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Abstract

In this note we consider inequalities of the form‖Ax‖ω,q � λ‖Bx‖v,p, whereA andB
are matrices or integral operators,x decreasing sequence or function andω andv are weights.
Obtained results are generalizations of results of G. Bennett [Linear Algebra Appl. 82 (1986)
81] and P.E. Renaud [Bull. Aust. Math. Soc. 34 (1986) 225]. © 2001 Elsevier Science Inc. All
rights reserved.

Keywords: Inequalities; Weights; Decreasing sequences and functions; Summation by parts in weighted
�p spaces; Integration by parts in weightedLp spaces; Hilbert kernel; Riemann’s zeta function

1. Introduction

We shall be concerned with the spaces�p, 0 < p < ∞, of sequences of real num-
bers satisfying

‖x‖p =
( ∞∑

n=1

|xn|p
)1/p

< ∞.

Bennett [1] considered inequality

‖Ax‖q � λ‖x‖p (1)
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for x ∈ �p with x1 � x2 � · · · � 0 andA is a matrix with nonnegative entries, as-
sumed to map�p into �q , andλ is a constant not depending onx.

In this paper, we shall consider the inequality of the form

‖Ax‖ω,q � λ‖x‖v,p (2)

and inequality of the form

‖Ax‖ω,q � λ‖Bx‖v,p, (3)

where‖x‖v,p is defined by

‖x‖v,p =
( ∞∑

k=1

vkx
p
k

)1/p

andω andv are nonnegative weights.
In Section 2, we start with generalization of formula for summation by parts in�p

obtained by Bennett [1, Proposition 1]. In Section 3 we consider inequalities (2) and
(3), while in Section 4 we show that result obtained by Bennett [1, Theorem 4] and
Renaud [7] is also valid for sequences nonincreasing in mean. In Section 5 we con-
sider integral analogues of such inequalities, proved in [2], but our proofs are simpler
and in agreement with [1]. We also obtain integral analogues of the summation by
parts in�p.

2. Generalized formula for summation by parts

In this part the following elementary lemma will be needed (see [1]).

Lemma 1. Let a, b, c � 0 with a � b. If p > 1, then

(a + c)p − ap > (b + c)p − bp, (4)

unless a = b or c = 0. If 0 < p < 1, inequality in (4) is reversed.

The following result is the generalization of Proposition 1 in [1].

Proposition 1. Let a1, a2, . . . , an � 0, v1, v2, . . . , vn � 0 and x1 � x2 � · · · �
xn � 0. If p � 1 and 0 < q � p, then(

n∑
k=1

akxk

)q

( n∑

i=1

vix
p
i

)1/p



p−q

�
n−1∑
r=1

(
r∑

i=1

ai

)q

 r∑

j=1

vj




1−(q/p)

(x
p
r − x

p

r+1)
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+
(

n∑
i=1

ai

)q

 n∑

j=1

vj




1−(q/p)

x
p
n . (5)

If p � 1 and q � p, the inequality in (5) is reversed. There is equality in (either
version of) (5) if and only if at least one condition holds from each of the following
pairs (1), (2)and (3), (4):
(1) p = 1,

(2) xu = · · · = xv, where u is the smallest and v the largest value of k such that
akxk > 0.

(3) q = p,

(4) (
∑r

j=1 vj )−1(
∑r

i=1 ai)
p is constant for those values of r, 1 � r � n, satisfying

xr > xr+1.

Proof. The idea of the proof is similar to that of Bennet’s. We prove the casep > 1;
the case 0< p � 1 is similar. It is convenient to setxn+1 = 0, sr = a1 + · · · + ar ,

and to consider first the special case,q = p. Inequality (5) then reduces to(
n∑

k=1

akxk

)p

�
n∑

r=1

s
p
r

(
x

p
r − x

p

r+1

)
, (6)

what was proved in [1] as a consequence of Lemma 1. Equality is valid in (6) if and
only if either (1) or (2) is valid.

To prove the general caseq � p we rewrite the right-hand side of (5) as(
n∑

k=1

akxk

)q


(

n∑
i=1

vix
p
i

)1/p



p−q

=
[(

n∑
k=1

akxk

)p]q/p ( n∑
i=1

vix
p

i

)(p−q)/p

�
[

n∑
r=1

s
p
r

(
x

p
r − x

p

r+1

)]q/p

 n∑

i=1


 i∑

j=1

vj


(xp

i − x
p

i+1

)
(p−q)/p

. (7)

Applying Hölder’s inequality with exponentsp/q andp/(p − q), we get

(
n∑

k=1

akxk

)q


(

n∑
i=1

vix
p

i

)1/p



p−q

�
n∑

r=1

s
q
r

(
x

p
r − x

p

r+1

)q/p




 r∑

j=1

vj


(xp

r − x
p

r+1

)
(p−q)/p
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=
n−1∑
r=1

(
r∑

i=1

ai

)q

 r∑

j=1

vj




1−(q/p) (
x

p
r − x

p
r+1

)

+
(

n∑
i=1

ai

)q

 n∑

j=1

vj




1−(q/p)

x
p
n . (8)

Equality in the last inequality is valid if and only if there isµ ∈ R such that

s
p
r

(
x

p
r − x

p

r+1

) = µ


 r∑

j=1

vj


(xp

r − x
p

r+1

)
, r = 1, . . . , n

and condition (4) follows. �

Remark 1. Forv1 = v2 = · · · = vn = 1 we have Proposition 1 from [1].

3. Bounds for matrices

In this part our consideration is finite-dimensional (except Theorem 4). Infinite-
dimensional case can be deduced from this in usual way. The following result is a
generalization of Theorem 2 from [1].

Theorem 1. Let x1 � x2 � · · · � xn � 0, p � 1, 0 < q � p and let A be an m × n

matrix with nonnegative entries. Then

‖Ax‖ω,q � λ‖x‖v,p, (9)

where

λq = min
1�r�n

(
r∑

i=1

vi

)−(q/p) m∑
j=1

ωj

(
r∑

k=1

ajk

)q

. (10)

There is equality in (9) if x has the form

xk =
{

x1, k � s,

0, k > s,
(11)

where s is any value of r at which the minimum in (10) occurs. If 0 < p � 1, p � q

the inequality in (9) is reversed where λ is similarly defined with maxinstead of min.

Proof. The proof is similar to that of Bennett’s. We prove the casep � 1, 0 < q �
p. We may assume, by homogenity, that‖x‖v,p = 1. Applying Proposition 1, we
have
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‖Ax‖q
ω,q =

m∑
i=1

ωi


 n∑

j=1

aij xj




q

�
m∑

i=1

ωi

n∑
r=1

(
r∑

k=1

vk

)1−(q/p)

 r∑

j=1

aij




q (
x

p
r − x

p

r+1

)

=
n∑

r=1

(
r∑

k=1

vk

)−(q/p) m∑
i=1

ωi


 r∑

j=1

aij




q (
r∑

k=1

vk

)(
x

p
r − x

p

r+1

)

� λq

n∑
r=1

(
r∑

k=1

vk

)(
x

p
r − x

p
r+1

) = λq

n∑
k=1

vkx
p
k

= λq‖x‖p
v,p.

Recalling that‖x‖v,p = 1 we see that (9) follows by takingqth roots.
It is clear, by inspection, that equality holds in (9) whenever (11) is satisfied.�

Remark 2. Forv1 = · · · = vn = 1 = ω1 = · · · = ωm we have Theorem 2 in [1].

The following theorem should be compared with Theorem 3.2 in [2].

Theorem 2. Let x1 � x2 � · · · � xn � 0, let A and B be m × n matrices with non-
negative entries and 0 < p � 1 � q < ∞. Then

‖Ax‖ω,q � λ‖Bx‖v,p, (12)

where

λ = max
1�r�n

(∑m
j=1 ωj

(∑r
k=1 aj,k

)q)1/q

(∑m
j=1 vj

(∑r
k=1 bj,k

)p)1/p
. (13)

There is an equality in (12) if x has the form

xk =
{

x1, k � s,

0, k > s,
(14)

where s is any value of r at which the maximum in (13)occurs.

Proof. Applying Abel’s identity and Minkowski inequality twice, we have

‖Ax‖ω,q =

 m∑

j=1

ωj

(
n∑

k=1

aj,kxk

)q



1/q
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=

 m∑

j=1

ωj

[
n∑

r=1

(
r∑

k=1

aj,k

)
(xr − xr+1)

]q



1/q

�
n∑

r=1


 m∑

j=1

ωj

(
r∑

k=1

aj,k

)q



1/q

(xr − xr+1)

� λ

n∑
r=1


 m∑

j=1

vj

(
r∑

k=1

bj,k

)p



1/p

(xr − xr+1)

� λ


 m∑

j=1

vj

[
n∑

r=1

(xr − xr+1)

(
r∑

k=1

bj,k

)]p



1/p

= λ‖Bx‖v,p. �

In view of the discussion below Theorem 3 from [1, Theorem 2] gives the only
possible case for general matrices.

The following theorem can be deduced from Proposition 1 (takewk ’s instead of
ak ’s, x

q
k ’s instead ofxk ’s, 1 instead ofq andp/q � 1 instead ofp), but we choose to

give an independent proof (for that reason compare [10, p. 176] and [8, p. 148]).

Theorem 3. Let x1 � x2 � · · · � xn � 0, 0 < p � q < ∞. Then

‖x‖ω,q � λ‖x‖v,p, (15)

where

λ = max
1�r�n

(∑r
j=1 ωj

)1/q

(∑r
j=1 vj

)1/p
. (16)

There is an equality in (15) if x has the form

xk =
{

x1, k � s,

0, k > s,
(17)

where s is any value of r at which the maximum in (13)occurs.

Proof. Applying Abel’s identity, inequality (6) with exponentq/p � 1 we have

‖x‖q
ω,q =

n∑
k=1

x
q
k ωk =

n∑
k=1

(
k∑

r=1

ωr

)(
x

q
k − x

q

k+1

)

�


 n∑

k=1



(

k∑
r=1

ωr

)p/q

−
(

k−1∑
r=1

ωr

)p/q

 x

p
k




q/p
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=

 n∑

k=1

(
x

p

k − x
p

k+1

)( k∑
r=1

ωr

)p/q



q/p

� λq

(
n∑

k=1

(
x

p
k − x

p
k+1

)( k∑
r=1

vr

))q/p

= λq

(
n∑

k=1

x
p
k vk

)q/p

= λq‖x‖q
v,p. �

If 0 < q < p < ∞, then by Hölder inequality we have sharp inequality(
n∑

i=1

x
q
i ωi

)1/q

�
(

n∑
i=1

ω
r/q
i v

−(r/p)
i

)1/r ( n∑
i=1

x
p
i vi

)1/p

, (18)

where(xi) is nonnegative sequence and 1/r = 1/q − 1/p. Thus, inequality (16) is
reversed Hölder type inequality.

To complete our discussion we give for 0< q < p < ∞ inequality also of the
type (18) but for decreasing sequences. In this case we found infinite-dimensional
case more appropriate. For integral analogue compare [4,8,10]. We follow the idea
from [10].

Theorem 4. Let x = (xi) be a decreasing nonnegative sequence, 0 < q < p < ∞
and 1/r = 1/q − 1/p. If

λr =
∞∑

i=1


 i∑

j=1

ωj




r/q 
 i∑

j=1

vj




−(r/q)

vi+1 < ∞, (19)

then there is C ∈ R (not depending on x) such that

‖x‖ω,q � C‖x‖v,p. (20)

If λ < ∞ and C is the best possible constant such that (20) holds, then(q

r

)1/p

µr/qλ−(r/p) � C �
(

r

p

)1/r

λ, (21)

where

µr =
∞∑

i=1


 i∑

j=1

ωj




r/p 
 i+1∑

j=1

vj




−(r/p)

ωi < ∞. (22)

Proof. To prove first implication and second inequality in (21) set

Ai =
∞∑

k=i


 k∑

j=1

ωj




r/p
 k∑

j=1

vj




−(r/q)

vk+1,
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and note that by Abel’s identity

∞∑
i=1

ωiAi =
∞∑

i=1

(Ai − Ai+1)

i∑
k=1

ωk = λr .

Using Hölder’s inequality (with exponentsp/q, r/q) we have

‖x‖q
ω,q =

∞∑
i=1

x
q
i ω

q/p
i A

−(q/r)
i ω

1−(q/p)
i A

q/r
i

�
( ∞∑

i=1

x
p

i ωiA
−(p/r)

i

)q/p ( ∞∑
i=1

ωiAi

)q/r

= λq

( ∞∑
i=1

x
p

i ωiA
−(p/r)

i

)q/p

= λq


 ∞∑

i=1


 i∑

j=1

ωj A
−(p/r)

j


(xp

i − x
p

i+1

)
q/p

� λq


 ∞∑

i=1

A
−(p/r)
i


 i∑

j=1

ωj


(xp

i − x
p

i+1

)
q/p

� λq

(
r

p

)q/r


 ∞∑

i=1


 i∑

j=1

vj


(xp

i − x
p

i+1

)
q/p

= λq

(
r

p

)q/r
( ∞∑

i=1

x
p
i vi

)q/p

= λq

(
r

p

)q/r

‖x‖q
v,p,

where the last inequality follows from

A
−(p/r)

i �


 i∑

j=1

ωj




−1

 ∞∑

k=i


 k∑

j=1

vj




−(r/q)

vk+1




−(p/r)

�
(p

r

)−(p/r)


 i∑

j=1

ωj




−1

×

 ∞∑

k=i


 k∑

j=1

vj




−(r/p)

−

k+1∑

j=1

vj




−(r/p)



−(p/r)
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=
(

r

p

)p/r

 i∑

j=1

ωj




−1
i∑

j=1

vj ,

where some obvious estimations are used and elementary inequality

aα − bα � αaα−1(a − b), a < b, α < 0

for α = 1 − r/q, a = ∑k
j=1 vj , b = ∑k+1

j=1 vj .
Suppose now thatλ < ∞ and that (20) holds. First note that

λr =
∞∑

i=1


 i∑

j=1

ωj




r/q 
 i∑

j=1

vj




−(r/q)−1

vi+1


 i∑

j=1

vj




=
∞∑

i=1

vi


 ∞∑

k=i


 k∑

j=1

ωj




r/q 
 k∑

j=1

vj




−(r/q)−1

vk+1


 . (23)

If x
p

i is defined by expression in square brackets in (23) fori = 1, 2, . . ., then (20)
for the sequencex = (xi) gives

Cqλr(q/p) �
∞∑

i=1


 ∞∑

k=i


 k∑

j=1

ωj




r/q 
 k∑

j=1

vj




−(r/q)−1

vk+1




q/p

ωi

�
∞∑

i=1


 i∑

j=1

ωj




r/p

 ∞∑

k=i


 k∑

j=1

vj




−(r/q)−1

vk+1




q/p

ωi

�
(q

r

)q/p
∞∑

i=1


 i∑

j=1

ωj




r/p 
 i∑

j=1

vj




−(r/p)

ωi =
(q

r

)q/p

µr,

where the last inequality follows using again elementary inequality as above (now
for α = −r/q). This shows the first inequality in (21) and thatµ < ∞. �

Note that from (21)µ ≤ (r/p)q/r2
(q/r)−q/(rp)λ. We also note that in the same

manner we can prove that

µr � q

p

∞∑
i=1


 i∑

j=1

ωj




r/q 
 i+1∑

j=1

vj




−(r/q)

vi+1 (24)

(in the first step take elementary inequalityaα − bα � αaα−1(a − b), α > 1, a >

b with α = r/q, and in the second step elementary inequality as in the proof of
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Theorem 4 withα = −r/p). In this way, if λ̃r denotes the sum in (24), we obtain
weaker, but more symmetrical form of (21)(q

r

)1/p
(

q

p

)1/q

λ̃r/qλ−(r/p) � C �
(

r

p

)1/r

λ. (25)

Theorem 4 also implies that ifλ < ∞, then identity operatorι : �
p
v �→ �

q
ω is

bounded on the cone of nonnegative decreasing sequences.

4. The Cesaro matrix

An interesting application of (1) for Cesaro matrixC was obtained in [1]. The
same result has been obtained in [7].

Theorem 5. Let p be fixed, 1 < p < ∞. Then

‖Cx‖p � ζ(p)1/p‖x‖p (26)

for every x ∈ �p satisfying x1 � x2 � · · · � 0, where ζ(p) is Riemann’s zeta func-
tion. There is equality in (26) if and only if x2 = x3 = · · · = 0.

Here we note that inequality (26) holds under weaker assumption that(xn) is
decreasing in mean, that is

x1 � x1 + x2

2
� · · · � 1

n

n∑
i=1

xi � · · · (27)

The proof of Renaud was based on the following two lemmas:

Lemma 2. Let p > 1 and let x = (xn), n = 1, 2, . . . be a nonincreasing sequence
of nonnegative real numbers. Then

(x1 + · · · + xn)p − (x
p

1 + · · · + x
p
n )

�
n∑

k=2

[kp − (k − 1)p − 1]xp
k , n = 2, 3, . . .

Lemma 3. For n � 2, we have

[np − (n − 1)p − 1] Tn−1 � Sn−1,

where

Sn =
n∑

k=1

1

kp
and Tn = ζ(p) − Sn =

∞∑
k=n+1

1

kp
.
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It was proved in [6] that Lemma 2 is valid for nonnegative sequences which are
nonincreasing in mean. So, using idea of proof from [7] we can prove:

Theorem 6. If p > 1 and x = (xn) ∈ �p is a nonincreasing in mean sequence of
nonnegative real numbers, then (26) is valid. The constant ζ(p) in (26) is best pos-
sible.

5. Integral analogues

In this section we consider an integral version of Proposition 1 and a generaliza-
tion of Theorem 7 from [1]. We give sharp lower and upper bounds on weighted
Lebesgue spaces (to be more precise, on the cone of nonnegative decreasing func-
tions in these spaces) for transformations,f = Kg, of the form

f (x) =
∫ a

0
K(x, y)g(y) dy, 0 < x < a,

whereK(x, y) � 0 is measurable, and, in lower bound cases, for givenp andq we
assume thatK mapsLp

v into Lω
q . As usual, for givenp > 0 and nonnegative weight

v on (0, a), for g ∈ L
p
v (0, a) we set

‖g‖v,p =
(∫ a

0
gp(x)v(x) dx

)1/p

.

Also, for given weightv we setV (x) = ∫ x

0 v(t) dt, x ∈ (0, a).
We will need the following theorem (Theorem 2.1 in [2]):

Theorem 7. Let −∞ < a < b � ∞ and f � 0 on (a, b) and g be continuous on
(a, b). Suppose f ↑ on (a, b) and g ↓ on (a, b) with limx→b− g(x) = 0. Then for
any γ ∈ (0, 1]∫ b

a

f (x) d[−g(x)] �
(∫ b

a

f γ (x) d
[−gγ (x)

])1/γ

. (28)

If 1 � γ < ∞, the inequality in (28) is reversed.

Proposition 2. Suppose that p � 1, q � p, f is nonnegative on (0, a) and g is ab-
solutely continuous nonincreasing on (0, a) such that g(a − 0) = 0. Then(∫ a

0
f (x)g(x) dx

)q

‖g‖p−q
v,p

�
∫ a

0

(∫ x

0
f (t) dt

)q

V 1−q/p(x) d
[−gp(x)

]
. (29)

For 0 < p � 1, p � q the inequality in (29) is reversed.
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Proof. Applying integration by parts, Theorem 7 and Hölder inequality we have

(∫ a

0
f (x)g(x) dx

)q
[(∫ a

0
gp(x)v(x) dx

)1/p
]p−q

=
[(∫ a

0

(∫ x

0
f (t) dt

)
d[−g(x)]

)p]q/p

·
(∫ a

0
gp(x)v(x) dx

)1−(q/p)

�
(∫ a

0

(∫ x

0
f (t) dt

)p

d
[−gp(x)

])q/p

·
(∫ a

0
V (x) d

[−gp(x)
])1−(q/p)

�
∫ a

0

(∫ x

0
f (t) dt

)q

V 1−(q/p)(x) d
[−gp(x)

]
.

The proof for the case 0< p � 1 is similar. �

The following theorem is integral analogue of the Theorem 1 (compare Theorem
3.2 in [2], Theorem 2.1 in [5] and [9]).

Theorem 8. Suppose that g ∈ L
p
v (0, a) is nonnegative and nonincreasing, p �

1, q � p. Then

‖Kg‖ω,q � λ‖g‖v,p, (30)

where

λ = inf
0<y<a

1

V 1/p(y)

(∫ a

0

(∫ y

0
K(x, u) du

)q

ω(x) dx

)1/q

. (31)

The constant λ is the least possible. If 0 < p � 1, p � q, then the inequality in (30)
is reversed with λ defined similarly with supinstead of inf.

Proof. Without loss of generality we can assume thatg is absolutely continuous and
thata is finite. Suppose also thatg(a) = 0. Applying Proposition 2 with‖g‖v,p = 1
and Fubini theorem we have

‖Kg‖q
ω,q =

∫ a

0

(∫ a

0
K(x, y)g(y) dy

)q

ω(x) dx

�
∫ a

0

[∫ a

0

(∫ y

0
K(x, u) du

)q

V 1−(q/p)(y) d
[−gp(y)

]]
ω(x) dx

=
∫ a

0

[∫ a

0

(∫ y

0
K(x, u) du

)q

ω(x) dx

]
V 1−(q/p)(y) d

[−gp(y)
]

� λq

∫ a

0
V (y) d

[−gp(y)
] = λq

∫ a

0
gp(y)v(y) dy,
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which gives (30) for the caseg(a) = 0. For the absolutely continuous nonincreas-
ing functiong such thatg(a) > 0 we define increasing sequence(gn) of absolutely
continuous nonincreasing functions by

gn(x) =
{

g(x), 0 < x < a − 1/n,

ng(a − 1/n)(a − x), a − 1/n � x � a.

Applying proven case and using limiting procedure we obtain general assertion.
Sharpness of the constant can be obtained in standard way using characteristic

function. Remaining case is similar.�

Using techniques from Theorem 8 and discrete case, one can easily proves the
integral analogues of Theorems 2–4.

Although we can give applications of Theorem 8 for various kernels (fractional
Riemann–Liouville K(x, y) = (x − y)α−1, α > 0, y < x, extended Hilbert
K(x, y) = (x + y)−λ, x, y ∈ R, λ > 0; for Hardy kernel see [5]), in our opinion
the most interesting one is transformation with Hilbert’s kernelK(x, y) = 1/(x + y)

on weighted Lebesgue spaces, especially in view of the fact that the only bounded
linear operator fromLp to Lq for 0 < p < 1, p < q � ∞ is trivial one [3, p. 150]
and interesting upper bound which appears in this case.

For givenβ ∈ R we denote byLp
β Lebesgue space with weightv(t) = tβ .

Theorem 9. Let 0 < p � 1, p � q < ∞, −1 < β, 0 < 1 + α < q, q/p = (1 +
α)/(1 + β) and let g be nonnegative decreasing function on (0, ∞) such that g ∈
L

p
β(0, ∞). Then

‖Kg‖α,q � (1 + β)1/p�1/q(1 + q)ζ 1/q(q; α)‖g‖β,p, (32)

where

ζ(q; α) =
∞∑

n=0

(
α + n + 1

n

)
1

(α + n + 1)q+1
. (33)

For p � 1, q � p, inequality (32) is reversed. There is equality in (32) if and only if
g = Aχ[0,b], where A and b are nonnegative constants and χ characteristic function.

Proof. Using Theorem 8 and simple transformations it is easy to see that

λq = (β + 1)q/p

∫ ∞

0

logq (1 + t)

tα+2 dt

= (β + 1)q/p

∫ ∞

0
uqe−(α+1)u

(
1 − e−u

)−α−2
du.

Using binomial expansion of(1 − e−u)−α−2 in power series in e−u and integral

representation of� function, inequality (32) follows. �
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It is obvious thatζ(q; 0) = ζ(q), q > 1, whereζ(q) is classical Riemann’s zeta
function [11], and we see that Theorem 9 reduces forp = q > 1, α = β = 0 to the
Hilbert part of Corollary on page 97 in [1].

Appearing in Theorem 9 functionζ(q; α) as a generalization (in some sense
very natural one) of classical Riemann’s zeta function, needs some attention. First
recall that the Bernoulli numbersB(n)

k of ordern, n = 0, 1, 2, . . . and degreek, k =
0, 1, 2, . . . are defined byB(n)

k = B
(n)
k (0), whereB

(n)
k (x) are the Bernoulli polyno-

mials defined by expansion

tnext

(et − 1)n =
∞∑

k=0

B
(n)
k (x)

tk

k! . (34)

In this context we find identity

B
(n+1)
k (x) = k!

n!
dn−k

dxn−k
[(x − 1)(x − 2) · · · (x − n)], 0 � k � n (35)

more suitable. We also need recursion formula

(n + 1)B
(n+2)
n+1−k = kB

(n+1)
n+1−k − (n + 1)(n + 1 − k)B

(n+1)
n−k , k � n. (36)

Some properties of functionζ(q; α) are given in the following.

Proposition 3. If 0 < α + 1 < q , then the function ζ(q; α) is well defined by (33).
The following identities hold:

ζ(q; α) = 1

�(q + 1)

∫ ∞

0

logq (1 + t)

tα+2 dt (37)

(α + 2)ζ(q; α + 1) = ζ(q − 1; α) − (α + 1)ζ(q; α), α + 2 < q (38)

ζ(q; n) = 1

(n + 1)!
n∑

k=0

(
n

k

)
B

(n+1)
n−k ζ(q − k),

n + 1 < q, n = 0, 1, 2, . . . [6pt] (39)

Proof. Since the calculations and argumentations are elementary, we give just a
sketch of the proof. That the functionζ(q; α) is well defined for 0< α + 1 < q

can be easily seen from the proof of Theorem 9 where also the first identity (in-
tegral representation) is contained. The second identity follows from the first us-
ing integration by parts twice (and trivial decompositiont−α−2(1 + t)−1 = t−α−2 −
t−α−1(1 + t)−1). The third identity follows from the second one using induction and
recursion formula (36). �
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