A)

This last quantity is seen to be at most7)2(< (1/4) sin 2(x/(2n))). O
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Corollary 8. Let A € ./#,(R) be a generalized tournament matrix with score
variance

1 5 4n?
< _An 434
2(n—2)<" e +712>

andn > 12. If in addition, A is primitive with Perron value, then for every eigen-
valuex # p

| 2
L

P sinG/(2n)(n — 2+ /n2 — 16W(A))

(Observe that for large, this bound is asymptotic &/ .)

Proof. By Remark 1

n—2++n?2—16vA)
4 9

p=
and by Theorem 7
Al < 1+icot<”)— !
S22 2n/ | 2 sin(m/(2n))’

The result follows immediately. [

Example 3. Let T be the circulant matrix of orde2t 1 given by
k k
) —_———
T=Circ((011---200---0)
(see [5] for the definition of a circulant), and observe tha a tournament matrix.
Now let A be the(4k + 2) x (4k + 2) tournament matrix
T T'+1
=[5 T
Letting n = 4k + 2, one can verify thaf has score variance(¥) = 1/4, Perron
value(n? — 2+ v/n? — 4)/4 and—1/2 + (i/2) cot(r /(2n)) as eigenvalues. So this
matrix actually achieves equality on Corollary 8.

We conclude by posing the open problem of determining those primitive general-
ized tournament matriceéswith score variance

V(A) < 1 2_4 +3+4n2
Som—o\" T 72

such that both

n? —2+./n2 —16v(A)
2 2 2n 4

are eigenvalues oA. (Note that each such matrix provides an example for which
equality holds in Corollary 8.) We note that Ref. [4] provides a constructive char-
acterization of generalized tournament matrices hawvidg?2 + (1/2) cot(x/(2n))

S 1 + }cot<£) and p =
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as an eigenvalue, while Ref. [8] provides a characterization wén- 2 +

Vn? — 16V(A))/4is an eigenvalue & Thus our problem can be reduced to looking
at the intersection of those two classes of matrices.
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