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Random Deletion Does Not Affect Asymptotic Normality
or Quadratic Negligibility
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Suppose a number of points are deleted from a sample of random vectors in Rd.
The number of deleted points may depend on the sample size n, and on any other
sample information, provided only that it is bounded in probability as n � �. In
particular, ``extremes'' of the sample, however defined, may be deleted. We show
that this operation has no effect on the asymptotic normality of the sample sum,
in the sense that the sum of the deleted sample is asymptotically normal, after
norming and centering, if and only if the sample sum itself is asymptotically normal
with the same norming and centering as the deleted sum. That is, the sample must
be drawn from a distribution in the domain of attraction of the multivariate normal
distribution. The domain of attraction concept we employ uses general operator
norming and centering, as developed by Hahn and Klass. We also show that ran-
dom deletion has no effect on the ``quadratic negligibility'' of the sample. These are
conditions that are important in the robust analysis of multivariate data and in
regression problems, for example. � 1997 Academic Press

1. INTRODUCTION

In this paper we bring together two strands of research concerned with
the asymptotic behaviour of estimates from a multivariate sample. The first
of these relates to the random deletion of points from the sample and the
effect this operation has on the large sample properties of the estimators.
This question arises, for example, when a sample is ``trimmed'' by the deletion
of the sample extremes, however they may be defined for multivariate
observations��usually with the hope that the behaviour of estimates such
as the sample mean and covariance matrix may be ``improved'' in this way.
Thus the trimmed sample mean may be asymptotically normal, after
centering and norming, even though the original observations were not
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drawn from a distribution in the domain of attraction of the normal
distribution.

Indeed, Cso� rgo� , Horva� th, and Mason [3] (see also Griffin and Pruitt
[9] and the references in both these articles) showed that in the one-
dimensional case the trimmed sum of i.i.d. random variables in the domain
of attraction of a stable law is asymptotically normal provided that the
number of trimmed terms goes to infinity with the sample size. On the
other hand, Maller [17] and Mori [21] proved that this cannot occur
(still in the one-dimensional case) when the number of extremes removed
from the sample stays bounded. More precisely, they proved that removal
of a fixed number, r, say, of extremes, does not result in asymptotic nor-
mality of the trimmed sample mean unless the distribution F from which
the sample was drawn is itself in the domain of attraction of the normal
distribution. Here we generalize this result to a multivariate distribution F
and to a much more general deletion operation; the Maller�Mori result
holds if any r=r(n) points are removed from a sample of size n, provided
r(n) is bounded in probability as n � � in the sense of (1.4) below.

To specify our setup, let X, Xi , be independent and identically
distributed (i.i.d.) random vectors in Rd with distribution F, i�1. To allow
for randomized rules (e.g., to break ties when equal observations are
possible), we assume without loss of generality that some other random
variables W1 , W2 , ... are defined on the same probability space as the Xi

and that these are independent of the Xi . These W 's take values in some
measurable space. The deletion scheme is determined by a random integer
r=r(n) and the random sets

I(n)=[in(1), ..., in(r(n))] (1.1)

of the indices of the observations to be removed. The I(n) are measurable
with respect to the _-field on our probability space. The random number
r of observations deleted may depend on the sample size n, and as a special
case it may be nonstochastic. In particular, we allow r=0 (in which case
I(n)=, and no observations are deleted.)

We define the deleted sum as

DSn= :
i � I(n)

Xi=X1+ } } } +Xn&Xin(1)& } } } &Xin(r) . (1.2)

When no points are deleted, we have the usual sample sum

Sn= :
n

i=1

Xi . (1.3)

The only restriction on the deletion scheme is the following:
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Condition 1. I(n)�[1, 2, ..., n] and for some nonstochastic integer s

P[r(n)�s] � 1 as n � �. (1.4)

Then we show in Theorems 2.1 and 2.2 of the next section that DSn is
asymptotically normal in a very general sense due to Hahn and Klass
[10], if and only if the same is true of Sn (with the same norming matrix
and centering vector).

The second strand we bring in relates to the ``quadratic negligibility'' of
the Xi . This term was coined by Maller [18] to describe the following
behaviour. Suppose from now on that the Xi are ``full.'' Here a random vector
X, or its distribution F, is called full if P[X # A+H]<1 for any vector
A # Rd and subspace H of Rd of dimension d&1 or lower. (Note that a full
distribution cannot be concentrated on one point, even if d=1). Define

Vn= :
n

i=1

Xi X T
i , (1.5)

the sample sum of squares and products matrix, where the superscript T
denotes vector or matrix transpose. Lemma 2.3 of Maller [18] shows that
Vn is nonsingular with probability approaching 1 as n � �. We say that
the Xi are quadratically negligible if, as n � �,

max
1�i�n

X T
i V &1

n Xi w�P 0. (1.6)

This concept can be motivated by thinking of the Xi as being values of
regressor variables. The quantity in (1.6) is then the diagonal element of
the ``hat'' matrix and measures the ``leverage'' or ``influence'' of the i th
regressor. In certain regression models, (1.6) is necessary and sufficient for
the asymptotic normality of the least squares regression coefficients (Huber
[13, p. 159]) and, as discussed by Huber [13, p. 162] and Belsley, Kuh,
and Welsch [2, Chap. 2], a large influence is to be avoided or at least
noted. Common practice, in fact, is to delete an observation with a large
influence from the sample and to recalculate the regression coefficients from
the deleted sample; see, e.g., Belsley, Kuh, and Welsch [2, p. 11]. We may
then iterate the procedure and delete, 2, 3, ..., r points. But are the remaining
(undeleted) Xi still quadratically negligible?

This question provided the motivation for our second formulation.
Define the deleted sum of squares and products matrix

DVn= :
i � I(n)

Xi X T
i . (1.7)
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(Summations as in (1.7) will be over values of i, 1�i�n, not including the
indices in I(n).) Under the above assumptions (including (1.4)), we will
show that DV &1

n exists with probability approaching 1 as n � �, that

max
i � I(n)

X T
i

DV &1
n Xi w�P 0 (1.8)

if and only if (1.6) holds and, furthermore, that these are both equivalent
to the asymptotic normality, in the sense of Hahn and Klass [10] of DSn

and of Sn . Thus we answer the above questions and tie the two strands
together in a satisfying way.

An attractive feature of our use of ``deletions'' is that the results apply in
particular for extremes of a multivariate sample, however defined, as long
as Condition 1 is satisfied. This suggests an application of our results to the
treatment of outliers in multivariate (or even univariate) data. There is a
large literature on this. See Barnett and Lewis [1, especially Chaps. 6, 7],
where many procedures for detecting and dealing with outliers are
summarized. A general theme is to take as null hypothesis, H0 , that the
observed data represent observations on i.i.d. random vectors Xi . One is
interested in inference on some aspect of the distribution of the Xi , say on
its mean + (which is assumed to exist). Let the sample mean and the mean
of the deleted sample be

X� n=
Sn

n
, DX� n=

DSn

n&r
, (1.9)

and let the corresponding mean-corrected sum of squares and products
matrices be

V� n= :
n

i=1

(Xi&X� n)(Xi&X� n)T,

DV� n= :
i � I(n)

(Xi&
DX� n)(Xi&

DX� n)T. (1.10)

One may reject H0 if, for example, the test statistic

Rn=(X(n)&X� n)T V� &1
n (X(n)&X� n) (1.11)
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is too large, where X(n) is an Xi for which (Xi&X� n)T V� &1
n (Xi&X� n) is maxi-

mized, and declare X(n) discordant in this case (see Barnett and Lewis
[1, Chap. 7]) which also lists a variety of other test statistics). X(n) is then
deleted from the sample. This specifies a deletion scheme according to our
formulation. If H0 is rejected, Barnett and Lewis, and practitioners, use a
quantity such as

DMn=(DX� n&+)T DV� &1
n ( DX� n&+), (1.12)

based on the deleted sample, for inference on +. (See, e.g., Barnett and
Lewis [1, p. 274]). Commonly it is assumed that the deletion of discordant
observations renders DX� n approximately normally distributed, and DMn

approximately distributed as chi-squared with d degrees of freedom (/2
d), at

least in large samples. Hampel et al. [12, p. 59] criticize this procedure on
the grounds that ``It appears as if subsequent statistical analysis is to
proceed as if the parametric model would hold perfectly for the remaining
data.'' In other words, practitioners usually act as if, after deleting outliers,
the deleted sample can be treated as a sample of i.i.d. random variables
with the same distribution as X.

This cannot be exactly true, of course, but it may be approximately so,
and our results partially justify the procedure. Suppose H0 , in fact, specifies
that the Xi are i.i.d. in the domain of attraction of the multivariate normal
distribution (which is more general than assuming them normally dis-
tributed) and suppose that, in deleting X(n) , a Type I error occurs, so that
H0 is erroneously rejected. Theorem 2.1 below can then be applied to
deduce that DMn is still approximately /2

d in large samples. Consequently,
no damage has been done, at least asymptotically. On the other hand,
again as an application of Theorem 2.1, the converse is also true: the
deleted mean DX� n of the i.i.d. sample is asymptotically normal, after norming
and centering, only if the Xi are in the domain of attraction of the normal.
If they are not, we cannot achieve asymptotic normality of DX� n by any
deletion scheme satisfying Condition 1. This answers to some extent the
question implicitly posed by Barnett and Lewis [1, p. 86], as to what range
of distributions one can allow, while still obtaining asymptotic normality of
a deleted quantity such as DX� n .

Alternatively one can think of (part of) Theorem 2.1 as a statement
about the distribution of the trimmed sample mean when a few observations
are discarded because they are erroneously believed to come from another
distribution than the remaining observations.

We will also show that (1.8) remains equivalent to (1.6) if the Xi are
centered at DX� n and DVn is replaced by DV� n , as is commonly done in
practice.
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2. RESULTS

Hahn and Klass [10] showed that Sn is asymptotically normal in the
sense that there exist nonstochastic vectors An and square matrices Bn such
that

Bn(Sn&An) O N(0, I ) (2.1)

(converges in distribution to the standard d-dimensional normal distribu-
tion), if and only if a certain analytic criterion ((2.7) below) is satisfied. For
further background and discussion see also Hahn and Klass [11], Maller
[18], and Meerschaert [19, 20]. Let us just mention here that (2.1) is truly
d-dimensional, in that, in general, Bn may not be taken as diagonal; we
may need to rotate Sn , after centering by An , in a direction which depends
on the sample size n. Thus, even after centering, Sn need not ``settle down''
in an approximately fixed direction. The same will be seen to be true of the
deleted sum DSn . (See also Remark (iii) below.)

Theorem 2.1. Suppose that F is full. For any deletion scheme D satisfying
Condition 1, the following are equivalent:

there are nonstochastic vectors An and square matrices Bn such that

Bn(DSn&An) O N(0, I ) ; (2.2)

there are nonstochastic vectors An and square matrices Bn such that

Bn \DSn&
n&r

n
An+O N(0, I ) ; (2.3)

there are nonstochastic square matrices Bn such that

Bn
DV� nBT

n w�P I ; (2.4)

DVn is invertible with probability approaching 1 and

max
i � I(n)

X T
i

DV &1
n Xi w�P 0; (2.5)

DV� n is invertible with probability approaching 1 and

max
i � I(n)

(Xi&
DX� n)T DV� &1

n (Xi&
DX� n) w�P 0; (2.6)

sup
u

x2P[ |uTX|>x]
E((uTX)2 1[ |uTX|�x])

� 0 as x � �. (2.7)
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A supremum over directions u, as in (2.7), will be over all unit vectors
in S d&1, the unit sphere in Rd. I is the d_d identity matrix in (2.2)�(2.4),
and we use the notation 1[A] for the indicator of an event A. The
convergence in (2.2)�(2.6), and similar convergences elsewhere, is as
n � �. We say that a sequence of events An occurs with probability
approaching 1 if P(An) � 1. N(+, 7) will denote a normal random vector
in d dimensions with mean vector + and covariance matrix 7.

Since (2.1) and (2.7) are equivalent, by Hahn and Klass [10], all condi-
tions of Theorem 2.1 are equivalent to any of the conditions (1.5)�(1.10) of
Maller [18], which, except for (1.7) of Maller [18], are the versions of
(2.2)�(2.6) corresponding to the deletion of no points. Maller [18,
Theorem 2.1] shows that E |X|<� under (2.1), or, equivalently, under
(2.7), and we can use this to show that An in (2.2)�(2.3) may be taken as
nEX. Recall that r is a random variable, in general, so the centering in (2.3)
is random. Nevertheless (2.3) is equivalent to (2.2) (and to (2.1)).

An important component in the proof of Theorem 2.1 will be the following
result. Consider a triangular array

Xn, 1 , Xn, 2 , ..., Xn, t(n) , n�1,

of d-vectors with t(n) � � and [Xn, i , 1�i�t(n)] being i.i.d. for each n,
but not necessarily having the same distribution for different values of n.
Xn, i need not be full. Define

Tn= :
t(n)

i=1

Xn, i . (2.8)

Let W1 , W2 , ... be some random variables which are independent of the
[Xn, i , 1�i�t(n)] and let I(n)=[in(1), ..., in(r(n))] be a set of random
indices which is defined on the same probability space as
[Xn, i , 1�i�t(n)] and W1 , W2 , .... Assume that

I(n)/[1, 2, ..., t(n)] (2.9)

and that for some nonstochastic integer s

P[r(n)�s] � 1. (2.10)

Analogously to the preceding we define the deleted sum

DTn= :
i � I(n), i�t(n)

Xn, i=Tn&Xn, in(1)& } } } &Xn, in(r) . (2.11)

142 KESTEN AND MALLER



File: DISTIL 169808 . By:DS . Date:06:10:97 . Time:11:21 LOP8M. V8.0. Page 01:01
Codes: 2953 Signs: 1876 . Length: 45 pic 0 pts, 190 mm

Theorem 2.2. Assume that the deletion scheme satisfies (2.9) and (2.10)
and that for some sequence of integers k1<k2< } } } and nonstochastic
C1 , C2 , ..., # Rd,

DTkn
&Ckn

O N(+, 7), (2.12)

where the covariance matrix 7 may be singular. Then there exist non-
stochastic vectors F1 , F2 , ..., # Rd so that

max
1�i�t(kn)

|Xkn , i&Fkn
| w�P 0. (2.13)

If Ckn
=0 or if Xn, i=BnXi for some sequence X1 , X2 , ... of i.i.d. random

d-vectors with a full distribution and nonstochastic d_d matrices Bn , then we
may take Fkn

=0 and in this case also

D� Tkn
&Ckn

O N(+, 7) (2.14)

for any other deletion scheme D� which satisfies (2.9) and (2.10).

Remarks. (i) Theorem 2.2 provides the basic tools we need for our
analysis of deletion schemes. Note that (2.14) is immediate from (2.12) and
(2.13) with Fkn

=0, when (2.10) holds. (2.13) is related to, in fact is stronger
than, ``(uniform) asymptotic constancy'' of the sequence [Xkn, i]1�i�t(kn)

(see, e.g., Gnedenko and Kolmogorov [7, p. 95]). When Fkn
=0 it implies

``uniform asymptotic negligibility'' of the sequence. Thus these conditions
are consequences of the convergence of the centered, deleted sum to nor-
mality as specified in (2.12). Uniform asymptotic negligibility of summands
is an important ingredient in the theory of convergence of sums of
triangular arrays to infinitely divisible laws. (Gnedenko and Kolmogorov
[7, p. 95] use the terminology ``infinitesimal'' for this.)

(ii) In the situation where (2.14) applies we can take for D� the deletion
scheme which deletes no observations. In this case we see that convergence
of the deleted sum as in (2.12) is equivalent to that of the undeleted sum,
after centering, to normality. Also, if we let Cn=0 and

Xn, i=Bn \Xi&
1
n

An+ , 1�i�n,

where Bn are nonsingular d_d matrices, An are constant vectors, and Xi

are i.i.d. vectors in Rd, then (2.14) of Theorem 2.2 asserts that when

Bkn \DSkn
&\kn&r

kn + Akn +O N(0, 7) (2.15)
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holds for some sequence kn A �, then we also have

Bkn
(Skn

&Akn
) O N(0, 7). (2.16)

Here DSn and Sn are defined by (1.2) and (1.3). In this form Theorem 2.2
states that the attraction or ``partial attraction'' (subsequential con-
vergence) of Sn , after norming and centering, to normality, is not affected
by deletion of a bounded number of points. See Kesten [14] for an
analysis in one dimension of trimming in relation to domains of attraction
of nonormal stable laws.

(iii) If (2.15) holds with Bkn
=#kn

B for some fixed, nonsingular
matrix B and real constants #kn

, then the same is true for (2.16). Similarly
if (2.2) holds with Bn=#n B for some deletion scheme D, then it holds for
these same Bn for all D which satisfy Condition 1 (see next remark). Thus
Theorems 2.1 and 2.2 include as a special case the case of vectors in the
classical domain of attraction of the d-dimensional normal distribution,
which do not call for the general operator norming of Hahn and Klass
[10] with its allowance for (possibly) different rotations for different n.

(iv) (2.7) does not depend on D. Thus, if any of (2.2)�(2.6) hold for
one deletion scheme satisfying Condition 1 then (2.2)�(2.6) hold for all
such deletion schemes with the same choice for An and Bn for all such deletion
schemes. The fact that the same An and Bn can be used for different
schemes in (2.2) and (2.3) follows from the implication from (2.12) to
(2.14) when Xn, i=BnXi for full Xi . The lack of dependence of Bn on D in
(2.4) can be obtained from (4.2) and (4.9) below, but we shall not give
details.

(v) As an application of Theorem 2.1 we have that, when Condi-
tion 1 and any of (2.2)�(2.7) hold,

DV� &1�2
n (DSn&n+) O N(0, I ). (2.17)

Here DV� &1�2
n is either the Cholesky or the symmetric square root of DV� &1

n .
The convergence in (2.17) follows from (2.2), (2.4), and Theorem 2.1 of Vu,
Maller, and Klass [23] and the observation made above that we may
replace An by nEX in (2.2). (Vu, Maller, and Klass [23] define and briefly
discuss the merits of the Cholesky and symmetric square roots of a matrix.)
The ``studentised'' result (2.17) answers the question raised in Remark (viii)
of Maller [18], and generalizes it to deletion schemes satisfying (1.4). It is
immediate from (2.17) that

(DSn&n+)T ( DV� &1
n )(DSn&n+) O /2

d , (2.18)
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generalizing (1.15) of Maller [18] to a ``deleted'' version of the Hotelling
T2 statistic. It would be interesting to know whether (2.17) or (2.18)
implies (2.2) and hence (2.1). In one dimension, and when there is no deletion,
this is true and shown by Griffin and Mason [8] and Gine� , Go� tze, and
Mason [6].

We conclude this section with two examples. The first shows that ordering
the Xi by their moduli, perhaps for the purpose of locating outliers, may
have quite different implications from ordering them by their Mahalanobis
distance from 0. The second example, in response to a question from a
referee, shows that (2.10) cannot be weakened to requiring only that
r=r(n) be tight, rather than that r(n) be bounded in probability, in
Theorem 2.2.

Suppose X (1)
n denotes any observation whose length is max1�i�n |Xi |.

By taking for D the deletion scheme which removes no observations, (2.5)
immediately implies

(X (1)
n )T V &1

n X (1)
n w�P 0. (2.19)

Since X (1)
n is the sample point most distant from 0, we might expect (2.19)

to imply (2.5). This, however, is not true.

Example 2.3. We may have (2.19) holding, even though

max
1�i�n

X T
i V &1

n Xi does not converge to 0 in probability. (2.20)

We must of course have d�2 in Example 2.3.

Example 2.4. When the Xi are i.i.d. symmetric random variables in R,
we may have DSkn

�Bkn
O N(0, 1) for some nonstochastic sequences kn � �

and Bkn
, and for some deletion scheme satisfying (2.9), with r=r(n) tight

rather than satisfying (2.10), but with Skn
�Bkn

not converging to normality
as kn � �.

The proofs of Examples 2.3 and 2.4 are in Section 5. Sections 3 and 4
give the proofs of Theorems 2.2 and 2.1, in that order, since some of the
proof of Theorem 2.1 uses the results of Theorem 2.2. Some heuristics for
the proofs are given at the beginnings of Sections 3 and 4.

3. PROOF OF THEOREM 2.2.

We begin with some heuristics. The idea is that if (2.13) fails, then some
tail of the distribution of DTkn

&Ckn
will be fatter than the corresponding
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tail of a normal distribution. This is best understood by considering the
one-dimensional case with Cn=0 and kn=n. In this case we wish to prove
(2.13) with Fn=0, that is,

max
1�i�n

|Xn, i | w�P 0. (3.1)

Assume that this fails. Some simple reductions then lead to the existence of
an Ln and =>0, '>0 for which

Ln�=, P[ |Xn, i |>Ln]�
'

t(n)
,

'
2t(n)

�P[Xn, i>Ln]�
'

t(n)
.

But then also, for large n,

P[Xn, i>Ln for exactly m values of i�t(n) and Xn, i�&Ln

for all other i�t(n)]�
1

2m !
e&' \'

2+
m

. (3.2)

Now consider a sample point for which the event on the left-hand side of
(3.2) occurs and from which we delete at most s observations. For such a
sample point

DTn � :
i � I(n)

Xn, i1[ |Xn, i |�Ln]+(m&s) Ln

� :
i�t(n)

Xn, i1[ |Xn, i |�Ln]+(m&2s) Ln .

A separate argument will show that

:
i�t(n)

Xn, i1[ |Xn, i |�Ln] (3.3)

is with a probability tending to 1 not too large with respect to Ln ; roughly
speaking this is done by comparing the sum in (3.3) with DTn when
|Xn, i |�Ln for all i�t(n). This finally leads to

lim inf
n � �

P {DTn�
1
4

m==�lim inf
n � �

P {DTn�
1
4

mLn=�
1
4

( 1
4')m

m !
e&'. (3.4)

This contradicts the asymptotic normality of DTn , because

1
4

( 1
4')m

m !
e&' is much bigger than

1

_ - 2? |
�

(1�4) m=
e&t2�2_2 dt
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for any fixed _, as m becomes large. This contradiction will show that (3.1)
cannot fail.

We break the proof up into a number of steps. After some technical
reductions, the first step proves the variance estimate (3.20). The second
step proves the Chebyshev-type estimate (3.29). The third step, which is the
principal one, proves the property (3.14) of the quantiles of |Xn, i |. When
Cn=0 this completes the proof. For general Cn we complete the proof of
(2.13) in step (iv) by proving (3.15). The final statement of the theorem is
proven in step (v).

We now start the proof proper with some reductions. Let (2.12) hold. By
ignoring the rows with numbers other than k1 , k2 , ..., we may, and shall,
assume that kn=n. We further may assume without loss of generality that
the deletion scheme satisfies

P[r(n)�s]=1 (3.5)

which is stronger than (2.10). This is so because (2.10) allows us to replace
I(n) by [in(1), in(2), ..., in(r 7 s)], which contains at most s indices. For the
remainder of this proof we shall assume that (3.5) holds.

By choosing a further subset of the rows we may further assume that
either

lim
n � �

P[r(n)=s0]=1 for some fixed s0 # [0, 1, 2, ..., ], (3.6)

or

lim inf
n � �

P[r(n)=s1] 7 P[r(n)=s2]>0

for two distinct s1 , s2 # [0, 1, 2, ..., s]. (3.7)

(We allow s0=0 in (3.6), corresponding to the case of no deletion.) If (3.6)
holds then

P {DTn&Cn { :
i � I(n)

\Xn, i&
Cn

t(n)&s0+=� 0.

We can then follow the proof below with Xn, i replaced by Xn, i&Cn �
(t(n)&s0) and Cn replaced by 0. We therefore concentrate on the case
where (3.7) holds.

We shall then work with the shifted variables

X� n, i=Xn, i&
1

t(n)
Cn . (3.8)
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Let Xn, i and Cn have components Xn, i (1), ..., Xn, i (d), and Cn(1), ..., Cn(d ),
respectively. Then the qth component of X� n, i is

X� n, i (q)=Xn, i (q)&
1

t(n)
Cn(q).

An important part in the proof is played by the (1&;)-quantiles of the
|X� n, i (q)|, 1�q�d. These are defined as any numbers Ln(;, q) satisfying

P[ |X� n, 1(q)|<Ln(;, q)]�1&;�P[ |X� n, 1(q)|�Ln(;, q)], (3.9)

where 0<;<1. Suppose we can prove that for each 1�q�d and each
'>0

Ln \ '
t(n)

, q+� 0 (n � �). (3.10)

We then have for any =>0

lim sup
n � �

P { max
1�i�t(n) }Xn, i&

Cn

t(n) }>==
�lim sup

n � �
t(n) P {}Xn, 1&

Cn

t(n) }>==
�lim sup

n � �
:
d

q=1

t(n) P {}Xn, 1(q)&
Cn(q)
t(n) }>

=
d=

�lim sup
n � �

:
d

q=1

t(n) P {}Xn, 1(q)&
Cn(q)
t(n) }>Ln \ '

t(n)
, q+=

(by (3.10))

�d'.

Thus (3.10) will imply (2.13) with Fn=Cn �t(n).
It therefore suffices for (2.13) to prove (3.10). This will be proven for

each component separately. We therefore suppress the q in our notation
and treat Xn, i as a real valued random variable, and Cn as a real number.
We set

T� n= :
t(n)

i=1

X� n, i=Tn&Cn
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and

DT� n= :
i � I(n)

X� n, i=T� n&X� n, in(1)& } } } &X� n, in(r) . (3.11)

Then

DT� n=DTn&\t(n)&r
t(n) + Cn , (3.12)

and the hypothesis (2.12) of our theorem is that

DT� n&
r

t(n)
Cn O N({, _2) (3.13)

for some { and _2�0, with N a one-dimensional normal random variable.
(If _2=0, N({, 0) is degenerate at {.)

To prove (3.10) we shall first prove that

Ln('�t(n))
1+|Cn |�t(n)

� 0 as n � �. (3.14)

Once we have (3.14), it will be easy to see that along any subsequence with
|Cn |�t(n) � �, |Cn |&1 T� n has to converge in distribution to an infinitely
divisible distribution with compact support. It is known that such a dis-
tribution must be concentrated on one point. A simple argument shows
that this is not possible if (3.7) holds. From this we shall obtain

lim sup
n � �

|Cn |
t(n)

<�, (3.15)

and then (3.14) yields (3.10). For (3.14) itself we give an indirect proof,
basically by deriving (3.4).

Step i. Assume that (3.14) fails, so that for some =>0, '>0, and an
infinite sequence n1<n2< } } }

Lni \ '
t(ni)+�= \1+

|Cni
|

t(ni)+ . (3.16)

To simplify notation we again assume that this holds along the full
sequence of integers, so that

Ln \ '
t(n)+�= \1+

|Cn |
t(n) + . (3.17)
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Esseen's concentration function inequality (Esseen [4, Theorem 3.1])
states that for L>0 and any * # (0, L),

P[ |T� n |�L]�
K0 L

- t(n) Un(*)
. (3.18)

Here K0 is a universal constant and

Un(*)=E[(X� s
n, 1)2 7 *2]

=E[(X� s
n, 1)2 1[ |X� s

n, 1 |�*]]+*2P[ |X� s
n, 1 |>*], (3.19)

where X� s
n, 1 has the distribution of X� n, 1&X� n, 2 . We will show that (3.17)

and (3.18) imply that for each #>0 there exists some K(#)<� for which

t(n) Un \#Ln \ '
t(n)++�K(#) L2

n \ '
t(n)+ for all large n. (3.20)

We will need the following standard randomization device. Let W� i , i�1,
be i.i.d. uniform [0, 1] random variables which are also independent of the
X� n, i . Suppose t(n)>', and if P[ |X� n, 1 |=Ln('�t(n)]>0, define

E(n, i)={ |X� n, i |<Ln \ '
t(n)+ , or |X� n, i |=Ln \ '

t(n)+

andW� i�
1&

'
t(n)

&P { |X� n, i |<Ln \ '
t(n)+=

P { |X� n, i |=Ln \ '
t(n)+= = . (3.21)

If, on the other hand, P[ |X� n, 1 |=Ln('�t(n))]=0, define

E(n, i)={ |X� n, i |<Ln \ '
t(n)+= . (3.22)

Then it is easy to see that

P[E(n, i)]=1&'�t(n). (3.23)
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Also for large n and each L>0

P[E(n, i) occurs for all i�t(n) and |DT� n |�L]

�P[E(n, i) occurs for all i�t(n)]&P[ |DT� n |>L]

=\1&
'

t(n)+
t(n)

&P[ |DT� n |>L]�
3
4

e&'&P[ | DT� n |>L.]

By virtue of (3.5) and (3.17)

P[ |DT� n |>L]�P {}DT� n&
r

t(n)
Cn }+ s

t(n)
|Cn |>L=

�P {}DT� n&
r

t(n)
Cn }>L&

s
=

Ln \ '
t(n)+= .

Thus, by (3.13) and (3.17), there exists a constant K1=K1(=, ') such that

P { |DT� n |>K1Ln \ '
t(n)+=�

1
8

e&'. (3.24)

It follows that for all large n

P {E(n, i) occurs for all i�t(n) and |DT� n |�K1 Ln \ '
t(n)+=�

1
2

e&'. (3.25)

Furthermore, if the event in braces in (3.25) occurs, then

|T� n |�|DT� n |+ :
r

j=1

|X� n, in( j) |

�K1Ln \ '
t(n)++rLn \ '

t(n)+�(K1+s) Ln \ '
t(n)+ a.s.

This means that

P { |T� n |�(K1+s) Ln \ '
t(n)+=�

1
2

e&'. (3.26)

On the other hand, by (3.18),

P[ |T� n |�L� ]�
K0 L�

- t(n) Un(#Ln('�t(n)))
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for any L� �#Ln('�t(n)). Applying this to

L� =#Ln \ '
t(n)+6\(K1+s) Ln \ '

t(n)++ ,

we obtain from (3.26) that

(# 6 (K1+s)) Ln('�t(n))

- t(n) Un(#Ln('�t(n)))
�

1
2K0

e&'.

This implies (3.20) with K(#)=[2K0 e'(#6 (K1+s))]2.

Step ii. Next define the truncated variables

Yn, i=\X� n, i 7Ln \ '
t(n)++6 \&Ln \ '

t(n)++
and notice that

2 Var(Yn, 1)=Var(Yn, 1&Yn, 2)=E(Yn, 1&Yn, 2)2

�E {(X� n, 1&X� n, 2)2 1 { |X� n, 1 |

�2Ln \ '
t(n)+ , |X� n, 2 |�2Ln \ '

t(n)+==
+4L2

n \ '
t(n)+ P{ |X� n, 1 |>2Ln \ '

t(n)+
or |X� n, 2 |>2Ln \ '

t(n)+=
because |Yn, 1&Yn, 2 |�|X� n, 1&X� n, 2 | (as an easy examination of the
various cases shows) and |Yn, 1 | and |Yn, 2 | do not exceed Ln('�t(n)). Since
X� n, 1&X� n, 2 has the distribution of X� s

n, 1 , we have

2 Var(Yn, 1)�E {(X� s
n, 1)2 1 { |X� s

n, 1 |�4Ln \ '
t(n)+==

+8L2
n \ '

t(n)+ P{ |X� n, 1 |>2Ln \ '
t(n)+=

�Un \4Ln \ '
t(n)+++8L2

n \ '
t(n)+

_P { |X� n, 1 |>2Ln \ '
t(n)+= . (3.27)
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Furthermore, if mn is a median of X� n, 1 , then for '�t(n)< 1
2 we have

|mn |�Ln('�t(n)). A standard symmetrization inequality (see Lemma V.5.1
in Feller [5]) then gives

P{ |X� s
n, 1 |>Ln \ '

t(n)+=�
1
2

P { |X� n, 1&mn |>Ln \ '
t(n)+=

�
1
2

P { |X� n, 1 |>2Ln \ '
t(n)+= .

Consequently, from (3.27),

Var(Yn, 1)�Un \4Ln \ '
t(n)+++16L2

n \ '
t(n)+

_P { |X� s
n, 1 |>Ln \ '

t(n)+=
�17Un \4Ln \ '

t(n)++ . (3.28)

It will also be useful to take

an=E(Yn, 1).

Our task in this step is to deduce that for suitable x=x(') and all
m=0, 1, 2, ...,

P {E(n, i) occurs for all i�t(n) and

} :
t(n)&m

i=1

(X� n, i&an)}�xLn \ '
t(n)+=�

1
4

e&', (3.29)

provided n is large enough. Recall from (3.21) and (3.22) that
|X� n, i |�Ln('�t(n)) when E(n, i) occurs. Thus on the event in braces in
(3.29), X� n, i=Yn, i , and so the probability in (3.29) is the same as

P {E(n, i) occurs for all i�t(n) and

} :
t(n)&m

i=1

(Yn, i&an)}�xLn \ '
t(n)+= .
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By Chebyshev's inequality, (3.25), and (3.28), this is no smaller than

P[E(n, i) occurs for all i�t(n)]&P {} :
t(n)&m

i=1

(Yn, i&an)}>xLn \ '
t(n)+=

�
1
2

e&'&
t(n) Var(Yn, 1)
x2L2

n('�t(n))

�
1
2

e&'&
17t(n) Un[4Ln('�t(n))]

x2L2
n('�t(n))

.

In addition, by (3.20), the last expression is no smaller than

1
2

e&'&
17K(4)

x2

and this will exceed 1
4e&', provided x2 is chosen greater than 68K(4) e'.

This establishes (3.29).

Step iii. To complete the proof of (3.14), we observe that, by virtue
of (3.21) and (3.22), |X� n, i |�Ln('�t(n)) on E(n, i), and |X� n, i |�Ln('�t(n))
on Ec(n, i). Thus for each i at least one of the following two inequalities
holds:

'
t(n)

�P {Ec(n, i) and X� n, i�Ln \ '
t(n)+=�

'
2t(n)

, (3.30)

or

'
t(n)

�P {Ec(n, i) and X� n, i�&Ln \ '
t(n)+=�

'
2t(n)

. (3.31)

For the sake of argument let us assume that (3.30) holds for infinitely many
values of n and, then by selecting a further subsequence (if necessary), we
may assume that (3.30) holds for all n. Now define events G(n, m) as

{X� n, i�Ln('�t(n)) and E c(n, i) occurs for exactly m values of i�t(n),

say for i # Jn=[ j1 , ..., jm], whereas E(n, i) occurs for i � Jn ,

and also } :
i � Jn

(X� n, i&an)}�xLn ('�t(n))= . (3.32)
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Then for fixed m, m>s,

P[G(n, m)]�\t(n)
m +\ '

2t(n)+
m

P {E(n, i) occurs for all i�t(n) and

} :
t(n)&m

i=1

(X� n, i&an)}�xLn \ '
t(n)+=

�\t(n)
m +\ '

2t(n)+
m 1

4
e&' (by (3.29))

�
1
4

( 1
4')m

m!
e&', (3.33)

provided n is so large that (3.29) applies and t(n)>2m.
Suppose the event G(n, m) in (3.32) occurs. Write

DT� n = :

i � Jn

i � [in(1), ..., in(r)]

X� n, i+ :

i # Jn

i � [in(1), ..., in(r)]

X� n, i

= :
i � Jn

X� n, i& :
i # [in(1), ..., in(r)]"Jn

X� n, i+ :
i # Jn"[in(1), ..., in(r)]

X� n, i .

Since G(n, m) occurs,

:
i � Jn

X� n, i�(t(n)&m) an&xLn \ '
t(n)+

and also E(n, i) occurs for i � Jn . For these i, &X� n, i� &Ln('�t(n)), so

& :
i # [in(1), ..., in(r)]"Jn

X� n, i�&sLn \ '
t(n)+ .

Lastly, if i # Jn , then X� n, i�L('�t(n)), so

:
i # Jn"[in(1), ..., in(r)]

X� n, i�(m&s) Ln \ '
t(n)+ .

Putting these three bounds together shows that, when G(n, m) occurs,

DT� n�t(n) an+m \Ln \ '
t(n)+&an+&(2s+x) Ln \ '

t(n)+ . (3.34)
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We need one more estimate. It must be the case that

lim sup
n � �

t(n) |an |
Ln('�t(n))

<�. (3.35)

Suppose in fact that (3.35) fails, so that for arbitrary T>0,

t(n) |an |�TLn \ '
t(n)+ (3.36)

for infinitely many n. Suppose the event in braces on the left-hand side of
(3.29) occurs with m=0. Then E(n, i) occurs for 1�i�t(n) and

|DT� n&t(n) an |= } :
t(n)

i=1

(X� n, i&an)& :
i # [in(1), ..., in(r)]

X� n, i }
�(x+s) Ln \ '

t(n)+ .

Thus by (3.36)

|DT� n |�t(n) |an |&(x+s) Ln \ '
t(n)+>(T&x&s) Ln \ '

t(n)+ .

From (3.29) it now follows that

lim sup
n � �

P { | DT� n |>(T&x&s) Ln \ '
t(n)+=�

1
4

e&'.

But this is not possible for large T because of (3.24). Thus, indeed, (3.35)
holds, and so there is a K2>0 such that

K2Ln \ '
t(n)+�t(n) |an |�&t(n) an .

(3.35) also means that we can choose n large enough for

an�
1
2

Ln \ '
t(n)+ .

Finally, we deduce from these inequalities and (3.34) that on G(n, m)

DT� n�\&K2+
1
2

m&2s&x+ Ln \ '
t(n)+ ,
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and if we choose m>4(K2+2s+x) this implies

DT� n�
1
4

mLn \ '
t(n)+ .

Consequently, by (3.33),

lim inf
n � �

P {DT� n�
1
4

mLn \ '
t(n)+=�

1
4

( 1
4')m

m !
e&', (3.37)

which is true for all sufficiently large m. On the other hand, by (3.17) and
(3.13), for m�8(s+{)�=,

lim sup
n � �

P {DT� n�
1
4

mLn \ '
t(n)+=

�lim sup
n � �

P {DT� n&
rCn

t(n)
�

1
8

m==
=

1

- 2? |
�

(m=�8&{)�_
e&(1�2) t2 dt

�
_

- 2? (m=�8&{)
exp {&

1
2_2 \1

8
m=&{+

2

= . (3.38)

(Interpret the final expression in (3.38) as 0 if _=0.) (3.38) is clearly
incompatible with (3.37) as m � �, and this contradiction completes the
proof of (3.14).

Step iv. In the case where (3.6) holds we are done, since we can then
go through the preceding argument with Xn, i and Cn replaced by
Xn, i&(n&s0)&1 Cn and 0, respectively. (3.14) with Cn=0 then gives the
desired (3.10). Next consider the case when (3.7) holds. To obtain
Theorem 2.2 from (3.14) in this case, we use a simple property of infinitely
divisible distributions to show that (3.15) holds.

Assume, to the contrary, that there exists a sequence n1<n2< } } } such
that

|Cnj
|

t(nj)
� �, j � �. (3.39)

Then first we use (3.11) to write

t(n) T� n

|Cn |
=

t(n)DT� n

|Cn |
+

t(n) �i # I(n) X� n, i

|Cn |
. (3.40)
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By definition of Ln we have

P {}Xnj, i&
Cnj

t(nj) }>Lnj \
'

t(nj)+ for some i�t(nj)=�'. (3.41)

If the event in braces in (3.41) does not occur, then by (3.5), (3.14), and
(3.39),

} :
i # I(nj)

X� nj , i }�sLnj \
'

t(nj)+=o \
|Cnj

|

t(nj)+ .

Since (3.14) holds for all '>0, it follows from (3.40) that

t(nj) T� nj

|Cnj
|

&
t(nj)

DT� nj

|Cnj
|

w�P 0. (3.42)

Also (3.41) and Lnj
('�t(nj))=o( |Cnj

|�t(nj)) imply that [t(nj) X� nj , i �|Cnj
|],

1�i�t(nj), is a uniformly asymptotically negligible sequence. Now (3.42),
(3.39), and (3.13) imply

t(nj) T� nj

|Cnj
|

&r(nj) sgn(Cnj
) w�P 0 (3.43)

and so

lim
j � �

P {t(nj)
|T� nj

|

|Cnj
|
�s+1==0.

Take a further subsequence, if necessary, so that t(nj) T� nj
�|Cnj

| has a limiting
distribution. Since [t(nj) X� nj , i �|Cnj

|], 1�i�t(nj), is uniformly asymptotically
negligible, this must be an infinitely divisible distribution (cf. Gnedenko
and Kolmogorov [7, Theorem 24.2], or Feller [5, Chap. XVII.7]) and the
only infinitely divisible distributions with compact support are the one-
point distributions (cf. Feller [5, p. 177]). On the other hand, (3.43) and
(3.7) would show that any limit distribution of t(nj) Tnj

�|Cnj
| has support

on s1 and s2 or on &s1 and &s2 . This contradiction shows that (3.39) is
impossible, so that (3.15) holds. As noted before, (3.14) plus (3.15) yield
(3.10), and therefore (2.13) for Fn=Cn �t(n).

Step v. In this step we go back to considering the Xn, i as vectors.
Again we take kn=n for ease of notation. To prove the last statement of
Theorem 2.2, consider first the case that (2.12) holds with Cn=0. Then
X� n, i=Xn, i in the preceding proof, irrespective of the distribution of r(n).
Then (3.14) with Cn=0 immediately gives (3.10) and this in turn gives
(2.13) with Fn=0 (because X� n, i=Xn, i).
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Next assume that Xn, i=BnXi . We must show that max1�i�t(n) |Bn Xi |
w�P 0. Define

&Bn&= :
d

k, l=1

|Bn(k, l)|.

We may assume that &Bn&{0, since BnXi=0 for those n with &Bn&=0,
and there is nothing to prove for them. For the remaining n we have

Xn, i=BnXi=&Bn&
Bn

&Bn&
Xi . (3.44)

Now assume that (2.13) holds, but that for some subsequence n1<n2< } } }

Fnj
� F0 {0 as j � �. (3.45)

We include in (3.45) the possibility that |Fnj
| � �. By taking a further sub-

sequence if necessary, we may assume that

Bnj
(k, l)

&Bnj
&

� M(k, l), 1�k, l�d, (3.46)

for some finite nonzero d_d matrix M=(M(k, l)). We may further
assume that &Bnj

& is bounded away from zero, for otherwise Xnj , i w�P 0
along some subsequence (by (3.44)) and this is ruled out by (2.13) and
(3.45). Therefore (2.13) and (3.46) imply that

MX1&
1

&Bnj
&

Fnj
w�P 0 ( j � �). (3.47)

By taking still a further subsequence, if necessary, we may assume that
Fnj

�&Bnj
& � A for some vector A # Rd. A must be finite because MX1 is a

finite (random) vector which does not depend on nj any longer. We must
then have MX1=A a.s. This equation, however, is impossible when the dis-
tribution of X1 is full. For if MX1=A a.s., then X1&A0 # N a.s. for some
A0 # Rd satisfying MA0=A and N=null space of M (note that N{Rd

when M is not the zero matrix). Thus (3.45) is impossible and we must
have Fn � 0.

If Fn � 0, then we may take Fn=0 and still preserve (2.13). In this case

:
i # I(kn)

Xkn , i w�P 0
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by virtue of (2.13) with Fn=0 and (3.5). Then by (2.12)

Tkn
&Ckn

= DTkn
&Ckn

+ :
i # I(kn)

Xkn , i O N(+, 7).

Now

D� Tkn
&Ckn

=Tkn
&Ckn

& :
i # I� (kn)

Xkn , i ,

where I� is the index set of the variables removed in the deletion scheme D� .
Thus, if D� satisfies (2.9) and (2.10) and Fn=0, then (2.14) follows. This
completes the proof of Theorem 2.2. K

4. PROOF OF THEOREM 2.1

We shall prove separately that (2.i) � (2.7) for i=2, 3, 4, 5, and that
(2.5) � (2.6). If we use the deletion scheme which deletes no observations
at all, then (2.2) and (2.3) both reduce to

Bn(Sn&An) O N(0, I ). (4.1)

It is the principal result of Hahn and Klass [10] that this is equivalent to
(2.7); in the one-dimensional case this is of course the famous characteriza-
tion of Le� vy [16, Theorem 36.3], of the domain of attraction of the normal
law. The equivalence of (2.2) and (2.3) to (4.1) for any of our permitted
deletion schemes will follow easily from Theorem 2.2. Similarly, the other
equivalences, in the case when no observations are deleted, were proven in
Maller [18] and are related to Le� vy [16, Theorem 38], which roughly
speaking states that in one dimension (4.1) holds if and only if the maximal
summand is small with respect to the fluctuations of Sn . Our proofs here
are imitations of Maller's or reductions by simple algebra to the proofs of
Maller [18]. We begin with

(2.2) � (2.7) and (2.3) � (2.7)

Let (2.2) hold for some deletion scheme D satisfying Condition 1. Then
we can apply Theorem 2.2 to the random vectors

Xn, i=BnXi , 1�i�n.

(2.2) then implies (2.12) with kn=n=t(n) and Cn=Bn An . By taking for D�
the deletion scheme which deletes no variables at all, we obtain from (2.14)
that (4.1) holds.
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In the same way, (4.1) implies (2.2) for any deletion scheme which
satisfies Condition 1.

If (2.3) holds, then we apply Theorem 2.2 with

Xn, i=Bn \Xi&
1
n

An+
and Cn=0. Then, in the notation of (2.11), (2.3) says

DTn O N(0, I )

and, hence, by (2.14)

Tn=Bn(Sn&An) O N(0, I ).

Thus, again (2.3) implies (4.1), and the converse is proved in the same way.
Hence, both (2.2) and (2.3) are equivalent to (4.1).

Next, (4.1) is equivalent to (2.7) by Hahn and Klass [10, Theorem 5]
and Maller [18, Theorem 1.1].

(2.4) O (2.7)

Next assume that (2.4) holds. We will show that (2.7) must hold. Our
first task is to replace DX� n by EX in DV� n (see (1.10)). We follow Maller
[18, Section 3(b)] to show that E |X|<� and that, with +=E(X),

n |Bn( DX� n&+)| 2 w�P 0 (4.2)

and

Bn _ :
i � I(n)

(Xi&+)(Xi&+)T& BT
n w�P I. (4.3)

This proof runs as follows. As in Maller [18, Lemma 2.1], we may replace
Bn by the symmetric matrix (BT

n Bn)1�2 in (2.4) (simply multiply by the
orthogonal matrix (BT

n Bn)1�2 B&1
n on the left and by its transpose on the

right; A1�2 denotes the symmetric square root of a positive definite matrix
A). Then, if Bn is taken symmetric, let

Bn=%(n) 4(n) %(n)T
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for some orthogonal matrix %(n) and diagonal matrix 4(n) with *j (n) as
the ( j, j) entry; the *j (n) are the eigenvalues of Bn . Then, as in Section 3(b)
of Maller [18], if %j (n) denotes the j th column of %(n), (2.4) implies

*2
j (n) %j (n)T DV� n %j (n)

=*2
j (n) %j (n)T _ :

i � I(n)

XiX T
i &(n&r) DX� n

DX� T
n & %j (n) w�P 1, (4.4)

1� j�d.

This in turn implies

�i � I(n) |Xi&
DX� n | 2

b2
n

=
�i � I(n) |Xi |

2&(n&r) | DX� n | 2

b2
n

w�P 1, (4.5)

where

b2
n= :

d

j=1

*&2
j (n)=trace(B&2

n ).

To show that E |X|<�, first assume E |X| 2=�. Then, still following
Maller [18], we have for any T>0

(n&r) |DX� n | 2�
2

n&r } :
i � I(n)

Xi 1[ |Xi |�T]}
2

+
2

n&r } :
i � I(n)

Xi 1[ |Xi |>T] }
2

�2nT 2+
2

n&s
:

i � I(n)

|Xi |
2 :

n

i=1

1[ |Xi |>T ] a.s. (4.6)

By choosing T large, this is with high probability small with respect to
�i � I(n) |Xi |

2. Indeed, if r(n)�s, then

:
i � I(n)

|Xi |
2� :

n

i=1

|Xi |
2&(s largest values of |Xi |

2, 1�i�n)

� :
n

i=1

|Xi |
2 1[ |Xi |�T] (4.7)

as soon as there are more than s values i�n with |Xi |>T, and this occurs
with probability approaching 1. Thus, since

1
n

:
n

i=1

|Xi |
2 1[ |Xi |�T] w�P E( |X1 |2 1[ |X1 |�T]),
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we have

P {1
n

:
i � I(n)

|Xi |
2�

1
2

E( |X1 | 2 1[ |X1 |�T])=� 1. (4.8)

By letting T � � in this, we see that

1
n

:
i � I(n)

|Xi |
2 w�P �

for any deletion scheme satisfying (1.4) (and when E|X| 2=�). Thus by
(4.6) and the weak law of large numbers

(n&r) |DX� n | 2

�i � I(n) |Xi |
2 �op(1)+2P[ |X |>T]

so that, on letting T � �,

(n&r) |DX� n | 2=op \ :
i � I(n)

|Xi |
2+ .

(Here op(Zn) denotes a sequence of random variables such that op(Zn)�Zn

converges in probability to 0. Also Op(Zn) will denote a sequence such that
Op(Zn)�Zn is stochastically bounded (tight).) Therefore, if E |X | 2=�, then
(4.5) implies

1
b2

n

:
i � I(n)

|Xi |
2 w�P 1.

By Theorem 2.2 with d=1 and Xn, i=b&2
n |Xi |

2 we then also have

1
b2

n

:
n

i=1

|Xi |
2 w�P 1. (4.9)

This implies E |X |<� as in Maller [18, Section 3(b)]. If, on the other
hand, E |X | 2<�, then of course E |X |<�. Thus +=EX certainly exists.

Now we wish to deduce from (4.4) that the *2
j (n) are O(n&1) as n � �.

This we do as follows. Since the distribution of the Xi is full, we have

: := inf
|u|=1

P[ |uT(Xi&+)|�2=]>0 (4.10)
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for some =>0. Also, by the weak law of large numbers, we have
DX� n=X� n+Op(max1�i�n |Xi |�n) w�P +. Thus the events

Ain=[ |%j (n)T (Xi&+)|�2=, | DX� n&+|�=]

have probability at least :�2 for large n. But on Ain

|%j (n)T (Xi&
DX� n)|�|%j (n)T (Xi&+)|&=�=

and so

%T
j (n)DV� n%j (n)= :

i � I(n)

|%j (n)T (Xi&
DX� n)|2

�=2 :
i � I(n)

1[Ain]�=2 \ :
n

i=1

1[Ain]&r+ .

By the weak law of large numbers we therefore have for = satisfying (4.10)

P[%j (n)T DV� n%j (n)� 1
4:=2n] � 1. (4.11)

With this, (4.4) implies the required relation:

*2
max(Bn) := max

1� j�d
*2

j (n)=O(n&1). (4.12)

(If in the previous paragraph we replace %j (n) throughout by \min(n),
where \min(n) is an eigenvector corresponding to the minimum eigenvalue
of DV� n , we obtain instead of (4.11) the relation

P[*min( DV� n)� 1
4:=2n] � 1, (4.13)

where *min(DV� n) is the minimum eigenvalue of DV� n . We will need this rela-
tionship later.)

To prove (4.2), use DX� n w�P + and (4.12) to write

n |Bn(DX� n&+)| 2�n*2
max(Bn) |DX� n&+| 2=Op( |DX� n&+| 2) w�P 0.

This gives (4.2). Using X� n w�P + and DX� n w�P +, thus X� n& DX� n w�P 0,
together with (4.2), we then obtain

n1�2 |Bn(X� n&+)|�n1�2 |Bn(DX� n&+)|+op(1) w�P 0. (4.14)

That is, (4.2) also holds if no observations are deleted. Finally (4.3) then
follows from (2.4) by some straightforward algebra.
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Now, having proved that (2.4) implies (4.3) and (4.2), we apply
Theorem 2.2 with d replaced by d 2 and Xn, i equal to the matrix
Bn(Xi&+)(Xi&+)T Bn stacked column-wise into a d 2_1 vector; in the
usual notation,

Xn, i=vec[Bn(Xi&+)(Xi&+)T Bn].

Then (4.3) asserts that after r summands have been deleted from �n
i=1 Xn, i

according to deletion scheme D, the resulting sum converges in distribution
to a d 2_1 normal random variable degenerate at the point v=vec(I ).
Theorem 2.2 then shows that the full sum �n

i=1 Xn, i converges to v, i.e.,
that (4.3) holds for the deletion scheme which deletes no summands.
Finally, Theorem 1.1 of Maller [18] (use (1.7a) and (1.7b) with An=+;
recall (4.14)) then shows that (2.7) holds.

(2.7) O (2.4)

Conversely, assume that (2.7) holds. Again by Theorems 1.1 and 2.1 of
Maller [18], E |X |:<� for 0�:<2 and, with +=E(X),

Bn(Sn&n+) O N(0, I )

for some matrices Bn � 0. Moreover, by the conditions for convergence to
normality (cf. Gnedenko and Kolmogorov [7, Theorem 25.1]) for each
u # S d&1 and =>0

nP[ |uTBnX |>=] � 0 as n � �.

Consequently, for each =>0, nP[ |BnX |>=] � 0 and max1�i�n |Bn Xi |
w�P 0. Again with X� n and DX� n as in (1.9) we then also have

n|Bn( DX� n&X� n)| 2

�3n }Bn \ 1
n&r

&
1
n+ :

i � I(n)

Xi }
2

+3n }Bn

n
:

i # I(n)

Xi }
2

�
3r2

n } Bn

n&r
:

i � I(n)

Xi }
2

+
3r2

n
max

1�i�n
|BnXi |

2=op(1), (4.15)

because |(n&r)&1 �i � I(n) BnXi |=|Bn
DX� n |�max1�i�n |BnXi | w�P 0. Then

also

Bn
DV� nBT

n =Bn _ :
n

i=1

XiX T
i &(n&r) DX� n

DX� T
n & :

i # I(n)

XiX T
i & BT

n

=Bn _ :
n

i=1

XiX T
i &nX� nX� T

n & BT
n +op(1).
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Finally, as shown in Section 3(a) of Maller [18], under (2.7) we have

Bn _ :
n

i=1

(Xi&X� n)(Xi&X� n)T& BT
n

=Bn _ :
n

i=1

XiX T
i &nX� nX� T

n & BT
n w�P I.

Hence (2.4) holds and we have shown that (2.4) and (2.7) are equivalent.
For the next equivalence the following lemma is useful. Let Y u

i =(uTXi)
2,

1�i�n, and let M (n)
n (u)� } } } �M (1)

n (u) denote Y u
1 , ..., Y u

n arranged in
increasing order. More precisely, let mn( j), n�1, 1� j�n, be the number
of Y u

i satisfying Y u
i >Y u

j , 1�i�n, or Y u
i =Y u

j , 1�i� j, and let M (t)
n (u)=

Y u
j if mn( j)=t. Let

(0)S u
n=S u

n=Y u
1+Y u

2+ } } } +Y u
n , (4.16)

and if 1�t<n, let

(t)S u
n=S u

n&M (1)
n (u)& } } } &M (t)

n (u). (4.17)

Lemma 4.1. If r(n)�s, 0<=<1�(s+1), and

max
i � I(n)

Y u
i �= :

i � I(n)

Y u
i (4.18)

for some u # S d&1, then for that u,

(1&(s+1) =) M (s+1)
n (u)�=(s+1)S u

n . (4.19)

Remark. Note that Lemma 4.1 holds trivially if r=s=0, in the sense
that

max
1�i�n

Y u
i �= :

n

i=1

Y u
i

for any 0<=<1 obviously implies (1&=) M (1)
n (u)�=(1)S u

n .

Proof of Lemma 4.1. Choose j1= j1(u), ..., jr= jr(u) such that
Y u

jk
=M (k)

n (u). Let

m=inf [k : jk � [in(1), ..., in(r)]],

166 KESTEN AND MALLER



File: DISTIL 169832 . By:DS . Date:06:10:97 . Time:11:21 LOP8M. V8.0. Page 01:01
Codes: 2220 Signs: 838 . Length: 45 pic 0 pts, 190 mm

so that M (1)
n (u), ..., M (m&1)

n (u) are among the r deleted points Y u
in(1) , ...,

Y u
in(r) , but M (m)

n (u) is not. Since jm � [in(1), ..., in(r)], we have
M (m)

n (u)=maxi � I(n) Y u
i . Thus by (4.18) and the fact that Y u

i �0 a.s.,

M (m)
n (u)�= { :

n

i=1

Y u
i &Y u

in(1)& } } } &Y u
in(r)=

�=[S u
n&Y u

j1
& } } } &Y u

jm&1
]

==[S u
n&Y u

j1
& } } } &Y u

jm
]+=Y u

jm

==(m)Su
n+=M (m)

n (u).

It follows that

(1&=) M (m)
n (u)�=(m)S u

n . (4.20)

We must have m�r+1. If m=r+1 this ends the first step of the proof.
If m�r, we continue as follows:

M (m+1)
n (u)�M (m)

n (u)�\ =
1&=+ (m)S u

n

=\ =
1&=+ :

i{ j1 , ..., jm+1

Y u
i +\ =

1&=+ Y u
jm+1

.

Since Y u
jm+1

=M (m+1)
n (u) this implies

\1&2=
1&= + M (m+1)

n (u)�\ =
1&=+ :

i{ j1 , ..., jm+1

Y u
i

or

M (m+1)
n (u)�\ =

1&2=+ (m+1)S u
n .

Note that m&1<r and if we iterate the above procedure t times, where
m+t=r+1, we obtain

M (r+1)
n (u)�\ =

1&(t+1) =+ (r+1)S u
n�\ =

1&(r+1) =+ (r+1)S u
n . (4.21)

By (4.20) this also holds when m=r+1.

167RANDOM DELETION



File: DISTIL 169833 . By:DS . Date:06:10:97 . Time:11:21 LOP8M. V8.0. Page 01:01
Codes: 2026 Signs: 963 . Length: 45 pic 0 pts, 190 mm

We now carry out the second step. (4.21) shows that

M (r+1)
n (u)�\ =

1&(r+1) =+ ( (s+1)S u
n+M (r+2)

n (u)+ } } } +M (s+1)
n (u))

�\ =
1&(r+1) =+ ( (s+1)S u

n+(s&r) M (r+1)
n (u)).

Thus, on [r�s],

M (s+1)
n (u)�M (r+1)

n (u)�\ =
1&(s+1) =+ (s+1)S u

n ,

as desired. K

(2.5) O (2.7)

Now suppose (2.5) holds. We will prove (2.7). By a matrix identity (Rao
[22, p. 60]) we have for any positive definite d_d symmetric matrix A and
d-vector Y that

Y TA&1Y= sup
u # S d&1

(uTY )2

uTAu
. (4.22)

In particular, for i � I(n),

X T
i \ :

i � I(n)

Xi X T
i +

&1

Xi= sup
u # S d&1

(uTXi)
2

�i � I(n) (uTXi)
2 . (4.23)

Thus, under (2.5), (4.18) of Lemma 4.1 holds uniformly in u # Sd&1 with
probability approaching 1 for each = # (0, 1�(s+1)). By (4.19) of
Lemma 4.1 we can then conclude that for x>0

sup
u

P[ (s+1)S u
n�xM (s+1)

n (u)] � 0 as n � �.

We can use this instead of (3.9) of Maller [18], as follows. If y>0, let
Y u

i ( y), 1�i�n, be i.i.d. random variables each with the distribution of Y u
1 ,

conditional on Y u
1< y. Let S u

n( y)=Y u
1( y)+ } } } +Y u

n( y). Then for n>s+1
and x>0
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P[ (s+1)S u
n�xM (s+1)

n (u)]

�P[ (s+1)S u
n�xM (s+1)

n (u), M (s+2)
n (u)<M (s+1)

n (u)]

�\ n
s+1+ |

[0, �)
P[S u

n&s&1( y)�xy] Pn&s&1[Y u
1< y]

_P[ min
1�i�s+1

Y u
i # dy].

Now follow virtually the same proof leading from (3.13) to (3.18) of Maller
[18], and this is (2.7). (As a minor correction, replace ``inf'' by ``sup'' and
``�'' by ``�'' in (3.10) of Maller [18] for a correct proof. Note that we
have not needed to assume continuity of the distribution of Y u

1 above, as
was done in Maller [18].)

(2.7) O (2.5)

Conversely let (2.7) hold, so by Lemma 2.3 of Maller [18], Vn is inver-
tible with probability approaching 1 and, by (1.8) of Maller [18], (2.5)
holds for the deletion scheme which deletes no variables, i.e.,

max
1�i�n

X T
i \ :

n

i=1

XiX T
i +

&1

Xi w�P 0.

By (4.23) this implies

inf
u

�n
j=1 (uTXj)

2

max1�i�n(uTXi)
2 w�P �. (4.24)

But

�i � I(n) (uTXi)
2

maxi � I(n)(uTXi)
2�

�n
j=1 (uTXj)

2&r max1�i�n(uTXi)
2

max1�i�n(uTXi)
2

=
�n

j=1 (uTXj)
2

max1�i�n(uTXi)
2&r.

Since P[r�s] � 1, (4.24) shows that

sup
u

maxi � I(n) (uTXi)
2

�i � I(n) (uTXi)
2 w�P 0.
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This means that DVn is invertible with probability approaching 1, and, via
(4.23), that

max
i � I(n)

X T
i \ :

i � I(n)

Xi X T
i +

&1

Xi w�P 0,

which is (2.5). So we have shown that (2.5) and (2.7) are equivalent.
The following lemma is useful. If A and B are symmetric d_d matrices,

write A�B if uTAu�uTBu for all u # Rd.

Lemma 4.2. For any deletion scheme D, DVn� DV� n and DV� &1
n � DV &1

n ,
if the inverses exist.

Proof. If A and B are symmetric positive definite d_d matrices and

A=B+xxT

for some x # Rd, then it is easy to verify that

A&1=B&1&
B&1xxTB&1

1+xTB&1x
.

Thus B&1�A&1. Applying this to

DV� n = :
i � I(n)

(Xi&
DX� n)(Xi&

DX� n)T

= DVn&(n&r) DX� n
DX� T

n (4.25)

we obtain DV� &1
n � DV &1

n . That DVn� DV� n follows from (4.25). K

(2.6) O (2.5)

Now suppose (2.6) holds. Thus, for each fixed =>0, with probability
approaching 1,

max
i � I(n)

(Xi&
DX� n)T DV� &1

n (Xi&
DX� n)�=2. (4.26)

If DV� n is invertible, then DVn is also invertible (see (4.25)), so when (4.26)
holds we have

max
i � I(n)

(Xi&
DX� n)T DV &1

n (Xi&
DX� n)�=2 (4.27)

because DV� &1
n � DV &1

n by Lemma 4.2. By virtue of (4.22), (4.27) implies

|uT(Xi&
DX� n)|�= - uT DVnu (4.28)
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uniformly in u # Sd&1 and 1�i�n, i � I(n). From (4.28) we obtain

|uTXi |�= - uT DVnu+|uT DX� n |. (4.29)

Now by the Cauchy�Schwarz inequality,

|uTDX� n |=
|�i � I(n) uTXi |

n&r
���i � I(n) (uTXi)

2

n&r

=�uT DVnu
n&r

�= - uT DVnu, (4.30)

on [n>r+1�=2]. (4.29) and (4.30) give

|uTXi |�2= - uT DVnu (4.31)

and, since this is uniform in u # Sd&1 and 1�i�n, i � I(n), we have, once
again by (4.22)

max
i � I(n)

X T
i

DV &1
n Xi�4=2.

Since this holds with probability approaching 1, we see that (2.5) holds.

(2.5) O (2.6)

Conversely let (2.5) hold. Then (again by (4.22)) for every =>0, (4.31)
holds with probability approaching 1, uniformly in u # Sd&1 and 1�i�n,
i � I(n). Thus on [n>r+1�=2]

|uT(Xi&
DX� n)|�2= - uT DVnu+|uT DX� n |�3= - uT DVnu (4.32)

by (4.30). We showed above that (2.4), (2.5), and (2.7) are equivalent, and
(2.7) implies E |X |<� by Maller [18]. Replacing Xi by Xi&E(X1), we
can assume that E(X1)=0. Then DX� n w�P 0. Also (4.13), which holds under
(2.4), hence under (2.5), and Lemma 4.2 imply that

P[inf
u

uT DVnu>cn] � 1 (4.33)

for some constant c>0. Thus (uT DVnu)�n is bounded away from 0,
uniformly in u # Sd&1, with probability approaching 1, and consequently,
uniformly in u # Sd&1,

uT DV� nu=uT DVnu&(n&r) uT DX� n
DX� T

n u

=(1+op(1)) uT DVnu.
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Hence DV� n is invertible with probability approaching 1, and also (4.32)
gives

|uT(Xi&
DX� n)| 2�10=2uT DV� nu

with probability approaching 1. Since this holds uniformly in u # Sd&1 and
1�i�n, i � I(n), we get

max
i � I(n)

(Xi&
DX� n)T DV� &1

n (Xi&
DX� n)�10=2.

This holds with probability approaching 1, and =>0 is arbitrary, so (2.6)
holds. We have shown that (2.5) and (2.6) are equivalent and completed
the proof of Theorem 2.1. K

5. PROOFS OF EXAMPLES

Proof of Example 2.3. The idea behind this proof is to define an i.i.d.
sequence Xi in R2 which takes a random value Xi (1)�0 on the x-axis
(say) on average 500 of the time, and a random value Xi (2)�0 on the
y-axis the remaining time. Xi (1) will dominate Xi (2) in a certain sense, so
that X (1)

n , the largest in modulus of the Xi=(Xi (1), Xi (2)), will lie on the
x-axis, taking values no larger than �n

i=1 Xi (1), with probability approach-
ing 1. Then (X (1)

n )T V &1
n X (1)

n will be of order of magnitude

�
n

i=1

X 2
i (1)< :

n

j=1

X 2
j (1) (5.1)

and we can make this converge to 0 in probability by choosing the dis-
tribution of Xi (1) appropriately. Then (2.19) will hold. On the other hand,
max1�i�n X T

i V &1
n Xi will be bounded below by an analogous expression

for the Xi (2) only (cf. (5.5) below)), and we can ensure that

�
n

i=1

X 2
i (2)< :

n

j=1

X 2
j (2) (5.2)

does not converge to 0 in probability, so that (2.20) will hold.
To carry out this program, for 1�i�n let [Xi (1), Xi (2), bi] be i.i.d. ran-

dom variables, with the bi independent of the (Xi (1), Xi (2)), i�1, such
that

P(bi=0)= 1
2=P(bi=1).
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Define an i.i.d. sequence of vectors in R2 by

Xi=\Xi (1)
0 + 1[bi=0]+\ 0

Xi (2)+ 1[bi=1], (5.3)

so that

Vn = :
n

i=1

Xi X T
i =_

:
n

i=1

X 2
i (1) 1[bi=0]

0

0

:
i=1

X 2
i (2) 1[bi=1]& . (5.4)

Thus

X T
i V &1

n Xi=
X 2

i (1) 1[bi=0]
�n

j=1 X 2
j (1) 1[bj=0]

+
X 2

i (2) 1[bi=1]
�n

j=1 X 2
j (2) 1[bj=1]

,

giving

max
1�i�n

X T
i V &1

n Xi�
max1�i�n X 2

i (2) 1[bi=1]
�n

j=1 X 2
j (2) 1[bj=1]

. (5.5)

We will choose the distribution of Xi (2) so that the last expression does
not converge to 0 in probability.

Let F1 and F2 be the distribution functions of X 2
i (1) and X 2

i (2), and sup-
pose that

F1(x)=1&
log x

x
, x�e, (5.6)

so that

A1(x) :=|
x

0
P[X 2

1(1)> y] dy (5.7)

is slowly varying. Suppose also for simplicity that F1 is continuous on
[0, e] and F1(0)=0. About F2 , we assume that F2(0)=0,

1&F2(x)�
- log x

x
for large x (5.8)

and

A2(x) :=|
x

0
P[X 2

1(2)> y] dy is not slowly varying. (5.9)
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This means that

A� 2(x) :=|
x

0
P[X 2

1(2) 1[b1=1]> y] dy

= 1
2|

x

0
P[X 2

1(2)> y] dy= 1
2A2(x)

also is not slowly varying. Thus it is not true that

max1�i�n X 2
i (2) 1[bi=1]

�n
j=1 X 2

j (2) 1[bj=1]
w�P 0,

because this is equivalent, by Theorem 2.1 of Kesten and Maller [15], to
the condition x(1&F2(x))�A� 2(x) � 0, and thus, via Feller [5, p. 283], to
the slow variation of A� 2(x). Then (5.5) proves (2.20).

On the other hand, the slow variation of

A� 1(x) :=|
x

0
P[X 2

1(1) 1[b1=0]> y] dy= 1
2A1(x)

shows that (5.1) converges to 0 in probability, and this will suffice for
(2.19), as we now demonstrate. Xi (1) dominates Xi (2) in the sense that

�n
i=1 X 2

i (2)
�n

i=1 X 2
i (1) 1[bi=0]

w�P 0, (5.10)

which we prove as follows. Fix T>0 and for n>T define Ln=Ln(T) so
that

n[1&F1(Ln)]=T,

as we may by continuity of F1 . This means by (5.6) that n log Ln=TLn for
large n, so Ln tn log n�T. If $>0 we have by (5.8) that

P {�
n

i=1

X 2
i (2)>$Ln=�nP[X 2

1(2)>$Ln]=n[1&F2($Ln)]

�
n - log($Ln)

$Ln
=O {n - log n

n log n =� 0.
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On the other hand,

P {�
n

i=1

X 2
i (1) 1[bi=0]�Ln==Pn[X 2

1(1) 1[b1=0]�Ln]

={1
2

[1+F1(Ln)]=
n

={1
2 \2&

T
n +=

n

� e&T�2.

It follows that

P {�
n

i=1

X 2
i (2)>$ �n

i=1 X 2
i (1) 1[bi=0]=

�P {�
n

i=1

X 2
i (2)>$Ln=+P {�

n

i=1

X 2
i (1) 1[bi=0]�Ln =

=o(1)+e&T�2.

This can be made arbitrarily small by choosing T large. Thus (5.10) holds.
This in turn means that the event

En={X 2
i (1)> �

n

j=1

X 2
j (2) and bi=0 for some i�n=

occurs with probability approaching 1 as n � �. When En occurs, X (1)
n

must lie in the x-direction. In fact

X (1)
n =\Xin

(1)
0 + , (5.11)

where in is the i for which �n
i=1 Xi (1) 1[bi=0] is achieved. This is a well-

defined random variable when En occurs and is even unique with proba-
bility 1 on En , since F1 is continuous. But when (5.11) holds, (5.4) shows
that

(X (1)
n )T V &1

n X (1)
n =

X 2
in
(1)

�n
j=1 X 2

j (1) 1[bj=0]

=
max1�i�n(X 2

i (1) 1[bi=0])
�n

j=1 X 2
j (1) 1[bj=0]

.
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If m=m(n)=�n
i=1 1[bi=0], then the last ratio has the same distribution

as max1�i�m X 2
i (1)��m

j=1 X 2
j (1). This converges to 0 in probability,

because m(n) w�P �, m(n) is independent of the Xi (1), and (5.1) converges
to 0 in probability (as seen above). Thus (2.19) holds.

This completes the proof, subject to finding a distribution F2 satisfying
(5.8) and (5.9). Note that

1&F2(x)=\ d
dx+

+

A2(x) (5.12)

must decrease to 0. Thus A2(x) has to be concave, continuous, with a
derivative tending to 0 as x � � and with 0�(d�dx)+ A(x)�1. Conver-
sely, given such an A2(x), we can define F2(x) to satisfy (5.12). We will
choose A2(x) as a piecewise linear function. Define sequences an and bn by
a0=0, b1=e&2, and for n�1,

an=e2(n !)2
, bn+1=

(n+1)!&n !
an+1&an

.

Then define A2(a0)=0, A2(an)=n ! for n�1, and

A2(x)=A2(an&1)+bn(x&an&1) for x # (an&1 , an), n�1.

It is easy to check that bn is positive and decreasing, thus the continuous,
piecewise linear function A2(x) is increasing and concave. Also for n�1,

bn=
A2(an)&A2(an&1)

an&an&1

,

and, since A2(an)�A2(an&1) � � and an�an&1 � �, we have

bn t
A2(an)

an
=

- log(an)

- 2 an

<
- log(an)

an

and

A2(an �2)
A2(an)

=
(n&1)!+bn(an�2&an&1)

n !
� 1�2

as n � �. These show that A2(x) is not slowly varying, that

0�\ d
dx+

+

A2(x)�b1�1
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for all x, and that

\ d
dx++ A2(x)�

- log(x)
x

for large x. We therefore need only take

1&F2(x)=\ d
dx+

+

A2(x)

to complete the construction. K

Proof of Example 2.4. Let the Xi be symmetric i.i.d. random variables
with mass pj on \aj , where the parameters are chosen such that
0<aj A �, �j�1 pj=1�2, pj+1 �pj � 0,

pja2
j =2 j, (5.13)

and

[ pk]1�2 �k
1 pja3

j

[�k
1 pj a2

j ]3�2 �2, k�1. (5.14)

It is easy to see that one can choose such pj and aj inductively. The deletion
scheme is defined separately for different blocks of values of n. Let
nk :=w1�pk x. For nk<n�nk+1 the scheme is to remove from the sample
all Xi with |Xi |�ak+1 , i�n. Thus for such n,

DSn= :
n

i=1

XiI[|Xi |�ak].

Then, with

_2
k :=Var(XiI[|Xi |�ak])=2 :

k

j=1

pj a2
j =2(2k+1&1) (by (5.13)),

we have

DSnk+1

_k - nk+1

t

DSnk+1

- 2 ak+1

O N(0, 1) (5.15)

177RANDOM DELETION



File: DISTIL 169843 . By:DS . Date:06:10:97 . Time:11:21 LOP8M. V8.0. Page 01:01
Codes: 2420 Signs: 1338 . Length: 45 pic 0 pts, 190 mm

as k � �. This follows from Liapunov's theorem; Liapunov's condition for
(5.15) is immediate from (5.14) and pj+1 �pj � 0 (see Feller [5, p. 286]). In
fact, more is true;

DSn

_k - n
O N(0, 1)

whenever n, k � � in such a way that nk<n�nk+1 and n�nk � �.
On the other hand,

Snk+1
= DSnk+1

+ :
nk+1

i=1

XiI[|Xi |�ak+1], (5.16)

and the numbers of Xi with i�nk+1 which equal ak+1 and &ak+1��which
are each binomial (nk+1, pk+1)��converge in distribution to N+ and N& ,
respectively, where N+ and N& are two independent Poisson variables
with mean 1. Since pj+1 �pj � 0, we further have that

P[_i�nk+1 with |Xi |�ak+2]

�2nk+1 :
j�k+2

pj t2 :
j�k+2

pj�pk+1 � 0.

It follows from (5.15) and (5.16) that

Snk+1

_k - nk+1

t

Snk+1

- 2 ak+1

O N(0, 1) V G,

where G is the distribution of 2&1�2(N+&N&), i.e. of 2&1�2 times the dif-
ference of two independent mean 1 Poisson variables. Consequently, Snk+1

is not in the domain of attraction of the normal distribution. The number
of summands trimmed at time nk+1 is asymptotically N++N&; hence it is
tight. K
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