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Galerkin’s method is used to approximate the transient solutions of intial value 
problems in which a steady state or advanced time state is known. A convergence 
theorem is established and choices of basis functions are discussed. The method is 
then applied to systems arising from nuclear reactor kinetics theory and the semi- 
discretization of parabolic two-point boundary value problems. 

1. INTRODUCTION 

Numerical methods for solving systems of ordinary differential equations 
(ode’s) subject to an initial condition typically require the solution of 
systems of algebraic equations a each time step [ 1, 15, 20, 2 1, 291. However, 
a recent paper [3] suggests a new approach for handling such problems 
when an end time condition is also known. The new approach produces an 
approximation for all time and requires only the solution of a single system 
of equations. See [6] for another effort to avoid time stepping. 

The “blended infinite element method” as presented in [3] is an algorithm 
for the numerical solution of two-point parabolic initial-boundary value 
problems. However, we observe here that in fact the blended infinite element 
method as described in [3,4] is mathematically equivalent to two 
applications of Galerkin’s method: first, a standard semi-discrete Galerkin 
approximation @x, t) = Cy?i ai oi( x is ) f ormed, where the functions u^#), 
1 ,< i < N, are characterized as solutions of a system of linear or nonlinear 
ordinary differential equations in time t [ 11, 12, 261; second, Galerkin’s 
method is again applied to this system of ode’s to obtain approximations to 
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the functions a,(f), 1 < i < N. It is worth emphasizing that these two steps 
are combined into one step in [3,4 ]. 

The convergence of the semi-discrete Galerkin approximation is well 
documented (see, for example, (5, 11, 12, 261). It is the convergence of the 
second application of Galerkin’s method above which we now investigate in 
the context of its application to more general systems of ode?. The systems 
of ode’s inherent in the infinite element method presented in [3 ] are a special 
case of those considered in Section 2. Error bounds are given in Theorem 1 
below. Their from requires the establishment of new approximation theoretic 
results concerning simultaneous approximation on the semi-infinite interval 
10, co). For the Duffin-Whidden exponomials ] 141 and the Laguerre 
functions such results are given in Section 3 providing a proof of 
convergence of the respective Galerkin approximations under suitable 
conditions (Theorems 4 and 7). 

For our purposes in this paper we consider the initial value problem 

dy 
- = -F(l, y), 
dt 

O<t<b<co, 

where y is an N-vector of continuously differentiable functions and F is a 
continuous function 

F: (0,b) x Rzv + R”. 

We assume that (1) possesses a unique solution r(t) on ]O, b) such that 
-co < lim,tb y(t) < co. Then, we define y(b) to be this limit. Systems such as 
(1) are usually solved numerically by methods which approximate the 
evolutionary behavior of y(t) in a step-by-step manner 120,211. In this paper 
we are concerned with the situation when y(b) is known. Usually, this occurs 
when b = 00 and the known value is a steady state of y. However, there are 
certain cases (for example, the exact boundary control problem of [ 16, 181) 
for which b < 00. 

The method suggested by [3,4], hereafter referred to as the 
Timffialerkin Method, approximates y(t) on the entire interval [O, bl by an 
expansion of the form 

Y(t) = y(b) + 5 C” Wh c, E R”. 
n=, 

Here the expansion functions f?,(t) are members of W’**(O, b) which satisfy 
e,(o) = 1, 8,(O) = 0, n = 2, 3 ,...) M; lim,T* e,(t) = B,(b) = 0, 1 < n Q M. 
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Furthermore, C, = 4’” - ~(6) and the remaining vector coefficients c,. 
n = 2, 3 )..., !M. are determined by the Galerkin equations 

1 t$(‘) dt = 0. j = 2: 3,.... M; i = 1, 2 ,..., A’. (3) 
i 

Equations (3) constitute a nonlinear system of (M - 1) N scalar equations 
for the (M- 1) N unknown components of c?. c,,..., c,~,. Note that by 
construction Y(0) = JT~, Y(b) = l(b). 

In Section 2 we prove a result establishing a bound on the continuous Lz- 
norm of the error Y - y in the TimeGalerkin method. Specific classes of 
expansion functions which are applicable to the infinite interval (b = co) are 
studied in Section 3. Section 4 contains numerical results of applying the 
Time-Galerkin Method to a system which arises in the study of reactor 
kinetics and in the final section, we apply this scheme to linear and nonlinear 
systems of ordinary differential equations arising from the semi-discretization 
of parabolic partial differential equations. 

2. ERROR BOUSDS FOR THE TIME-GALERKIN METHOD 

In this section we establish a result which bounds the L,-norm of the 
discretization error Y - ~9 by a function of the approximation error. We 
assume that system (3) possesses a unique solution (for linear constant coef- 
ficient problems, necessary and sufftcient conditions for this conclusion are 
established in the Appendix). 

For x(t) E R “, we let lxjz = (x’x)’ ’ and I!x(IZ = (12 Ix:; dt)“‘, provided 
that the integral exists in the extended real number system. Furthermore, we 
let 

I I 

.I! 
s,, = M! u: = y(b) + \- anOn( a, = J-0 - y(b) ? 

n-1 I 

and we make the following definitions: 
A continuously differentiable map F: (0,6) x R,‘-, R,’ is said to be 

uniformly monotone if for F,., the Jacobian matrix of F(f, ). there is a 
positive constant 7 such that xTF,.(f, y) x > yx’x for all t E (0,6) and y, x in 
R.“. F is said to be uniformly Lipschitz in t if, for each x E R” the elements 
of F, are bounded for all I E (0, b). 

We note that for any such F. if t E (0,6) and x, z E R.‘, then 

(x - z)’ IF@, x) - F(t. z)] = [’ (x - z)’ F,Jt, z + s(x - z))(x - z) ds 
-’ 0 

>y(x-z)’ (x-z). (4) 

Our main result is contained in the following theorem: 



GALERKIN APPROXIMATIONS 331 

THEOREM 1. Let F: (0, b) x R” --t R’ be a continuously dtflerentiable 
untformly monotone map on R:’ which is also untformly Lipschitz in t. Let 
D c R” be any compact set which contains y(t), t E [0, b], where y(t) is the 
solution of (1). If W is any element of S,w which is also in D for t E 10, b]. 
and tf Y is the Time-Galerkin approximation determined bJ1 (3), then 

where the constants a, and az do not depend on W or Y. 

Remark. If (1) is autonomous, then under the above hypotheses on F, we 
can prove the existence and uniqueness of a solution of (1) on (0, b) such 
that lirn,t* y(t) is finite. To see this recall [ 7, p. 141 that if K > 0 is a 
constant, then a unique solution of (1) exists in some neighborhood of 
t = 0, and this solution may be continued to t = t*, where 
t* = inf(<l I y(r) - y0/2 = K). Now the hypotheses on F are sufficient to 
guarantee that the nonlinear system F(y) = 0 has a unique solution, say, y x. 
(see 127, p. 143 I). Let p(t) = I y(t) - yz, 1:. Then, 

$=2 $ “(y-y,)=-2(F(y)-F&))‘.(y-y,). 
( 1 

But, by (4), 

Hence, dp/dt < -2yp and so p(t) &p(O) em*“. It follows that with 
K = 3 I y. - y,= 12, there is a unique solution of (1) which may be continued 
to any finite value of t. Moreover, Em,-, y(t) = yz. 

Proof of Theorem 1. Let t* E (0, b). Since t* < co, 

z t F(t, W) tIi(t) dt, 1 j = 2, 3 ,..., M, 

is well defined. Moreover, since 

1 e,(t) dt = 0, j = 2, 3 ,.... M, 

we have 

z (W- Y) + F(t, w) - F(t, Y> 1 ej(t) dt, j = 2, 3 ,..., M. (7) 
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Also. from (3) and (6) it follows that 

.,’ 
kiY ( 

[ 
A (W - Y) + F-(t, Wj - F(f, 

-‘(, dt 
Y) 

1 
O#) df 

I 
19,(r) dt. j = 2, 3.. . . . M. (8) 

the last integral on the right side of (8) being finite by assumption. Noting 
that W - Y may be expressed as x;y:* Sir?,(f) for some vectors {si 1 we 
multiply (7) and (8) by d,,r and sum from j = 2 to j = M to get 

;! #ki= i” (w- y)” 
,72 

$ ( W - y) + F(t, I+‘) - F(t. y)] dt, (9) * 0 

and 

;’ ,jjki = (“’ (w - v)7 -$(W- Yj+F(l, W)-F(r. Y) 
I 

dt 
.,72 .o 

- fh (W - Yj’ [ g + F(t, Y)] dr. (10) 
. I’ 

But, in (10) 

~(t,W)-F(f,Y)=1”F,.lt.Yts(W--Y)Ids(W-~Yj=C(W-Y).(II) 
. n 

where the matrix C = !‘A Fy(f, Y + s( W - Y)l ds is positive definite and so, 
by hypothesis, (W - Y)’ C( W -- Y) > 7 1 W - Ylt. Let ,4 be a positive real 
number such that p < Q)“‘. Also. let 

and 

VEp-’ $ ( w - y) + F(t, W) - F(r, y  )] 

u-/qw- Y). 

Then equating (9) and (IO) and using (I I ) and the elementary inequality 

[‘* U“J’dt < f 1“ (I Ulf + ) V-1;) dr, 
-0 . 0 
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we obtain 

1” (w- u)’ C(W- Y) dt 
-0 

~~~‘.(l~l:+lv:)dr-f,w(r*)-Y(t*)li 
. 0 

+ f” (W- Y)’ $- + F(t, Y) dt. 
’ ,’ I 

Therefore, 

.I’ 
Y) lw- yl:dt 

-0 

< 1” (w- y>‘C(W- Y)df 
-0 

<;p2 (“lw- YJ;dr+; p-2-I,;m 1 -&(W-y)+F(r, W)-JVAl;d~ 
-0 

- ; 1 w(t*) - u(t*)l: + r” (w- y)“ [ $ + W, J’l] dt, (12) 
it. 

It then follows that 

i”‘[W- Yljdf+f;’ I-$(W--g)+F(c W)-F(f,y)l*df+4 (13) 
-’ 0 2 

where 

+ W, y) 1 dt - ;I w(t*) - u(t*)l;. 

If W=y, then (13) shows that .if,Iy--YIidt=d and clearly A+0 as 
I* T 6. In this case (5) is a trivial equality. Otherwise, suppose W f y. Then 
with a = y”‘/? 

[j-;-l W- Yl;dr]l12 

-$ (w - y) + qt, w> - F(t, ~11 ' dl] I" ( 1 + $) 
1:2 

3 (14) 
2 



334 C-AVENDISH. IIALL. AND I'OHSCHIN(; 

where K > 0 is any lower bound for the first term on the right side of ( 13). 
As before. 

F(l, w) -F(r, y)= 1.’ FvIt. J’i- s(W- .v)J(W- 4‘)ds. 
0 

Now let 

Since F is uniformly Lipschitz in f and D is compact, I- ( 00 and 

Combining this with (14), we obtain by the triangle inequality 

Inequality (5) now follows by letting t* T b and noting that A -+ 0. Q.E.D. 

In the finite interval case, b < co, there are many ways to choose the 
expansion set (t9,,(t))~~-, such that the right side of (5) is arbitrarily small for 
M sufficiently large. For example, let 19,(t) = 1 - t/b and partition [0, b] into 
M equal subintervals, say, [O, b 1 = U.y.. , It,,, t, , ,I. Then, for n = 2 ,..., M let 
0,(t) be the function which is linear on each subinterval, taking the value of 
unity at t, and zero at ti, if n. If the hypotheses of Theorem 1 hold, then 
~1 E C2(0, b). Also, z E C’(O, b), where z(t) E v(t) - y(b) - a, 0,(l). But it is 
known [2] that there are vectors a,,..., a.+, such that if w(t) = ry-.Z a,e,(t), 
then SUP,,(O,b) IQ) - W)lx = OU/M2)3 and s”P,,(O,h) Iwww) - 

WO))lz = O(W), where 1 IX, is the infinity norm in R”. Hence, if 
WZ y(b) + a,f?,(t) + w, it is clear that the right side of (5) is 0( l/M). As 
the regularity of J improves, the choice of more elaborate piecewise 
polynomial functions for the 0, yields higher order bounds for the right side 
of (5) (see, for example, [2]). 

When b < co and f?,(t) = 1 - t/b, we may also choose 6,(t), n = 2,..., M as 
a polynomial of degree n - 2. It is well known [9] that there exist 
polynomials, e.g., Bernstein polynomials, which simultaneously approximate 
z and dz/dt as closely as desired for M sufficiently large. 
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Contrasted to the above, the case b = co is less routine, and is examined 
in the next section. 

3. SIMULTANEOUS APPROXIMATION ON lO,co): 

EXPONOMIALS AND LAGUERRE FUNCTIONS 

We assume the notation of the previous sections with b = 00. Let 
Lz(O, co) = (x 1 /x/l2 < co}, and IIxllXj = sup,cco~oo, Ix(t)\,;. In this section we 
investigate the problem of determining S, such that for E > 0 there is an M 
for which (1 W- y/l2 and Il(d/dt)( W - y)llz are both less than E for a suitable 
W in S,w. In determining S,M it clearly suffices to consider only the scalar 
case N= 1. 

LEMMA 1. Let x be contained in C’(0, 00) and suppose that x and dx/dt 
vanish ar 00 and belong to L,(O, m). If E > 0, then there is a g in C’(0, a~) 
and a I, such that g(0) = x(O), g z 0 for I > t,, and 

ProoJ Define g to equal x on 10, t, - 11 and take g z 0 on I&,, a~). On 
[t,, - 1, t,] define g to equal the appropriate cubic Hermite polynomial 19 1 so 
as to guarantee the continuity of g and dg/dt on (0, co). For t, sufficiently 
large the conclusion of the lemma follows from the existence of the improper 
integrals and the vanishing of x and dx/df at co. Q.E.D. 

3.1. Exponentials 

Now let a > 0 and consider the set of polynomials in ePnr which vanish at 
oo. These “exponomials” were studied by Dufftn and Whidden in [ 141. 
Obviously, h(t) is an exponomial if and only if h(t) = xy=, cnepna’ for some 
constants cl, c2 ,..., c ,,,. 

LEMMA 2. Let g be in C’(0, co) and vanish for all t suflciently large. If 
E > 0, then there is an exponential h(t) such that h(0) = g(O), and 

/le^‘g-hll,<$ and 
II enr dt 

L(e”‘g-h) <2~. 
II x 

Proof. Let f(t) = e”‘(d/dt)(e”‘g(i)) and l= ePrrr. Then the function Q(r), 
defined by setting 

G(O) = 0, W) =f(-(Va) In 8 =fW, r E (0, 1 I, 

409:7x/1-22 
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is continuous on 10. 1 I. Therefore. by the Weierstrass approximation 
theorem. @ can be uniformly approximated by a polynomial of the 
form xy.. , c,r)l. Hence, the exponomial h*(t) =-. x,i: , c,,e ““’ satisfies 
I!f(l) - h*(l)‘! 1 < 8. 

Set 

Then, h* = e”’ dh/dt. Hence, 

Moreover, 

Since the inequality holds for all t, we must have 1 g(0) - l(O)1 < E/a and 
then IIeR’g - 6II,, ,< 2&/a. Letting h(r) = k(t) + 1 g(0) - /i(O)] em”‘, the 
conclusion of the lemma readily follows from the above estimates. Q.E.D. 

Using Lemma 2. we can obtain estimates in the f-?-norm: 

LEMMA 3. Let g be in C’(0, a) and vanish for all t suflciently large. If 
t; > 0, then there is an exponential h(t) such that h(0) = g(O), and 

ProoJ According to Lemma 2, there is an exponomial h*(t) such that 
h*(O) = g(0) and lie”‘g - h* llo(: < E and Ile”‘(d/dt)(e”‘g - h*)ll, < E. Set 
h(t) = e-O’h*. Clearly, h(0) = g(0). Also 

II g - hllz = Ile “‘W’g - h*)l12 
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Furthermore, 

< ear 
!I I 

$(g-h)+a(g--4 
I//2 

= -$-(e”‘g-h*) ,<$+ 
II II u 

Thus, 

Q.E.D. 

By combining the results of Lemma 1 and Lemma 3 we obtain the 
following theorem on approximation by exponomials: 

THEOREM 2. Let x be contained in C’(0, 00) and suppose that x and 
dx/dt vanish at 00 and belong to L,(O, ~0). If E > 0, then there is an 
exponomiul h(t) such that h(0) = x(O), and 

I/x - hll, < c and ll~(x-h)l12(E. 

Now let us define 

B,(t) = e-“I, l?,(t)=e-““l-e-^‘, n=2,3 . . . . . M. (15) 

As shown by the next theorem, the associated set S,, is appropriate for the 
construction of Time-Galerkin approximations on 10, co). 

THEOREM 3. Let y(t) be the unique solution of (1) on 10, co) and let 
y(m) be its steady state value. Zf y - y( 
and if S, is generated by the functions (1 
a W in S,w such that 

‘00) and dy/dt belong to L,(O, a~), 
5), then for E > 0 there is an M and 

and 

Proof. Consider x(t) = y(t) - y(co). By Theorem 2, there is an 
exponential h(t) = Cy=, c”e-“=’ such that y(0) - y(m) = x4:=, c, = h(O), 
and JIx - hjjz, Il(d/dt)(x - h)j12 < c. Hence, if 

M 
w= Y(W) + (Y,, - Y(aJ)) 0, + x cn@n, 

n=2 



then 

and similarly for II(d/dt)(y --- w)ll,. Q.E.D. 

Obviously, we can combine Theorem 1 and Theorem 3 to obtain a 
convergence result for the exponomial Galerkin approximation: 

THEOREM 4. Under the hypotheses of Theorem 1 and Theorem 3 if y is 
the true solution to (1) and Y is the exponomial Time-Galerkin approx- 
imation determined bq’ (3) and (15), then 

( [Y-yI*dt-+O as M-too. 
-0 

We remark that if (1) is autonomous and the hypotheses of Theorem I 
hold, then J - y(co) and dy/dt automatically belong to L,(O, co). That 
J - y(c0) belongs to L,(O, co) follows from the remarks after the statement 
of Theorem 1. Furthermore, 

dq’ 
I I z-, =I~~Y~-~-~Y~~~~l*~~lY-Y~~o)l*~ 

where f = supX6!, IF,,(x)/,. Therefore, since y - y(co) E L,(O, oo), 

,<rIIY-Y(~)ll* < 00. 
2 

3.2. Laguerre Functions 

A second set of expansion functions appropriate to the infinite interval 
results from considering the Laguerre functions. These are functions of the 
form p(t) e -- O’, where p(t) is a polynomial and u > 0. According to Stone 
[28, Theorem 18 1, any continuous function which vanishes at co can be 
uniformly approximated by a Laguerre function. This leads to 

LEMMA 4. Let g be contained in C’(0, oz) and vanish for all t 
suflciently large. If E > 0, then there is a Laguerre function p(t) e-2a’i3 such 
that p(0) = g(O), and 
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and 

II e at/3 $(e~t,3g~pe-2n”’ 

)ll 

,< 3E. 
CL: 

Proof. Choose 128, Theorem 181 the polynomial q(t) such that 

II 
ent13 f (ear/,g) _ qemar!-l 11 < E, 

:I 

and note that there is a polynomial p,(t) such that (d/dt)(p,em2”‘13) = 
9e - 2nN3. Hence 

II e at/3 $ (e”‘13g _ pte-2d3) // 

:L 

= 

II 

eat/3 f (e”‘j3g) - qe-nt!3 11 < E. 
(I: 

Moreover. 

I(e”“3g(t) - P,@) e--2rrt’3) - (g(O) - P,(O))1 

= <E [‘e--‘“ds<$. 
-0 

As in the proof of Lemma 2, this implies that ) g(0) - p,(O)) < 3&/a and that 
11 eoti3g -p,(t) e-2nt’3 Ija, < 64~1. Now let p(t) = p,(r) + g(0) - p,(O). Then 
~(0) = g(O) and 

II e at13 f (edf3g _ pe-2at;3) I( 

cn 

= II ent/3 f (eat/3g) _ qe-n’;3 + Zf ( g(0) _ p,(O)) e-txfjJ/l < 3E. 
-x 

Finally, it follows from the above estimates that 11 ea’j3g - pe-2”“3 I(m < 9&/a. 
Q.E.D. 

The L2 estimates now follow as before. 

LEMMA 5. Let g be contained in C’(0, “o) and vanish for all 1 
suflciently large. If E > 0, then there is a Laguerre function p(t) e-“’ such 
that p(O) = g(O), and 
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and 

Proof. By Lemma 4 there is a Laguerre function p(f) e ““, ’ such that 
g(O), f(O), )I e”““g - pe 2n”3 (I<,, ,< c, and also Ile~t”3(d/df)(en’i~g - 
pe ,,,/,,;l/‘iFz;, Then, (1 g .- pe “‘llZ = ((e n”J(eo’.“g - pe 2n”.1)/12 < 

Thus, 

Q.E.D. 

The following analog of Theorem 2 is an immediate consequence of 
Lemma 1 and Lemma 5. 

THEOREM 5. Let x be in C’(0, 03) and suppose that x and dx/dt vanish 
at 00 and belong to L,(O, co). If c > 0, then there is a Laguerre function 
p(t) e- (I’ such that p(0) = x(O), and 

11x - pe~~“‘JI, < c, 
II 

-$-(x-pe.“f)il <c. 
2 

If we now define the expansion functions 

8,(t) = t”-- ‘e “‘, n = 1, 2, 3 ,..., M, (16) 

then the corresponding set S,W generated by the functions in (16) is again 
proper for Time-Galerkin approximations on (0, co). 

THEOREM 6. Lef y(t) be the unique solurion of (1) on 10, co ) and let 
y(m) be its steady state value. If y - y(m) and dy/dt both belong to 
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L,(O, co) and ifS,w is generated by the functions in (16), then for E > 0, there 
is an M and a W in S, such that 11 y - WII, < E and JJ(d/dt)( y - W$ < E. 

ProoJ In Theorem 5 set x(t) = y(t) - y(co), and let the associated 
Laguerre function be ,SJr= r c, t”- ‘e-O’ = x,y., c,@,(t). Since c, = y(0) - 
y(co), the conclusion is immediate with 

W(t) = y(a) + (y(0) - y(c-0)) e,(t) + f c,O,(t). Q.E.D. 
n--2 

Combining Theorem 1 and Theorem 6 we obtain the following 
convergence result for the Laguerre Galerkin approximation: 

THEOREM 7. Under the hypotheses of Theorem 1 and Theorem 6 ify is 
the true solution of (1) and Y is the Laguerre Timffialerkin approximation 
determined by (3) and (16), then 

.a: 

1 IY- yl’dt+O as M+c0. 
JO 

4. AN APPLICATION TO A LINEAR REACTOR KINETICS PROBLEM 

A simple system of ode’s which arises in nuclear reactor kinetics is [8,25] 

dyfdt = -Ay, t > 0, (17) 

where 

Y = (Yo, Ylv-7 YJ 

and 

Here A, &, /3,, i = 1,2 ,..., 6, are positive numbers, and /I = CF=, pi. The 
initial condition 

(18) 
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is such that when the reactivity p = 0, ~(0) is the steady state solution. We 
consider the following data from a thermal reactor 18 ]: 

i 4 Pi 

1 3.87 1.950 (-4) 
2 I .40 9.600 (-4) 
3 0.31 I 3.052 (-3) 
4 0.115 1.410 (-3) 
5 0.03 I7 1.597 (-3) 
6 0.0127 2.850 (-4) 

A = 5.0 (-4) p = 7.5 (-3). 
Moreover, we assume p = --0.07. This defines a subcritical state of the 

reactor. 
It is known (251 that when p < 0, the matrix -A has all real negative 

eigenvalues and hence J$ co) = (0, O,..., 0)“. Furthermore, according to the 
results of the Appendix. the Time-Galerkin approximation is uniquely 
defined by Eq. (3). 

For the data given one finds that, rounded to five places, the eigenvalues 
of -A are: ,u,, = -155.04, ,u, = -3.8601, ,uu, = -1.3827, ,u~ = -0.29867, 
,u, = -0.11275, pr = -0.03099. ,D~ = -0.01265. Thus, the system is 
moderately stiff. 

To apply Theorem 1 to the linear system (17) we need to verify that 
x%x > yxrx for some y > 0 and all x E R’. Since A is a matrix of constants, 
this is equivalent to the condition that I- (A + A’)/2 has only positive 
eigenvalues. For the given data, this is the case and is a consequence of the 
following general result: 

THEOREM 8. Let A be the coefjcient matrix of (17). Then /i has positive 
eigenvalues if and only if 

p < - ~ ~ Cain -- ’ - ~i)*/~i 
I-- I 

Proof. From the eigenvector equation 

2x = wx, 

x = (xg,x, ,..., x,)“, we deduce that 

i = 1, 2 ,..., 6. 

(20) 

(21) 
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FIG. I. Profiles for kinetics problem. 

Note that w  = Izi implies that x = 0, so the above division is proper. 
Substituting the expressions (21) in the equation of (20) which occurs when 
i = 0, we find that f(w) x, = 0, where 

(22) 

Since we cannot have x0 = 0, we conclude that the eigenvalues of 2 are the 
zeros off(w). But it is easy to see that six of the zeros off(w) are always 
positive, and furthermore that the remaining zero will be positive if and only 
iff(0) > 0. After simplification this condition reduces to (19). Q.E.D. 

Remark. According to (19), A’ has only positive eigenvalues if and only 
if p < -0.06437... . 

The exact solution to (17) (see Fig. 1) can be obtained by use of the 
matrix exponential 

y(t) = d’y(0) = P-‘@‘Py(O) = B(eeer, e”“,..., er6’)‘, (23) 

where D is the diagonal matrix of eigenvalues of A and the columns of the 
matrix P are the corresponding eigenvectors. The matrix B in (23) is strongly 
diagonally dominant and this results in the component yi(t) being driven by 
the term Pi’ in (23). 

Time-Galerkin approximations to (17) were calculated from the 
exponomial space S, described in Section 3.1. For this example we chose a 
decay constant a = 0.01 so that each component vi(t) in (17) is represented 
by an approximation of the form 

Yi([) = 5 c,e-- “.o’n’, O<i<6. 
n:l 

We define the component error e, by 

e, = sup yi(f) - YiCf) O<ig6. 
IO,;al J'i(") ’ 

Table I shows the convergence behavior of ei with respect to M. 
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T4BLIJ I 

Convergence of Exponomials for Kinetics Prohlem 

Xl (‘0 e 1 f’., (’ n 
.- 

2 9.03 ( I) 8.40 (-I) 4.28 (- I ) 2.80 (---2) 
4 8.99( I) 6.96 (- 1) 1.16 (--I) 7.16 (- 3) 
6 8.94 (-I ) 5.40 (- I) 1.28 (--2) 3.14 ( 3) 
x 8.88 (-- I) 4.1 I (-I) 1.70 (-3) 1.60 (--3) 

IO 8.82 (-I ) 3.11 (--I) 1.08 ( -3) 8.21 (-4) 

As illustrated in Table I, convergence to the slowly decaying components 
( J’~ to y6) is reasonably fast while convergence to the rapidly decaying 
components is painfully slow. 

In a simple linear problem such as (17) it is expedient (particularly for 
stiff problems) to use Time-Galerkin approximations of the form 

Y,(t) = 2 C&““‘, (24) 
n-1 

where (on) :r, is close in some sense to (p,}: _ “. Suppose, for example, we 
estimate pn by a; and a;, where 

0; =iu,-,(l +q, 0; =pu, ,(I -p>, u<Pc 1, l,<n(7. (25) 

Hence, if P = 0.5, then ui is a 50% overestimate of p,-, while a; is a 50% 
underestimate of p,, _, . Sometimes such estimates are known a priori or can 
be made by inspection. (For example, the Gerschgorin circle theorem [29] 
tells us that the matrix A in (17) has exactly one eigenvalue in the interval 
[-160.7404, -149.25961). In Table II we give the results of approximating 
y(r) in (17) by the Time-Galerkin approximation (24), where the decay rates 
u,, are determined from (0,’ , a;}:,, in (25). Table II indicates that the 

TABLE II 

Time-Galerkin Approximation to Kinetics Problem Using (24). (25) 

0 0 0 0 0 
S 4.55 (-4) 4.55 (--5) 2.47 (-5) 8.33 (---5) 

IO 1.82 (-3) 1.83 (-4) 9.64 (-5) 3.26 (-4) 
30 1.65 (-2) 1.41 (-3) 6.97 (-4) 2.26 (.-- 3) 
50 4.65 (-2) 2.17 (-3) 9.06 (-4) 2.40 (-3) 
80 1.24 (-1) I .36 (-2) 3.41 (--3) 9.27 (-3) 
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slower decaying components of y(t) are more forgiving of over- and 
underestimation of the eigenvalues than are the rapidly decaying 
components. Note also that estimates of the eigenvalues which are in error 
by as much as 50% still produce numerical approximations to y(t) with less 
than 5’%) relative error for all t > 0. 

5. APPLICATIONS TO PARABOLIC INITIAL-BOUNDARY VALUE PROBLEMS 

Let us construct in the manner of [ 11, 12, 26 1 a semi-discrete approx- 
imation to the initial-boundary value problem 

J1 

~=w +f(u>, o<x< 1. t>o, 

,. 
a0 z (0, t) + PO@, q = 60, a,~(l,l)+/llu(l,I)=S,, (27) 

u(x, 0) = g(x), O<x<l, (28) 

where Llu] = V(a(x) VU), and there exist constants r7 and co such that 
0 < 9 < a(x) ,< c0 for all 0 ( x ( 1. The ai, pi, and 6, are constants, and the 
function f is assumed to be continuously differentiable with respect to u. 

We consider basis functions ((Pi(X)}~~~ which are piecewice linear and 
continuous on the uniform mesh of gauge h = l/(N + 1) such that 

Cpi(Xj) = So) O<i, j<N+ 1. (29) 

The semi-discrete Galerkin approximation is defined by 

u(x, t, = ~ ui(t) rpi(X), 
i - I1 

where the ii(t) are determined from applying integration by parts to 

z-L[uI-S(u) O<igN+ 1.. (30) 

and replacing the u by u^. This approach is an example of the method of lines 
[24j and the equations for i = 0 and i = N + 1 may need to be modified to 
reflect the boundary conditions (27). This leads to a system of ordinary 
differential equations of the form (1) [ 12, 24, 26 1. Specifically, homogeneous 
Dirichlet boundary conditions in (27) yield (1) with 

W, Y) = -7-L ‘(T, Y + S(Y)), (31) 

where y = (r?,(t), &(I) ,..., C,v(t))“, T, and T, are N x N matrices with entries 
ITI Iij = ji Pi(x) Cpi(x) d x and IT, Iii = j: a(x) p;(x) q;(x) ah. For a(x) = 1 we 
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have T, = h/6 Tridiag( 1,4, 1) and T, = l/h Tridiag(-I, 2,-l}. The N- 
vector S( .Y) has as its ith component (S(y)/, = !‘,!,f(u^) q,(x) dx. (We could 
also use finite difference [27 1 or collocation methods [ 13 1 to obtain similar 
spatial discretizations.) We recall that it is well known [ 1 I, 12. 26 1 that 
under suitable conditions IJti - uIJ~-+ 0 as N-r co. where I! 115. = 
.I‘;j’:lt&ul’dxdt. 

For ease of exposition we assume Dirichlet boundary conditions in (27). 
As described in Section 1, the infinite element approximation [3 1 results 
when Galerkin’s method is applied again, this time with respect to the t- 
variation to obtain approximations to the functions tii(t), I ( i < N. In the 
notation of Section 1, v(t) 3 (Gl(t), G*(f),..., uI%(t))I‘ is approximated by 
Y(f) = y(u3) + x:n”- , c,8,(t), where the vectors c, are determined by (3). 
The resulting Time-Galerkin approximation to 2(x. t), or infinite element 
approximation to u, is 

U(“; X, t) _ ~ Yi(t) ~pi(X), (32) 
i-U 

where Y,,(t) = ~(0, t) and yV+ I(t) = u( 1, t). 
The convergence of the infinite element method is then extablished by 

combining Theorems 4 and 7 of the present paper with Theorem 3.1 of [ 121 
to obtain: 

THEOREM 9. Let u(x, I) be the solution of (26)-(28) and let ti(x, I) be the 
semi-discrete Galerkin approximation to u defined by (30). Further, let 
u(M; ., .) be the infinite element approximation to u as given in (32) with 
B,,(t) chosen according to (15) or (16). If F(t, y) in (31) is uniformly 
monotone, then for arbitrary E > 0 and T > 0, there exists an N and M, such 
that for all M > M,, 

llu - W-7 ‘9 ,)I, < E. (33) 

Proof By the triangle inequality, 

(ju-u(M; ‘, .)I(~~IIU1-ullr+;I~-u(M; ‘, .)1/T.. 

Given E > 0, from [ 12, Theorem 3.11, there exists an N such that 
)Iu^-ul(r<E/2. 

Now for a fixed, but arbitrary, t = t* and for all x, 0 <x < 1, 

.vt 1 

1 û  - u(M; X, t*)I* = ,& ( yi(t*) - Yi(t*)) Pi(X) * 

,< rnyx Ivi(t*) - Yi(r*)12 < lY(t*) - y(t*)l: 
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since 1 > pi(x) ) 0 and zi;‘b vi(x) = 1. Hence 

< ox ) y(t*) - Y(t*)l: dt* = )I Y - ~4:. 
I 

Finally, by Theorem 4 or Theorem 7, there exists an M, such that for all 
M>Mo, 

Ilfi - 4M; .y .)I, < II Y- ~11, G&/2. Q.E.D. 

Remark. In the notation of Section 1 we now have F,.(t, y) = 
T;‘(T2 - S,(y)). But, with U* 3 u(M; ., t), 

ISyCY)lij =d g (u*(x)> Vi(X) CpjtX) dx 

= f (u*(tij)) 1’ Cpitx) (Oitx) dx 
. 0 

for some intermediate value rij. If df/du is uniformly bounded, then [ S,( r)lij 
is O(h) as h + 0. Combining this with [Tzlij = 0(1/h), we have for h 
sufficiently small F,(t, y) - T; ’ T, . 

Now, for example, if a(x) = 1, T; ‘T2 is a positive definite matrix whose 
eigenvalues are bounded below by 4 [5, (2.30)]. That is, F is uniformly 
monotone. 

If df/du is not uniformly bounded, then we can define a new source term3 
as the indefinite integral of?, where for L sufficiently large 

if u>K 

=$(-K) if u <-K. 

As above, the conditions of Theorem 1 are met, and the Time-Galerkin 
approximation u(M; x, t) converges to the solution of this modified problem. 
Now, if the modified problem has solution 1 W( < K, then in fact w  = U, 
otherwise we choose a larger K. If u is bounded, then such a K must exist. 
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We illustrate the kind of computational problem which arises for the 
simple linear problem 

u(O.1) = 0, u( 1, t) = 0. 
(34) 

q-u, 0) = g(x) 

if, as was done in (3 I, we combine both applications of Galerkin’s method. 
With Yi(l) = u(x~, CO) + (g(xi) - U(X/, co)) e,(r) + z’ 1 Uijei(t)l 0 ,< i < 
N+ 1, where ~l~~=a~~,,~= 0 from (34), we tind that the other aii are deter- 
mined by the system of equations 

i c aii (_I ix (rpidjq+O, + rp:c9jcp;8,} dxdt 
i=l .j-2 -0 -0 

= .!i,’ j, 1 - $ Ok e, - 2 (pi 8, + f(X) (Pk e,( dx df. 

I <k<N, 2,<l<M. (35) 

where ‘pi and 0, are functions of x and I, respectively, the “dot” and “prime” 
mean differentiation, and 

.s* I 
C(X. I) = ” 

,Z 
{U(Xi, Co) + (g(Xi)-U(Xi* CO)) e,(f)t Vi. 

If we order the unknowns as 5 = (a,?, a,, ,.... a ,,,,, azz. a,, ,.... u2 ,,,,..., a,-, , 

u.v.3 ‘***Y Q,,M )‘. then (35) becomes 

flLi= b, (36) 

where (7 is an N(M - 1) by ;Y(,V - 1) banded unsymmetric matrix. 
Moreover. if 8 is partitioned as fi = (ti, , fiz ,..., a,)“, where ii, = 
(ui2 7 u,J ,**.* ai,$f)r7 then (7 has an associated block tridiagonal partitioning of 
the form 

(37) 

where B and C are (M - 1) by (A4 - 1) full matrices. Block Gauss 
elimination 122) proved to be an efficient method for solving (36). 
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For the linear problem (34) the system of ordinary differential equations 
(30) determining the semi-discrete Galerkin approximation is actually of the 
form 

T,$=-T:y+k, 

where as before T, and T2 are symmemtric, tridiagonal, positive definite 
matrices. To conform to (1) we should multiply through by T;’ to obtain a 
system of the form (1). Then the matrix P = T; ‘T, cannot have any pure 
imaginary eigenvalues. For if Pz = 12, where 2 = -A, then we easily obtain 
z*T,z = Az*T,z and z*T,z = -Az*T,z. (Here z* denotes conjugate 
transpose of z.) Thus z*T,z = 0, and this is a contradiction. It follows from 
a result of the Appendix that the associated Time-Galerkin system (3) has a 
unique solution. Since system (36) is equivalent to that of (3), (I is 
nonsingular and the use of (36) avoids the need to invert T,. 

The use of Galerkin’s method is a straightforward matter when (26)-(28) 
represents a linear problem. When (26) is nonlinear, several practical 
questions of implementation arise which we now discuss. 

Estimating the steady state, u(x, co). In developing the finite parameter 
representation in (2) it was assumed that the steady state solution U(X, co) of 
(26~(27) exists and could be found or accurately approximated, say, by 
solving the steady state two-point boundary value problem. If f(u) is 
nonlinear in U, then it may not be a simple computational task to estimate 
u(x, co). Perhaps what is more important is that for nonlinear problems, 
(26)-(27) may have multiple steady state solutions. The steady state reached 
is governed by the initial distribution g(x) in (28). If there are several steady 
states, then the task of approximating that particular steady state which 
corresponds to the given initial data may be difficult. This will provide some 
limit to the class of nonlinear problems for which the proposed approach is 
useful. 

Choice of expansion functions. We have shown in Section 3 that 
choosing the expansion functions to be exponomials or Laguerre functions 
leads to convergent schemes. However, there are other choices which reflect 
the fact that F(t, y) in (1) may involve the discretization of a differential 
operator about which prior information may be known (see Section 5) These 
latter choices enhance the accuracy of the approximation. 

For linear problems,f(u) = au in (26), one choice of expansion functions 
B,(t) is particularly appropriate. In this case the true solution to (26)-(28) 
can be represented by 

24(X, t) = 24(X, 03) + a,w,(x) e ‘.I; n)f, 
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where A,!, and o,(x) are eigenvalues and eigenfunctions of the problem 

uo~(0)+B,ru(0)=0, (38) 

/ 0, g(l)+p,w(l)=o. 

In the linear case, then, we select the first M expansion functions yj(t) = 
e;;;:p; where i, < ,I2 <I, ..’ <i,,,. The functions ej(t) are then 

e,(r) = g-, ejw = yjw - YjK9 W)~ j = 2, 3 ,..., M. (39) 
1 

If the J’s are not known exactly, they can be approximated by approximating 
the eigenvalue problem (38). See [IO] for other spectral matching schemes. 

For nonlinear problems the choice of expansion functions is not so simple. 
Experience has shown that selection of the eigenvalues of the linear problem 
(38) offers little. An approach which has proven useful in practice is 
predicated upon the assumption that (26) holds at I = 0. If this is the case, 
(au/&)(x, 0) can be evaluated from (26) and the initial distribution (28). We 
use decaying exponentials (e Pj’tF, to represent the f-variation of U(X, t). If 
M= 1, then 

ti(xi, t) = u(xi, 0) e -u” + u(xi, co)( 1 - e U”) (40) 

represents the time variation of the Galerkin approximation at the mesh 
point x = xi. We determine ,u, by solving 

for some mesh point xi (we have found it best to choose that value of xi 
which gives the smallest value of ,u, in (41)). Equation (41) will yield a 
positive value of 1, if U(X, t) is monotone in t for any x in 10, 11. Such is the 
case for the nonlinear example we consider here. Once ,u, has been defined, 
we can define p,, ,u~ ,..., pu, to be positive numbers in [p, - E, ,u, + E], where E 
is some fraction of ,~r. This method of selecting decay constants for the 
exponential expansion functions is somewhat arbitrary; however, it is based 
upon known information about the time variation of U(X, t) at t = 0. 

5.1. Numerical Examples 

Let u(M; x, t) denote the infinite element approximation based on M 
expansion functions in (39). To study the accuracy of the approximation 
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U(M; X, I) to U(X, t) we consider either the uniform time error at a mesh point 
wKi, 

IIu(M; Xi, ,) - U(Xi9 ~)ll,.rlO,~L,, = SUP IWf; xi, t) - Gi7 t)l7 (42) 
O<f< x, 

or the maximum relative mesh point error s(t), 

E(t) E rnfx I(u^(M; Xi, t) - U(Xi, t))/U(Xi, [)I, t >/ 0. (43) 

EXAMPLE 1. Consider the simple linear problem 

au 2*u 
at=z o<x< 1, f>O, 

u(0, I) = u( 1, t) = 0, I > 0, 

u(x, 0) = sin* ZK, O<x<l. 

Solution: 

u(x, f) zz f  c,ie -(a '-, 
j-l 

We discretize the spatial variable by a uniform mesh of N + 1 = 50 mesh 
points. Several sets of expansion functions yj(t) were used to generate infinite 
element approximations and the detailed results are reported in [3,4]. We 
include here Table III, which summarizes the convergence results for x = 0.5. 
This example satisfies the conditions of Theorem 9, so convergence is 
assured for the case of exponomials and Laguerre functions. 

Our next example, similar to those considered in [ 191, is a nonlinear 
problem in spherical geometry for which it is not obvious that the conditions 
in Theorem 9 are satisfied. However, it appears as though convergence is still 
achieved. 

EXAMPLE 2. 

au la 2 au --- 
t- x* 2x 

( 1 
x x + u’, O<x<l, t>o, 

g (0, t) = 0, u(l, t) = 3’94, t > 0, 

u(x, 0) = 3 l/2/4. (46) 

One steady state of (44), (45) is U(X, co) = l/(1 + x*/3)“*, which is also the 
steady state solution of (44~(46). For this example we used exponomial 
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lnlinite Element Approximation Kesul~s for Example I 

;',(I). I < j c 31 .w ,u(:M: 0.5. 1 - u(0.i. ), , 

(, ,:i ItI, 2 5.38 (-3) 
3 5.35 (. 4) 

4 I.20 ( .-I) 

‘, II” 2 3.13 (--2) 
3 3.71 (---3) 
4 5.53 (--4) 

(1 ” 2 4.50 (--I I 
3 2.65 (-I) 
4 1.59 (-I) 

I’ I(, : 2 5.54 (-I ) 
3 4.50 (-1 ) 
9 1.82 ( I) 

15 1.11( I) 
25 6.7-l I 2) 

expansion functions of the form le “}I!. , , that is, u = 1 in (15). This choice 
of LX comes from solving (4 1) to obtain p, N 3. When M 2 3. the exponomial 
e ” is contained in the expansion set. Newton’s method was used to solve 
the nonlinear algebraic equations coming from the Time-Galerkin 
formulation. The matrix equations that must be solved during iteration in 
Newton’s method are block tridiagonal with each block a (M - 1) x (M - I) 
matrix (cf. (37)). These well-structured matrix equations were solved by 
block Gauss elimination (29 1. For assessment of accuracy, the exact solution 
to the transient problem (44)-(46) was approximated as a piecewise linear 
semi-discrete (continuous time-discrete space) Galerkin approximation 
defined on a fine spatial mesh of 200 points. The associated system of ode’s 
was integrated using the GEARIB code 120 I. 

The numerical results using exponomial expansion functions, (e “1: , . 
for the Time-Galerkin approximations are shown in Figs. 2 and 3. In Fig. 2 
we have plotted c(t), the maximum relative error incurred at the mesh points 
for a given t (that is, the maximum component error for the Time-Galerkin 
approximation). From Fig. 2. s(t) < 0.5% for all t > 0. In Fig. 3 we compare 
the spatial profiles u(x. f) and ~(4; X, 1) for I = 0, 0.1,0.2,0.3 and I = 03: 
again the agreement between approximation and solution is quite good. 

Computation Times 
It is difficult to make meaningful comparisons between computation times 

required by standard numerical methods for solving (26~(28) and the 
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FIG. 2. Example 2. Relative error. 
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Example 2. Exact aand approximate spatial profiles. 

corresponding times required using the two stage Galerkin, infinite element 
approach; so much depends upon the numerical methods being compared 
and the particular problem at hand. For the simple problems presented in 
this paper we have made comparisons between results obtained using the 
infinite element method and computational results obtained using the 
computer code PDEPACK 1231, a carefully engineered FORTRAN 
program designed specifically for the numerical solution of transient, 
nonlinear two-point boundary value problems of the form (26~(28). This 
program first discretizes the spatial operator in (26) by second order 
centered finite differences, and then calls upon the efficient GEAR codes 
[ 211 to integrate the resulting system of nonlinear initial value problems. 

For the linear problems we have tested there is no question about the 
superiority of the infinite element approach. For example, while it required 
0.064 set of IBM 370/168 computer time to generate the infinite element 
approximation to Example 1 based on yj(t) = emiZq” and M = 3 in Table III, 
it required 0.7 15 set of CPU time for PDEPACK to generate a numerical 
approximation of similar accuracy-about 0.4% relative error. The 
improvement comes, of course, from the ability to easily identify optimal 
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expansion functions ;li(f) in (39) for such simple linear problems. Substantial 
improvement in computational efficiency using infinite elements was also 
realized for the nonlinear problem treated in Example 2. Using PDEPACK 
with the same uniform spatial mesh of 50 points (the spatial truncation for 
both PDEPACK and the infinite element is the same; U(h2)), 1.237 set of 
computer time was needed to provide an approximation with a relative error 
of about 0.5’K). This is to be contrasted with 0.2 18 set of computer time 
required by the infinite element approach. For details on other examples and 
implementation, the reader is referred to 141. 

APPENDIX: THE NONSINGULARITY OF THE TIME-GALERKIN EQUATIONS 

In this Appendix we establish conditions under which the Time-Galerkin 
equations (3) associated with the linear system 

dY 
x = -4’ + s(t). t > 0, 

(47) 

y(O) = Yo, 

possess a unique solution. In (47), P is assumed to be an N X N constant 
matrix and s(t) is a known N-vector. Since in this case F(t, y) = Py -s(t), 
the Time-Galerkin equations (3) may be written as the matrix equation 

CH, + PCH, = S. (48) 

Here the coefticient matrix C is N x (M - 1) with the unknown vectors 
c,, c, ,..., c,~ as its columns (see (2)), and H, and H2 are square matrices of 
order M - 1, their (i, j) th entries being respectively 

[nBi+,i9i,, dr and 1 
ah de,, , -ei+, dt, 

. o dt 
i,j= I, 2 ,..., M- 1. 

-’ 0 

Finally, S is an N x (M - I ) matrix whose jth column is given by 

s-c,$~(y(b)+c,fi,) ei+,dt. 1 I <j<M- I. 

Since the expansion functions t),) 8, ,..., r3M are assumed to be linearly 
independent, we see that H, is a symmetric, positive definite matrix. 
Furthermore, it is easy to verify that H, is skew symmetric. In view of this 
we can write (48) as 

PC + CH, H,- ’ = SH, ‘. (49) 
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But, it is well known [ 17, p. 2251 that (49) has a unique solution C if and 
only if the spectrums of P and H, H;’ are disjoint. 

This necessary and sufficient condition does not appear to be easy to 
verify. However, as we now show, H, H; I has only pure imaginary eigen- 
values. In the first place, the eigenvalues of H,H;’ coincide with those of 
H; ‘H,. Thus, from the eigenvector equation H;‘H,z = AZ we obtain 
z*H,z = lz*H,z, where z* denotes the conjugate transpose of z. However, 
since H, is Hermitian and H, skew Hermitian, we also have that -z*H,z = 
lz*H,z. Therefore, (A + X)(z*H,z) = 0; that is, I is pure imaginary. 
Combining these results, we obtain the simple sufficient condition of the 
following Corollary: 

COROLLARY 1. If P has no eigenvalues on the imaginary axis, then the 
TimeGalerkin equations (47) have a unique solution matrix C. 
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