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Abstract

Inclusion regions for the spectrum of a hypertournament matrixA are obtained, based on a
complex curve that relates the real and imaginary parts of the eigenvalues. These results gener-
alize and in certain cases improve the work of S. Kirkland [Linear and Multilinear Algebra 30
(1991) 261]. The bounds obtained depend on the variance of the score vector; their tightness
is investigated using the notion of numerical range. © 2001 Elsevier Science Inc. All rights
reserved.
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1. Introduction

Both a tournament matrix and its corresponding directed graph arise as a record
of the outcomes of a round robin competition. The need and desire to come up
with player ranking schemes has motivated an extensive study of the combinato-
rial and spectral properties of tournament matrices and their generalizations (see
[2,3,10–12]). Hypertournament and generalized tournament matrices not only pro-
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vide a means for inquiring into the properties of tournament matrices but also are the
source of matrix analytic challenges of independent interest.

We proceed with some basic definitions and notation needed to describe our re-
sults. LetMn(R) be the algebra of alln × n real matrices. MatrixA ∈ Mn(R) is
called anh-hypertournamentif it has zero diagonal entries andA + At = hht − I

for some non-zeroh ∈ Rn. Whenh = 1, the all ones vector, anh-hypertournament
matrix A satisfiesA + At = J − I , whereJ denotes the all ones matrix. If all the
entries of a1-hypertournament matrixA ∈ Mn(R) are in{0, 1}, thenA is called a
tournament matrix, and if all the entries ofA are non-negative, thenA is called a
generalized tournament matrix.

Maybee and Pullman [10] show that everyh-hypertournament matrix is (diag-
onally) similar to a1-hypertournament matrix. Thus, the discussion of the spectral
properties of anh-hypertournamentmatrix can be reduced to the case of1-hypertour-
nament matrices. It is further shown in [10] that−1/2 6 Reλ 6 (n − 1)/2 whenev-
erλ is an eigenvalue of anh-hypertournament matrix. Moreover, the eigenvalues of
a generalized tournament matrix satisfy|Imλ| 6 (1/2) cot(π/(2n)) (see [4]).

For the purposes of our work, we introduce the quantity

v(A) = 1

n

∥∥∥∥s −
(

n − 1

2

)
1

∥∥∥∥2

associated with thescore vectors = A1 of an n × n 1-hypertournament matrixA.
Notice the interpretation of v(A) as the variance of the score vector. Thus we refer
to v(A) as thescore varianceof A. Moreover, it can be verified that

v(A) = sts

n
− (n − 1)2

4
.

If A is ann × n generalized tournament matrix, then 06 v(A) 6 (n2 − 1)/12. The
score variance v(A) is zero whenA is a tournament matrix and in each row of
A, the number of off-diagonal zeros is equal to the number of ones. Also v(A) =
(n2 − 1)/12 whenA is triangular.

In this paper, we continue the work in [7] by providing inclusion regions for the
spectra of1-hypertournament matrices. These inclusion regions are described by a
curve relating the real part and the imaginary part of an eigenvalue to each other and
to the score variance. The bounds we obtain imply bounds in [7] on the real parts
of the eigenvalues of a1-hypertournament matrix, and also give information on the
imaginary parts as well. Our approach relies on Schur’s Lemma and basic facts about
thenumerical range(also known as thefield of values) of a matrixA,

F(A) = {v∗Av ∈ C: v ∈ Cn with v∗v = 1}.
Recall that a matrixA ∈ Mn(R) with non-negative entries is calledprimitive if

there is a positive integerk such that all the entries ofAk are positive. Further-
more, by the Perron–Frobenius theorem, a primitive entrywise non-negative matrix
A has a (simple) real positive eigenvalueρ such thatρ > |λ| for all eigenvaluesλ of
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A [1]. The eigenvalueρ is known as thePerron valueof A, and the corresponding
eigenvector, called thePerron vector, can be taken to have all positive entries.

An n × n tournament matrixA corresponds to a round robin competition involv-
ing n players, withaij = 1 if player i defeats playerj, andaij = 0 otherwise (tie
games are not allowed). In the case thatA is primitive, a ranking scheme of Kendall
and Wei (see [11], for example) considers the sequence(Ak1)/(1TAk1) (k ∈ N); it
turns out that this sequence converges to the Perron vector ofA, which is then used to
rank the players. Further, the rate of convergence is governed by the quantities|λ|/ρ,
whereρ is the Perron value ofA andλ is a non-Perron eigenvalue ofA. Section 3
applies some of the results of Section 2 to the problem of bounding the quantities
|λ|/ρ.

2. 1-Hypertournament matrices

Suppose thatA ∈ Mn(R) is a1-hypertournamentmatrix and letH = (A + At)/2
andK = (A − At)/2 be the Hermitian and the skew-Hermitian part ofA, respective-
ly. Clearly,A = H + K andH = (J − I)/2. The matrixH has exactly two eigen-
values,λ1 = (n − 1)/2 with multiplicity 1 andλ2 = −1/2 with multiplicity n − 1.
The vector(1/

√
n)1 is a unit eigenvector ofH corresponding toλ1. By Schur’s

Lemma [5, Theorem 2.3.1], there exists a unitaryU ∈ Mn(R), whose first column
is (1/

√
n)1 such that

U tHU = diag{(n − 1)/2,−1/2,−1/2, . . . ,−1/2}.
Moreover, it is easy to see that

U tKU =
[

0 −ut

u K1

]
,

whereK1 ∈ Mn−1(R) is skew-Hermitian andu ∈ Rn−1. Consequently

U tAU =
[
(n − 1)/2 −ut

u K1 − (1/2)I

]
. (1)

The following theorem is the main result of this section.

Theorem 1. Let A ∈ Mn(R) be a1-hypertournament matrix with score variance
v(A). Let λ be an eigenvalue of A such thatλ /= (n − 1)/2 andReλ /= −1/2, and
let d = n − 1 − 2 Reλ. Then

(Im λ)2 6 d

(
v(A)

n − d
− d

4

)
. (2)

Proof. SinceA − λI is singular, by Eq. (1), the matrix

U t(A − λI)U =
[
(n − 1)/2 − λ −ut

u K1 − (1/2 + λ)I

]



40 S. Kirkland et al. / Linear Algebra and its Applications 323 (2001) 37–49

is also singular. It follows that the Schur complement of the leading entry is singular
[5, p. 21], that is, 0∈ σ(S), the spectrum of

S = K1 −
(

1

2
+ λ

)
I + 1

(n − 1)/2 − λ
uut.

The Hermitian and skew-Hermitian parts ofSare

M = 2d

d2 + 4(Imλ)2uut −
(

1

2
+ Reλ

)
I

and

N = K1 − i Im λI + 4i Im λ

d2 + 4(Im λ)2uut, (3)

respectively. Sinceσ(S) ⊆ F(S) and F(M) = ReF(S) (see [6, Properties 1.2.5,
1.2.6]), it follows that 0∈ F(M), which, in turn, implies

1

2
+ Reλ ∈ 2d

d2 + 4(Imλ)2F(uut).

SinceF(uut) coincides with the interval[0, utu]
1

2
+ Reλ 6 2d(utu)

d2 + 4(Im λ)2

or equivalently

(Im λ)2 6 d

(
utu

n − d
− d

4

)
.

Observe that

utu =
∥∥∥∥ 1√

n
K1

∥∥∥∥2

= 1

n

∥∥∥∥s −
(

n − 1

2

)
1

∥∥∥∥2

= v(A)

and the proof is complete. �

For the real parts of the eigenvalues and for any purely imaginary eigenvalues of
A, we have the following results.

Corollary 2. Let A ∈ Mn(R) be a1-hypertournament matrix with score variance
v(A) < n2/16. Then for every eigenvalueλ of A

Reλ /∈
(

n − 2 −
√

n2 − 16v(A)

4
,

n − 2 +
√

n2 − 16v(A)

4

)
.

Proof. Suppose thatλ is an eigenvalue ofA. Since

−1/2 <
n − 2 −√

n2 − 16v(A)

4
<

n − 1

2
,
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consider Reλ /= −1/2 andλ /= (n − 1)/2. Then by (2)

d

(
v(A)

n − d
− d

4

)
> 0,

whered = n − 1 − 2 Reλ > 0. Hence

v(A)

1 + 2 Reλ
− d

4
> 0,

that is

(Reλ)2 −
(

n − 2

2

)
Reλ + v(A) − n − 1

4
> 0.

Since v(A) < n2/16, the proof is complete. �

Remark 1. Corollary 2 is a special case of [7, Theorem 1]. There, under the same
assumptions as in Corollary 2, it is shown thatA has one real eigenvalue

ρ(A) ∈
[

n − 2 +√
n2 − 16v(A)

4
,

n − 1

2

]

andn − 1 complex eigenvalues with real parts in the interval[
−1

2
,

n − 2 −
√

n2 − 16v(A)

4

]
.

Corollary 3. Let A ∈ Mn(R) be a1-hypertournament matrix with score variance
v(A) > (n − 1)/4. Then for any purely imaginary eigenvalueλ = ir (r ∈ R) of
A, |r| 6

√
(n − 1)[v(A) − (n − 1)/4].

Proof. Follows directly from (2) for Reλ = 0 andd = n − 1. �

Prompted by (2), we define theshellof a 1-hypertournament matrixA to be the
curve

C(A) =
{
x + iy ∈ C: x, y ∈ R andy2 = d

(
v(A)

n − d
− d

4

)}
,

whered = n − 1 − 2x. This curve is symmetric with respect to the real axis and is
asymptotic to the line Rez = −1/2. It is clear thatC(A) depends only on the order
n and the score variance v(A) of the matrixA. Moreover,C(A) always intersects
the real axis at the point(n − 1)/2. If in addition, v(A) < n2/16, thenC(A) also
intersects the real axis at the points(n − 2 ±

√
n2 − 16v(A))/4.

If v (A) < n2/16, thenC(A) has two branches (one bounded and one unbounded),
and if v(A) > n2/16, then C(A) consists of one unbounded branch. By
Theorem 1, the shellC(A) yields a localization of the spectrum ofA specified by
(2) (see Example 1).
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Consider now a1-hypertournamentmatrixA ∈ Mn(R) with score variance v(A) >

0, and the function

f (t) = nv(A)

t
− (n − t)2

4
− v(A), t ∈ (0, n].

Observe that fort = 2x + 1,

f (2x + 1) = (n − 1 − 2x)

(
v(A)

2x + 1
− n − 1 − 2x

4

)
,

x ∈ (−1/2, (n − 1)/2].
Moreover,f (t) is decreasing on(0, n] if and only if t3 − nt2 + 2nv(A) > 0 on
(0, n]. The latter inequality holds if and only if it holds at the minimumt0 = 2n/3.
Hence,f (t) is decreasing on the interval(0, n] if and only if v(A) > 2n2/27. In this
case the curveC(A) ∩ {z ∈ C: Im z > 0} is decreasing (seeC(B) in Fig. 1).

If v (A) < n2/16, we are interested only in values oft such that

t2 − nt + 4v(A) > 0

(these values correspond to−1/2 6 x 6 (n − 2 −√
n2 − 16v(A))/4). But then we

havet3 − nt2 > −4nv(A), and sincet < n/2 for x 6 (n − 2 −√
n2 − 16v(A))/4,

t3 − nt2 + 2nv(A) > 2v(A)(n − 2t) > 0.

Consequently, if v(A) ∈ (0, n2/16), then the curve

C(A) ∩
{
z ∈ C: Im z > 0, Rez 6

(
n − 2 −

√
n2 − 16v(A)

)/
4
}

is decreasing (see the unbounded branch ofC(A) in Fig. 1).
If v (A) ∈ [n2/16, 2n2/27], then one can see that the curveC(A) ∩ {z ∈ C: Im z >

0} is decreasing, then increasing, and then decreasing again (Fig. 2).

Example 1. A andBare two 8× 81-hypertournamentmatrices with score variances
v(A) = 2.25 and v(B) = 6.75. The shellC(A) in Fig. 1 consists of one bounded

Fig. 1. The shellsC(A) andC(B) for different score variances.
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Fig. 2. The shellsC(A) andC(B) for score variances on[n2/16, 2n2/27].

and one unbounded branch. The bounded branch surrounds a real eigenvalue ofA
and the unbounded branch isolates the rest of the spectrum ofA. The shellC(B) is
connected and all the eigenvalues ofB are located in the region betweenC(B) and
the line Rez = −1/2.

Example 2. A andBare two 8× 81-hypertournamentmatrices with score variances
v(A) = 82/16 = 4 and v(B) = 4.32. Their spectra and shells are sketched in Fig. 2.

Furthermore, the following results hold.

Corollary 4. Let A ∈ Mn(R) be a1-hypertournament matrix with score variance
v(A) < n2/16. If A has k eigenvalues with non-negative parts, thenk 6 (n + 2 −√

n2 − 16v(A))/2.

Proof. The matrixA has a real eigenvalueρ(A) > (n − 2 +√
n2 − 16v(A))/4 (see

Remark 1) and exactlyn − k eigenvalues with real parts in the interval[−1/2, 0).
Since trace(A) = 0, we have that

n − 2 +√
n2 − 16v(A)

4
6 n − k

2
,

which implies that

k 6 n + 2 −
√

n2 − 16v(A)

2
. �

Note that Corollary 4 implies a result of Katzenberger and Shader [9] for a
1-hypertournamentmatrixA, namely that if v(A) < (n − 1)/4, thenA is non-singular.

Corollary 5. Suppose thatA ∈ Mn(R) is a1-hypertournament matrix withv(A) <

(n − 2)/2. Then A has at leastn − 2 eigenvalues with negative real parts and1 or 2
real positive eigenvalues.
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Proof. Since(n − 2)/2 < n2/16, by Corollary 5

k <
n + 2 − √

n2 − 8n + 16

2
= 3. �

We next characterize the case of equality in (2).

Theorem 6. Let A ∈ Mn(R) be a1-hypertournament matrix with score variance
v(A) > 0, and letλ be an eigenvalue of A. Then equality holds in(2) if and only if
v(A) 6 n2/16andλ is real and equal to either

n − 2 +√
n2 − 16v(A)

4
or

n − 2 −√
n2 − 16v(A)

4
.

Further, equality holds in(2) for some eigenvalue if and only if A hasn − 2 eigen-
values having real parts equal to−1/2 .

Proof. Let λ be an eigenvalue ofA and letS, M andN be as defined in the proof of
Theorem 1. Equality in (2), namely

(Im λ)2 = d

(
v(A)

n − d
− d

4

)
holds if and only if

1

2
+ Reλ = 2d(utu)

d2 + 4(Im λ)2

or equivalently, if and only if the matrixM is singular negative semidefinite. In this
case, the eigenvalue 0∈ σ(M) is simple and corresponds to the eigenvectoru in
(1). Moreover, the matrixS is singular and since 0∈ oF(S) (the boundary of the
numerical range), 0 must be a normal eigenvalue ofS(see [6, Theorem 1.6.6]); every
corresponding eigenvector belongs to

null(M) ∩ null(N) = span{u}.
Hence,u is an eigenvector ofN in (3) corresponding to the eigenvalue 0. Further-
more, the vectoru is an eigenvector of the rank one matrix

4 Imλ

d2 + 4(Im λ)2uut

corresponding to the simple eigenvalue

4 Imλ(utu)

d2 + 4(Im λ)2 .

As a consequence, the quantity

i Im λ − 4i Im λ(utu)

d2 + 4(Im λ)2 = i Im λ(n − 2 − 4 Reλ)

d
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is an eigenvalue of the matrixK1 in (1) with corresponding eigenvectoru. Thus

utK1u

utu
= i Im λ(n − 2 − 4 Reλ)

d
.

The same arguments applied toλ ∈ σ(A) yield

utK1u

utu
= i Im λ(n − 2 − 4 Reλ)

d

and hence Imλ = 0. Thus the existence of eigenvalues onC(A) hinges on the equa-
tion in d (hered = n − 1 − 2λ)

d

(
v(A)

n − d
− d

4

)
= 0

having real solutions. If v(A) > n2/16, this equation has no real solutions. Other-
wise, the real solutions lead to eigenvalues as stated in the theorem.

If equality holds in (2) for some eigenvalueλ, then from our argument above,
λ is one of(n − 2 +√

n2 − 16v(A))/4 and(n − 2 −√
n2 − 16v(A))/4, and in [8]

it is shown that this implies thatA hasn − 2 eigenvalues having real parts equal
to −1/2. Conversely, ifA hasn − 2 eigenvalues having real parts equal to−1/2,
then by [7, Theorem 2],A has two eigenvalues with real parts equal to(n − 2 +√

n2 − 16v(A))/4 and(n − 2 −
√

n2 − 16v(A))/4, respectively. From (2) it follows
that those eigenvalues are necessarily real, so that equality holds in (2) for both
eigenvalues. �

3. Generalized tournament matrices

Let A ∈ Mn(R) be a generalized tournament matrix, i.e., all the entries ofA are
non-negative andA + At = J − I . By Pick’s inequality (see [4]), every eigenvalue
λ of A satisfies|Im λ| 6 (1/2) cot(π/(2n)). Hence, it is natural to ask where the
shell C(A) intersects the horizontal line Imz = (1/2) cot(π/(2n)). In essence, we
are asking forx ∈ R such that

1

4
cot2

( π

2n

)
= (n − 1 − 2x)

v(A)

2x + 1
− (n − 1 − 2x)2

4
.

Lettingy = 2x + 1, we have

y3 − 2ny2 +
(
n2 + cot2

( π

2n

)
+ 4v(A)

)
y − 4nv(A) = 0.

Observe that the left part of this equation is increasing as a function ofy ∈ [0, n]; it
follows from the Implicit Function theorem that

oy
ov(A)

> 0.

Thus, the largest possible root will occur when v(A) is as large as possible, i.e.,
whenA is triangular, in which case v(A) = (n2 − 1)/12. Considering this maximum
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possible value of v(A), we investigate the asymptotics ofy asn → ∞. It follows
that

y3 − 2ny2 +
(

n2 + cot2
( π

2n

)
+ n2 − 1

3

)
y − n3 − n

3
= 0,

which, in turn, implies(y

n

)3 − 2
(y

n

)2 +
(

1 + cot2(π/(2n))

n2 + n2 − 1

3n2

)
y

n
− n2 − 1

3n2 = 0.

Asymptotically we havey/n → ξ , where

ξ3 − 2ξ2 +
(

1 + 4

π2 + 1

3

)
ξ − 1

3
= 0.

Solving this cubic givesξ ∼= 0.2588, so that for largen, y is asymptotic to 0.2588n.
As a consequence, for all sufficiently largen, the shellC(A) of ann × n generalized
tournament matrixA intersects the line Imz = (1/2) cot(π/(2n)) somewhere in the
zone

{z ∈ C: −1/2 6 Rez 6 0.1295n}.
The Kendall–Wei ranking method for tournament matrices (see [11]) relies on

the power method as a justification. The following results show that when the score
variance is not too big, convergence of the power method is quite fast.

Theorem 7. LetA ∈ Mn(R) be a generalized tournament matrix withn > 12 and
score variance

v(A) 6 1

2(n + 2)

(
n2 − 4n + 3 + 4n2

π2

)
.

If λ is an eigenvalue of A such thatReλ 6 (n − 2 −
√

n2 − 16v(A))/4, then

|λ| 6
∣∣∣∣−1

2
+ i

2
cot
( π

2n

)∣∣∣∣ .
Proof. Since−1/2 6 Reλ the inequality is straightforward if Reλ 6 1/2, so sup-
pose that 1/2 < Reλ 6 (n − 2 −

√
n2 − 16v(A))/4. By Theorem 1, it follows that

|λ|2 = (Reλ)2 + (Im λ)2 6 nv(A)

2Reλ + 1
+ (n − 1)Reλ − v(A) − (n − 1)2

4
.

Hence, it is enough to prove that

nv(A)

2 Reλ + 1
+ (n − 1)Reλ − v(A) − (n − 1)2

4
6
∣∣∣∣−1

2
+ i

2
cot

( π

2n

)∣∣∣∣2 . (4)
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Observe that∣∣∣∣−1

2
+ i

2
cot
( π

2n

)∣∣∣∣2 = 1

4 sin2(π/(2n))
.

Considering the left part of (4) as a function of Reλ, it is easy to see that it is concave
up with at most one critical point. Thus, (4) will hold for

Reλ ∈
[

1

2
,

n − 2 −√
n2 − 16v(A)

4

]

provided that it holds for Reλ = 1/2 and Reλ = (n − 2 −√
n2 − 16v(A))/4.

Notice that for Reλ = 1/2, inequality (4) can be written as

nv(A)

2
+ n − 1

2
− v(A) − (n − 1)2

4
6 1

4 sin2(π/(2n))

or equivalently

v(A) 6
(

1

n − 2

)(
n2 − 4n + 3

2
+ 1

2 sin2(π/(2n))

)
.

This is implied by our hypothesis.
For Reλ = (n − 2 −

√
n2 − 16v(A))/4, (4) is written as

2nv(A)

n −
√

n2 − 16v(A)
+ (n − 1)(n − 2 −

√
n2 − 16v(A))

4
− v(A) − (n − 1)2

4

6 1

4 sin2(π/(2n))
,

which is equivalent to

n2 − 2n + 2

8
− (n − 2)

√
n2 − 16v(A)

8
− v(A) 6 1

4 sin2(π/(2n))
.

Since 1/2 < (n − 2 −
√

n2 − 16v(A))/4, v(A) > (n − 2)/2. Moreover, our hypoth-
esis implies that v(A) 6 (3n)/4 as well. After straightforward computations, we find
that

n2 − 2n + 2

8
− (n − 2)

√
n2 − 16v(A)

8
− v(A)

6 n2 − 8n + 2 − (n − 2)
√

n2 − 12n

8
.

This last quantity is seen to be at most(n/π)2(6 (1/4) sin−2(π/(2n))). �
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Corollary 8. Let A ∈ Mn(R) be a generalized tournament matrix with score
variance

v(A) 6 1

2(n − 2)

(
n2 − 4n + 3 + 4n2

π2

)
andn > 12. If in addition, A is primitive with Perron valueρ, then for every eigen-
valueλ /= ρ

|λ|
ρ

6 2

sin(π/(2n))(n − 2 +
√

n2 − 16v(A))
.

(Observe that for largen, this bound is asymptotic to2/π .)

Proof. By Remark 1

ρ > n − 2 +√
n2 − 16v(A)

4
,

and by Theorem 7

|λ| 6
∣∣∣∣−1

2
+ i

2
cot
( π

2n

)∣∣∣∣ = 1

2 sin(π/(2n))
.

The result follows immediately. �

Example 3. Let T be the circulant matrix of order 2k + 1 given by

T = Circ([0
k︷ ︸︸ ︷

1 1 · · · 1

k︷ ︸︸ ︷
0 0 · · · 0])

(see [5] for the definition of a circulant), and observe thatT is a tournament matrix.
Now let A be the(4k + 2) × (4k + 2) tournament matrix

A =
[

T T t + I

T t T

]
.

Letting n = 4k + 2, one can verify thatA has score variance v(A) = 1/4, Perron
value(n2 − 2 + √

n2 − 4)/4 and−1/2 ± (i/2) cot(π/(2n)) as eigenvalues. So this
matrix actually achieves equality on Corollary 8.

We conclude by posing the open problem of determining those primitive general-
ized tournament matricesA with score variance

v(A) 6 1

2(n − 2)

(
n2 − 4n + 3 + 4n2

π2

)
such that both

λ = −1

2
+ 1

2
cot

( π

2n

)
and ρ = n2 − 2 +

√
n2 − 16v(A)

4
are eigenvalues ofA. (Note that each such matrix provides an example for which
equality holds in Corollary 8.) We note that Ref. [4] provides a constructive char-
acterization of generalized tournament matrices having−1/2 + (1/2) cot(π/(2n))
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as an eigenvalue, while Ref. [8] provides a characterization when(n2 − 2 +√
n2 − 16v(A))/4 is an eigenvalue ofA. Thus our problem can be reduced to looking

at the intersection of those two classes of matrices.

Acknowledgement

The third author would like to acknowledge early discussions with Prof. Ahmed
Sourour, which led to the use of Schur’s lemma in the present work.

References

[1] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadel-
phia, PA, 1994.

[2] A. Brauer, I.C. Gentry, On the characteristic roots of tournament matrices, Bull. Amer. Math. Soc.
74 (1968) 1133–1135.

[3] A. Brauer, I.C. Gentry, Some remarks on tournament matrices, Linear Algebra Appl. 5 (1972) 311–
318.

[4] D.A. Gregory, S.J. Kirkland, B.L. Shader, Pick’s inequality and tournaments, Linear Algebra Appl.
186 (1993) 15–36.

[5] R. Horn, C.R. Johnson, Matrix Analysis, Cambridge University, Cambridge, MA, 1990.
[6] R. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University, Cambridge, MA, 1991.
[7] S. Kirkland, Hypertournament matrices score vectors and eigenvalues, Linear and Multilinear Alge-

bra 30 (1991) 261–274.
[8] S. Kirkland, B. Shader, Tournament matrices with extremal spectral properties, Linear Algebra Appl.

196 (1994) 1–17.
[9] G.S. Katzenberger, B.L. Shader, Singular tournament matrices, in: Proceedings of the 20th South-

eastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton, FL, 1989, Congr.
Numer. 72 (1990) 71–80.

[10] J.S. Maybee, N.J. Pullman, Tournament matrices and their generalizations, Linear and Multilinear
Algebra 28 (1990) 57–70.

[11] J.W. Moon, Topics on Tournaments, Holt, Rinehart and Winston, 1968.
[12] J.W. Moon, N.J. Pullman, On generalized tournaments matrices, SIAM Rev. 12 (1970) 384–399.


