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Absrracr: Each member G(z) of a family of analytic functions defined by Stieltjes transforms is shown to be represented by a positive 

T-fraction. the approximants of which form the main diagonal in the two-point Pad& table of G(r). The positive T-fraction is shown 

to converge to C(z) throughout a domain D(a, b) = [z: z E [ - b, - a]], uniformly on compact subsets. In addition, truncation error 

bounds are given for the approximants of the continued function; these bounds supplement previously known bounds and apply in 

part of the domain of C(z) not covered by other bounds. The proofs of our results employ properties of orthogonal l?-polynomials 

(Laurent polynomials) and &Gaussian quadrature which are of some interest in themselves. A number of examples are considered. 

Kqv~ords: Pad6 approximant, continued fraction, C-Gaussian quadrature, orthogonal !$polynomials. 

1. Introduction 

For 0 < a < b < + 00, let @(a, b) denote the set of all bounded, nondecreasing functions 9(t), from 
a < f < b into W, which have infinitely many points of increase on (a, b) and for which the moments 

ck = ,“( -$d+(t) 
/ (1.1) 

exist for all integer values of k = 0, k 1, + 2, . . . For G(t) E @(a, b), the function G(z) defined by the 
Riemann-Stieltjes integral 

G(z)=zibS (1.2) 

is holomorphic in the cut plane D( a, b) = [z: z P [ -b, -a]]. The series 

DC 

L, = c - C_“P, 
II=1 

are asymptotic expansions of 

L, = f C,ZFn 
II=0 

G(z) at z = 0 and z = cc, respectively, with respect to the sector R, = [z: 
]Arg z] < a]. 0 < a -C q [21, Theorem 4.21. The (n, n) two-point Pade approximant of (L,, L,) (and of 
G(z)) is the n th approximant of the positive T-fraction 

(1.3) 

F,z 4z F,Z 
___ .-., F,>O,G,,,>O 

1 + G,z + 1 + G,z + 1 + G,z + 
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corresponding to L, at z = 0 and to L, at z = m. 

The purpose of this paper is to investigate the positive T-fraction expansions of functions (1.2). It is 
shown (Theorem 2.1) that, if b < + 30. then (1.4) converges to G(z) for all ; E D( a. h). In the discussion of 
truncation error bounds for the continued fractions (1.4), a new result is given (Theorem 3.2) for z 4 
[-h, -a], z E R. This complements the truncation error bounds already known for z E R = [z: IArg ,-I < 71 
(see, for example, [9; 17, Theorem 2; 19. Theorem 8.111. Examples dealt with in Section 4 include the 
complex exponential integral E,(w), the natural logarithm and Arctan 11’. A comparison. made between 

one-point and two-point Pade approximants of E,( M’) for u‘ > 0. points out advantages and disadvantages 
of each type of approximation. The convergence behavior of two-point Pade approximants of E,( K~) for 

complex w is described by means of contour maps of the number of significant digits attained by various 
selected approximants. The paper also contains several results (Theorems 2.2-3.1) on orthogonal f-poly- 

nomials and F-Gaussian quadrature, which are used in the proofs of Theorem 2.1 and 3.2. and which are 
also of some interest in themselves. 

Applications of two-point Padt approximants to theoretical physics have been made in a number of 
papers (see, for example. [1,16,26,27]). Many special functions represented by converging sequences of 
two-point Pade approximants (general T-fractions and the closely related M-fractions) can be found in 
[3,4,5,7,19,22,23,24,25,31]. Grundy [lo.1 1,121 has applied M-fractions to Volterra integral equations and to 
inversion of Laplace transforms. Positive T-fractions have been used recently in the solution of the strong 
Stieltjes moment problem [21]. The computation of poles of two-point Pade approximants and positive 
T-fractions have been studied in [18]. Further results on two-point Pade approximants may be found in 

[9,17,30]. 
Before describing the results of this paper, we recall some pertinent facts about positive T-fractions (1.4) 

and about other continued fractions (real J-fractions and modified S-fractions) whose approximants lie in 

ordinary (one-point) Pade tables. 
Let 9(t) E @(a, b) with 0 < a < b < + 00. Then the positive coefficients 4, and G,, in (1.4) are defined 

and can be calculated, in terms of the moments cx in (1.1). by means of the FG-relations of McCabe and 

Murphy (see, for example, [24; 19, pp. 267-2691). To compute F,,, G,, for n = 1. 2.. . .p. first set 

m= -p. -p+ l.....p- 1. ( 1.5a) 

Then compute recursively, for n = 1, 2,. . ,p - 1 

F,‘=‘,, = F(“‘+ 1) + G(f”+ 1) _ G’“” 
n n ” 3 m=n-p- l.n-p ,..., p-n- 1. ( 1.5b) 

G;yl = 
F”(:‘/ 

“,?I) 
-G: , 
F”:‘, 1) 

m=n-p. n-p+ l....,p-n- 1. ( 1.5c) 

Finally, set 

F, = -c_,, F,=E;,“‘, n=2,3, . . . . p, ( 1.6a) 

G”=G,!‘), n=l,2 ,..., p. (1.6b) 

The resulting positive T-fraction (1.4) corresponds to Lo at 2 = 0 and to L, at z = x in the sense that. if 

f,(z) denotes the nth approximant of (1.4) then 

f,(z) = -c_,z - c_$ - ‘. . - cp,zn + c!$,zn+’ + . . . ( 1.7a) 

and 

f,(z)=c,+c,zY’+ ... +C,~,Z-~+‘+C~~)Z-~+ ... . ( 1.7b) 

Thus f,,(z) is the (n, n) two-point Pade approximant of G(z); similarly, it can be seen that the n th 
approximant of the closely related M-fraction 

F, F,z F3z ~ . . . 
1 + G,z + 1 + GZz + 1 + G,z + 
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is the (n - 1, n) two-point Pad& approximant of z -‘G(z). If (1.4) converges at any point in the cut plane 

R,, then it converges at every point in R,, uniformly on compact subsets. A necessary and sufficient 

condition that (1.4) converges for z E R, is that 

&,=CO or fd,=cc (1 .Sa) 
n=l ?I=1 

where the continued fraction 

Z Z 

e,+d,z + e,+d,z 
+ z 

e3 + d,z + ” ’ 
e,,>O, d,,>O 

is obtained from (1.4) by an equivalence transformation. We have 

n-l 

e, = l/F,, ezn-, = ~~,U?iiL n=2,3,4.... (1.8~) 

e2,, = l/F,,e2,- I 1 
d,=G,,e,, n=1,2,3 ,... (1.8d) 

[21, pp. 508-509 and Theorem 2.21. A sufficient condition for convergence of (1.4) for all z E R, is that [9] 

~~~,~,,~_~,~‘i4(~-“= co. (1.9) 

We turn now briefly to real J-fractions and modified S-fractions. For that purpose we consider 

- x < a < b < + cc and let Qi’( a, 6) denote the set of all bounded, nondecreasing functions +(r), from 
u < t < b into R, which have infinitely many points of increase on (a, b) and for which the moments (1.1) 

exist for the non-negative integers k = 0, 1, 2, . . . . The right side of (1.2) defines a function G+(z) 
holomorphic for z E R + = [z: Im z > 0] and a function G-(z) holomorphic for z E R-= [z: Im z < 01. The 

series L, in (1.3) is the asymptotic expansion of G+(z) (G-(z)) at z = cc with respect to RC (R-). There 
exists a real J-fraction 

(1.10) 

which corresponds to L, at z = m in the sense that, if J,,(z) denotes the nth approximant of (1. lo), then 

J,(z) = c0 + c,z-’ + . . . + czn_ ,zpZn+’ + A’;;z-2” + . . . . (1.11) 

Thus J,,(z) is the (n - 1, n) Pade approximant of L, at I = co. The coefficients k,, I, may be computed by 
an algorithm described in [8; 19, Algorithm 7.2.11. In the special case in which [a, b] is a finite interval, 
Markoffs theorem asserts that (1.10) converges to (1.2) for all z E D( a, b). Thus Theorem 2.1 is the 

analogue of Markoff’s theorem for positive T-fractions. 
Considerably more can be said about the continued fraction representation of (1.2) when 9(t) E @‘(a, 

b) with 0 < a < b < + co. In that case the function G(z) in (1.2) is holomorphic in the cut plane R, and L, 
is the asymptotic expansion of G(z) at z = cc with respect to the sectors R,, 0 < a < T. There exists a 
modified S-fraction 

CO 
(0) 

41 
(0) 

el 
qp ,:o, 

i- z - 1 - z _ z __..., 4, (O)< 0, eAO’< 0 (1.12) 

which corresponds to L, in (1.3) at z = cc in the sense that, if h,(z) denotes the n th approximant of (1.12), 
then 

h,(z)=c,+c,z-‘f ... +cCn_,z-~+l+I*~:)z-~+ ... . (1.13) 

Thus h,,,(z) (h 

qj,“, eA”) 

2”,+,(z)) is the (m - 1, m) ((m, m)) PadC approximant of L, at z = co. The coefficients 
may be computed by means of the qd-relations (see, for example, [13, p. 609; p. 2271). If (1.12) 

converges for one z E R,, then it converges to (1.2) for all z E R,. A necessary and sufficient condition for 
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convergence of (1.12) for z E R, is that 

&=ZC 
l7=l 

where 

1 1 1 1 

b, + b,z + c + b4z + ..’ 

(1.14) 

is obtained from (1.12) by an equivalence transformation. Carleman’s condition C;“c,; ’ z~2,r = 30 is sufficient 
for the convergence of (1.12). The even part of (1.10) is the real J-fraction 

COZ 
qpep qpep 

. . 

z - 41 
(0) - Z_(e’,O’+q;O)) - Z_(e;O’+q:O’) - . . ’ (1.15) 

it converges to (1.2) for all z E D(a, b), provided 0 < a < b < + 00. 

2. Positive T-fraction expansions 

The main result of this section is the following. 

Theorem 2.1. Let $(t) E @(a, 6) with 0 < u < b < + co. Then for all z E D( a. b) = [z: = E [-b, -a]]. 

l+G,z + l+G,z + l+G,z + ’ 
(2.1) 

where the positive coefficients F,, G,, are given by (1 S) and ( 1.6). The positive T-fraction converges uniform!,, 

on every compact subset of D(u, b) to the holomorphic function G(z). 

Before proving the theorem, we shall describe some results on orthogonal ?-polynomials and ?-Gaussian 

quadrature that will subsequently be used. A brief sketch of some of these proofs is included in [20]. 
A function R(z) of the form 

R(z)= E qzJ, r/E”? -oc<k<m< +CC 
/=k 

is called an I?-polynomial (or Laurent polynomial) in the complex variable z. The set $4 of all L-polynomials 
forms a linear space over Iw with respect to the usual definitions of addition and scalar multiplication. A 
basis for 6X is given by 1, z- ‘, z, zP2, z’, . . . . For m > 0, we let 93 2nl and $2 Zn,+, denote the subspaces 
spanned by Z-“‘, Z-“‘+I,. ..,z”’ and I~“‘~‘, Z-“’ ,..., z”‘, respectively. If G(t) E @(a. b) with 0 < u < b < 
+ 00, then 

(R,S)=/‘R(t)S(t)d+(t), R,SE’:~~ 
Cl 

defines an inner product on 9,. In fact, linearity, symmetry and homogeneity follow directly from 
properties of the Riemann-Stieltjes integral. To protie positivity we note that 

(R.R)=/b[R(t)]2d+(t)>0 forallREL’$ 
a 

and, since + has infinitely many points of increase on (a, b), (R, R) = 0 if and only if R(t) = 0. The norm 
llRl/ of R is defined by llRll= (R, R)‘12. 

We recall that the Hankel determinants Hi”‘), associated with a double sequence (c,,}? 2. are defined by 
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Hi”‘)= 1 if k<O and 

C “I Cm+, ... C I?+& I 

C ,,1+ I c ,?I+2 ... C 
H ( 1~ , = 

n, i k 

h , k= 1,2,3 ,..., m=O, Ifl. +2, ... 

,c,,,+,:-1 C,z+L . . . Cm+2,!-2 

Corresponding to each G(t) E @(a, b) with 0 Q a <b < + co, we shall consider the sequence of 
I?-polynomials {Q,,(z)): defined by Q,,(z) = 1, 

C-Zn ... C-1 ( -z)-‘7 

Qz,,(z) = 
(- 1)” 

/fp2”+,) 
211 

Q 2,,+,(z) = 

(-1)” 
H(-2”) 

2r1+1 

c_, .‘. C2,,-2 (-zr’ 

co . . . 
CZn-I (-4” 

c-2,,-, * . . c-1 ( _z)--’ 

, n=l,2,3 ,..., (2.2a) 

C-2 
. . . 

C211- I 
( _z)‘I-’ 

CO 
. . . 

C2n (-z)” 

, n=0,1,2, . . . 

In the sequel we shall write 

Qrn(z) = k 42n.,z’. Qz,,+,(z) = 5 q2n+,.,z.‘t n=o. 1,2, . . . 
,= --n J=-“-1 

Clearly Q,(z) E 9 n. 

(2.2b) 

Theorem 2.2. Let +(t) E @(a, b) with 0 < a < b < + co und let <Q,(z)>~=, be defined by (2.2). Then: 

(A) Orthogonality and normalization: 

,,Q ,,2 = H;,2”)H(-2”) ’ 2n+ I 
Hi,:;-2’ 

= 2n ,Hi,2n+,,12 3 IlQ2n+,l12 H;,:;, 3 n=O, 132, ... 5 

H(-2n) 

q2,1,-,z = q2n+1,-n-, = 1, 
2n 

Hi-:;- 1) 
” 

q2n.u = 

HL2”+ ” 

’ 0, qzn+,.n = 
H(-2”) 

-c 0, 

2nt I 

n=0,1,2,... 

(Ii) Three-term recurrence relations: 

Q,(z) = 1, Q,(z) =z-’ + 41.0, 

andfor n = 1, 2, 3, . . . 

Q,,(Z) = (1 - Gnz)Q~n~,(z) - &Q,,-,(z), 

Q z~+I(~=(z-‘--G~,+,)Q~,(+L+,Q,,-,(~~ 

where the F, and G, are defined by (1 S) and (1.6). 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7a) 

(2.7b) 

(2.7~) 



110 W. B. Jones et al. / Tw - point Pad& expansrons 

(C) Continued fraction: If B,,(z) denotes the nth denomimator of the positive T-fruction ( 1.4). then 

Q,,(z)=B~~(-z)/z”, Q2n+,(~)=B2,1+,(-z)/z’1+‘, n=O. 1.2, . (2.8) 

(D) Zeros: For each n = 1, 2, 3,. . , Q,,(z) has exuctly n ieros tl”‘, t:“‘,. . . , ,, t’“’ They are distinct, positive, 

real numbers and all lie in (a, b). 

Proof. (A) Using (2.2) and the known fact that H,(-“+‘)> 0, H$,J2”)> 0 and Hi,;!‘,‘+‘)<0 for n 2 1 [21, 
Theorem 9.8C], one can readily show that, for n = 0. 1, 2, . . . , 

(~“9 Q,,,) =O. -n<k<n- 1, 

~~Q2,,~~2=(Q,,,,Q2,,)=q2,1,,,(z'1.Q,,,)= Hin2”)H”‘1”‘0. [ H;,2”+ “1’ 

From this we obtain (2.4) and (2.5). (2.6) is easily verified from (2.2). 
(B) can be verified by using (2.14) and an argument that is standard for orthogonal polynomials. 
(C) follows by comparing (2.7) with the difference equations satisfied by the denominators B,,(z) of the 

continued fraction (1.4). 
(D) We shall show that Q2,,(z) has 2n zeros and that they are real, distinct and lie in (a, 6). The proof 

for Q2,1+ ,( z) is completely analogous and hence is omitted. Let X denote the number of distinct real zeros 

of Q2,,(z) that lie in (a, b). We denote these by t,, t,, . . , , t, and consider 

12” = 2t’“,d$(t) 1 

where S2n(t) is a polynomial in t that does not change sign on [a, b] and is not identically zero. Since G(t) 
is assumed to have infinitely many points of increase on (a, b). it follows that 12,, * 0. On the other hand 
Z2,, can be written in the form 

I*,, =JhQ2,,( t)[t-” + d_,,+,t-“+I + . . + d,_,,t”-“]d+( t). 
0 

Therefore by orthogonality we would have Z2,r = 0 if X < 2n - 1. Thus h = 2n, which proves (D). q 

Theorem 2.3 (!SGaussian quadrature). Let +(t) E @(a, b) with 0 < a < b < + 00. Let t/“‘, t$“‘. . , t!,“’ 
denote the n zeros of the orthogonal C-polynomial Q,(z). Then for every F(z) E R 2,,_ I9 

/ 
‘F( t)d$( t) = i w’“‘F( t;“)), (2.9) 

a J=I I 

where 

w0’)= Q&) 
h Q (t) 

J J -'--d+(t), 
a t-tjn’ 

j= 1, 2 ,..., n. 

Proof. Let F(z) E ?!I 2,,_, be given and let 

(2.10) 

Q,,(z) L&)= (z_t;,,))Q:,(t;“‘)’ j= 1,2,...,n. (2.11) 
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It is readily seen that L,,,,(z) E C.$ Z,r_, and that L,,,x( tj’l)) = a,,, (the Kronecker delta). Let 

R(z)= i L,,,Jz)F(p). 

k=l 

ThenR(z)E:R,,_, andR(r~“‘)=F(r~“‘),j= 1, 2 ,..., n. Therefore F(z)-R(z)E% 2,,_, and zeros at tj”), 
( !I ) t, 1.. . . ,, . t(“) It then follows that 

S(z)=[F(z)-R(z)]/Q,,(~)~~~~,,~, 

Hence 

jhF(t)d4(t) =jhR(t)d4(j) +jhQ,WtbW)~ 
a a a 

The second integral on the right vanishes by orthogonality, and we obtain 

jbF( t)d+( t) = t F( ‘;“)) jhL,,,,( t)d$( t) = 2 M+“)J’( l;“‘). •I 
a /=I a i= I 

The numbers tj”) and w,(“) in Theorem 2.3 are called, respectively, the abscissae and weights of the 

n-point f-Gaussian quadrature formula (2.9). Some applications of e-Gaussian quadrature to the numerical 
evaluation of integrals are described in [20]. For an interesting recent survey of classical Gaussian 

quadrature see [6]. 

Theorem2.4.Let~(t)~~(a,b)withO~a~b~+~.Lett~”’undw~“‘,j=1,2....,n,denotetheabscissae 

and weights of the n-point t’-Gaussian quudrature formula with respect to 4(t). Let F(t) be a function of the 

f orm 

F(t)=f(t)/t”’ 

where m is a fixed integer and f(t) is a bounded, Riemann-Stieltjes integrable function with respect to 4(t) on 
[a, b]. Then 

J 
‘F(r)d+(t)= lim i w,(“)F(t\“‘). 

a n--Jo 
/=I 

(2.12) 

proof. We first note that the integral on the left side of (2.12) may be an improper Riemann-Stieltjes 
integral. Let c > 0 be given. From [28, Theorem, 1.5.41 there exist polynomials p and q such that 

-M-c<p(t)<f(t)<q(t)<M+e, fora<t<b, (2.13) 

where 

M=max { IOyp, f(t$ 10&$ f(t)l} and jh[q(t)-p(r)ld4(j)<~. 
. . . . a 

We observe that 

j%(t) -p(t)12d+(t) G jb2(M + c)[q(t) -p(l)ld4(t) < 2c(M+ c). 
u a 

Now define P(t) =p(t)/t”’ and Q(t) = q(t)/t’“. Then P(t) and Q(t) are C-polynomials and by (2.13) 

P(t)<F(t)<Q(t), fort*O. (2.14) 

By Theorem 2.3 there exists an integer n, such that, for all n > n,, the quadrature formula with n points is 
exact for P and Q; that is, 

J hp(j)&#,(t) = t u~~“)P(c;“‘), jhQ(l)d4(t) = 5 $n'Q(':"')~ n>n,. 
CI /=I u /=I 
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Consequently, 

= s ‘df) -p(r) d+([) 

t 
m 

a 

where c_*~ = j,htP2”‘d+(t). Th e trst inequality above follows from Schwarz’ inequality. By (2.14) we then f’ 

have 

Hence for all n 2 n,. 

Proof of Theorem 2.1. Let ,4,,(z) and B,(z) denote the nth denominator, respectively, of the positive 
T-fraction in (1.4). We shall establish the partial fraction decomposition 

and the relations 

It was shown in [21, pp. 513-5141 that A,(z)/B,,(z) can be expressed in the form 

(2.15) 

(2.16) 

(2.17) 

where 

;:r;+, $“‘>O,j=1,2 )...) n. 
j=l 

If suffices then to show that 7r, (n) = w/(“). For that purpose we consider the sequence of f-polynomials 
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{P,,(z)>~ defined by 

PO(z) = 1, P,(z) = -F,, 

P,,(z)=(~-G~,~)P~~-,(z)-F~.P~._~(z), n=1,2,3, . . . . 

Pz,+,(z)=(z~‘-Gz,,+,)Pz,,(z)-Fz,,+,Pz ,,--I (z>, n= 1,233, . . . 

By comparing (2.18) with the difference equations satisfied by the A,(z), we see that 

P*,(z)=A*,,(-z)/zH, Pz,,+I(z)=Az,,+,(-z)/Zr’+‘, n=o, 1,2. . . . 

Therefore 

n z$)l) P,(z) _ A,,(-z) 

Q,(z) B,( -z) =,,:, z - rJn)’ 

and hence 

.j7tn)= lim 
(z-p)P,,(z) P&q 

I ,_,y, zQ,(z> = l;,,‘Q;(t:Hi)’ I= 1*2,...,n, 

It can also be shown that 

(2.18a) 

(2.18b) 

(2.18c) 

(2.19) 

(2.20) 

In fact, let P,,(z) denote the right side of (2.20). Then by induction, using orthogonality of the Q,,(t) and 
(2.7) one can show that the P,,(z) satisfy the recurrence relations (2.18). Hence Pn(z) = P,,(z), n = 0, 1, 2, 

. . . . From (2.20) we obtain 

P.,(t:“‘)=r:“‘~~~d~(i), j= 1,2 ,..., n. 

Combining this with (2.10) and (2.19) yields 

’ 
j= 1.2 ,...,n. 

Now, for fixed z E D(a, b), set F(t) = z/( z + t). Then by (2.15) and Theorem 2.4, 

Z 
/ 

h@(t) _ ,imA,,(4 
a z+t 

lim ~ ““) _ 
l7+cc ,=, z + ttn) 

I 4, ( z > ’ 
which proves the convergence of (2.1). Let K be an arbitrary compact subset of D(a, b). Then there exist 

constantsB(K)and6(K)suchthat,forallzEK,wehavelzl~B(K)andIz+tj”’l~S(K),j=1,2,...,n, 

n= 1, 2, 3, . . . . Therefore 

It follows that {A,(z)/B,,(z)} is a normal family of holomorphic functions in D(a, b) and hence by the 
Stieltjes-Vitali theorem ([ 15, Theorem 15.3.1; 29, Theorem 20.15 and Remark 20.21) the sequence 
{ A,,( z)/B,,( z)) converges uniformly on K. 0 
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3. Truncation error estimates 

For positive T-fractions (1.4) the following a posteriori truncation error bounds are known. If 
f;,(z) = A,,(z)/B,(z) denotes the nth approximant of (1.4) then for n = 2, 3. 4. . . . and m = 0. 1, 2, . . 

If,+,,(z) -f,,(z)I G K(z)If,,(z) -L,(;)l (3.la) 

where 

K(z) = 
1, ifO<]argz]<fT. 

csc]arg z I, if in < ]arg z] < 71. 
(3.lb) 

(see, for example, [9; 17. Theorem 2; 19, Theorem 8.111). If the continued fraction (1.4) converges to a 
function G(z) (as in Theorem 2.1) then f,,,,,, (z) in (3.la) may be replaced by G(z). A priori truncation 
error bounds for (1.4) are also included in [9] for the same values of z. A limitation of (3.1) is that it tells 
nothing about the truncation error when z is real and negative; in particular, for z e [ -h, -a]. 2 E k! at 

which points the continued fraction of Theorem 2.1 is convergent. This problem can be resolved to some 
extent by finding truncation error bounds for P-Gaussian quadrature since, by (2.15) the n th approximant 
A,,( z)/B,( z) of (2.1) is exactly equal to the n-point e-Gaussian quadrature approximation of the integral in 
(2.1). Such truncation error bounds are given in Theorems 3.1 and 3.2. Before stating and proving those 
results, we shall give some additional properties of orthogonal I1‘-polynomials that are used. 

We consider now the sequence of orthonormal 1L’-polynomials { RX( z)>~=,, defined by 

R(z) = e,,,(~)/lle*,,Il~ K,,+,(z)= -Q,,,+,(=,/llQ,,,+,lI. 

Clearly (RX, R*,) = a,,,,,. If the R:(z) are written in the form 

R*,,,(z) = kz,,( z - ty*rl))’ * . (z - tp)/z”, 

RT,+,(z)=kz,,+,(z-tj2”f’))... (z-t;~~‘r+y’)/Z”+‘, 

then it is easily seen that, for n = 0, 1, 2, . . , 

k,,, = ~2,,.,AlQz,,ll and k2,,+, = -q2,,+ ,.,JllQ2,z+ ,ll. 

It can be shown that, for n = 0, 1, 2, . . . . 

2n+1 

42n.n 42,,+ I.,, = - I-I GA 
k=l 

and 

2n+ I 2n+2 

llQznll* = kc, F,/G,,,+ 13 IIQ 2,,+1112= n 4. 
k=l 

(3.2a) 

(3.2b) 

(3.2~) 

(3.3) 

(3.4) 

The latter equations can be proved by induction, using (2.5) and the relations 

H’-“= -F 
I I’ 

H,!-“‘= (- 1)” fi Fh’g uh, n = 2, 3, 4, . . . , 
X=l k=l 

H!- n+ I) _ 

- p, uh ’ n=l,2,3, . . . . 

where Us = nf_ ,( F,/G,). Substituting (3.3) and (3.4) in (3.2). we arrive at the relations ki = G,/F, and 

k:,,= ?i Gh2iji’(GI/Fh)=k:,,-,G:,,(G2,1+,/F2,,+,)- n = 1,2,3. . . . . (3Sa) 
k=l k=l 

211+ I 2n+l 

kin+,= kv, G, kc, (G,/F,)/F,,,+,=k:,,(G,,,+,/F,,,+,), n=O. 1,2. ... (3Sb) 
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These can be used to compute the k, in terms of the coefficients F,, and G,,. 

Theorem 3.1. Let Q( 1) E @(a, b) with 0 < a < b < + CC and let t:“) and w:“’ denote the abscissue and weights 

/or the n-point ?-Gaussian quadrature with respect to G(t). Let f(t) be a real valued function for which f”“‘(t) 

exists for a < t < b and let F(t) = f(t) / t”. Then 

‘F(t)d+(r) = i w”“F( t:“)) + e,,( F) 
/=I ’ 

(3.6) 

where 

e 
,1 

(F) = ~(n)f’2’1)(77) 

ki(2n)! ’ 

a<q<b, 6(n)= 

(3.7) 

We shall merely sketch the proof of Theorem 3.1 since it parallels rather closely the proof for the 
analogous theorem for Gaussian quadrature (see, for example, [14, pp. 314-323; 2. Theorem 14.2.21). 

Sketch of Proof. Let t,, . , t, be distinct numbers in (a, b) and 

&,.,(t> = t:C~‘JQ (t- Q/t “‘(“),fi,(tk-t,), k=1,2 ,..., n 

1-k /*k 

where m(n)=in if n is even and m(n)= i(n- 1) if n is odd. Then A,,,,~f.lj,,~,, A~,,,E%,,,_, and 

;l,,.r(t,)= a,,,. For k = l,..., n, let 

S,,.,(t) = [l - 2%.A (t>(t- tl,)n:,,,(t,)]AS,.,(t), (3.8) 

T&) = an.k (t)(t--txb’$k(d 

where (Y,,,~ (t)= 1 for n even and CY,,,~(~)= t,/t for n odd. Then S,,,k(t), T,.r(t)~ $8 2,,P,, S,,,(t,)= ?;:.,(t,) 
= a,., and S,l,,(t,)= T,.,(t,)= 0 forj, k = 1,. ., n. Now let 

H,,(t)= 5 F,%,(t)+ 2 F;%,(t) (3.9) 
k=l k=l 

where FA = F(tk) and FL = F’(t,). Then H,(t) E ?fl znP ,, H,(t,)=F, and HL(t,)=q for j=l,..., n. 

Moreover, H,,(t) is the unique element of CH Zn_, satisfying these properties. H,(t) is called the Hermite 

interpolating C-polynomial for F(t) at t,, . . . , t,,. 
We now show that, for each x E (a, b), there exists 5 = E(x) in (a, b) such that 

f(x) = H,,(x) +f”“‘([)u(x)/(2n)!x” where u(x) = Jp, (t - t,)2. (3.10) 

We assume that xE[t,,..., t,] since otherwise (3.10) holds. Let 

v(t)= [I-~,,(t)]t”-mu where K(X) = [F(X) - H,,(x)]x~~/u(x). (3.11) 

Then V(r) vanishes at x, f,, . . . , t,. Sincet”H,,(t)isapolynomialandf(t)=t”F(t), VC2”‘(t)existsin(u, b). 
Hence by Rolle’s theorem v’(t) has n distinct zeros in (a, b) but not in [x, t,, . . . , t,,]. Also v’(t,) = 0, 

j= 1 ,..., n, so that V’(t) has 2n distinct zeros in (a, b). We deduce from Rolle’s theorem that V(2n’(<) = 0 
for some 5 E (a, b). Since t”H,,(t) is a polynomial of degree 2n - 1, it follows from (3.11) that 
Vt2”)(t) = fC2”)([) - (2n)!K(x) = 0, from which we obtain (3.10). 

Integrating (3.10) and using (3.8) yields 

I 
‘F(r)d+(r)= i wkF(tk)+ f w;F’(t,) +e,T( F) (3.12) 

0 k-l k=l 
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where 

W, = 
J 

hs,.,(t)d$(t), 
u 

w; =/bT,,i(t)dq+), k= 1, 2 ,..., n, 
a 

(3.13) 

and 

e,*(F) = (2jl)l u / 
‘~(‘“‘(S(r))(r-r,)*... (t-t,,)*tPd+(t). (3.14) 

It follows from (3.14) that e,*(F) = 0 if FE CKZn_ ,. In particular, e,*( H,) = 0. Hereafter we let t, = tj”), 
j=l ,...,n, where the t,(“’ are the zeros of Rz( t). Then by the mean value theorem 

where a < q < b and p,, = 1 for n even and p,, = t for n odd. Thus it remains to show that u’~ = we”) and 
W; =O, k= l,..., n. By (3.2) and (3.13) 

w;= 
J 

bR:(t)U([)d$(Q=O, k=1,2 ,..., n, 
a 

since U(t) E G%,_ ,. Finally we show that w, = w in). Since H,,(t) E Cii 2,1_ ,, Theorem 2.3 implies that 

J 
bH,(r)d+(t) = i w;“)&(t;“‘) = k w;+(r;“‘). 

a ,=I /=1 

Replacing F by H,, in (3.12) yields 

so that 

i w,F(t;“) = i w;“)F(t;“‘). 
J=l /=I 

Since this holds with F replaced by A,,,, and sinceA,,,,(t,)=6,,, it follows that y,=~;“‘,j= I,..., n. q . 

The following result relates Theorem 3.1 directly to the positive T-fraction expansion of Theorem 2.1. 

Theorem 3.2. Let +(I) E @(a, b) with 0 < a < b < + 00. Let f,(z) denote the nth upproximant and G(z) 

denote the limiting value of the positive T-fraction in Theorem 2.1. Then, for z E Iw, z G [ - b. - a]. 

(3.15a) 

ifz < -b 

where ki and S(n) are defined by (3.5) and (3.7), respectively. 

(3.15b) 

Proof. Let z be fixed, F(t) = I/( z + t), f(t) = t”F( t). Then it is readily shown that 

f~2”)(t)=(-l)n(2n)!zn+‘(t+z) 
-2n- I 

Thus (3.15) follows immediately from Theorem 3.1. •I 
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4. Applications to special functions 

We consider here some examples of positive T-fraction (two-point Pade) expansions of analytic 

functions and compare them with analogous one-point Pade expansions. 

Example 4.1. Exponential integrals E,(w) are defined by 

E,,(w) =J”‘(ee”“/r”)dt, Rew>O,n=1.2,3 ,... (4.1) 

We shall restrict attention to E,(w) since, by the relation E,,+, (M?) = [e-” - wE,?( w)]n- ‘, the other E,(w) 

may be expressed in terms of E,(w). Taking n = 1 and t = a/w in (4.1) yields 

E,(w) =Jm(e-“/o)do, ]arg w] < 71. (4.2) 
n 

Now letting u = 7 + { in (4.2) and then 7 = l/t and [ = l/z = w - 1, we obtain 

E,(w)= e’-“‘G( l/( w - 1)) (4.3a) 

where 

G(z)=z/u’(tC’e~“‘/(z+r))dt. (4.3b) 

Here G(z) is a holomorphic function of z CZ [ - 1, 0] and has the form of the integral in Theorem 2.1, with 
d+(t) = t-‘e- “‘dt and [a, b] = [0, I]. Hence G(z) can be represented by a positive T-fraction (1.4). 

However. we prefer to consider a slightly different form for our expansion of E,(w). Using the partial 

fraction 

LJ[&L] 
t(z + t) 

and the fact that E,( 1) = Jdr- ‘e- “‘dr, we arrive at the expression 

E,(w) = e’-“’ [E,(l) + (1 - w)T(l/‘(w- I))] (4.4a) 

where 

T(z)=z~‘(ee’/‘/(z+r))dr. (4.4b) 

Here again T(z) is a holomorphic function of z for z P [ - 1, 0] and T(z) has the form of the integral in 
Theorem 2.1 with d+(t) = e- “‘dr and [a, h] = [O,l]. The asymptotic expansions of T(z) at z = 0 and 

Table 1 
Coefficients F,. G, in the positive T-fraction expansion of T(L) = z/de- I”( z + t)- ‘dr and coefficients kz from (3.5) 

n F, G” k,Z 

L 

3 

4 

5 

6 

7 

8 

9 

10 

0.2 1938 39343 95520 1.4773 77593 15888 
0.19949 74350 19818 2.1845 42949 64163 
0.53148 29289 58047 2.6827 16184 27413 

0.90407 05038 02134 3.0614 88067 61871 

1.2983 1 67121 02766 3.4462 32969 30537 
1.70630 98642 27231 3.7638 44895 71063 
2.12395 98133 90531 4.0539 20731 93817 
2.54884 29065 75927 4.3225 32863 72960 
2.97939 09565 66136 4.5738 10230 86096 
3.41452 36515 42848 4.8107 10385 91449 

4.99 x 10’ 

1.20x 10’ 

3.56 x lo3 
9.04 x 104 

1.83~ IO5 

4.94 x lo6 

7.85 x IO6 

2.25 x 1oR 

3.02~ 10’ 
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z = co, respectively, with respect to the sectors R, = [i: larg z[ < cx]. 0 < a < 71 are given by (1.3). The 
coefficients in the positive T-fraction expansion 

T(z)=-_ ~ 522 F- 7’ 
1 + G,z + 1 + GZz + 1 + . ” (4.5) 

can be obtained numerically by applying the FG-relations (1.5) and (1.6) to the double sequence of 
moments ( c,,)?~. The latter can be computed in terms of pk = (- l)‘c, by first setting I*,, = ee’ - E,( 1). 
where E,( 1) = 0.21938 39343 95520 273665 and then using the relations 

pLI=ep’ -(k+2)/11.,+,, k=O, *1, *2. . . . 

A sample of values of the coefficients F,, G, is in Table 1. Let 7;,( 2) denote the II th approximant of (4.5). 
We shall study the approximations of E,(w) given by 

E,.,(w) = e’-* [E,(l)+(l -w)7;,(1/(~‘- l))], n= 1.2.3, 

Since ql(z) is the (n, n) two-point Pad& approximant of T(z), it is likely to approximate T( -_) best in 
neighborhoods of the points z = 0 and z = cc. Therefore E,,,,( bv) is expected to approximate E,( rr’) best in 
neighborhoods of w = 1 and w = co. An application of (3.1) gives the a posreriori truncation error bounds 

(for wE(-cc, 1)) 

where 

(4.6a) 

K( WI = i 

1, if Re w > 1, 

cscjarg( I/( w - 1))1, if Re M’< 1. M.@[W. 
(4.6b) 

Applying Theorem 3.2 and (3.5) yields the a priori truncation error bounds 

IE,(w)-E ,,,, (w)l~(~-l)~+‘/k,Se~-‘. forl<w<cc. (4.7a) 

and 

(4.7b) 

Table 2 

Truncation error E,(w)- E,,,(w) and truncation error bounds for E,,,( H.) 

w IE,(w)- E,,,(w)l Truncation error bounds 

a priori from 

(4.7) 

a posteriori 

from (4.6) 

0.1 4.9x 1om4 

0.2 7.1 x 1om6 

0.3 2.0x lo-’ 

0.4 6.9~ 10-s 

0.5 2.3 x lo- ‘” 

0.6 6.2~10~” 

0.7 1.0x lo-” 

0.8 2.5 x lo- I5 

0.9 l.9x10m’s 

1.1 1.1 x lomzO 

1.2 1.2x lo-” 

1.3 2.9~ IO-l6 

1.4 2.3 x IO- I5 

1.5 1.0x lo-l4 

2.0 3.4x lo-‘3 

2.8 x 1O’O 

1.5 x lo4 

1.6x 10’ 

1.3x 10-j 

2.8x10-” 

8.5 x lO-9 

2.3 x lo- ” 

2.9 x lo- I4 

2.7 x lo- I8 

3.0 x lo- I9 

2.8 x lo- I6 

1.5x lo-l4 

2.3 x lo- I3 

2.0x lo-‘2 

1.2x lo-9 

Not 

applicable 

1.9x lo-‘* 

4.4x lo-l6 

7.9x lo-l5 

5.1 x lo-l4 

l.9xlo~‘3 
4.2~10~” 
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where values of k,f, n = 1, 2.. . , 10 are included in Table 1. Some values of truncation error bounds for 

E,,,(w) obtained from (4.6) and (4.7) are given in Table 2. Also given for comparison are the actual 

absolute errors I,?,(w)- E,,,(w)]. A posteriori bounds obtained by (4.6) are not applicable for 0 < w < 1, 

but are seen to be quite sharp for the values given in the range M’ > 1. The a priori bounds obtained from 
(4.7) are not very sharp near the singular point w = 0 but are excellent in the neighborhood of the point of 
interpolation w = 1. 

The convergence behavior of the sequence : E,.,( M’)} can be described by means of contour maps of the 

number of significant digits SD(E,,,,( w)) in the approximation of E,( M’) by E,,,,(w). For convenience we 
approximate SD( E,,,,( H’)) by 

S%,,,(w))= -log,,l(E,(~~)-E,,,,(w))/E,(w)l. 

In Figs. 1, 2 and 3 we give maps of constant level contours of s?(E,,,,(w)) in the square region of the 

K.-plane, ]Re(w)] G ]w], ]Im( w)] G 20. for each of the fixed values of n = 5. 7 and 10. These maps were 
produced using the NCAR plotting package of the National Center for Atmospheric Research. (A slight 

amount of smoothing was introduced by a draftsman.) An expected characteristic suggested by these maps 
is that the approximations of E,(w) are best near w = 1 and w = m. The maps indicate that, for sufficiently 
large ]w], SD( E],,,( M’)) increases monotonically with ]w] along fixed rays ]arg w] = constant. The symmetry 

with respect to the real axis is due to the fact that E,(w) and E,,,,(w) are defined by real coefficients. This 
symmetry is of interest since the function E,(w) has a discontinuity (like log w) as w approaches the 
negative real axis from above and from below. The speed of convergence of E,.,,(w) can be ascertained 

approximately by comparing the maps for different values of n. 
We wish now to compare the approximation E,,,,(w) with an expansion of E,(w) by ordinary 

(one-point) Pade approximants. Letting u = w + t in (4.2) yields 

E,(w)+(w) where H(w) = w/msdr. (4.8) 
0 

Here H( r~) has the form of the integral (1.2) where d+(t) = e-‘dt, [u. h) = [0, co] and hence 4(t) E @‘(O, 

Im AXIS 

Fig. 1. Contours of constant levels of the number of significant 

digits s( E,_,( H.)) in the approximation of the exponential 
Fig. 2. Contours of constant levels of the number of significant 

digits % (E,,,(w)) in the approximation of the exponential 
integral E,( H.) by the two-point Pad6 approximant E,,,(w). integral E,(w) by the two-point Pad& approximant E,,,(w). 

Im AXIS 
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co). It follows that H(w 
00 
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) has the asymptotic expansion 

l)%!w_” LZ= c (- 
n=O 

at w = cc with respect to R, = [w: larg w] < a], 0 < (Y < 71. Applying the @algorithm to L: yields 

(4.9) 

Im AXIS 

t 

Fig. 3. Contours of constant levels of the number of significant digits S%( E,,,,( w) in the approximation of the exponential Integral 

E,(w) by the two-point Pad& approximant E,,,,( ~8). 

e$“= - 1 for n > 0, m > 1 and 45:‘= - (n + m) for n 2 0, m 2 0. Thus we arrive at the modified S-fraction 

1 1 1 2 1 3 

i+W+i+W+i+w+” 
(4.10) 

corresponding to Lz at w = cc. By the convergence criterion (1.4) this continued fraction is convergent and 
we obtain 

~,(_)=$[L 1 l 2 l 1 
1 + w+T+.w+i+w+“’ 

1, ]arg M’] < 7. 

or by an equivalence transformation 

E,(w)=e-“’ 1 1 1 1 1 2 . . . 
[ w+l+w+l;w+l+ 1 

, ]arg ~‘1 < 7. 

(4.11) 

(4.12) 

Now let h,(w) denote the nth approximant of the continued fraction (in brackets) in (4.12) and let 
H,(w)= e -“‘h,,(w). We recall that h,,(w) is the (m - 1, m) (and hZnz+,(w) is the (m, m)) Pade 
approximant of e”‘E,(w). In order to compare the approximations E,.,, (w) and H,,( M.), we give in Fig. 4 
the graphs of S%(E,.,,(w)) and !%(H,,(w)) for real values of w in the range 0 < M’ < 100. As expected. 
E,,,,(w) is better than H,,(w) for 0.1 < w < 6, whereas the reverse is true for 7 < w < 100. Nevertheless 
E,,,,(w) gives at least 10 significant digits for w 2 0.5, so that for practical purposes the two-point Pade 
approximant seems to be better than the one-point Pade approximant. The computations for this 
illustration were performed on a CDC Cyber with double-precision arithmetic (i.e. about 28 decimal digits). 

We note that, whereas the coefficients in the continued fraction of (4.8) can be expressed by a simple 
function of n, no such simple expression is known for the coefficients F, and G,, (Table 1). However. the F,, 
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and G, can be generated numerically by a rather simple program involving the recurrence relations for the 

moments ck and the FG-algorithm (1.5) and (1.6). A similar situation holds for the Stieltjes fraction 

expansion for log r(z) [ 19, pp. 348-3501, which, nevertheless, is considered to give useful approximations. 

0 0.4 0.8 1.2 1.6 2.0 4 6 8 IO 30 50 70 90 

w 

Fig. 4. Number of significant digits obtained in approximations of the exponential integral E,(w) by the two-point Pa& approximant 

E,,,,( H,) and the one-point Pad& approximant W,,(w). 

Example 4.2. The natural logarithm 

log u’ = 
/ 

wd t/t 
I 

(4.13) 

can be written in the form 

log w = z -‘G(z)= (--&8)-‘G(&-6) 

where 

G(z)=z~‘+‘&, ~=--!-a s>o, 
w-l ’ 

(4.14) 

(4.15) 

after making the succession of transformations in (4.13): t = T + 1, T=(w-l)~,u=t+?j.Since(4.15)has 
the form of the integrals considered in Theorem 2.1., the function G(z) has a positive T-fraction 
representation 

42 F,z F3z - - ~ G(z)= l+G,z + l+GZz +,l+G,z + ..’ 
(4.16) 

valid for all z E [ - (1 + S), -81 (that is, for all w E @ - (- cc, 01). In the following, the discussion is 
restricted to the special case in which S = (e - 1)-l. We then have 

G(z)=z[~+$ z-!--L 
w-l e-l 

where a = (e - l)-’ and b = e/(e - 1). If g,(z) denotes the nth approximant of (4.16), then 

(4.17) 
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Table 3 Table 4 

Coefficients in the positive T-fraction (two-point Pad& ap- 

proximant) expansion of G(r)=rj$(z + ~)~‘d/, u =(e - I)-‘. 

h=e/(e- I) 

Number of significant digits SD( Fn( w)) in approximation in 

log w by F,(w). The calculations were performed by a CDC 

Cyber in double precision (approximately 28 decimal digit) 

arithmetic 

M’ SQF,( M.)) SQ F,,,( I*,)) 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 .oooooo 00000 0.10000 00000 
0.086161 26963 0.10510 45753 
0.071404 2445 I 0.10433 20240 
0.068467 96285 0.10425 83248 
0.067582 94758 0.10423 69916 
0.067 187 29482 0.10422 87384 
0.066975 97268 0.10422 48745 
0.066849 74480 0.10422 28254 
0.066768 31795 0.10422 16378 
0.0667 12 72181 0.10422 0902 I 

I.0 11.2 22.6 

I.3 9.4 19.0 

1.5 9.0 18.1 

I.7 8.9 17.9 

I .9 9.1 18.3 

2.1 9.5 19.1 

2.3 10.2 20.5 

2.5 11.5 23. I 

2.7 16.8 24.8 

is the resulting n th approximant of log W. The moments c ‘L = (- 1)‘~~ corresponding to (4.17) are given by 

(1, ifk= -1, 

PA = 
) e”+l-l 

\ (H + l)(e - l)n+’ ’ 
ifk* -1. 

Using these and the FG-relations (1.5) and (1.6) once can compute the coefficients F,,. G,, in (4.16). A 
sample of the coefficients is given in Table 3. From this it appears that the continued fraction (1.4) may be 
limit periodic (i.e. the sequences (F,} and {G,} may converge). Since the two-point Pade approximant g,,( f ) 
interpolates to L, and L, (see (1.3)) at t = 0 and ; = co, respectively, the approximation $,( r\.) is expected 
to be best near w = e and w = 1. This justifies the choice of S = (e - 1))’ above. since [ 1. e] is a 
fundamental interval for log w (in the sense that all values of the function can be obtained if vve know log rt’ 

for 1 < w < e). The convergence behavior is illustrated by the values of %(F,,( H.)) for 1 < R’ < e given in 

Table 4. 

Examples 4.3. The inverse tangent 

Arctan w = 
/ 

“‘du,‘( 1 + u’) 

0 

can be written in the form 

Arctan w = 

where 

G(Z) = ;I;: (t-f!;‘2dt, z=-- 1 l2 
w 

(4.18) 

(4.19) 

(4.20) 

after making the succession of transformations in (4.18): u = WV, L’ = 7”‘. 7 = t - 1. Since (4.20) has the 
form of the integrals considered in Theorem 2.1, the function G(z) has a positive T-fraction representation 
(2.1) valid for z E [ - 2, - l[ (that is, for w @L [-i, ioo) and )2-’ E [-i. - im)). Since M’ = 1 when z = 0 and 
w = 0 when z = cc, the resulting approximants of Arctan w will be best near H’ = 0 and M‘ = 1. No 
numerical results are given for this example, but the procedures are the same as in Examples 4.1. and 4.2. 
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