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Abstract

We study the singularities (blow-ups) of the Toda lattice associated with a real split semisimple Lie algebra g. It turns out that the
total number of blow-up points along trajectories of the Toda lattice is given by the number of points of a Chevalley group K(Fq)

related to the maximal compact subgroup K of the group Ǧ with ǧ= Lie(Ǧ) over the finite field Fq . Here ǧ is the Langlands dual
of g. The blow-ups of the Toda lattice are given by the zero set of the �-functions. For example, the blow-ups of the Toda lattice of
A-type are determined by the zeros of the Schur polynomials associated with rectangularYoung diagrams. Those Schur polynomials
are the �-functions for the nilpotent Toda lattices. Then we conjecture that the number of blow-ups is also given by the number of
real roots of those Schur polynomials for a specific variable. We also discuss the case of periodic Toda lattice in connection with the
real cohomology of the flag manifold associated to an affine Kac–Moody algebra.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction: Toda lattices and the blow-ups

Let us first give some notations and definitions of the real split semisimple Lie algebra g of rank l: We fix a split
Cartan subalgebra h with root system � = �(g, h) = �+ ∪ �−, real root vectors e�i

associated with simple roots
� = {�i : i = 1, . . . , l}. We also denote {h�i

, e±�i
} the Cartan–Chevalley basis of the algebra g which satisfies the

relations,

[h�i
, h�j

] = 0, [h�i
, e±�j

] = ±Cj,ie±�j
, [e�i

, e−�j
] = �i,j h�j

,

where (Ci,j ) is the l × l Cartan matrix of the Lie algebra g and Ci,j =�i (h�j
) (as used in [11]). For example, the Cartan

matrices for B2, C2 and G2 are given by,

B2 :
(

2 −2
−1 2

)
, C2 :

(
2 −1

−2 2

)
, G2 :

(
2 −1

−3 2

)
.
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The Lie algebra g admits the decomposition,

g= n− ⊕ h⊕ n+ = n− ⊕ b+ = b− ⊕ n+,

where n± are nilpotent subalgebras defined by n± = ⊕
�∈�± Re� with root vectors e�, and b± = n± ⊕ h are Borel

subalgebras of g. We denote by ǧ the real split Lie algebra with Cartan matrix given by the transpose of the Cartan
matrix of g (ǧ is called the Langlands dual of g). Note that g= ǧ if g is simple and not of type B or C.

We also fix a split Cartan subgroup H with Lie(H) = h and a Borel subgroup B with Lie(B) = b+ with B = HN

where N is a Lie group having the Lie algebra n+. We also denote Lie groups B− and N− with Lie(B−) = b− and
Lie(N−)=n−. Integral weights on h can be exponentiated to H . For example if � is a root then there is a corresponding
character �� defined on H .

Most of the results presented in this paper can be found in our recent paper [7], and the main purpose of this paper is
to give a brief summary of those, putting emphasis on the singular structure of the Toda lattice. In addition, we will also
discuss an extension to the case of periodic Toda lattice whose underlying algebra is given by an affine Kac–Moody
algebra.

1.1. Toda lattices: non-periodic case

The non-periodic Toda lattice equation related to real split semisimple Lie algebra g of rank l is defined by the Lax
equation [3,13],

dL

dt
= [L, A], (1.1)

where L is a Jacobi element of g and A is the n−-projection of L, denoted by �n−L,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L(t) =
l∑

i=1
bi(t)h�i

+
l∑

i=1
(ai(t)e−�i

+ e�i
),

A(t) = �n−L =
l∑

i=1
ai(t)e−�i

.

(1.2)

The Lax equation (1.1) then gives⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dbi

dt
= ai,

dai

dt
= −

(
l∑

j=1
Ci,j bj

)
ai.

(1.3)

The integrability of the system can be shown by the existence of the Chevalley invariants, {Ik(L) : k = 1, . . . , l},
which are given by the homogeneous polynomial of {(ai, bi) : i = 1, . . . , l}. (Recall that those correspond to the basic
invariants in C[h] of the Weyl group W , i.e. C[g]G�C[h]W with Ad-action of G.) The invariant polynomials also
define the commutative equations of the Toda equation (1.1),

�L

�tk
= [L, �n−∇Ik(L)] for k = 1, . . . , l, (1.4)

where ∇ is the gradient with respect to the Killing form, i.e. for any x ∈ g, dIk(L)(x) = K(∇Ik(L), x). Here {tk :
k=1, . . . , l} represent the flow parameters, and we will also denote tk by tmk

with the exponent mk of the basic invariant
Ik (recall mk = dk − 1 where dk is the degree of Ik , see e.g. [4]). For example, in the case of g = sl(l + 1; R), the
invariants Ik(L) and the gradients ∇Ik(L) are given by

Ik(L) = 1

k + 1
Tr(Lk+1) and ∇Ik(L) = Lk .
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Fig. 1. Isospectral polytope �	 of A2-Toda lattice. The Dynkin diagram of A2 is shown on the left, and each edge corresponds to A1-Toda lattice
whose Dynkin diagram is just one circle. For example, the edge from e to [1] = s1 corresponds to the system with a2 = 0. The element e ∈ S3
corresponds to the Lax matrix L whose diagonal part is given by (
3, 
2, 
1). Then the element [1] describes the Lax matrix with diag(
2, 
3, 
1),
i.e. we have the s1-action on the diagonal of L. Each element w then corresponds to the Lax matrix with w−1 ·(3, 2, 1)=(w−1(3), w−1(2), w−1(1)).

In this case, the degree of Ik is k + 1 and the exponent is mk = k. The set of commutative equations (1.4) is called
the Toda lattice hierarchy. Note that Eq. (1.3) is the first member of the hierarchy, i.e. t = t1. Then the real isospectral
manifold is defined by

Z(�)R = {(a1, . . . , al, b1 . . . , bl) ∈ R2l : Ik(L) = �k ∈ R, k = 1, . . . , l}.
The manifold Z(�)R can be compactified by adding the set of points corresponding to the singularities (blow-ups) of the
solution. Then the compact manifold Z̃(�)R is described by a union of convex polytopes �	 with 	= (	1, . . . , 	l ), 	i =
sgn(ai) [5],

Z̃(�)R =
⋃

	∈{±}l
�	.

Each polytope �	 is expressed as the closure of the orbit of a Cartan subgroup. Thus in an Ad-diagonalizable case with
distinct eigenvalues, the compact manifold Z̃(�)R is a toric variety, and the vertices of each polytope are labeled by the
elements of the Weyl group.

Example 1.1. For the case g= sl(l + 1; R), i.e. Al-type, we have

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 1 0 · · · 0

a1 b2 − b1 1 · · · 0

0 a2 b3 − b2 · · · 0

...
...

...
. . .

...

0 0 0 · · · −bl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Notice that a fixed point (a1 = · · · = al = 0) is a triangular matrix with the eigenvalues on the diagonal, and the total
number of fixed points is given by (l + 1)! = |Sl+1| (assuming all eigenvalues are distinct). Each fixed point is then
labeled by a unique element of the Weyl group Sl+1, and it is identified as a vertex of the isospectral polytope �	.
Then the isospectral polytope is just a permutohedron associated with Sl+1. For example, A2-Toda lattice, we have a
hexagon as the isospectral polytope whose vertices are the fixed points with the Lax matrices given by

Lw :=
⎛
⎜⎝


w−1(3) 1 0

0 
w−1(2) 1

0 0 
w−1(1)

⎞
⎟⎠ with 
1 > 
2 > 
3,

where w−1(i) represents a permutation of (3, 2, 1) associated to w ∈ S3 (see Fig. 1). In Fig. 2, we show the polytope
�	 for A3-Toda lattice. The vertices of the polytope are marked by the elements of the Weyl group S4. The faces and
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Fig. 2. Isospectral polytope �	 for A3-Toda lattice. The boundary of the polytope consists of the subsystems of the Toda lattice, in which eight
hexagons corresponds to A2-Toda lattices and six squares corresponds to A1 ×A1-Toda lattices. Those subsystems are marked by the corresponding
sub-Dynkin diagrams.
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Fig. 3. The isospectral manifold for the A1-Toda lattice. The left figure shows the invariant curve I1 = a1 + b2
1 = 
2, and the mark × indicates the

blow-up point, i.e. the divisor D{1}. The right figure shows the graphs of �±-polytopes with the Weyl action on the signs. This shows that �+ is
connected, and �− has two connected components with D{1}.

edges on the boundary of the polytope correspond to the subsystems given by ak = 0 for some k. In particular, each
one dimensional edge of the isospectral polytope corresponds to a A1-Toda lattice, which is given by the Lax pair,

L =
(

b̃k 1

ak b̃k+1

)
, A =

( 0 0

ak 0

)
.

If ak(0) > 0, the flow is complete, and ak(t1) → 0 as t1 → ±∞. The isospectral polytope is a connected line segment,
denoted by �+, with the end-points corresponding to the matrices with 
 > �,

L(t1 = −∞) =
(� 1

0 


)
, L(t1 = ∞) =

(
 1

0 �

)
.

If ak(0) < 0, the flow has a singularity (blow-up) in finite time. The isospectral polytope consists of two line segments,
denoted by �− (see Fig. 3).
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1.2. The �-functions and Painlevé divisors

The analytical structure of the blow-ups can be obtained by the �-functions, which are defined by

bk = d

dt1
ln �k, ak = a0

k

l∏
j=1

(�j )
−Ck,j , (1.5)

where a0
k are some constants. The tau-functions are given by [9],

�j (t1, . . . , tl) = 〈g(t1, . . . , tl) · vj , vj 〉, g = exp

(
l∑

k=1

tk∇Ik(L
0)

)
. (1.6)

Here vj is the highest weight vector in the fundamental representation of G, and 〈·, ·〉 is a pairing on the representation
space, and L0 is an initial data of L(t1, . . . , tl). The blow-up points (i.e. the singular points of (aj , bj )) are given by
the zeros of the �-functions, �j (t1, . . . , tl) = 0 for some j ∈ {1, . . . , l}. We then define the Painlevé divisor DJ for a
subset J ⊂ {1, . . . , l} as [5]

DJ :=
⋂
j∈J

{�j (t1, . . . , tl) = 0}, codimRDJ = |J |.

The DJ can be also described by the intersection with the Bruhat cell N−wJ B/B with the longest element wJ of the
Weyl subgroup WJ = 〈sj : j ∈ J 〉 [9, Theorem 3.3]. In particular, the divisor D{1,...,l} is a unique point, denoted as
p0, in the variety Z̃(�)R, and it is contained in the �	-polytope with 	 = (− · · · −). Then the geometry of the divisor
D0 = ⋃l

j=1 {�j = 0}, the union of the Painlevé divisors D{j}, near the point p0 can be expressed as the product of
�-functions,

F(t1, . . . , tl) :=
l∏

j=1

�j (t1, . . . , tl) = Fd(t1, . . . , tl) + Fd+1(t1, . . . , tl) + · · · , (1.7)

where each Fk(t1, . . . , tl) is a homogeneous polynomial of degree k. The algebraic variety V := {Fd = 0} defines
the tangent cone at the point p0, and the degree d is the multiplicity of the singularity of V at p0. The number d has
several surprising connections with other numbers, such as the number of Fq points on the maximal compact subgroup
of the underlying group of the Toda lattice and the number of real roots of certain symmetric functions (e.g. Schur
polynomials). Here Fq is a finite field with q elements, with q a power of a prime. One of the main purpose of this
paper is to explain those connections (the details can be found in our recent paper [7]).

1.3. Action of the Weyl group on the signs of the Toda lattice

Here we give an algebraic description of the blow-ups, so that one can compute the number of blow-ups in the Toda
flow. The following action of the Weyl group W describes how the signs of the functions aj for j = 1, . . . , l change
when ai blows up.

Definition 1.2 ([5, Proposition 3.16]). For any set of signs 	 = (	1, . . . , 	l ) ∈ {±}l , a simple reflection si := s�i
∈ W

acts on the sign 	j by

si : 	j �−→ 	j 	
−Cj,i

i .

The sign change is defined on the group character ��i
with 	i = sign(��i

) (recall si · �j = �j −Cj,i�i ). We also identify
the sign 	i as that of ai , since the functions ak are given by (1.5) and the �-functions are given by the fundamental
weights j in (1.6), which relate to the equation ��j

= ∏l
k=1(�k

)Cj,k (recall �j = ∑l
k=1 Cj,kk).

We now define the relation ⇒ between the vertices of the polytope �	 as follows: if 	i = + then we write: 	
si⇒ 	′

where 	′ = si	. We also write w ⇒ wsi (see Example 1.4).
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Under the action of the Weyl group, not every simple reflection si changes the sign 	. The following is an alternative
way to measure the size of w which only takes into account simple reflections that change the sign 	, that is, a trajectory
of a Toda lattice having a blow-up point. These numbers will later reappear in the context of the computation of certain
Frobenius eigenvalues.

Now the following definition gives the number of blow-ups in the Toda orbit from the top vertex e to the vertex
labeled by w ∈ W :

Definition 1.3. Choose a reduced expression w = sj1 · · · sjr . Consider the sequence of signs as the orbit given by
w-action:

	 → sj1	 → sj2sj1	 → · · · → w−1	.

We then define the function �(w, 	) as the number of → which are not of the form
si⇒ as in Definition 1.2. The number

�(w∗, 	) for the longest element w∗ gives the total number of blow-ups along the Toda flow in �	-polytope. Whenever
	 = (− · · · −) we will just denote �(w, 	) = �(w).

Note that each reduced expression ofw corresponds to a path followingToda lattice trajectories along one-dimensional
subsystems leading to w. Each one-dimensional subsystem is equivalent to A1-Toda lattice. In [7, Corollary 5.2] it is
shown that �(w, 	) is independent of the reduced expression. Hence the number of blow-up points along trajectories
in one-dimensional subsystems in the boundary of the �	-polytope is independent of the trajectory (parametrized by a
reduced expression).

Example 1.4. We consider the sl(2; R)-Toda lattice which is the simplest case, but provides the basic structure of the
general case. The Lax pair (L, A) is given by

L =
(

b1 1

a1 −b1

)
, A =

( 0 0

a1 0

)
.

The Chevalley invariant is given by I1 = 1
2 Tr(L2) = a1 + b2

1. Then the isospectral manifold Z(�)R for a real split case
is given by the curve I (a1, b1) = �1 > 0 (see Fig. 3 where �1 = 
2). The compactified manifold Z̃(�)R consists of two
polytopes (line segments) �+ and �−,

Z̃(�)R = �+ ∪ �−�S1.

Here the �− is compactified by adding the blow-up point marked by × in Fig. 3 i.e. �1 = 0. The end-points (vertices)
of each segment are marked by the Weyl elements, e and s1. Fig. 3 also shows the graphs associated with the polytopes
�± where the connection with the arrow in �+ indicate no blow-up in the flow between the vertices (see Definition 3.1
for more details).

The solution (a1, b1) can be expressed by the �-function:

(a) For the case a1 > 0 (i.e. �+-polytope), Eq. (1.6) gives

�1(t1) = cosh(
t1),

which leads to the solution

a1(t1) = 
2 sech2(
t1), b1(t1) = 
 tanh(
t1).

Since there is no blow-up in this case, we have �(e, +)= �(s1, +)= 0. This implies that there is an edge between
the vertices in �+ (see Fig. 3).

(b) For the case a1 < 0 (i.e. �−-polytope), we have

�1(t1) = 1



sinh(
t1),
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Fig. 4. The four hexagons associated to the signs 	= (	1, 	2). The Painlevé divisors D{1} and D{2} are indicated by the solid curves for the blow-ups

of a1 (i.e. �1 =0) and the dashed curves for the blow-up of a2 (i.e. �2 =0). The double circle in �− indicate the point p0 corresponding to
⋂2

j=1 D{j}.
The boundaries of the hexagons describe the subsystems given by ai = 0 for i = 1, 2. The compactification can be done uniquely by gluing the
boundaries according to the sign changes. Each hexagon is divided by the Painlevé divisors into connected components. A Toda flow in t1-variable
is shown as the dotted curve starting from the vertex marked by the identity element e, and ending to the vertex by the longest element w∗ = s1s2s1.
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Fig. 5. The 12-gons corresponding to signed Toda lattice for G2. The Painlevé divisors D{1} and D{2} corresponding to the blow ups of a1 and a2
are indicated by the solid and dashed curves inside the 12-gons. A Toda flow in t1-variable is shown as the dotted curve starting from the vertex
marked by the identity element e, and ending to the vertex by the longest element w∗ = s1s2s1s2s1s2.

which gives

a1(t1) = −
2csh2(
t1), b1(t1) = 
 coth(
t1).

Thus the solution (a1(t1), b1(t1)) blows up at t1 = 0. We have �(e) = 0 and �(s1) = 1, which gives no connecting
arrow between the vertices in �− as in Fig. 3.

Note that in both cases the solution approaches the fixed points (a1 =0, b1 =±
) as t → ±∞, which are the vertices
of the polytope.

Example 1.5. The cases of A2 and G2 are illustrated in Figs. 4 and 5. In these figures the four hexagons and 12-gons
are shown as the 	-polytope �	 with the signs 	 = (	1	2). These polytopes glue together to form a compact isospectral
manifold Z̃(�)R. Trajectories of the Toda lattice starts in the vertex associated to e and move towards the vertex
corresponding to the longest element in the Weyl group.

In the case of A2, the W -action on the signs 	= (	1	2) gives s1(−−)= (−+), s2(−+)= (−+) and s1(−+)= (−−).
From those we obtain �(e) = 0, �(s1) = �(s1s2) = 1, �(s2) = �(s2s1) = 1 and �(s1s2s1) = 2. Those give the numbers
of blow-ups in the Toda flow (see Fig. 4).
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In the case of G2, we obtain �(e)=0, �(s1)=�(s2)=�(s1s2)=�(s2s1)=1, �(s1s2s1)=�(s2s1s2)=2, �(s1s2s1s2)=
�(s2s1s2s1) = �(s1s2s1s2s1) = �(s2s1s2s1s2) = 3 and �(w∗) = 4. The total number of blow-ups is then 4 (see Fig. 5).

1.4. Toda lattice: periodic case

Here we give a brief background of periodic Toda lattice for affine Al Toda lattice (the details can be found in [12]).
The periodic Toda lattice is also give by the Lax equation (1.1) with

LP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 1 0 · · · 0 a0z
−1

a1 b2 − b1 1 · · · 0 0

0 a2 b3 − b2 · · · · 0

...
...

...
. . .

...
...

0 · · · · · bl − bl−1 1

z 0 · · · · al −bl

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The characteristic equation for LP defines the algebraic curve,

det(LP − 
I ) = −
(

z +
∏l

i=0 ai

z
− P(
)

)
= 0, (1.8)

which is a one-dimensional affine variety on (
, z) ∈ C2. Here P(
) is an (l + 1)th polynomial of 
 given by

P(
) := �l (
) − a0�l−1(
),

where�l (
)=det(L−
I ) for the Lax matrixLof the non-periodicToda lattice, and�l−1(
) is the determinant�l (
) after
removing the first row and the last column. Then the polynomial P(
) gives the set of integrals {Ik(LP ) : k = 1, . . . , l}
of the Toda flow, i.e.

P(
) = −(−1)l

(

l+1 +

l∑
k=1

(−1)kIk(LP )
l−k

)
.

There exists an additional integral obtained from the residue with respect to the spectral parameter z, i.e. I0 = ∏l
i=0 ai .

One should note that the case with a0 = 0, i.e. I0 = 0 corresponds to the non-periodic Toda lattice. Then the isospectral
set is defined by

ZP
R(�) := {(a0, a1, . . . , al, b1, . . . , bl) ∈ ZP

R : Ik(LP ) = �k ∈ R, k = 0, 1, . . . , l}
which is the affine part of the compactified manifold ẐP

R(�) of dim ZP
R(�) = l, and with a divisor � associated to the

blow-ups of ak, k = 0, 1, . . . , l, we have [1],

ZP
R(�) = ẐP

R(�)\D{0,1,...,l} with D{0,1,...,l} =
l⋃

k=0

{a−1
k = 0}.

It turns out that the flow of Toda lattice can be described as a trajectory on the Riemann surface, y2 = P(
)2 − 4I0,
and through the Abel–Jacobi map, the compactified isospectral manifold ẐP

R(�) can be identified as the real part of the
Jacobian Cl/� with the lattice � defined by the period matrix � associated with the Riemann surface of genus l. The
divisors D{j} ={a−1

j =0} are given by the theta divisor and its translates, that is, the zeros of the Riemann theta function

associated with the hyperelliptic Riemann surface, y2 = P(
)2 − 4I0. Here we take appropriate values of the integrals
Ik = �k (e.g. I0 =∏

k ak > 0) so that all the roots of the hyperelliptic curve are real and distinct , i.e. y2 =∏2l+2
k=1 (
−
k)

with 
k ∈ R. Then the number of connected components in the compact manifold ẐP
R(�) is given by 2l , that is, the real

part of the Jacobian consists of 2l number of l-dimensional tori (see [12]).
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In the case of periodic Toda lattice, the signs of ak are determined by the action of the affine Weyl group associated
with the affine Kac–Moody algebra (see [12]). For example, for the case of A

(1)
l Toda lattice with l�2, we have

Ŵ =
〈
s0, s1, . . . , sl :

s2
k = e, (sksk+1)

3 = e mod(l + 1)

(sksj )
2 = e, 1 < |k − j | < l

〉

and for A
(1)
1 , we have Ŵ = 〈s0, s1 : s2

0 = s2
1 = e〉. The action of Ŵ is defined by the same way as in Definition 1.2 (see

[12, Eq. (4.5) in p. 1710]), i.e. for each si ∈ Ŵ and 	j = sgn(aj ),

si : 	j �−→ 	j 	
−Ĉj,i

i ,

where Ĉ is the extended Cartan matrix.

Example 1.6. The affine sl(2) Toda lattice: The Lax matrix is given by

LP =
(

b1 1 + a0z
−1

z + a1 −b1

)

whose spectral curve defines an elliptic curve,

det(LP − 
I ) = −
(

z + a0a1

z
− P(
)

)
= 0.

The polynomial P(
) is given by

P(
) = 
2 − I1 with I1 = b2
1 + a1 + 1

a1
, (1.9)

where we have assumed I0 = a0a1 = �0 = 1. Then the affine part of the isospectral manifold is given by

ZP
R(�) =

{
(a1, b1) ∈ R2 : b2

1 + a1 + 1

a1
= �1 ∈ R

}
�

{
S1 � R � R if �1 > 2,

R � R if �1 < 2.

Two disconnected pieces of R are compactified to make a circle S1, that is, the corresponding solution blows up once
in each point p+ or p−, which are the infinite points of the Riemann surface, and total twice in one cycle. Thus the
compactified manifold ẐP

R(�) is just a disjoint union of two circles, and each circle can be marked by the signs of ak .
In Fig. 9, those circles are denoted by S++ and S−−. The flow on the circle S++ is complete, and the flow on S−− has
blow-ups.

1.5. The group G and the group Ǧ

We give here some remarks on the Langlands dual Ǧ of the real connected Lie group G with Lie(G) = g and finite
Chevalley groups in connection with our present study: Let G(C) be a connected semisimple Lie group with Lie algebra
gC = g+ √−1g. This can be regarded as an algebraic group defined over a finite extension of the field Q of rational
numbers. It is then possible to consider the group of real points G(R). We denote by G the real connected Lie subgroup
of G(C) with Lie algebra g. Hence G ⊂ G(R) ⊂ G(C). It is also possible to consider this algebraic group over fields
of characteristic p, with p a prime.

We also use the notation Ǧ to denote any group associated to ǧ in the same way as G is associated to g. We will
refer to Ǧ loosely by the term Langlands dual. In the case of simple Lie algebras not of type Bl or Cl with l�3 we
may just assume Ǧ = G in all the statements. The Langlands dual will be needed to explain the connection between
the blow-ups of the Toda lattice associated with g and the cohomology of the real flag manifold for ǧ.

Example 1.7. We consider G(C) = SL(n; C) = Ǧ(C), i.e. the set of all the n × n complex matrices A satisfying the
polynomial equation, det(A) = 1. Then the complex solutions of det(A) = 1 define G(C). The group of real points



L. Casian, Y. Kodama / Journal of Computational and Applied Mathematics 202 (2007) 56–79 65

is, of course, G(R) = SL(n; R); and, since this group is connected, G(R) = G. There is also an involution � given by
�(A) = A∗, the inverse of the transpose of A. We then have that a maximal compact Lie subgroup of G is K = SO(n)

given as the set of matrices satisfying �(A) = A.
In the case of a Lie algebra of type A1 we then have two possibilities for G namely G(R) = G = SL(2; R) or

G(R)=G=AdSL(2; R) the adjoint group. This depends on whether we pick G(C)=SL(2; C) or G(C)=AdSL(2; C).
If we now let G(R) = G = SL(2; R) then both Ǧ = SL(2; R) or Ǧ = AdSL(2; R) are possible.

The equation det(A) = 1 has integral coefficients. The integral coefficients make it possible to reduce modulo a
prime p. Let q be a power of a prime p and kq an algebraic closure of the finite field with q elements denoted Fq . We
may then consider G(kq) = SL(n; kq) i.e. the solutions in kq of det(A) = 1. By also reducing modulo p the involution
�(A) = A∗ we obtain SO(n; kq) as the set of fixed points and then the finite group SO(n; Fq). In the simplest example

of n = 2, SO(n; kq) consists of 2 × 2 matrices
(

x
−y

y
x

)
satisfying x2 + y2 = 1 with x, y ∈ kq . The number of points

of the finite group SO(2; Fq) is then the number of solutions of x2 + y2 = 1 over the field Fq . The answer is given by
the polynomial q − 1 if we assume that

√−1 ∈ Fq .

2. The polynomial p(q) as alternating sum of the blow-ups

In the non-periodic case, we introduce polynomials in terms of the numbers �(w, 	) in Definition 1.3, which play a
key role for counting the number of blow-ups. For each �	-polytope we then define p	(q).

Definition 2.1. We define a polynomial, the alternating sum of the blow-ups,

p	(q) = (−1)l(w∗)
∑
w∈W

(−1)l(w)q�(w,	), (2.1)

where w∗ is the longest element of the Weyl group and l(w) indicates the length of w. When 	 = (− · · · −), we simply
denote this polynomial by p(q).

One can easily show that p	(q) = 0 unless 	 = (− · · · −). Hence the only relevant polynomial here is p(q), the
polynomial for the �−···−-polytope. This corresponds to the fact that the rational cohomology of K and B = K/T

actually agree. Recall that we are dealing only with the case when the Lie algebra is split and the group T is then a
finite group. The polynomial p	(q) corresponds to a Lefschetz number for the Frobenius action over a field of positive
characteristic for cohomology with local coefficients [7]. When q = 1 these polynomials all vanish, including p(q).
This reflects the fact that the Euler characteristic of K is zero.

As we will explain below that the numbers �(w, 	) are deeply tied up with the cohomology of the flag manifold. The
polynomial p(q) contains all the information regarding the cohomology ring of the compact Lie group K . We discuss
below our approach to obtaining this strange relations among the Toda lattice, the flag manifold and K . One of our
main results is the computation of the polynomials p(q) in terms of K . However, there is an important technical point
here. The polynomial p(q) from the Toda Lattice associated to a Lie algebra g is given in terms of the maximal compact
subgroup of Ǧ. More precisely, one must consider the group Ǩ over Fq and p(q) is given in terms of the polynomial
|Ǩ(Fq)|. If the Lie algebra is simple and not of type Bl or Cl with l�3 then we can just write Ǧ = G and Ǩ = K in
all the statements.

Example 2.2. From Figs. 4 and 5, we note that the numbers �(w, 	) are constant on the connected components in a
given �	-polytope. The polynomials p(q) that are obtained from (2.1) by counting �(w) are p(q) = q2 − 1 for type
A2, and p(q) = (q2 − 1)2 for G2. Note that the multiplicities d are the degrees of these polynomials. In the case of G2
each divisor contributes 2 to the multiplicity. Note in Fig. 5 that the divisors shown in the polytopes �	 with 	 = (+−)

or (−+) come together in the �−−-polytope giving a multiplicity d = 4 at the center p0 of the �−−-polytope.
One can also directly compute the polynomial p(q) from Figs. 6, 7 and 8 for the cases of A3, B3 and C3. Namely we

obtain p(q) = (q2 − 1)2 for A3, p(q) = (q − 1)(q2 − 1)(q3 − 1) for B3, and p(q) = (q2 − 1)3 for C3. The polynomial
obtained from the B3 case can be written as q−3|Ǩ(Fq)| where Ǩ = U(3) is the maximal compact subgroup of the
Langlands dual Sp(3; R), that is, C3. This serves to illustrate the fact that the polynomial p(q) is related to the Chevalley
group that results from a maximal compact subgroup of the Langlands dual Ǧ.
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Fig. 6. The �−-polytope for type A3 and the Painlevé divisors (the right figure is the back view of the left one). The Painlevé divisors are shown by
the dotted curve for D{1}, by the light color one for D{2}, and by the dark one for D{3}. The double circles indicate the divisor D{i,j} =D{i} ∩D{j},
which are all connected at the center of the polytope p0. The divisor D{2} has the A1-type singularity at p0, i.e. a double cone with t2

2 − t1t3 = 0.
The numbers indicate �(w) which are obtained by using any path from e to w along edges of the polytope, following the direction of the Toda flow,
i.e. the Bruhat order.
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Fig. 7. The polytope �− associated to the B3-Toda lattice and the Painlevé divisors. The description of the Painlevé divisors are the same as in
the case of A3. The singularities of D{1} and D{3} are both of A1-type, while the singularity of D{2} is not isolated, a line singularity attached to
two double cones of A1-type (notice two eight-figures of D{2}). The numbers indicate �(w). The subsystems on the boundary of �− consist of the
octagons for B2, the hexagons for A2 and the squares for A1 × A1.
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Fig. 8. The polytope �− associated to the C3-Toda lattice and the Painlevé divisors. The description of the divisors are again the same as in the case
of A3. Notice that both polytopes for B3 and C3 are the same, but the geometry of the Painlevé divisors are quite different. The singularity of D{2}
is of A1-type, and that of D{3} is a reducible one with t1(t2

3 − t1t5) = 0.
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a1

b1

S++

S--

p+
p+

p- p-

Fig. 9. The isospectral manifold for the affine A1-Toda lattice. The solid curves show the invariant curve I1 = b2
1 + a1 + �0

a1
= �1 for �1 > 2 and

�0 = a0a1 = 1, and the points p± indicate the blow-up points, i.e. the divisors D{0} and D{1}. The compactified manifold ẐP
R (�) is given by a

disjoint union of two circles, S++ and S−−, where the signs (	0, 	1) correspond to 	k = sgn(ak). The dashed curve indicates the non-periodic limit
of the Toda lattice, i.e. �0 → 0.

Note also that A3 case gives the same polynomial p(q) = (q2 − 1)2 obtained in the G2 case. The reason is that the
maximal compact group K is in both cases essentially SU(2) × SU(2). This will be explained in Theorem 5.3 which
gives the general formulae for the polynomials p(q) for all the cases.

In the affine (periodic) cases we just consider p	(q)=∑
w∈Ŵ

(−1)l(w)q�(w,	), which is now given by a power series

of q. The numbers �(w, 	) are defined similarly but the elements w ∈ Ŵ do not represents points in the compactified
isospectral manifold (Fig. 9). In the concrete examples given here the universal cover (Rl) is subdivided into regions by
the divisors, which are further subdivided so that they are labeled by Weyl group elements (see Fig. 12). The numbers
�(w, 	) are assigned uniquely to the different regions by counting blow-up points along the Toda trajectories ignoring
the direction of the flow. If a path of the Toda lattice goes from a region labeled w to a region labeled w′, with w�w′
in the Bruhat order, and the path crosses k blow-up points, then �(w′, 	) = �(w, 	) + k. Setting �(w, 	) = 0 determines
all the other numbers uniquely. Note that there may not be a concrete path going from the region labeled e to the region
labeled w but, still, the number �(w, 	) is still being determined by counting blow-ups along trajectories of the Toda
lattice.

3. A graph associated to the blow-ups of the Toda lattice

The following graph G	 was originally motivated by the problem of computing the number of connected components
in the �	-polytope. This problem is analogous to the problem of computing the intersection of two opposite top
dimensional Bruhat cells in the case of a real flag manifold (e.g. see [16,15,17]). We then observed that in all examples
this was the graph of incidence numbers for a real flag manifold (see [8]). In the affine cases we may consider
Ĝ = G(R[t, t−1]) instead of G and B̂ = {f ∈ G(R[t, t−1]) : f (0) ∈ B} instead of B. Thus B̂ = Ĝ/B̂.

Definition 3.1. For a fixed 	=(	1 . . . 	l ), we associate a graphG	 to the blow-ups of the Toda lattice. The graph consists
of vertices labeled by the elements of the Weyl group W , i.e. the vertices of the �	-polytope, and oriented edges ⇒.
The edges are defined as follows: For any w1, w2 ∈ W , there exists an edge between w1 and w2,

w1 ⇒ w2 iff

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) w1 �w2 (Bruhat order),

(b) l(w2) = l(w1) + 1,

(c) �(w1, 	) = �(w2, 	),

(d) w−1
1 	 = w−1

2 	.

When 	 = (− · · · −), we simply denote G = G	. This graph also makes sense in the periodic case.



68 L. Casian, Y. Kodama / Journal of Computational and Applied Mathematics 202 (2007) 56–79

Note that in non-periodic cases w1 ⇒ w2 implies that in the polytope there is a path from w1-vertex to w2-vertex
without crossing a Painlevé divisor (no blow-up). Namely, in this case, w1 ⇒ w2 means that the vertices associated to
w1 and w2 belong to the same connected component of the hexagon (when blow-ups are removed).

In many cases the graph G	 accomplishes the job of joining together in its connected components exactly those
vertices w of the polytope �	 belonging to the same connected components. This will be the case in the example
considered below.

Example 3.2. In the case of A2, we have s1(−−) = (−+), s2(−+) = (−+) which implies (−−) → (−+)
s2⇒ (−+)

and �(s1)=1, �(s1s2)=1. Therefore, the graph G which encodes blow-up information in �−− of Fig. 2 is (si is replaced
with i):

e : q0

1 2 : q1

⇓ ⇓
12 21 : q1

121 : q2.

Here we have also listed the monomials q�(w) (in the variable q) associated to representatives of the integral
cohomology (w → �(w) → q�(w)). As already noted, the vertices of the hexagon �−− belonging to a connected
component in Fig. 4 form a connected component of this graph (see also Fig. 3). This graph classifying connected
components in the hexagon minus the blow-ups, agrees with the graph in [8, p. 465] which is defined very differently
in terms of incidence numbers. The graph of incidence numbers gives rise to a chain complex by replacing the edges
⇒ with multiplication by 2,

Q〈e〉 �o−→ Q〈s1〉 ⊕ Q〈s2〉 �1−→ Q〈s1s2〉 ⊕ Q〈s2s1〉 �2−→ Q〈s1s2s1〉.
Here 〈w〉 is the Bruhat cell associated to the element w ∈ W . The only non-zero map is �1 given by a diagonal matrix
with 2’s in the diagonal corresponding to the ⇒. The rational cohomology that results is⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H 0(G/B, Q) = Q : q0,

H 1(G/B, Q) = 0 : q1,

H 2(G/B, Q) = 0 : q1,

H 3(G/B, Q) = Q : q2.

Over the rationals this just gives the cohomology of K = SO(3). The alternating sum of the q�(w) produces the
polynomial p(q) = q2 − 1. Now p(q) multiplied by qr with r = dim(K) − deg(p(q)) = 1 gives the number of points
of SO(3) over a field with q elements (q is a power of an odd prime p). The explanation for this is that the q�(w)

listed can be shown to be Frobenius eigenvalues in etale cohomology of the appropriate varieties reduced to a field
of positive characteristic. When this is taken into account we see that, in fact, more than the cohomology of K/T or
K , we are obtaining etale Q̄l cohomology over a field of positive characteristic, including Frobenius eigenvalues. All
derived from the structure of the Toda lattice and its blow-up points.

If we start with 	 = (−+) then we obtain the edges e ⇒ s2, s1 ⇒ s2s1, s1s2 ⇒ s1s2s1. This time the vertices of
the hexagon �−+ belonging to a connected component in Fig. 4 form a connected component of this graph. The graph
for �−+ now corresponds to the graph of incidence numbers computing cohomology with local coefficients. The local
system L can be described by the signs (−+). The − sign indicates that along a circle in G/B that corresponds to s1
the local system is constant, and the second + that along a circle corresponding to s2 it is non-trivial. With these local
coefficients H ∗(G/B;L) = 0, which implies p−+(q) = 0 (see Section 2). Similarly for �+− and �++.

In the case of a Lie algebra of type A3 we obtain the graph G in Fig. 10. This graph corresponds to the polytope in
Fig. 6 as separated into connected components by the divisors shown. To determine the number �(w) for any given w it
is enough to go from e to w along any path along the boundary corresponding to a reduced expression w=sn1 · · · snr and
count the number of intersections with the divisors. In Fig. 6, we show the path following the expression w∗=[123121],
i.e. e → s1 → s1s2 → s1s2s3 → · · · → w∗, with the arrows on the edges of the polytope.
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Fig. 10. The graph G of the real flag manifold for type A3. The Bruhat cells NwB/B are denoted by [ij . . . k] for w = si sj . . . sk . The incidence
numbers associated with the edges ⇒ are ±2 (see also [8, Example (8.1) ]). There are 10 connected components in this graph corresponding to the
10 connected components in �− after blow-up points are removed. This graph can be also obtained from Fig. 6.

We then state the following theorem showing the equivalence between the connected components in the polytopes
�	 and the graphs G	 of the incidence numbers defined in [8]. A proof of the theorem can be found in [7]. We state the
case of G but the remark below explains the general version of the theorem.

Theorem 3.3. The graph G is the graph of incidence numbers for the cohomology of the real flag manifold B̌ in terms
of the Bruhat cells.

Remark 3.4. Note that while the compactified isospectral manifold of the Toda lattice lives inside B through the
companion embedding [5], this theorem mysteriously involves the topology of the flag manifold associated to the
Langlands dual, namely B̌. In Section 6 we give an explicit evidence of this duality in the computation of the multiplicity
of the �-function at p0.

Remark 3.5. In general each Ǩ-equivariant local system L on B̌ corresponds to an 	 and G	 is the graph of incidence
numbers for cohomology of B̌ with twisted coefficients in L. There may be some signs 	 such that no Ǩ-equivariant
local system L corresponds to it. For instance if G = SL(4; R) this is the case. Moreover, Theorem 3.3 can be proved
for integral coefficients.

We now discuss the periodic cases through a couple of examples. In the periodic cases, the Toda flow can be described
as a flow on a Riemann surface, and the real solutions are determined by the real part of the surface (see Section 1.4).
The compactified isospectral manifold of the periodic Toda lattice consists of union of tori, the real part of the Jacobian
(see [2,12]). The theta divisors are the blow-ups of the Toda lattice. For each torus we consider its universal cover and
we need to pull-back the Toda flow to this universal cover before counting blow-up points.

Example 3.6. In the periodic Toda lattice associated to affine Kac–Moody algebra A
(1)
1 , we have a compactified

isospectral manifold consisting of two disjoint circles, i.e. S++ and S−− in Fig. 9. Since the only possible boundaries in
the chain complex that computes integral cohomology involve w and wsi it is easy to compute the graph of incidence
numbers.

In the case of constant coefficients, the graph of incidence numbers consists of the affine Weyl group and there are
no edges. The graph G−− can easily be computed by counting the number of blow-ups along the Toda trajectories (see
Fig. 11). We have �(w) = l(w) for any w in the affine Weyl group. Therefore, there are no edges ⇒. We obtain that
the graph of incidence numbers of the infinite dimensional real flag manifold Ĝ/B̂ that corresponds agrees with the
graph G−−. The case of 	 = (++) corresponds to a graph of incidence numbers for integral cohomology with twisted
coefficients. Then we have p(q)= (1 −q)/(1 +q) and p++(q)= 0. We expect that the rational function p(q) contains
some information of the (rational) cohomology of the circle S−−, a real part of the Jacobian, e.g. H 0 = Q and H 1 = Q

by looking at the degrees of polynomials appearing in p(q) = p1(q)/p0(q) (in analogy of the Weil conjecture).

The case of A
(1)
2 has the complication that at least one sign 	i must be + (recall I0 =a0a1a2 > 0). Fig. 12 corresponds

to the universal cover of a one of these tori (compare Fig. 12 with the Fig. 2 in p. 1516 of [2]). One then necessarily
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s1s0s1s0 es0s1

η=0η=1 η=1 η=2η=2

Fig. 11. The compactified isospectral manifold for the periodic Toda Lattice in the case of A
(1)
1 is a union of two circles S++ and S−− in Fig. 9. This

is the universal cover of S−−. The × are the divisors and we include the number of blow-ups �(w). Each line segment separated by the blow-ups is
marked by a unique element of the affine Weyl group, Ŵ = 〈s0, s1〉. The graph G−− then consists of disconnected vertices marked by the elements
of Ŵ , and the function p(q) is given by p(q) = 1 − 2q + 2q2 − · · · = (1 − q)/(1 + q).
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Fig. 12. The universal cover of one of the tori of the real part of the Jacobian for A
(1)
2 Toda lattice. Each triangular region is marked by the element

w of the affine Weyl group, e.g. [02] = s0s2. The right figure shows that each element of the affine Weyl group is identified as a unique vertex of the
honeycomb of the dual graph of the left figure. Each hexagon represents the Weyl group for A2. Then some of the chamber walls correspond to the
divisors (compare with the hexagons in Fig. 4), and they are indicated here with a solid curve (�2 = 0) or a dotted curve (�1 = 0) or a dot-dashed
curve (�0 = 0). On a neighborhood of each double circle (�k = �k+1 = 0, k (mod 3)), the �k-functions can be expressed as the Schur polynomials
of A2-nilpotent Toda lattice. We also include the number of blow-ups �(w) starting from �(e) = 0.

obtains cohomology with twisted coefficients and p	(q) = 0. In the A3 case, 	 = (− − −−) should give rise to integral
cohomology.

We have the following conjecture which clarifies the relation between the integral cohomology of the real flag
manifold and the blow-up structure of the Toda lattice:

Conjecture 3.7. The graph G is the graph of incidence numbers for the integral cohomology of the real flag manifold
B (B̂) in terms of the Bruhat cells. In general, each 	 corresponds to a local system L in the real flag manifold and the
graph G	 is the graph of incidence numbers in the computation of integral cohomology with coefficients in L.

Remark 3.8. This is an extension of Theorem 3.3 for the finite dimensional case (non-periodic Toda case) which has
been completed as Theorem 3.5 in [7]. The infinite dimensional case (periodic Toda case) has several steps which were
omitted above. We consider a real split semisimple Lie algebra g and the corresponding affine Lie algebra ĝ. We also
have the Weyl group W and the affine Weyl group Ŵ .
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First one considers the universal cover of the compactified isospectral manifold. Since it consists of several tori
of dimension l, we end up with several copies of l dimensional vector space which we could identify with the Car-
tan subalgebra h. The idea here will be that the structure of these universal covers (of each tori), and the pull-back
of the Painlevé divisors, resemble h together with certain walls of an action of Ŵ on h. Step 1 is a division of
each of the universal covers into regions parametrized by Ŵ . This is a refinement of the division into connected
components by the Painlevé divisors pulled back to the universal cover. Moreover, the region assigned to the iden-
tity has a sign 	 and the region corresponding to w will have a sign obtained by applying w to the sign 	. Step 2
is that �(w), the number of blow-ups associated to each region is well defined. This now allows us to define the
graph G	.

4. The real flag manifold K/T and the variety Oo

For each real split simple Lie algebra g we can consider a connected Lie group G and a maximal compact Lie
subgroup K which we assume is the set of fixed point sets of a Cartan involution �. Moreover in the appropriate context
of algebraic groups, all these objects can also be considered over a field kq , an algebraic closure of a finite field Fq

with q elements. We just give a simple example and recall that the real flag manifold can be replaced with a complex
manifold Oo which has the same homotopy type. This is just the unique open dense K(C) orbit in the complex flag
manifold BC. The advantage of this is that we will be able to consider an analogue of the real flag manifold that makes
sense over fields of positive characteristic. Note that the complex flag manifold G(C)/B(C) cannot be chosen to play
this role since the topologies of G(C)/B(C) and G/B are very different. For instance, in the A1 case G/B is a circle,
i.e. P1, and G(C)/B(C) is a two-dimensional sphere, i.e. CP1.

Example 4.1. Consider the group =SL(2; k). We consider the Cartan involution � given as follows: �(g) =
(

1
0

0
−1

)
g

(
1
0

0
−1

)
. Therefore, K(k) consists of the diagonal matrices {diag(z, z−1) : z ∈ k}. The choice of K corresponds to

considering the subgroup SU(1, 1) of SL(2; C) rather than SL(2; R). The flag manifold is P1 = k ∪ {∞}and the
action of K(k) is g(z) · y = z2y for g(z) ∈ K(k) with z ∈ k∗. The K(k) orbits are k∗, {0} and {∞}. Hence
for k = C, we have Oo = C∗. This orbit has the homotopy type of the real flag manifold of SU(1, 1), namely a
circle S1.

5. Computation of p(q) in terms of finite Chevalley groups

The Chevalley groups that will be related to the Toda lattice are the finite groups Ǩ(Fq). Since Langlands duality
g → ǧ only affects type B and C we will, for the sake of notational simplicity, ignore this technical detail, and assume
that our Lie algebra does not contain factors of type B or C.

Note that so far we have explained a relation of the Toda lattice with the cohomology of G/B and not with the
cohomology of K . However, it turns out that H ∗(G/B; Q) = H ∗(K; Q) [7, Proposition 6.3]. This is equivalent to
showing that for K-equivariant twisted coefficients L, H ∗(G/B;L)=0. This, it turns out, is the reason that p	(q)=0
whenever 	 contains at least one + sign.

The main idea now is to rely on a Lefschetz fixed point theorem. The polynomial p(q) is defined as an alternating
sum of powers q�(w) the polynomial that computes the order of the finite group K(Fq) is also given as a polyno-
mial in q. This second statement can be seen by direct computation, but it can also be seen as a consequence of a
Lefschetz fixed point theorem. This second way of looking at it is much more complicated than the direct compu-
tation but it will be more useful for us in this case. This requires that we first consider the group K(kq) with kq an
algebraic closure of the finite field Fq . Then we need to consider its cohomology, but, since this algebraic group is
not over C or R, ordinary cohomology does not make sense. We then use etale cohomology. In etale cohomology
there is also an action induced by the Frobenius map. The eigenvalues resulting from this action are, in this case,
powers of q. Using a version of the Lefschetz fixed point theorem applied to the Frobenius map Fr one obtains
that |K(Fq)| is an alternating sum of powers of q. Since the Lefschetz fixed point theorem involves not cohomol-
ogy, but cohomology with compact supports, we will not get exactly |K(Fq)| but rather q−r |K(Fq)| for some r .
The main point will then be that these Frobenius eigenvalues are exactly the numbers q�(w) obtained from the Toda
lattice.
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Example 5.1. In the case of K = SO(2) i.e. of a circle, we can give a characteristic zero analogue of this explanation
involving the Frobenius map: Let us consider the map, �q : S1 → S1, z �→ zq , a map of degree q. Then we have

{
H0(S

1; Q) = Q : q0,

H1(S
1; Q) = Q : q1

and now the number of fixed points is q − 1, i.e. the number of non-zero roots of zq = z, or as in the Lefschetz fixed
point theorem,

L(�q) = Tr((�q)∗|H1(S1;Q)) − Tr((�q)∗|H0(S1;Q)) = q − 1.

If we replace SO(2) with its complexification, we obtain C∗ = C\{0}. Reduction to positive characteristic means we
consider k∗

q = kq\{0}. Now the Frobenius map is Fr(z) = zq and the fixed points of this map are the Fq points i.e., the
elements in Fq\{0}. We have then q − 1 = |K(Fq)|. The polynomial q − 1 is just p(q) obtained in the case of A1 from
the Toda lattice. The number of blow-ups in Fig. 3 for �− is 1 and q1 is the Frobenius eigenvalue appearing in etale
cohomology with proper supports of k∗

q , corresponding to the degree of the map �q .

We now expand a little on this explanation and the full details are in [7]: Recall that there is filtration by Bruhat cells,

∅ ⊂ B0 ⊂ B1 ⊂ · · · ⊂ Bl(w∗) = G/B,

where Bj := ⋃
l(w)� j NwB/B. There is a similar filtration of Yo: · · · ⊂ Yj ⊂ Yj+1 ⊂ · · · given by intersection

of Oo with N(C) cells inside G(C)/B(C). We obtain coboundary maps: Hj(Yj ,Yj−1; C) → Hj+1(Yj+1,Yj ; C)

which give rise to a chain complex computing the cohomology of Oo. For example in the case of SU(1, 1) above,
Y0 ={∞} and Y1 =C\{0}. Each w corresponds to a dual of a Bruhat cell and contributes to Hl(w)(Yl(w),Yl(w)−1; C)

giving rise to a cohomology class [w]C. This can be done with etale cohomology with coefficients in Q̄m and a field of
positive characteristic where m is relatively prime to p and p �= 2 and x2 + 1 factors over Fq . In this case a Frobenius
action arises in cohomology.

We have the following proposition for the Frobenius eigenvalue of the cohomology class [w]kq
in etale cohomology

over a field kq algebraic closure of Fq of characteristic p. This assumes Q̄m coefficients.

Proposition 5.1. The cohomology class [w]kq
in Hl(w)(Yl(w),Yl(w)−1; Q̄m) corresponding to w ∈ W has Frobenius

eigenvalue given by q�(w).

If one really tries to see where this comes from, this really is Corollary 5.1 in [7]. The computation of �(w) agrees
with the computation of certain coefficients that arise from a module over the Hecke algebra introduced in [14] . These
coefficients are already Frobenius eigenvalues in that paper and are seen to come from the cohomology of the flag
manifold and thus of K(kq).

Example 5.2. In the case of SU(1, 1) which was done earlier, we obtain Frobenius eigenvalues 1 and q, respectively,
in the degree 0 and 1.

This proposition is obtained by expressing [8, Proposition 9.5] in terms of new notation motivated by the Toda
lattice. The upshot of this is that the number of blow-up associated to a vertex w in the Toda lattice and the Frobenius
eigenvalue of [w]k in Hl(w)(Y(k)l(w),Y(k)l(w)−1; Q̄m) are given by the same formula in terms of �(w). Then applying
the Lefschetz fixed point theorem to the Frobenius map to count the number of Fq points. We obtain the following
Theorem [7, Theorem 6.5]:

Theorem 5.3. The polynomial p(q) satisfies p(q)=q−r |Ǩ(Fq)| with r =dim(Ǩ)−deg(p(q)). Moreover p(q) factors
as p(q) = ∏g

i=1(q
di − 1) where g is the rank of Ǩ . The polynomial p(q) is given by the following
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explicit formulas:
Al : Ǩ = SO(l + 1),

l even : p(q) = (q2 − 1)(q4 − 1) · · · (ql−2 − 1)(ql − 1), g = l/2,

l odd : p(q) = (q2 − 1)(q4 − 1) · · · (ql−3 − 1)(ql−1 − 1)(qg − 1), g = (l + 1)/2,

Bl : Ǩ = U(l),

p(q) = (q − 1)(q2 − 1)(q3 − 1) · · · (ql − 1), g = l,

Cl : Ǩ = SO(l) × SO(l + 1),

l even : p(q) = (q2 − 1)2(q4 − 1)2 · · · (ql−2 − 1)2(ql − 1)(ql/2 − 1), g = l,

l odd : p(q) = (q2 − 1)2(q4 − 1)2 · · · (ql−1 − 1)2(q(l+1)/2 − 1), g = l,

Dl : Ǩ = SO(l) × SO(l),

l even : p(q) = (q2 − 1)2(q4 − 1)2(q6 − 1)2 . . . (ql−2 − 1)2(ql/2 − 1)2, g = l,

l odd : p(q) = (q2 − 1)2(q4 − 1)2(q6 − 1)2 . . . (ql−1 − 1)2, g = l − 1,

E6: Lie(Ǩ) = sp(4),

p(q) = (q2 − 1)(q4 − 1)(q6 − 1)(q8 − 1), g = 4,

E7: Lie(Ǩ) = su(8),

p(q) = (q2 − 1)(q3 − 1)(q4 − 1)(q5 − 1)(q6 − 1)(q7 − 1)(q8 − 1), g = 7,

E8: Lie(Ǩ) = so(16),

p(q) = (q2 − 1)(q4 − 1)(q6 − 1)(q8 − 1)(q10 − 1)(q12 − 1)(q14 − 1)(q8 − 1), g = 8,

F4: Lie(Ǩ) = sp(1) × sp(3),

p(q) = (q2 − 1)2(q4 − 1)(q6 − 1), g = 4,

G2: Lie(Ǩ) = su(2) × su(2),

p(q) = (q2 − 1)2, g = 2.

In the factorization p(q) = ∏g
i=1(q

di − 1), the di are the degrees of the basic Weyl group invariant polynomials for
the compact Lie group K (see [4]). The numbers 2di − 1 are the degrees of the generators of the cohomology ring of
K , i.e. H ∗(K; Q)��(x1, . . . , xg) with deg(xi) = 2di − 1. In this sense the cohomology ring of K over the rationals
can be derived from the structure of the blow-up points of the Toda lattice. This can be made more explicit and also
allows us to write cocycles representing the generators of K in terms of duals of the Bruhat cells.

6. Zeros of Schur polynomials and p(q)

We now show that the singular structure of the Painlevé divisor D0 = ⋃l
j=1 Dj at the point p0 is related to the zeros

of certain Schur polynomials. We have the following conjecture for the non-periodic case:

Conjecture 6.1. The degree �(w∗) of the polynomial p(q) is related to the multiplicity d of the singularity of the
divisor given by D0 = ⋃l

j=1 Dj at the point p0 where all the divisors Dj = {�j = 0} intersect. Namely the number
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d is given by the minimal degree of the product of the �-functions, that is, the degree of the tangent cone given by
(1.7). Furthermore, the degree �(w∗) also gives the number of real t1 roots of the product of the Schur polynomials
S
k

(t1, . . . , tl) for generic values of t2, . . . , tl . Here 
k, k = 1, . . . , l, indicate the Young diagrams 
k , and those Schur
polynomials are associated to the �k-function of the nilpotent Toda lattices.

The first part of the conjecture can be verified directly for the Toda lattice associated with any Lie algebra of the
classical type or type G2 by counting the minimal degrees of Schur polynomials, which are the leading terms of the
�-functions near the point p0. The second part is verified for the cases with lower ranks (see below).

6.1. Schur polynomials appearing in the nilpotent Toda lattices

Let us first show that the �-functions in the semisimple case near the point p0 can be approximated by those in the
nilpotent case (see also [6]). We here explain the case of Al , and other cases of B, C, D and G can be discussed in the
similar way. In the case of Al , the �1 function defined by �1 = 〈ge1, e1〉 with g = exp(

∑l
j=1(L

0)j tj ), i.e. (1.6) can be
expressed by

�1(t1, . . . , tl) =
l∑

k=0

�k exp

⎛
⎝ l∑

j=1


ktj

⎞
⎠

=
∞∑

n=0

hn(t1, . . . , tl)

(
l∑

k=0


n
k�k

)
,

where 
k are the eigenvalues of the (l + 1) × (l + 1) Lax matrix L0, and �k are constants determined by L0. The
functions hk(t1, . . . , tl) are the complete homogeneous symmetric functions given by

hk(t1, . . . , tl) =
∑

i1+2i2+···+lil=k

t
i1
1 t

i2
2 · · · t ill

i1!i2! · · · il ! . (6.1)

We set t = (0, . . . , 0) to be the point p0, that is,

�1(0, . . . , 0) = �2(0, . . . , 0) = · · · = �l (0, . . . , 0) = 0.

This implies (�k�1/�tk1 )(0, . . . , 0) = 0 for k = 0, 1, . . . , l − 1, and (�l�1/�t l1)(0, . . . , 0) = 1, from which we obtain

�1(t1, . . . , tl) =
∞∑
n=l

hn(t1, . . . , tl)

(
l∑

k=0


n
k�k

)
,

where �k are determined by⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1


0 
1 · · · 
l

...
...

. . .
...


l
0 
l

1 · · · 
l
l

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�0

�1

...

�l

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0

0

...

1

⎞
⎟⎟⎟⎟⎟⎠ .

Notice that in the nilpotent case (all 
k = 0), we have �1 = hl = S(l) (recall that �1 = 〈gel+1, e1〉 with g ∈ GC0 ). Now
using the equation of the �-functions which is derived from (1.3) and (1.5), i.e.

�k

�2�k

�t2
1

−
(

��k

�t1

)2

= a0
k

∏
j �=k

(�j )
−Ck,j , (6.2)
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we obtain

�k = (−1)(k(k−1)/2)S(l−k+1,...,l)(t1, . . . , tl) + (higher degree terms), (6.3)

where S(i1,...,ik) with 1� i1 < · · · < ik � l is the Schur polynomial defined as the Wronskian determinant with respect to
the t1-variable (see [6]),

S(i1,...,ik) = Wr(hi1 , . . . , hik ) = |(hi�−�+1)1��,�,�k|.
This implies that the �-functions in the semisimple case near the point p0 can be approximated by the Schur polynomials
which are the �-functions in the nilpotent case. In particular, the multiplicity of the zero of �k is given by k(l − k + 1)

which is the degree of the Schur polynomial in (6.3). Also notice that the � functions are weighted homogeneous
polynomials where the weight is defined by k for hk .

The multiplicities of the � functions for any Lie algebra g can be obtained from (6.2) (see also [9]): Let �k be the
multiplicity of the zero for �k(t1), that is, �k(t1) ∼ t

�k

1 . Then from (6.2), we have 2(�k − 1) = −∑
j �=k Ck,jmj which

leads to

�k = 2
l∑

j=1

(C−1)k,j ,

(see also [9, Proposition 2.4]). This number is also related to the total number of the root �k in the positive root system
�+ for the Langlands dual algebra ǧ: To show this, we calculate 2�, the sum of all the positive roots in g,

2� =
∑
�∈�+

� =
l∑

k=1

nk�k .

Note that � is also given by the sum of the fundamental weights, �=∑l
k=1 k . Then using the relation �i=∑l

j=1 Ci,jj ,
the number nk is given by

nk = 2
l∑

j=1

(C−1)j,k .

Thus the multiplicity �k for the �k function associated to g is related to the number nk for the Langlands dual algebra ǧ
whose Cartan matrix is given by the transpose of that for g. This duality leads to the appearance of the Langlands dual
in Theorems 3.3 and 5.3 (see [7] for the details). The multiplicity of the product of the � functions at the point p0 is
then given by (see also [1,9])

|2�| =
l∑

k=1

�k =
l∑

k=1

nk = 2
l∑

i,j=1

(C−1)i,j .

In the general case, the �-functions for the nilpotent Toda lattices are obtained from (1.6). Then one finds explicit
forms of the highest weight vectors and the companion matrix (the regular nilpotent element) for each algebra. The
following is the result based on the �-functions of the nilpotent Toda lattices (see [6] for the nilpotent Toda lattices in
general):

Al-Toda lattices: The �-functions are given by the Schur polynomials in (6.3), i.e.

�k(t1, . . . , tl) = (−1)(k(k−1))/2S(l−k+1,...,l)(t1, . . . , tl), k = 1, . . . , l.

The minimal degrees of those Schur polynomials are given as follows:

• For l even, the minimal degrees of �j , j = 1, . . . , l, are given by

1, 2, . . . ,
l

2
,

l

2
, , . . . , 2, 1,

(e.g. �1 ∼ tl , �2 ∼ t2
l−1 and �l ∼ tl). The sum of those degrees then gives d = l(l + 2)/4.
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• For l odd, the minimal degrees are

1, 2, . . . ,
l − 1

2
,
l + 1

2
,
l − 1

2
, . . . , 2, 1,

from which we have d = ((l + 1)/2)2.

For example, in the case of l = 2, we have �1 = S(2) = t2 + t2
1 /2, �2 = −S(1,2) = t2 − t2

1 /2. Thus we have the
degree four polynomial for F(t1, t2) = �1�2(t1, t2), and the minimal degree is two which is the number of blow-ups
�(w∗). Note here that |2�| = 4 is the number of complex roots. The second part of Conjecture 6.1 then states that
F(t1, t2) = −S(1)S(1,2)(t1, t2) has two real roots in t1 for a generic value of t2 = constant (i.e. t2 �= 0). One should also
note that the sum of the minimal degrees of the pair �k and �l−k+1 is equal to the degree dk in Theorem 5.3.

Bl-Toda lattice: The �-functions are given by

�k(t1, t3, . . . , t2l−1) = Wr(h2l , . . . , h2l−k+1), k = 1, . . . , l − 1

and

�l (t1, t3, . . . , t2l−1) = √|Wr(h2l , . . . , hl+1)|,
where hk are given in (6.1) with t2k = 0 for all even parameters (see [6]). Note the indices of the flow parameters,
2k −1, k =1, . . . , l, are given by the exponents mk of the root system �. Note that the �l is given by the pfaffian related
to the Schur Q-function. More precisely, we have �l (t1, t3, . . . , t2l−1) ∼ S(1,3,...,2l−1)(t1/2, t3/2, . . . , t2l−1/2) which
is the Schur Q-polynomial, Q(l,l−1,...,1)(t1, t3, . . . , t2l−1) [10]. Then we have:

• For l even, the minimal degrees are given by

2, 2, 4, 4, . . . , l − 2, l − 2, l,
l

2

(e.g. �1 ∼ t1t2l−1, �2 ∼ t2
2l−1 and �l ∼ (tl+1)

l/2). The degree d is then given by d = l(l + 1)/2.
• For l odd, the minimal degrees are

2, 2, 4, 4, . . . , l − 1, l − 1,
l + 1

2
,

from which we have d = l(l + 1)/2.

For the case B2, we have �1 = S(4) = t1(t3 + t3
1 /24) and �2 = √

S(3,4) = t3 − t3
1 /12. The degree of F = �1�2 in t1 is

seven which is the height |2�|, and the minimal degree is three which is the number of blow-ups �(w∗) and also the
number of real roots of F(t1, t3) in t1 for t3 �= 0. One should note that the minimal degree of �k also gives the degree
dk in Theorem 5.3 for the Langlands dual algebra Cl .

Cl-Toda lattice: The �-functions are

�k(t1, t3, . . . , t2l−1) = Wr(h2l−1, . . . , h2l−k), k = 1, . . . , l.

Again one takes t2k = 0 for hn. Then the minimal degrees are given by

1, 2, 3, . . . , l − 1, l.

This gives d = l(l + 1)/2 (which is the same as Bl-case). For the case C2, we have �1 = S(3) = t3 + t3
1 /6 and

�2 = −S(2,3) = t1(t3 − t3
1 /12). The product F = �1�2 has the degree seven which is the height |2�|, and the minimal

degree is three which is �(w∗) and also the number of real roots of F(t1, t3) in t1 for t3 �= 0. The minimal degree of �k

then gives dk for the Langlands dual algebra Bl in Theorem 5.3.
Dl-Toda lattice: The �-functions are given as follows:

• For l even, they are given by, for k = 1, . . . , l − 2,

�k(t1, t3, . . . , t2l−3, s) = Wr(shl−1 + 2h2l−2, shl−2 + 2h2l−3, . . . , shl−k + 2h2l−1−k).
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The �l−1 and �l are given by

[�l−1 · �l](t1, t3, . . . , t2l−3, s) = Wr(shl−1 + 2h2l−2, . . . , sh2 + 2hl),

and

(�l (t1, t3, . . . , t2l−3, s))
2 = ±

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

shl−1 + 2h2l−2 shl−2 + 2h2l−3 · · · sh1 + 2hl s + hl−1

shl−2 + 2h2l−3 shl−3 + 2h2l−4 · · · s + 2hl−1 hl−2

...
...

. . .
...

...

sh1 + 2hl s + 2hl−1 · · · 2h2 h1

s + hl−1 hl−2 · · · h1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Here the even parameters are all zero t2k = 0, and s is a flow parameter associated with the Chevalley invariant
with the degree l, i.e. the exponent ml = l − 1. The exponents mk of the root system of D-type are given by
(1, 3, . . . , 2l − 3, l − 1) (see e.g. [4]). Counting the minimal degrees of the �-functions, we have

2, 2, 4, 4, . . . , l − 2, l − 2,
l

2
,

l

2

(e.g. �1 ∼ st l−1, �2 ∼ t2
2l−3 and �l ∼ sl/2). Then we have d = l2/2. The minimal degree of �k then gives the

degree dk in Theorem 5.3.
• For l odd, the �-functions are given by, for k = 1, . . . , l − 2,

�k(t1, t3, . . . , t2l−3, s) = Wr(s2 + 2h2l−2, 2h2l−3, . . . , 2h2l−1−k).

The last two �-functions are

[�l−1 · �l](t1, t3, . . . , t2l−3, s) = Wr(s2 + 2h2l−2, 2h2l−3, . . . , 2hl),

and

(�l (t1, t3, . . . , t2l−3, s))
2 = ±

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s2 + 2h2l−2 2h2l−3 · · · 2hl s + hl−1

2h2l−3 2h2l−4 · · · 2hl−1 hl−2

...
...

. . .
...

...

2hl 2hl−1 · · · 2h2 h1

s + hl−1 hl−2 · · · h1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Now the minimal degrees of the �-functions are

2, 2, . . . , l − 3, l − 3, l − 1,
l − 1

2
,
l − 1

2
.

Then we have d = (l2 − 1)/2.

G2-Toda lattice: We have

�1 = S(6) = t1

(
t5 + t5

1

720

)
, �2 = −S(5,6) = t2

5 − t5t
5
1

40
+ t10

1

86400
.

Here the flow parameters are only t1 and t5 and all others take zero, i.e. t2 = t3 = t4 = 0. Those indices 1, 5 in the
non-zero parameters are the exponents of the Weyl group of G-type. The degree of F = �1�2 is 16 (=|2�|), and the
minimal degree is four which is �(w∗), and this also gives the number of real roots of F(t1, t5) in t1 for t5 �= 0. Each
minimal degree of �k is also dk in Theorem 5.3.
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6.2. The degree of the tangent cone at p0 and p(q)

We can now state the following Proposition from those computations:

Proposition 6.1. Let g be a split semisimple Lie algebra not containing factors of type E or F . The degree d of the
tangent cone at p0 of the Painlevé divisor D0 = ⋃l

j=1Dj , which is given as the minimal degrees of Schur polynomials

in (6.3) (see (1.7)), is the dimension of any Borel subalgebra of Lie(Ǩ(C)). Moreover, d is also the degree of the
polynomial p̃(q) = q−r |Ǩ(Fq)|.

Then from Theorem 5.3, we obtain the following Proposition (the proof can be found in [7]):

Proposition 6.2. The number �(w∗)=deg(p(q)) satisfies �(w∗)=d1 +· · ·+dl . Moreover we have �(w∗)=d for any
semisimple Lie algebra not containing factors of type E or F . We have the following formulas for �(w∗). The number
�(w∗) is, in each case, the complex dimension of any Borel subalgebra of Lie(Ǩ(C)),

Al : �(w∗) = l(l + 2)

4
if l is even; �(w∗) = (l + 1)2

4
if l is odd,

Bl or Cl : �(w∗) = l(l + 1)

2
,

Dl : �(w∗) = l2

2
if l is even; �(w∗) = l2 − 1

2
if l is odd,

El : �(w∗) = 20 if l = 6; �(w∗) = 35 if l = 7; �(w∗) = 64 if l = 8,

F4 : �(w∗) = 14,

G2 : �(w∗) = 4.

We especially note that d gives the multiplicity of a singularity at p0, and �(w∗) is defined differently as the maximal
number of blow-ups encountered along the Toda flow, counted along one-dimensional subsystems. The polynomials
p(q), the alternating sum of the blow-ups, are shown to agree with the polynomials p̃(q). As was noticed, the minimal
degree for each �-functions is related to each degree di of the basic W -invariant polynomial of the Chevalley group Ǩ .
For example, the degree di and the minimal degree of �i-function are the same for the cases having the same ranks,
l = rank(g) = rank(K), i.e. the cases of B, C and Dl with l even. We did not compute the exact relation between
those degrees, but we expect that each degree di is related to the number of real intersection points on the tangent cone
V = {Fd = 0} defined in (1.7) with a linear line corresponding to the t1-flow of the Toda lattice. This may be stated as

d = deg(p(q)) = Max
c∈U

|{D0 ∩ Lc| transversal intersection}|,

where U ⊂ Rl−1 is a neighborhood of t = 0, and Lc := {(t1, c2, . . . , cl) : c = (c2, . . . , cl) ∈ U} is the linear line of
t1-flow. This statement is equivalent to the second part of Conjecture 6.1, that is, the number of real t1-roots of the
product F = ∏l

j=1�j in the nilpotent limit.
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