association that a congenital T/BEF may remain silent and not be
diagnosed until much later, when it becomes symptomatic. There
is no explanation for the possible mechanism(s) that make a T/BEF
remain silent for long. Occlusion by an imperforated web and/or
the ascending (antigravitational) direction of the tract have been
advocated.1,2 Besides, it is not known what the precipitating events
are that cause symptoms to start. When this happens, symptoms
are most often respiratory, acute, or chronic. Bouts of cough when
swallowing, chronic wheezing, recurrent bronchopulmonary infec-
tions, hemoptysis, and hematemesis, either isolated or combined,
should raise the suspicion of T/BEF. Diagnosis is made by endos-
copy, esophagography, or both. Computed tomographic scanning
of the chest is useful because repeated lung infections can lead to
bronchiectasis. Fiberoptic bronchoscopy is also mandatory. The
congenital nature of a T/BEF is admitted when an acquired cause
is reasonably excluded. At pathology examination, an epithelium-
lined tract with muscularis mucosae is conclusive. Once diagnosis
is made, treatment should be aggressive and promptly instituted,
because the acute worsening of the patient’s condition due to
potentially life-threatening complications, such as massive hemop-
tysis, is possible at any time. Treatment is as described previously.
Endoscopic occlusion is an option to try on an individual basis. If
bronchiectasis is present, then resection of the affected segment(s)
or lobe(s) should be performed.3,4

The case we present corresponded to a type I congenital T/BEF
in Braimbridge and Keith’s classification.5 It consists of a tract
connecting the esophagus and a lobar or segmental bronchus,
associated with a congenital esophageal diverticulum. Our patient
also had unilateral renal agenesis. We could not identify any
precipitating event. Notably, the patient had undergone an esopha-
gogastroscope 2 years before that did not disclose esophageal
disease.

References
1. Coran AG. Esophageal atresia, tracheoesophageal fistula, and compli-
2. Engum SA, Grosfeld JL, West KW, Rescorla FJ, Scherer LR III.
Analysis of morbidity and mortality in 227 cases of esophageal atresia
and/or tracheoesophageal fistula over two decades. Arch Surg. 1995;
130:502-8; discussion 508-9.
5. Braimbridge MV, Keith HI. Oesophago-bronchial fistula in the adult.

Video-assisted resection of bilateral intralobar pulmonary
sequestrations

Christopher R. Morse, MD,a Michael B. Ishitani, MD,b and Stephen D. Cassivi, MD, MSc,a Rochester, Minn

Bronchopulmonary sequestrations (BPSs) are character-
ized by anomalous vascular and tracheobronchial con-
nections and account for a small proportion of pulmo-
nary malformations. Bilateral BPSs are extremely rare,
and the traditional surgical approach has been sequential resections
with staged thoracotomies. We report a single-stage, sequential,
video-assisted thoracoscopic surgery (VATS) approach to bilateral
intralobar pulmonary sequestrations (ILs).

From the Division of General Thoracic Surgerya and the Division of
Pediatric Surgery,b Mayo Clinic College of Medicine, Rochester, Minn.
Received for publication Nov 18, 2005; revisions received Dec 7, 2005;
accepted for publication Dec 9, 2005.
Address for reprints: Stephen D. Cassivi, MD, MSc, Mayo Clinic College of
Medicine, 200 First St SW, Rochester, MN 55905 (E-mail: cassivi.
stephen@mayo.edu).
J Thorac Cardiovasc Surg 2006;131:917-8
0022-5223/323.00
Copyright © 2006 by The American Association for Thoracic Surgery

Bilateral sequestrations and account for a small proportion of pulmo-
nary malformations. Bilateral BPSs are extremely rare, and the traditional surgical approach has been sequential resections
with staged thoracotomies. We report a single-stage, sequential,
video-assisted thoracoscopic surgery (VATS) approach to bilateral
intralobar pulmonary sequestrations (ILs).

An otherwise healthy 7-year-old girl was referred with low-grade
fevers, productive cough, and a right lower lobe infiltrate on
standard chest radiographs. She was given 2 courses of antibiotics,
with only partial resolution of her right lung infiltrate. Subsequent
high-resolution computed tomographic imaging demonstrated bi-
lateral lower lobe BPS (Figure 1, A). Arterial supply to both sides
was from the abdominal aorta (Figure 1, B).

In the operating room, after achievement of general anesthesia
with a single-lumen endotracheal tube and bronchial blocker, the
patient was initially placed in the left lateral decubitus position.
The lung was carefully inspected with a 5-mm, 30° thoracoscope
through a 5-mm anterior ninth interspace thoracopert. A 5-cm
access incision was made in the fifth interspace anteriorly, sparing
the serratus anterior muscle. Visualization was improved by plac-
ing a figure-of-eight stitch in the tendinous portion of the dia-
aphragm and drawing it down through the same ninth interspace
thoracopert. A consolidated intralobar sequestration was noted in
the posterior and lateral basilar segments of the right lower lobe,
with the aberrant arterial supply located in the inferior pulmonary
ligament. The arterial supply was dissected and divided with a vas-
cular TA-30 stapler. A sequestrectomy was performed with multi-
ple applications of an Endo GIA 3.5-mm linear stapler (Figure 2).
A 20F chest tube was placed, the lung was inflated under direct vision, and the incisions were closed in layers. The patient was then turned to the right lateral decubitus position, access to the left pleural space was obtained through a 5-mm ninth interspace thoracoport, and a 5-cm access incision was made in the fifth interspace anteriorly. The lung was inspected, and a similar intralobar sequestration was observed in the posterior basilar segment of the left lower lobe. The aberrant arterial source in the inferior pulmonary ligament was isolated and divided, and sequestrectomy was performed in similar fashion. A single left chest tube was placed, and the patient was transferred to the pediatric intensive care unit. Both chest tubes were removed on the second postoperative day, and the patient was discharged to home on the fourth postoperative day. Final pathology showed bilateral intralobar sequestrations with severe inflammation.

Discussion

ILSs are characterized by nonfunctioning lung tissue that lacks normal communication with the tracheobronchial tree. The arterial supply to ILSs is most often from the abdominal aorta, and venous drainage is usually through normal routes to the left atrium. Although children with BPSs are at risk for associated abnormalities, they occur less with intralobar than with extralobar sequestrations.

To date, there have been 12 reported cases of bilateral BPS in the literature, with only 5 intralobar cases. All operative cases were approached with staged sequential thoracotomies. More recently, surgical resection of BPSs has been accomplished with a VATS approach. Lobectomy, sequestrectomy, and wedge resections have all been described, with excellent results and a small number of conversions to thoracotomy. Because disease in this patient was limited to the basilar segments of the lower lobes, it was possible to perform sequestrectomies and preserve lung parenchyma. This unique case of bilateral ILS demonstrates the feasibility of a single-setting, sequential VATS approach to minimize postoperative pain and limit multiple or prolonged hospitalizations.

References