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ABSTRACT Mathematical analysis and modeling of biochemical reaction networks requires knowledge of the permitted direc-
tionality of reactions and membrane transport processes. This information can be gathered from the standard Gibbs energy
changes (DG0) of reactions and the concentration ranges of their reactants. Currently, experimental DG0 values are not available
for the vast majority of cellular biochemical processes. We propose what we believe to be a novel computational method to infer
the unknown DG0 value of a reaction from the known DG0 value of the chemically most similar reaction. The chemical similarity of
two arbitrary reactions is measured by the relative number (T ) of co-occurring changes in the chemical attributes of their reac-
tants. Testing our method across a validated reference set of 173 biochemical reactions with experimentally determined DG0

values, we found that a minimum reaction similarity of T¼ 0.6 is required to infer DG0 values with an error of<10 kJ/mol. Applying
this criterion, our method allows us to assign DG0 values to 458 additional reactions of the BioPath database. We believe our
approach permits us to minimize the number of DG0 measurements required for a full coverage of a given reaction network
with reliable DG0 values.
INTRODUCTION
The value of the Gibbs energy change (DG) of a reaction is

additively composed of a standard value (DG0) and the log-

arithmic concentrations of its reactants. Given DG0 and the

range within which the concentrations of reactants may

vary determines the possible signs of DG (negative or

positive) and hence the permitted directionality of a reaction

(forward or backward). This knowledge is essential for the

construction of reliable flux distributions in stoichiometric

networks (1–4) as well as for kinetic network modeling

(5,6) as DG0 is related directly to the equilibrium constant

of a reaction entering the enzymatic rate equation.

The advent of automated and rapid DNA sequencing

methods in combination with high-throughput expression

profiling has paved the way for the reconstruction of cellular

metabolic networks on genome-scale. The computational

analysis of such networks, regardless whether carried out

by means of topological methods (7), flux balance analysis

(8,9) or kinetic models requires reliable DG0 values to

correctly constrain the possible directionality of reactions

and membrane transport processes. Currently, only for

a small fraction of reported biochemical reactions experi-

mental DG0 values are available (10). Thus, reliable compu-

tational methods for the estimation of DG0 values are

required.

The group contribution method (GCM) developed by

Mavrovouniotis (11,12) and extended by Jankowsky et al.

(13) is currently a broadly applied method for the computa-
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tional prediction of DG0 values. The core of this method

consists in the representation of the Gibbs energy G0 of

any molecule by the sum of the energies of formation of

its constituting atomic groups (in the following referred to

as formation energies). DG0 is then calculated as difference

of the G0 values of products and substrates. In the computa-

tional analysis of large-scale metabolic networks the

estimation of DG0 values by means of the GCM is currently

the method of choice (13–16). However, for several method-

ological reasons (discussed below) the accuracy of GCM is

limited. For example, for ~25% of the 79 compounds

contained in the University of Minnesota Biocatalysis/

Biodegradation Database of xenobiotic degradation path-

ways (17) the experimentally determined values of formation

energies differ from their respective GCM estimates by more

than 7.9 kJ/mol that corresponds to an uncertainty factor

of ~20 in the concentration value. Thus, in the worst case

the uncertainty of the DG0 value of a bimolecular reaction

estimated on the basis of formation energies may be in the

range of 30 kJ/mol, which is the value of the standard Gibbs

energy of ATP hydrolysis, a definitely irreversible reaction.

This situation prompted us to develop what we believe

to be a novel method enabling a more accurate estimation

of DG0 values. Our approach relies on the assumption that

chemically similar reactions should possess similar DG0

values. The essence of our concept is to define an appropriate

quantitative measure to quantify the similarity of two arbi-

trary chemical reactions and to replace the unknown DG0

value of a reaction by the known DG0 value of the chemi-

cally most similar reaction.
doi: 10.1016/j.bpj.2010.02.052
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TABLE 1 Generic chemical attributes used to specify atom

types

Atom type Attributes (n) Example

Carbon 56 C of methyl group

Oxygen 20 O of hydroxyl group

Nitrogen 13 N of amide group

Phosphate 5 P of phosphoanhydride group

Sulfur 8 S of thiol group

Hydrogen 3 H of water

Amino acids,

sugars, sterol

23 Glycine

Ring systems 21 Benzene ring

Other 20 sp2-hybrid

Attributes were combined with another set of attributes characterizing the

substituent at a position resulting in total set of 4720 combinatorial

attributes.

FIGURE 1 Selection of typical chemical attributes attributed to the atomic

groups of the molecule pyruvate. In total, this molecule is characterized by

38 attributes.
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METHOD AND DATABASES USED

Selection of a representative training set
of biochemical reactions

Our method, inferring Gibbs energy changes from reaction similarities

(IGERS), is based on a detailed characterization of a chemical reaction by

a binary reaction vector. The construction of the reaction vector requires

the knowledge of atom-to-atom transition matrices mapping the atoms

(excluding hydrogen) of the reaction substrates to the atoms of the reaction

products (18). We selected from the Biochemical Pathways database

(BioPath, Erlangen, Germany), version 2 (19,20) a set of 1546 distinct

biochemical reactions for which 2D structures of the reactants and atom-

to-atom transition matrices are known.

Selection of a reference set of reactions
with experimentally determined DG0 values

For the validation of our method, we have chosen a set of 173 metabolic

reactions for which Kümmel et al. (3) have calculated standard transformed

Gibbs energies for physiological conditions (pH of 7.6 and ionic strength of

0.15 M) based on standard reactant Gibbs energies compiled from Alberty

(21), the National Institute of Standards and Technology database (10),

and Tewari et al. (22,23).

Construction of atom transition matrices

For 69 reactions of the reference set atom-to-atom transition matrices were

not contained in the BioPath database. For the fraction of atoms belonging

to the chemical reaction center the transitions were partially taken from

the Kyoto Encyclopedia of Genes and Genomes database (24) or recon-

structed manually. For the residual fractions of atoms the transitions were

taken from reactions including chemically analogous reactants for which

transition matrices are available in the BioPath database.

Definition of chemical attributes

For each metabolite occurring in a biochemical reaction reported in the Bio-

Path database chemical attributes were assigned to the constituting atomic

groups. The list of chemical attributes was manually compiled by inspecting

the chemical structure of metabolites found in biochemistry text books and

in the Kyoto Encyclopedia of Genes and Genomes database of biochemical

metabolites (24). Care was taken to include into the definition of attributes

information on the chemistry of neighboring atoms to distinguish between

identical atomic groups occurring in chemically different molecules. This

resulted in a group of 170 different attributes that take into account the local

topology of an atom in a depth of at least three bonds (Table 1). These

attributes were combined with another group of 59 additional attributes indi-

cating the substituent at a position. For example, the attribute combination

a-methyl-ketone indicates a carbon that carries the attribute ketone and has

an adjacent carbon carrying the descriptor methyl. In total, 4720 such combi-

nations of attributes were implemented. Additionally, the following physico-

chemical attributes were added to each nonhydrogen atom: hybridization

state, oxidative number, partial charge, absolute charge, number of free

electron pairs, conjugated systems, number and type of valence bonds,

and general atom type defined according to Wang et al. (25). As an example,

Fig. 1 depicts the chemical attributes assigned to the nonhydrogen atoms of

the pyruvate molecule.

Definition of the reaction vector

In our concept, a chemical reaction is characterized by the changes of the

chemical attributes of the involved reactants. An example is given in

Fig. 2. During the transamination of cysteine the oxygen atom of a water

molecule is included as a keto group into the reaction product b-mercapto-

pyruvate. A new water molecule is formed subsequently, with the oxygen
originating from the keto group of oxaloacetate. Note that the attribute

changes associated with the use and formation of the water molecule are

different and require knowledge of the atom-to-atom transitions during the

reaction. There are 24 different attribute changes outlined in the colored

boxes for the atoms defining the reaction center of this reaction.

For the 1615 different biochemical reactions examined in total, we regis-

tered 1274 different types of attribute changes, each of them annotated by a

single bit of the 1274-dimensional binary reaction vector. The value 1 and

0 of bit i (i ¼ 1,.,1274) indicates whether the attribute change type i

occurred in that reaction or not. For the example shown in Fig. 2, 24 bits

of the reaction vector are different from zero.

Quantification of reaction similarities

The similarity of two reactions is measured by the concordance of their

binary reaction vectors. As only a small number of components of the

1274-dimensional reaction vector are different from zero (24 for the example

in Fig. 2), we used the Tanimoto coefficient (26)

T ¼ Nab

Na þ Nb � Nab

; (1)

to calculate the concordance of two reaction vectors. This measure has the

advantage that the zero-bits are not taken into account. Na and Nb denote

the number of 1-bits in the bit vectors a and b and Nab is the number of

1-bits common to both vectors. Thus, T is 1 for two identical vectors, and

0 for two completely dissimilar ones. An example for the calculation of T
is given in Fig. 3.
Biophysical Journal 98(11) 2478–2486



FIGURE 2 Representative set of attribute changes asso-

ciated with the transamination of cysteine to 2-oxo-gluta-

rate. The attribute changes (þ, gained; �, lost) listed in

the five colored boxes refer to the five atoms marked by

colored circles. The dashed circles mark atoms that experi-

ence changes of at least one attribute. The small numbers

indicate identical atoms in the substrate and product mole-

cules. In total, this reaction is accompanied by 61 attribute

changes.
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The reaction vector of a chemical reaction depends on the assumed direc-

tionality. Reversing the direction means to reverse all attributes changes,

e.g., the attribute change C_methyl þ 1 occurring in the forward reaction

converts into C_methyl� 1 of the backward reaction and these two attribute

changes are coded at different positions of the reaction vector. Thus,

comparing the forward reactions a,b and backward direction a0, b0 there

exist two generally different Tanimoto coefficients T(a,b) ¼ T(a0,b0) and

T(a,b0) ¼ T(a0,b), the larger of which is taken as similarity measure.

Development of a computer program for the
calculation of reaction similarities

We developed a computer program that annotates predefined chemical

attributes (see above) to the atomic groups of metabolites with known 2D

structure given in the .mol format (to generate structures from SMILES

strings (27) see http://cactus.nci.nih.gov/translate). The annotation proce-

dure is implemented as a recursive subgraph matching algorithm, using a
FIGURE 3 Example showing the calculation of the Tanimoto coefficient.

The boxes below the reaction formula depict only three attribute changes for

each reaction. Given that these were the only attribute changes we would get

Na ¼ 3, Nb ¼ 3, Nab ¼ 2, T ¼ 0.5. Actually, there are Na ¼ 38 attribute

changes in reaction a and Nb ¼ 36 attribute changes in reaction b of which

Nab ¼ 28 are identical so that T ¼ 0.61.
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library of chemical group patterns. The software can be further used to

generate for each reaction a binary reaction vector and to calculate the pair-

wise concordance of reaction vectors in terms of Tanimoto coefficients. The

software runs on both Windows and Linux systems and is available on

request.
RESULTS

Inferring DG0 estimates from the chemically most
similar reaction

To check the predictive capacity of our method (IGERS) we

applied it to the reference set of 173 chemical reactions for

which experimental DG0 values are available as gold stan-

dard for comparison. For each reaction, we used as a theoret-

ical estimate of its DG0 value, the experimental DG0 value of

that reaction among the 172 possible ones exhibiting the

highest chemical similarity, i.e., the largest value of the Ta-

nimoto coefficient T. In the following this estimate is de-

noted by DG0 (IGERS). The accuracy of these estimates

was evaluated by the root mean-square of differences

(RMSD) to the respective experimental values. This analysis

was carried out by taking into account only those DG0

(IGERS) estimates that could be inferred from a reaction ex-

hibiting a chemical similarity larger than a prescribed

threshold value Tc. The higher this similarity threshold Tc

was chosen, the less reaction pairs could be found meeting

the condition T R Tc but the higher was the concordance

between DG0 (IGERS) estimates and the experimental

values.

Fig. 4 illustrates that RMSD values (Fig. 4, red circles) at

different values of the similarity threshold Tc varied between

0 and 1. With increasing similarity threshold Tc, the RSMD

values decline monotonically about one order of magnitude

from initially 41.3 kJ/mol to 1.6 kJ/mol. This tendency

shows the validity of the basic assumption underlying our

approach according to which increasing chemical similarity

http://cactus.nci.nih.gov/translate


FIGURE 4 RMSD between predicted and experimentally determined

DG0 values at varying values of the similarity threshold Tc. Circles indicate

RMSD values obtained by our method (IGERS). Squares indicate RMSD

values obtained by the group contribution method (GCM). Triangles

(secondary scale on the right vertical axis) indicate the number of reactions

(out of a total of 174) for which our method allows to infer a DG0 value, i.e.,

for which a reaction with a similarity of T R Tc is available in the data set.

The box-plots (light gray) illustrate the results of the bootstrap resampling

procedure (explained in the main text). The horizontal black line within

the box indicates the bootstrap mean RMSD value, the upper and lower

edge of the boxes indicate 75% and 25% of the bootstrap distribution of

RMSD values and the vertical bars indicate the total span (maximum and

minimum) of RMSD values.
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of two reactions should be reflected by increasing closeness

of the respective DG0 values. Thus, the accuracy of the DG0

(IGERS) estimates can be increased by raising the similarity

threshold Tc. The price for this gain in accuracy is the decline

of the number of reactions for which a sufficiently similar

partner reaction can be found meeting the condition

T R Tc (Fig. 4, blue triangles).

For the sake of comparison we also calculated RMSD

values for DG0 (GCM) estimates obtained by the most

advanced version of the group contribution method (13).

In agreement with findings in (13) the DG0 (GCM) estimates

amount uniformly to ~10 kJ/mol independently from the

subset of reactions constrained by the condition T R Tc.

Notably, significant improvement of the quality of

the DG0 (IGERS) estimates occurs in the range 0.5 < Tc <
0.6. Above Tc ¼ 0.6 the DG0 estimates predicted by our

method are associated with significantly smaller RMSD

values as those predicted by the GCM. Intriguingly, the

RMSD associated with the DG0 estimates of the GCM shows

a slight drop at Tc > 0.9, indicating the existence of a subset

of reactions for which highly accurate DG0 values can be

predicted by both theoretical methods.

To check how the quality of DG0 (IGERS) estimates may

vary depending on the available set of chemical reactions

with known DG0 values, we carried out a bootstrap analysis.

At given value of Tc DG0 (IGERS) estimates were computed

100 times on a randomly chosen subset of reactions

comprising 75% of all reactions. The result of this bootstrap
resampling procedure is illustrated by the box-plot in Fig. 4.

For Tc < 0.6 the mean RMSD values are higher than those

for the complete set of chemicals. Moreover, the standard

deviations (expressed as 25% and 75%) as well as the

minimal and maximal deviations from the mean RMSD are

unacceptably large. However, for Tc > 0.6 these statistical

measures markedly improve and practically coincide with

those of the full set of chemicals. This indicates that under

the condition Tc > 0.6 the accuracy of the DG0 (IGERS)

estimate does not depend on the specific type of chemical

reaction (that varied randomly in the bootstrap analysis)

from which it is inferred.

Inspecting individual DG0 (IGERS) estimates inferred

under the constraint T R Tc ¼ 0.6 showed still larger devi-

ations than 10 kJ/mol from the experimental values in

some cases. A prominent example of such a discrepancy

is the pair of reactions Acetyl-CoA þ H2O 5 Acetate þ
CoA and Acetyl-CoA þ AMP þ PPi 5 Acetate þ
CoA þ ATP exhibiting a similarity of T ¼ 0.63. In the first

reaction, AcetylCoA is hydrolyzed by water, a reaction that

is associated with a large negative value of DG0. In the

second reaction, the energy-rich thioester bond of Acetyl-

CoA is exploited to generate an energy-rich anhydride

bond between the phosphates of PPi and AMP, a reaction

that is close to equilibrium. Therefore, the Gibbs energy

difference between these reactions amounts to 51.2 kJ/mol.

This example illustrates the limitations of the used similarity

measure: attribute changes of the reactant Acetyl-CoA are

identical for both reactions and have a larger impact on the

similarity score than the differences in the attribute changes

of the other reactants.
Setting the similarity threshold Tc

As shown in Fig. 4, the accuracy of DG0 (IGERS) estimates

evaluated in terms of the RMSD improves with increasing

similarity threshold Tc. The choice of this threshold is

dictated by the demanded accuracy of DG0 (IGERS) esti-

mates. If, for example, the accuracy of DG0 (IGERS)

estimates have to be high enough to decide on the permitted

directionality of bimolecular reactions of the type A þ B 5
CþD where the equilibrium constant K¼ CD/AB may vary

by 4 orders of magnitude between 0.01 and 100, the devia-

tion of DG0 (IGERS) estimates from the true value should

be not larger than RT ln(100) z 12 kJ/mol. Presetting the

demanded accuracy of DG0 (IGERS) estimates, the required

similarity threshold Tc can be determined by bootstrap re-

sampling. As an example, we determined the similarity

threshold such that the RMSD values for the DG0 (IGERS)

estimates start to become smaller than those for the DG0

(CGM) estimates. To this end, bootstrapping was carried

out 1000 times on randomly chosen subsets of reactions

comprising 75% of the 173 reactions of the full reference

set. The threshold Tc was increased in steps of 0.01 until

the RMSD of the IGERS prediction was lower than the
Biophysical Journal 98(11) 2478–2486



TABLE 2 Quality of DG0 (IGERS) estimates based on five

different sets of chemical attributes

Descriptor sets Attributes (n) Tc* RMSDy Reactionsz (n)

Without redundancy filtering

All descriptors 1274 0.58 9.94 111

No a groups 650 0.65 10.09 116

No charges 1222 0.58 9.94 111

No a group and charges 491 0.63 9.76 112

No a group, charges,

and hybridization

347 0.66 10.03 113

With additional redundancy

filteringx

All attributes 536 0.59 9.74 104

No a groups 351 0.66 10.10 115

No charges 514 0.59 9.92 106

No a groups and charges 284 0.66 9.84 104

No a groups, charges,

and hybridization

220 0.67 9.91 108

*Refers to the threshold value of the Tanimoto coefficient defining the

minimum similarity of chemical reactions that has to be demanded to drop

the average deviations.
yDG0 (IGERS) estimates from the experimental values below those associ-

ated with DG0 (GCM) estimates obtained by the group contribution method.
zNumber of reactions (out of 173) for which DG0 (IGERS) estimates could

be derived from a partner reaction having a similarity of T R Tc.
xResults obtained by further reducing the five different sets of chemical attri-

butes by redundancy filtering, i.e., by replacing groups of consistently

co-occurring attribute changes by a single attribute change.

FIGURE 5 Minimal additional number of reactions for which DG0 values

have to be determined to achieve together with DG0 (IGERS) estimates at

Tc ¼ 0.6 a percentage coverage (indicated on the vertical axis (dotted

line)) of the complete BioPath database (1546 reactions) with known DG0

values. The solid line indicates the maximal number of reactions for

which DG0 (IGERS) estimates at Tc ¼ 0.6 can be inferred per experimental

DG0 value of a single (optimally chosen) reaction. Table S2 contains the

complete list of the optimal reactions.
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RMSD for the GCM. We determined an average bootstrap

value of Tc ¼ 0.58. For 111 reactions out of 173 a partner

reaction with a chemical similarity of T R Tc ¼ 0.58 can

be found. The bootstrap RMSD for the DG0 (IGERS)

estimates of these 111 reactions is 9.94 kJ/mol (see first

row of Table 2).

Testing reduced sets of chemical attributes

We tested the robustness of our method against the choice of

chemical attributes used for the definition of the reaction

vector. The full set of 1274 chemical attributes was reduced

by leaving out descriptors containing certain groups of

chemical attributes indicated in the first row of Table 2.

The smallest set of attributes tested comprised only 347 attri-

butes and was derived from the initial set by leaving out all

attributes indicating the charge, the substituent in a position

and the hybridization state of atomic groups. We applied the

same bootstrap procedure as outlined above to calculate the

threshold value Tc that assures the DG0 (IGERS) estimates to

yield smaller deviations from the experimental values

compared to the DG0 (GCM) estimates obtained by the

GCM. As shown in the upper part of Table 2, the values

of Tc and the share of reactions meeting the condition

T R Tc marginally varied for the reduced sets of chemical

attributes. This finding points to considerable redundancy

in the complete set of attributes. We reduced the dimension

of the reaction vector further by removing redundant attri-

bute changes. In a procedure that we call redundancy

filtering, we identified within the training set of 1546 reac-
Biophysical Journal 98(11) 2478–2486
tions attribute changes that occurred together whenever

appearing in a reaction. Such groups of redundant attribute

changes where replaced by a single attribute change. The

lower part of Table 2 shows the impact of redundancy

filtering on the four variants of reduced attribute sets

considered before. Remarkably, even the strongest reduction

of the size of the attribute set from initially 1274 to 220

increased the similarity threshold only slightly.

These findings show that considerably smaller sets of

chemical attributes are still sufficient to quantify the similarity

of biochemical reactions. Very likely, a systematic search for

most informative chemical attributes would allow to even

further reduce the size of the attribute set. However, for the

purpose of inferring DG0 values from reaction similarity there

is no obvious reason to reduce the set of attributes from neither

the technical and chemical point of view. The assignment of

even very large numbers of attributes to atomic groups can

be carried out in an automatic fashion and the lowest Tc value

was obtained with the full set of attributes.
Coverage of metabolic networks with DG0 (IGERS)
estimates

Demanding a minimum similarity of Tc > ¼ 0.6 and using

the reference set of 173 reactions with known DG0 values

our method allows to infer DG0 values with an uncertainty

of <10 kJ/mol for an additional set of 458 reactions of the

BioPath database. However, to infer for all reactions of the

BioPath database a DG0 (IGERS) estimate it requires DG0

measurements for at least 590 additional reactions (Fig. 5).

This minimal set of additional reactions is given in Table 2

of the Supporting Material.
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DISCUSSION

In this work, we describe what we believe to be a novel

computational method for inferring unknown DG0 values

from the experimentally determined DG0 values of chemi-

cally similar reactions. Based on a representative set

of 173 biochemical reactions with experimentally deter-

mined DG0 values, we believe we have shown the existence

of a clear-cut correlation between chemical similarity and

thermodynamic similarity of biochemical reactions.

Choice of chemical attributes

Similarity measures for the comparison of chemical

compounds should be chosen depending on application-

specific expert knowledge (28). Accordingly, different sets

of chemical attributes are being used in the virtual screening

of organic libraries of chemical compounds. They have in

common that the chemical attributes of a molecule are put

into a vector representing a sort of chemical fingerprint.

Examples are the MACCS-keys and DAYLIGHT (29,30)

fingerprints that are both used frequently to assess the simi-

larity of molecules. In the quantitative analysis of structure-

activity relations, additional emphasis is placed on global

physico-chemical properties such as solubility, ionization

constant or the logP value (31). As the aim of our method

is to make predictions of DG0 values for biochemical

reactions occurring in the living cell we found only a small

fraction of chemical attributes used in computationally

chemistry to be suitable for a subtle characterization of the

differences between the reactants occurring on both sides

of the reaction. Therefore, we created an own set of chemical

attributes that specifically takes into account changes in the

chemical properties of those atomic groups typically forming

the reaction center of biochemical reactions. The compilation

of the attribute set was carried out manually as an alternative

to tailoring the recently published Chemical Descriptors

Library (32) according to our purposes.

From the large number of 1274 chemical attributes used in

our analysis it can be expected that many of them are redun-

dant. For example, converting a primary alcohol into an

aldehyde the chemical attribute C_primary_alcohol and the

more general attribute C_hydroxyl will disappear simulta-

neously. The usage of a hierarchy of chemical attributes

allows to characterize the chemical properties of a metabolite

at different levels of detail. Moreover, it implies an implicit

weighting scheme as changes of atomic groups annotated by

several different attributes have a high weight in assessing

the similarity of reactions. The analysis of DG0 values pre-

dicted on the basis of several reduced attribute sets revealed

that no improvement of the predictive capacity of our method

could be achieved. We thus recommend that further studies

should be based on the full set of chemical attributes. Using

a large number of partially redundant attributes enables

a reasonably good classification of even exotic reactants

comprising rarely found atomic groups. This situation is
fundamentally different from the overfitting problem typi-

cally occurring in regression analysis if the number of

adjustable parameters exceeds the number of independent

observations.

Characterization of chemical reactions
by reaction vectors

Our method is fundamentally different to conventional simi-

larity analyses in computational chemistry in that it aims at

the assessment of the similarity of chemical reactions instead

of the similarity of chemical compounds. In our approach,

chemical reactions are characterized on the basis of attribute

changes, i.e., appearance and disappearance of chemical

attributes annotated to the reaction’s reactants. An alternative

method to define reaction similarities on the basis of a bond

classification scheme has been recently proposed by (33) and

compared to the EC number classification scheme. Our

definition of the reaction vector does not include information

about the spatial position within the molecular structure of

the reactants where the attribute changes occur, e.g., esteri-

fying glycerol with a fatty acid appears merely as attribute

change C-ester þ 1 irrespective of whether the fatty acid is

linked to the hydroxyl group at C1 or C3 of the glycerol

moiety. Due to the high diversity of the chemical environ-

ment of atomic groups constituting the reactants of the

biochemical reactions of the training set, however, not

a single case was detected where the reaction vectors of

two reactions were identical although the attribute changes

occurred at different spatial locations.

It is conceivable that additional weighting of attribute

changes in the reaction vector could provide similarity

measures that improve the prediction quality of DG0

estimates. We deliberately avoided choosing this option

because of the risk of running into classical overfitting

when attempting to determine weighting factors for the

1274 attribute changes forming the reaction vector. Maybe

the method of random forests (34) or Bayesian methods

like MrBayes (35) could help to overcome the overfitting

problem.

Accuracy of DG0 predictions—determining
the similarity threshold

In our approach, we replace the unknown DG0 value of

a reaction by the known DG0 value of the chemically most

similar partner reaction. Other replacement schemes are

conceivable that include known DG0 values of more than

one chemically neighbored reaction. In any case, the quality

of the DG0 estimates inferred from similarity of chemical

reactions depends strongly on the degree of similarity (see

Fig. 4). The bootstrap analysis across the set of 173 chemi-

cals with known DG0 values showed that a minimum

chemical similarity of T R 0.6 has to be demanded to

predict DG0 values with higher accuracy than currently

achievable by means of the GCM. For T R 0.6, the average
Biophysical Journal 98(11) 2478–2486
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distance between observed and predicted DG0 values falls

below 10 kJ/mol.

Evaluation and application of what we believe to be

a novel theoretical method generally requires accurate exper-

imental data that can be used as a gold standard. Whereas for

a well-defined reaction assay the experimental determination

of DG0 can be very accurate (e.g., deviations of %1.2 kJ/mol

in Byrnes et al. (36), Goldberg et al. (37), and Tewari et al.

(38)), the absolute value of DG0 may considerably vary

depending on the specific chemical composition of the assay

(ionic strength, presence of magnesium, phosphate and other

small ions, pH). Thus, prediction of reliable DG0 values

by means of our method implies the availability of experi-

mental DG0 values generated under comparable assay condi-

tions. This was the reason for developing and testing the

method on a set of 173 reactions whose DG0 values were

calibrated carefully to defined medium conditions. It has to

be emphasized, however, that the availability of a homoge-

nous set of experimental DG0 values measured at

comparable assay conditions does not limit the applicability

of our method as powerful computational methods for the

transformation of thermodynamic properties to defined assay

conditions are available (21).
Comparison of our method with the GCM

To our knowledge, our novel method and the GCM both rely

on the assumption that the Gibbs energy of a molecule can be

approximated by the sum of formation energies of its consti-

tuting atomic groups. Accordingly, the Gibbs energy change

of a reaction is determined by the differences of formation

energies of the participating reactants. The GCM aims at

the prediction of absolute DG0 values and thus requires

numerical estimates of the formation energies. Numerical

estimates of the formation energies are determined by regres-

sion analysis by fitting linear combinations of formation

energies to a set of known DG0 values. As a general rule,

in regression analysis the number of parameters has to be

significantly smaller than the number of observations. This

constraint limits the number of diverse atomic groups that

can be included in the GCM and may give rise to consider-

able estimation errors for the formation energies of rarely

occurring atomic groups.

To improve the accuracy of the GCM-based DG0 esti-

mates it has been proposed to subdivide additive contribu-

tions to the Gibbs energy into first-order groups and second

order effects (39). To allow for a better discrimination among

isomers, Marrero-Morejón and Pardillo-Fontdevila (40)

invented a concept that builds the Gibbs energy on contribu-

tions of interactions between bonding groups instead of

contributions of isolated groups. Despite such refinements

of the GCM, the most recent and advanced version of

GCM is afflicted with a cross-validations standard error

2.22 kcal/mol (¼9.29 kJ/mol) that is equivalent to an uncer-

tainty factor of 36.7 with respect to the equilibrium constant
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at body temperature (13). Maskow et al. (41) found the in-

sufficient consideration of the activity coefficients and uncer-

tainty of the tabulated equilibrium constants to be the most

important reasons for the erroneous results of the GCM. It

has been suggested, therefore, to calculate Gibbs energies

values of formation from a unique reference state and then

to account for the detailed composition of the solution

including all ionic species (42).

To avoid problems related to the estimation of values for

the formation energies, our IGERS method refrains from the

estimation of absolute DG0 values. We only have to make the

plausible assumption that chemically similar atomic groups

possess similar formation energies. This implies similarity

of the DG0 values of two reactions sharing similar atomic

groups generated and annihilated in the course of the reac-

tion. Compared to the GCM our concept has several advan-

tages. First, it works without knowledge of values for the

formation energies. Second, it allows to use a large number

of chemical attributes thereby yielding a much more detailed

description of atomic groups and their imbedding into the

structure of the molecule. Third, including into the IGERS

analysis reactions with reactants possessing atomic groups

not defined before can be simply managed by adding further

chemical attributes whereas the GCM is not capable of

handling such reactions. For example, for 19% molecular

species, 25% reactions, and 49% pathways contained in

the University of Minnesota Biocatalysis/Biodegradation

Database (17), the GCM method cannot be applied because

of the appearance of atomic groups that were not present in

the training set (43). Fourth, the accuracy of DG0 estimates

can be enhanced by increasing the minimum similarity that

the reaction has to possess from which the DG0 estimate is

inferred.

The drawback of our method is that it does not allow to

infer DG0 values directly from the chemical structure of

the reactants but instead requires known DG0 values for

a set of sufficiently similar reference reactions. Thus, the

smaller the set of reference reactions with already

known DG0 values and the higher the imposed similarity

threshold Tc, the smaller the set of reactions for which our

method may provide DG0 estimates. As shown in Fig. 4,

a minimum similarity of Tc ¼ 0.6 has to be demanded to

assure a lower prediction error of DG0 (IGERS) estimates

than of DG0 (GCM) estimates. However, under the

constraint T R 0.6 we can make predictions for only 106

reactions (¼61%) of the full reference set. Thus, the avail-

ability of experimentally determined DG0 values is the

most important factor limiting the number of reactions for

which our method can predict reliable DG0 values.

As shown in Fig. 5, the number of additional reactions for

which DG0 (IGERS) can be derived on adding the experi-

mental DG0 value for one (properly chosen) reaction is steeply

descending with increasing number of experimental DG0

values. Considering the considerable effort still required to

determine experimental DG0 values so that for all reactions
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of a whole-cell metabolic network either experimental values

or DG0 (IGERS) estimates are available, we conclude that

a combined approach based on both GCM and IGERS seems

to be optimal. Such an approach would include i), the use of

already available experimental DG0 values taken from public

databases (10) and transformed to standardized physiologi-

cally relevant milieu conditions (18); ii), the experimental

determination of a manageable number of additional DG0

values permitting a reasonably high gain of DG0(IGERS)

estimates; and iii), the calculation of DG0(GCM) estimates

for the remaining fraction of reactions.

Further applications

First, the software that we developed to automatically assign

chemical attributes to metabolites with known 2D structure

could be easily incorporated into the browser of KEGG

(24) and other databases of cellular reaction networks.

Analyzing the distribution of chemical attributes across

various parts of a reaction network could provide valuable

insight into its evolutionary design (44). Second, under the

premise that chemically similar reactions can be catalyzed

by one and the same enzyme our concept of reaction simi-

larity could help to identify auxiliary enzymes that are

capable of catalyzing reactions that so far have been ascribed

to other enzymes. Such enzymatic side activities could

potentially explain why the knockout of seemingly essential

enzymes nevertheless results in a vital phenotype (8).
CONCLUSIONS

The IGERS method proposed in this work provides a general

concept to quantify the similarity of chemical reactions. It

enables to infer DG0 values from chemically similar reac-

tions with a lower error than the conventionally used group

contribution method if the Tanimoto coefficient used as mea-

sure of reaction similarity has a value of T R Tc ¼ 0.6.

The method can be used to define the minimal set of exper-

imentally determined DG0 values required to achieve a use-

defined coverage of a biochemical reaction network with

reliable DG0 values.
SUPPORTING MATERIAL

Two tables are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(10)00333-4.

Before the publication of Jankowski et al. (13), we used an implementation

of the group contribution method by courtesy of K. Hartmann. We thank

O. Sacher, Molecular Networks Inc., for providing the Biopath2 database
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