The Asymptotic Number of Acyclic Digraphs, II

EDWARD A. BENDER*

Department of Mathematics, University of California—San Diego,
La Jolla, California 92093

AND

ROBERT W. ROBINSON†

Department of Computer Science, 415 GSRC,
The University of Georgia, Athens, Georgia 30602

Communicated by the Managing Editors
Received July 22, 1986

Let $A_{n,q}$ be the number of labeled digraphs with n labeled vertices, q edges, and
no directed cycles. Let $C_{n,q}$ be the corresponding number of weakly connected ones,
and let $a_{n,q}$ and $c_{n,q}$ be the corresponding numbers of unlabeled ones. We show that

$$A_{n,q} - C_{n,q} - n! a_{n,q} = n! c_{n,q}$$

for all q when $\varepsilon N < q < (1 - \varepsilon) N$, where $N = \binom{n}{2}$. An asymptotic
formula for $A_{n,q}$ was obtained in an earlier paper.

1. Introduction

An acyclic digraph is a directed graph containing no directed cycles. Let $A_{n,q}$ be the number of acyclic digraphs with n labeled vertices and q
unlabeled edges. In [1] it was shown that

Theorem 1. Let $\varepsilon > 0$ be given and suppose $q = q(n)$ satisfies $\varepsilon N < q < (1 - \varepsilon) N$ for all large n, where $N = \binom{n}{2}$.

$$A_{n,q} \sim n! \left(\frac{N}{q} \right) e^{-\lambda^2/4} f(\lambda, q, r) \frac{1}{\rho^{n+1}},$$

(1.1)

* Research supported by the NSF under Grant MCS-8300414.
† Research supported by the NSF under Grant MCS-8302282.
where
\[r = \frac{q}{N - q}, \quad \lambda = \frac{N - q}{N}, \quad x = \frac{\lambda \rho f(\lambda^2, r)}{2 f(\lambda \rho, r)}, \quad f(x, y) = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n! (1 + y)^n} \]
and \(\rho = \rho(r) > 0 \) is the smallest solution of the equation \(f(\rho, r) = 0 \).

Let \(C_{n,q} \) be the number of (weakly) connected acyclic digraphs with \(n \) labeled vertices and \(q \) unlabeled edges. Let \(a_{n,q} \) and \(c_{n,q} \) be the corresponding enumerators for acyclic digraphs with unlabeled vertices. Methods for computing the exact values of \(a_{n,q} \) and \(c_{n,q} \) were obtained in [2]. The purpose of this paper is to prove

Theorem 2. Let \(\varepsilon > 0 \) be given and suppose \(q = q(n) \) satisfies \(\varepsilon N < q < (1 - \varepsilon) N \) for all large \(n \). Then

\[A_{n,q} \sim C_{n,q} \sim n! a_{n,q} \sim n! c_{n,q}. \] \hspace{1cm} (1.2)

Corollary. \(\sum_q A_{n,q} \sim \sum_q C_{n,q} \sim \sum_q a_{n,q} \sim \sum_q c_{n,q} \).

These results follow the same pattern as for ordinary graphs. However, the methods of proof are much less direct. The exact results in [2] were not suitable as a point of departure. Instead, properties of the tower construction for acyclic digraphs introduced in [1] are combined with Burnside’s lemma, the asymptotic estimates in Theorem 1, and a method due to Wright to prove \(A_{n,q} \sim n! a_{n,q} \) in the next section. The arguments that are used in Section 3 to prove \(A_{n,q} \sim C_{n,q} \) and \(a_{n,q} \sim c_{n,q} \) are more standard. The corollary is proved in Section 4. Throughout, \(C \) denotes a positive constant, possibly dependent on \(\varepsilon \), and not necessarily the same at each appearance. Also \(N = (\frac{n}{2}) \) throughout.

2. Unlabeled Acyclic Digraphs

We assume familiarity with Section 4 of [1]. Let \(\omega \) be a permutation of \(\{1, \ldots, n\} \) that acts on a digraph \(D \) by permuting the vertex labels and let \(F(\omega, T) \) be the number of labeled acyclic \((n, q)\)-digraphs with tower \(T \) that are left fixed by \(\omega \). By Burnside’s lemma [3],

\[n! a_{n,q} = \sum_{\omega, T} F(\omega, T) = A_{n,q} + \sum_{T} \sum_{\omega \neq 1} F(\omega, T) \]

\[= A_{n,q} + \sum_1 + \sum_2, \] \hspace{1cm} (2.1)
where \sum_1 is the sum of $F(\omega, T)$ over T and $\omega \neq 1$ with $g(T) \leq n^{1.2}$ and \sum_2 is the same sum with $g(T) \geq n^{1.2}$. By the argument leading to [1, (4.2)],

$$
\sum_{g(T) \geq n^{1.2}} F(1, T) \leq A_{n,q} \left(\frac{3N}{q} \right)^n \sum_{f, t \geq n^{1.2}} \left(\frac{N-f}{N} \right)^q \\
\leq A_{n,q} \left(\frac{3N}{q} \right)^n C \exp \left(-n^{1.2} \frac{q}{N} \right).
$$

Since $q/N > \epsilon$ and $F(\omega, T) \leq F(1, T)$, we have

$$
\sum_2 \leq n! \sum_{g(T) \geq n^{1.2}} F(1, T) = o(A_{n,q}). \tag{2.2}
$$

We will use the ideas of Wright [4, Sect. 4] to show that

$$
\sum_1 = o(A_{n,q}). \tag{2.3}
$$

Combining (2.1), (2.2), and (2.3) gives us the desired result that

$$
n! a_{n,q} \sim A_{n,q}. \tag{2.5}
$$

We now turn to (2.3). Let $E = N - h(T)$ and $Q = q - q(T)$. Once T has been specified, there are E potential edges remaining from which Q must be chosen. If $F(\omega, T) \neq 0$, ω fixes T and so the vertices in a particular set B_i are permuted among themselves. Thus ω permutes the E potential edges. Let there be $P_i = P_i(\omega, T)$ orbits of size i. Following Wright [4], $F(\omega, T)$ is the coefficient of x^Q in $\prod (1 + x^i)^{P_i}$. Thus for any positive real x,

$$
F(\omega, T) \leq x^{-Q} \prod (1 + x^i)^{P_i} \\
\leq x^{-Q}(1 + x)^{P_1} \prod_{i \neq 1} (1 + x^i)^{P_i/i} \\
= x^{-Q}(1 + x)^{P_1} (1 + x^2)^{(E - P_1)/2} \\
= x^{-Q}(1 + x)^E \left(\frac{1+x^2}{(1+x)^2} \right)^{(E - P_1)/2}
$$

Set $x = Q/(E - Q)$ and $\beta = (1 + x^2)/(1 + x)^2$. Then

$$
F(\omega, T) \leq \frac{E^E \beta^E P_1^{E - P_1)/2}}{Q^Q (E - Q)^{E - Q}} \leq C \sqrt{N} \left(\frac{E}{Q} \right)^{(E - P_1)/2} \\
\leq C n F(1, T) \beta^{(E - P_1)/2}. \tag{2.4}
$$

By the argument leading to [1, (4.1)] and the fact that $g(T) \leq n^{1.2}$,

$$
b_i \leq C n^{0.6}, \quad q(T) \leq C n^{1.2}, \quad h(T) \leq C n^{1.2}. \tag{2.5}
$$
Since $\varepsilon < q/N < 1 - \varepsilon$, it follows from (2.5) that β is bounded above by $\beta(\varepsilon) < 1$ for all T with $g(T) < n^{1.2}$. Let ω acting on $\{1, ..., n\}$ have $n - a$ fixed points. There are at most $\binom{n}{a} a! < n^a$ such ω. An edge counted by E is fixed if and only if both ends are fixed because the edge is directed. Thus $P_1 \leq \binom{n}{2 - a}$ and so, for $a \geq n/3$ and n large,

$$E - P_1 \geq \binom{n}{2} - h(T) - \binom{n - a}{2} = a(n - a) + \binom{a}{2} - h(T) \geq an/4$$

since $a(n - a) + \binom{a}{2} = a(n - (a + 1)/2) > an/3$ and $h(T) \leq Can^{0.2}$ by (2.5).

Now suppose $a < n/3$. The number of edges counted by E and having exactly one fixed end is at least

$$a(n - a - \max_i (b_{i-1} + b_i + b_{i+1})) \geq an/4$$

by (2.5). Thus

$$E - P_1 \geq an/4$$

(2.6)

for all a. Combining (2.4) and (2.6) we obtain

$$\sum_1 \leq \sum_{\omega \neq 1} \sum_T CnF(1, T) \beta^{an/4}$$

$$\leq Cn \sum_T F(1, T) \sum_{a \geq 1} n^a \beta^{an/4}$$

$$= Cn^A_{n,q} \sum_{a \geq 1} (n\beta^{a/4})^a$$

$$\leq Cn^2 A_{n,q} \beta^{an/4} = o(A_{n,q}).$$

3. CONNECTEDACYCLIC DIGRAPHS

We will prove $C_{n,q} \sim A_{n,q}$ and then indicate the minor changes needed to prove $c_{n,q} \sim a_{n,q}$.

To construct an unlabeled acyclic digraph we can take a set of n linearly ordered points and connect them with q edges where each edge is oriented toward the lower point. This leads to redundant constructions so

$$A_{n,q} \leq n! a_{n,q} \leq n! \binom{N}{q}. \quad (3.1)$$

Clearly

$$A_{n,q} - C_{n,q} \leq \sum_{i,j} T_{ij}, \quad (3.2)$$
where
\[T_{ij} = \binom{n}{i} A_{i,j} A_{n-i,q-j}, \]
so it suffices to show that the right side of (3.2) is \(o(A_{n,q}) \).

By (3.1) we have
\[
\sum_j T_{ij} \leq \sum_j \binom{n}{i} i! \left(\binom{i}{2} \right) \binom{n-i}{j} (n-i)! \left(\frac{n-i}{q-j} \right)
\]
\[= n! \left(\frac{i}{2} + \binom{n-i}{2} \right) \]
\[\leq n! \left(\frac{N}{q} \right)^q \left(\frac{i}{2} \right)^q \]
\[= n! \left(\frac{N}{q} \right)^q \left(1 - \frac{i(n-i)}{N} \right)^q \]
\[\leq n! \left(\frac{N}{q} \right)^q e^{-i(n-i)} \cdot \]

Hence, with \(I = [C \log n, n/2] \),
\[
\sum_{i \in I} \sum_j T_{ij} \leq n! \left(\frac{N}{q} \right)^q \sum_{i \in I} e^{-i(n-i)} \]
\[\leq n! \left(\frac{N}{q} \right)^q O(e^{-Cn \log n}). \] (3.3)

Since \(\varepsilon < \lambda < 1 - \varepsilon \) in Theorem 1 and \(r \) is bounded away from 0 and \(\infty \), \(x \), \(\rho \), and \(f(\lambda \rho, r) \) are bounded away from 0 and \(\infty \). By (1.1) and (3.3),

\[
\sum_{i \in I} \sum_j T_{ij} = o(A_{n,q}). \] (3.4)

Now suppose \(i \leq C \log n \). Let \(r^* \) and \(\rho^* \) be the values in Theorem 1 when \(n \) and \(q \) are replaced by \(n-i \) and \(q-j \). We have
\[
\frac{1}{A_{n,q}} \sum_j T_{ij} = \sum_j \binom{n}{i} A_{i,j} \frac{A_{n-i,q-j}}{A_{n,q}}.
\]
Use (3.1) to bound \(A_{i,j} \). Since \(j \leq \binom{i}{2} < i^2 \), \(r^* = r + O(i/n) \) and so \(\rho^* = \)
\(\rho + O(i/n) \) by the smoothness of \(\rho \) as in the proof of [1, Lemma 1]. Thus \((\rho/\rho^*)^n = e^{O(i)} \). Hence

\[
\left(\binom{n}{i} A_{i,j} \frac{A_{n-i,q-j}}{A_{n,q}} \right) \leq \binom{n}{i} i! \binom{2}{j} (n-i)! \binom{2}{q-j} / n! \binom{N}{q} e^{O(i)} .
\]

\[
= \binom{n-i}{2} / \binom{N}{q} e^{O(i^2)} .
\]

\[
\leq \binom{q}{j} \binom{n-i}{2} / \binom{N}{q} e^{O(i^2)} .
\]

\[
\leq \left(\frac{1}{2e} \right)^j \binom{n-i}{2} / \binom{N}{q} e^{O(i^2)} .
\]

Thus, for sufficiently large \(n \),

\[
\sum_j T_{ij} = \sum_{j \leq i^2} T_{ij} \leq \left(1 - \frac{i(n-i)}{N} \right)^q e^{O(i^2)} A_{n,q} \\
\leq \exp \left(-\frac{i(n-i)q}{N} + O(i^2) \right) A_{n,q} \\
\leq e^{-Cn} A_{n,q} .
\]

Thus

\[
\sum_{1 \leq i \leq C \log n} \sum_j T_{ij} \leq A_{n,q} \sum_{i \geq 1} (e^{-Cn})^i = o(A_{n,q}) .
\]

Combining (3.4) and (3.5), we obtain

\[
A_{n,q} - C_{n,q} = o(A_{n,q}) .
\]

Now consider the unlabeled case. All equations following (3.1) remain valid if \(A_{*,*} \) is replaced by \(a_{*,*} \) and all references to \((\cdot)!, n!, i!, \) and \((n-i)!\) are dropped. The references to Theorem 1 still apply because \(a_{n,q} \sim A_{n,q}/n! \) by Section 2.
4. PROOF OF COROLLARY

By Lemma 3 in [1] and its proof,

\[\sum_{q \leq cN} A_{n,q} \leq CNA_{n,cN}. \]

Thus, with \(p \) and \(p^* \) as in Theorem 1 for \(q = N/2 \) and \(q = cN \), respectively,

\[\sum_{q \leq cN} A_{n,q} \leq CNA_{n,N/2} \left(\frac{p}{p^*} \right)^n \frac{(\frac{N}{cN})}{(N/2)} \]
\[= A_{n,N/2} e^{O(n)} 2^{-N} \frac{N^{cN}}{(cN/e)^{cN}} \]
\[= A_{n,N/2} e^{O(n)} \left(\frac{(e/e)^c}{2} \right)^N \]
\[= o(A_{n,N/2}/n!), \]

for any small enough \(\varepsilon \). A similar argument shows that

\[\sum_{q \gg (1 - \varepsilon)N} A_{n,q} = o(A_{n,N/2}/n!). \]

The corollary follows easily.

REFERENCES