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Abstract

In this note we consider inequalities of the follAX| w4 < AlIBX|lv, p, WhereA andB
are matrices or integral operatoxsjecreasing sequence or function andndv are weights.
Obtained results are generalizations of results of G. Bennett [Linear Algebra Appl. 82 (1986)
81] and P.E. Renaud [Bull. Aust. Math. Soc. 34 (1986) 225]. © 2001 Elsevier Science Inc. All
rights reserved.
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1. Introduction

We shall be concerned with the spaéés0 < p < oo, of sequences of real num-
bers satisfying

00 1/p
Ixll, = (Z |xn|"> < o0.
n=1

Bennett [1] considered inequality
IAX]lg = AlIXIlp (1)
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for x € £P with x1 > x2 > --- > 0 andA is a matrix with nonnegative entries, as-
sumed to mag? into £9, anda is a constant not depending &n
In this paper, we shall consider the inequality of the form

[AX]lw,q = AlIXIlv, p 2)
and inequality of the form
IAX]lw,g < AlIBX|lv, ps 3

where||x||,, , is defined by

00 1/p
— p
IX]ly,p = (Z vkxk>
k=1

andw andv are nonnegative weights.

In Section 2, we start with generalization of formula for summation by pa@s in
obtained by Bennett [1, Proposition 1]. In Section 3 we consider inequalities (2) and
(3), while in Section 4 we show that result obtained by Bennett [1, Theorem 4] and
Renaud [7] is also valid for sequences nonincreasing in mean. In Section 5 we con-
sider integral analogues of such inequalities, proved in [2], but our proofs are simpler
and in agreement with [1]. We also obtain integral analogues of the summation by
parts ine?,

2. Generalized formulafor summation by parts

In this part the following elementary lemma will be needed (see [1]).

Lemmal. Leta,b,c > O0witha > b.If p > 1, then
(a+c) —a? > (b+c)? —b?, (4)

unlessa =borc=0.1f0 < p < 1, inequality in (4) isreversed.
The following result is the generalization of Proposition 1 in [1].

Proposition 1. Let aj,a2,...,a, >0, v1,v2,...,v, >0 and x1 > x2
x, 20.1fp>1and0 < g < p, then

n q n 1/p rP—q
() | (30)
k=1 i=1

1-(q/p)

n—1 r r
S () (Su)  eroat
j=1

r=1

WV
WV
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" ' 1-(q/p)
+ (Zal) (va) xk. (5)
i=1 j=1

If p<landg > p, theinequality in (5) isreversed. Thereis equality in (either
version of) (5) if and only if at least one condition holds from each of the following
pairs (1), (2)and (3), (4):

1 p=1
(2) x, = -+ = x,, where u is the smallest and v the largest value of k such that
agxi > 0.

(3) g =p,
(4) i1 vj)"H(Xi_1 ai)” isconstant for thosevaluesof r, 1 < r < n, satisfying
Xr > Xr41.

Proof. The idea of the proof is similar to that of Bennet's. We prove the gasel;

the case G< p < 1is similar. It is convenientto set, 1 =0, s, = a1+ --- + a,,
and to consider first the special cages p. Inequality (5) then reduces to

n p n
(Z akxk> > Z sP (xf - xrp+1) , (6)
k=1

r=1

what was proved in [1] as a consequence of Lemma 1. Equality is valid in (6) if and
only if either (1) or (2) is valid.
To prove the general cage< p we rewrite the right-hand side of (5) as

)T
[T 9

a/p T n ; (r—q)/p
[Z» of >} {; (Z) (x;’—x:;l)} .o

Applying Hoélder’s inequality with exponengs/q andp/(p — q), we get

(S (&) T

; (p—q)/p
= ng (Xf f+1 q/p |:(Z v,) X7 xf+1)j|
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p 1-(q/p)
-5 (Sa) (Bu] s
r=1 j=1
1-(q/p)

n q n
j=1

i=1

Equality in the last inequality is valid if and only if therejise R such that

sf(xf r+1 ZUJ xf — forl)’ r=1...,n
and condition (4) follows. D

Remark 1. Forvy = vy = --- = v, = 1 we have Proposition 1 from [1].

3. Boundsfor matrices

In this part our consideration is finite-dimensional (except Theorem 4). Infinite-
dimensional case can be deduced from this in usual way. The following result is a
generalization of Theorem 2 from [1].

Theorem 1. Letx; >x2>---2x,>20,p>1,0<qg < pandletAbeanm x n
matrix with nonnegative entries. Then

1AX(lw,g = AIXIlv, p, 9
where

r (q/p) m
q — i .
A= 1r<an2n (Zl vl> Za)] (Za]k> . (20)
Thereisequality in (9)if x hasthe form

_x, k<,
xk_{O, k>s, (11)

where sis any value of r at which the minimumin (10)occurs. If0 < p < 1, p <
theinequalityin (9) isreversed where X is similarly defined with maxinstead of m|n

Proof. The proofis similar to that of Bennett’s. We provethe case 1, 0 < ¢ <
p. We may assume, by homogenity, thiat|, , = 1. Applying Proposition 1, we
have
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m n q
q
IAXIE g =D wi | D aijx;
i=1 j=1

q

m n r 1-(q/p) r
> Z w; (Z vk) Z aij | (xf — xf+1)
: =

22": <k,1vk> @/p iwl jZ“” (Zw) —x}y1)

r=1 =
n r n
>\ Z <Z vk> (xf - xf_H) =) Z vkx,f
r=1 \k=1 k=1
= 27|17 .

Recalling thaf|x||,,, = 1 we see that (9) follows by takingh roots.
It is clear, by inspection, that equality holds in (9) whenever (11) is satisfied.

Remark 2. Forvi=---=v, =1= w1 ="--- = w, We have Theorem 2 in [1].

The following theorem should be compared with Theorem 3.2 in [2].

Theorem 2. Letxy1 > x2> .- > x, > 0, let A and B bem x n matriceswith non-
negativeentriesand0 < p < 1 < q < 00. Then
IAXllw.q < ABXllv, p, (12)
where
1/q
(Z}};l wj (Z/rc:l aj»k)q)
A= 1max 75 (13)
<r<n
(27:1 vj (22:1 b./lk)p)
Thereisan equality in (12) if x has the form
x1, k <s,
= { 01 k>s (14)

where sis any value of r at which the maximumin (13) occurs.

Proof. Applying Abel’s identity and Minkowski inequality twice, we have

1/q
Al = 3, (za, )
j=1
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m n r q Ya
~ (3 [2 (2o - >}
j=1 r=1 \k=1
n m r q Ya
< Z Za)j <Z aj,k> (x, — xr+l)
r=1 \j=1 k=1

n m r P Yp
<) (Z v, (Zb,-,k> ) (xr — 2r41)

m 1/p

n r P
<A v; |:Z(xr — Xr4+1) <Z b,/,k>j|
=1 Lr=1 k=1
= AIBX|lv, p- O

In view of the discussion below Theorem 3 from [1, Theorem 2] gives the only
possible case for general matrices.

The following theorem can be deduced from Proposition 1 (taKe instead of
ax’s, x,f’s instead ofv;’s, 1 instead ofjandp /g < 1 instead op), but we choose to
give an independent proof (for that reason compare [10, p. 176] and [8, p. 148]).

Theorem3. Letx; >x2>--->2x,>20,0< p < ¢ < oo.Then
IXllw,g < AlIXIlw, ps (15)

where
, 1/q
(Zj:l wj)
A= max ————. (16)
1<r<n r /p
(Zj:l Uj)
Thereisan eguality in (15)if x hasthe form
_x, k<,
xk_{O, k> s, (17)

where sis any value of r at which the maximumin (13) occurs.

Proof. Applying Abel’s identity, inequality (6) with exponegt/p > 1 we have

n n k
it =3 o =3 (S ) o -
k=1 k=1 \r=1
q/p

n k r/q k—1 r/q
(B[ -6
r=1

k=1 r=1
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n

k p/q q/p
(6 -t (2 a»)
r=1

k=1
n k q/p n q/p
<0 (St ot (D)) =0 (20w
k=1 r=1 k=1
=3x8, O

If0 < g < p < oo, then by Holder inequality we have sharp inequality

n 1/q n 1/r n 1/p
(Z xl.qa)i> < <Z a)ir/qvi(r/p)> (Z xipv,'> , (18)
i=1 i=1 i=1

where(x;) is nonnegative sequence anttt= 1/q — 1/p. Thus, inequality (16) is
reversed Holder type inequality.

To complete our discussion we give fordg < p < oo inequality also of the
type (18) but for decreasing sequences. In this case we found infinite-dimensional
case more appropriate. For integral analogue compare [4,8,10]. We follow the idea
from [10].

Theorem 4. Let x = (x;) be a decreasing nonnegative sequence, 0 < g < p < o©
and1l/r =1/q —1/p.If

o [ i ey —0/9)
A= Z ij Zvj Vip1 < 00, (19)
i=1 \j=1 j=1
thenthereis C € R (not depending on x) such that
IX[lw.g < ClIXllv, p- (20)
If 2 < oo and Cisthe best possible constant such that (20) holds, then
1 1/r
(Z) /p Mr/qk—(r/p) <C< (L) A, (21)
r p
where
o [ i P fin \ 0P
Mr = Z Za)j Z vj w; < 0. (22)
i=1 \j=1 j=1

Proof. To prove first implication and second inequality in (21) set
r/p —(r/q)

oo k k
i=Y(Lo] (Zu]  wa
k=i \ j=1 j=1

i
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and note that by Abel’s identity

00 00 i
ZwiAi = Z(Ai - Ai+l)zwk =1
i=1 i=1 k=1
Using Holder’s inequality (with exponents/q, r/q) we have

o
q q_q/p ,—(q/r) 1-=(q/p) 4q/7
XU g =Y xf P AT P A
i=1

) /P / oo q/r
i=1 i=1

00 q/p
=9 (lepwiAi(p/r)>

i=1
M oo ; o q/p
=1 Z Za)jAj Pl (xf’—xi’:_1)
i:l j=1
q/p
<A ZA (p/r) Za} i xl.p+1)
l 1
q/p

ANAESYE P_ P
<A (;) Z Z vi | (7 = xi+l)
i=1 \j=1

N4/ i ) q/p N\
= (L) (Erw) =a(5) it
p i=1 p

where the last inequality follows from

_ _ —(p/r)
; 1 o k (r/q)
A Y] | (Xu] wa
j=1 k=i \j=1
-1

( ) (p/r) z":w]

~CIp) g\ /T

00 k
X Z Zvj — Zvj
j=1

k=i \j=1
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. -1 .
AP !
-(5) (Zer) v
P j=1 =1
where some obvious estimations are used and elementary inequality
C_p* <aa* YNa—b), a<b, a<0
fora =1-r/q, a= le_lv], b= Zkfiv]
Suppose how that < oo and that (20) holds. First note that
. ; r/q ; —(r/g)-1 ;
(X)) (Zu] el X
i=1 \j=1 j=1 j=1
~ o /& ey ~(r/g)-1
SulX(Ter] (Xu]  owa @)
i=1 k=i \j=1 j=1
If xf’ is defined by expression in square brackets in (23] ferl, 2, . . ., then (20)

for the sequence = (x;) gives

ol /4 AN () o S R
cwans SIS (S ) (Su) |
i—1 | k=i \j=1 j=1
w /i e[ [k —(r/g)-1 4/p
5! 371 I 51 o) IR I
i=1 \j=1 k=i \j=1
r/p —=(r/p)

q/p i q\4/p
> ; =(1 r
> (%) (o) (xu] o ()
i=1 \j=1 j=1
where the last inequality follows using again elementary inequality as above (now
for @ = —r/q). This shows the first inequality in (21) and that< co. O

Note that from (21 < (r/p)?/"*(q/r)~9/"P).. We also note that in the same
manner we can prove that

r/q —(r/q)

i i+1

D v
j=1

(in the first step take elementary inequality — b* < a® 1(a —b), a > 1, a >
b with @ =r/q, and in the second step elementary inequality as in the proof of

Vi+1 (24)
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Theorem 4 withw = —r/p). In this way, if A" denotes the sum in (24), we obtain
weaker, but more symmetrical form of (21)

1 lq _ 1/r
(1)/P<z> ymk<um5§C$;<i> N (25)
r p p

Theorem 4 also implies that i < oo, then identity operator: ¢) — ¢, is
bounded on the cone of nonnegative decreasing sequences.

4, The Cesaro matrix

An interesting application of (1) for Cesaro matxwas obtained in [1]. The
same result has been obtained in [7].
Theorem 5. Let pbefixed, 1 < p < oo. Then
ICxIl, = (Y7 Ix (26)
for every x € £7 satisfying x1 > x2 > --- > 0, where ¢(p) is Riemann’s zeta func-
tion. Thereisequalityin (26)ifandonlyif xp = x3 =--- = 0.

Here we note that inequality (26) holds under weaker assumption(thais
decreasing in mean, that is

X1+ x2 1<
x> = >~-~>;;xi>-~- (27)
1=

The proof of Renaud was based on the following two lemmas:

Lemma2. Letp > landletx = (x,),n =1, 2,...beanonincreasing sequence
of nonnegative real numbers. Then

Gt a)? = (] + oo )

>Xn:[k1’—(k—1)l’—1]x,f, n=23...
k=2
Lemma3. Forn > 2, we have
[ —(n— 1P =1 Ty—1 > Sy-1,
where

n
1
Snzzk_p and T, =¢(p) =S, = T
k=1
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It was proved in [6] that Lemma 2 is valid for nonnegative sequences which are
nonincreasing in mean. So, using idea of proof from [7] we can prove:

Theorem 6. If p > 1 and x = (x,) € £7 is a nonincreasing in mean sequence of
nonnegative real numbers, then (26)is valid. The constant ¢ (p) in (26)is best pos-
sible.

5. Integral analogues

In this section we consider an integral version of Proposition 1 and a generaliza-
tion of Theorem 7 from [1]. We give sharp lower and upper bounds on weighted
Lebesgue spaces (to be more precise, on the cone of nonnegative decreasing func-
tions in these spaces) for transformatiofiss K g, of the form

f(X)=/O K(x,y)g(y)dy, O<ux<a,

whereK (x, y) > 0 is measurable, and, in lower bound cases, for givandq we
assume thak mapsL? into Lg. As usual, for giverp > 0 and nonnegative weight

von(0,a),forg e LY (0, a) we set

a 1/p
lgllv,p = (/0 gl (x)v(x) dx) )

Also, for given weight we setV (x) = [y v(t) dt, x € (0, a).
We will need the following theorem (Theorem 2.1 in [2]):

Theorem 7. Let —oco <a <b < oo and f > 0on (a, b) and g be continuous on

(a, b). Suppose f 4 on (a, b) and g | on (a, b) with lim,_,,_ g(x) = 0. Then for
anyy € (0, 1]

1/y
/ FO0 di—g )] < (f Y d[- V<x>]) . (28)
If1 <y < oo, theinequality in (28)isreversed.

Proposition 2. Supposethat p > 1, ¢ < p, fisnonnegativeon (0, ) and g is ab-
solutely continuous nonincreasing on (0, a) such that g(a — 0) = 0. Then

a q
( fo f(x)g(x)dx> lgllh !
a X q
> / (/ f(t)dt> viTaP(xyd[—gP (v)]. (29)
0 0

For0 < p <1, p < g theinequalityin (29)is reversed.
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Proof. Applying integration by parts, Theorem 7 and Hélder inequality we have

a q a 1/p
(/(; f(x)g(X)dX> |:<[o gp(X)v(X)dX) }
a x pa4/p a 1-(q/p)
= [(/ (/ f(t)dt> d[—g(X)]> ] (/ g”(x)v(x)dx>
o \Jo 0
a x V4 q/p a 1-(q/p)
></0 (/0 f(t)dt> d[—gf’<x)]> (/O V<x>d[—g1’<x)]>

a X q
> (f f(t)dt> VI=a/P) (x) d[—g” ()]
0 0

The proof for the case & p < lissimilar. O

pP—q

The following theorem is integral analogue of the Theorem 1 (compare Theorem
3.2in[2], Theorem 2.1 in [5] and [9]).

Theorem 8. Suppose that g € LY (0, a) is nonnegative and nonincreasing, p >
1, g < p. Then

I1K8llw.q = Mgl p (30)

where

) 1 a y q 1/q
A= 0<";f<a W (/O (/O K(x,u) du) w(x) dx) . (32)

Theconstant A istheleast possible. If 0 < p < 1, p < ¢, thentheinequality in (30)
isreversed with A defined similarly with supinstead of inf.

Proof. Without loss of generality we can assume that absolutely continuous and
thata is finite. Suppose also thata) = 0. Applying Proposition 2 withigll, , = 1
and Fubini theorem we have

a a q
IIKgIIZ,q=fO (/0 K(x,y)g(y)dy> w(x) dx

a a q
> [ [[ ([y K (x, u)du) vl—(q/p)(y)d[—gp(y)]] o(x) dx
0 0 0
a a q
= / |:[ ([y K(x,u) du) w(x) dx:| Vl—(q/l’)(y)d[_gp(y)]
0 0 0

2,\(1/0 Vi d[—g’ (] =/\‘1/0 P v(y) dy,
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which gives (30) for the casg(a) = 0. For the absolutely continuous nonincreas-
ing functiong such thatg(a) > 0 we define increasing sequengg) of absolutely
continuous nonincreasing functions by

e, O<x<a-—1/n,
gn(x) = {ng(a —1/n)a—x), a—-1/n<x<a.

Applying proven case and using limiting procedure we obtain general assertion.
Sharpness of the constant can be obtained in standard way using characteristic
function. Remaining case is similar[J

Using techniques from Theorem 8 and discrete case, one can easily proves the
integral analogues of Theorems 2—4.

Although we can give applications of Theorem 8 for various kernels (fractional
Riemann-Liouville K(x,y)=(x —y)* ! « >0, y <x, extended Hilbert
K(x,y)=(x+y)™*, x,y €R, » > 0; for Hardy kernel see [5]), in our opinion
the mostinteresting one is transformation with Hilbert's keiiét, y) = 1/(x + y)
on weighted Lebesgue spaces, especially in view of the fact that the only bounded
linear operator from.” to L9 forO < p <1, p < g < < is trivial one [3, p. 150]
and interesting upper bound which appears in this case.

For giveng € R we denote b)LZ Lebesgue space with weightr) = 1.

Theorem9. LetO<p <1 p<g<oo, -1<B,0<1l4+a<gq,q/p=01A+
a)/(1+ B) and let g be nonnegative decreasing function on (0, co) such that g €
L4 (0, 00). Then

IKgllag < A+ BYPIYIA+g)cY(q; @)lIglp, s (32)
where
* la +n+1 1
o o=3 () e (33)

n=0
For p > 1, g < p, inequality (32)isreversed. Thereisequality in (32)if and only if
g = Axjo,5], Where Aand b are nonnegative constantsand x characteristic function.

Proof. Using Theorem 8 and simple transformations it is easy to see that

*log? (1+1)

td-‘rz dt

A= (B+ 1)(1/17/
0
o0
— (13 + 1)61/17/ uqef(otJrl)u (1 _ efu)fot72 du.
0

Using binomial expansion ofl — e )~®=2jn power series in & and integral
representation of function, inequality (32) follows. [
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Itis obvious that (¢; 0) = ¢(q), ¢ > 1, wherez(g) is classical Riemann’s zeta
function [11], and we see that Theorem 9 reducegfer g > 1, « = g = 0 to the
Hilbert part of Corollary on page 97 in [1].

Appearing in Theorem 9 functiofi(g; «) as a generalization (in some sense
very natural one) of classical Riemann’s zeta function, needs some attention. First
recall that the Bernoulli numbetsf”) ofordern, n =0,1, 2,...and degreg, k =
0,1,2,...are defined b)B,E”) = B,E”)(O), WhereB,E”)(x) are the Bernoulli polyno-
mials defined by expansion

t"ev! > (n) lk
= Y B )= 34
@—1)" k;) e @ (34)

In this context we find identity

(n+1) k! dnk
n -
By () = n! dxn—k

[(x—D&x=2)---(x—n)], 0<k<n (35)
more suitable. We also need recursion formula
(n+ DB, =kBUD — i+ D+ 1-0BY k<n.  (36)

Some properties of function(g; «) are given in the following.

Proposition 3. If0 < o + 1 < ¢, thenthefunction ¢ (¢; «) iswell defined by (33).
The following identities hold:

. _ 1 *log? (1+1)
$(g; o) = I +1)/0 s dr (37)

(@+2¢(q; a+D)=¢(g—1 o) — (@+Di(g; @), a+2<gq (38)

1 < "
¢ m = Z(’Z)B,ﬁ*,;”;(q—kx

k=0

n+l<gqg,n=0,12...[6pt] (39)

Proof. Since the calculations and argumentations are elementary, we give just a
sketch of the proof. That the functiang; «) is well defined for O< @ +1 < ¢

can be easily seen from the proof of Theorem 9 where also the first identity (in-
tegral representation) is contained. The second identity follows from the first us-
ing integration by parts twice (and trivial decompositioff—2(1 + 1)1 = =22 —
1=*~1(1 4+ n)~1). The third identity follows from the second one using induction and
recursion formula (36). O
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