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ABSTRACT
This paper represents the first study to compare seven types of first–order and one–variable grey differential equation
model [abbreviated as GM (1, 1)] and back–propagation artificial neural network (BPNN) for predicting hourly
particulate matter (PM) including PM10 and PM2.5 concentrations in Dali area of Taichung City, Taiwan. Their prediction
performance was also compared. The results indicated that the minimum mean absolute percentage error (MAPE),
mean squared error (MSE), and root mean squared error (RMSE) was 16.76%, 132.95, and 11.53, respectively for PM10

prediction. For PM2.5 prediction, the minimum MAPE, MSE, and RMSE value of 21.64%, 40.41, and 6.36, respectively
could be achieved. All statistical values revealed that the predicting performance of GM (1, 1, x ), GM (1, 1, a), and
GM (1, 1, b) outperformed other GM (1, 1) models. According to the results, it revealed that GM (1, 1) could predict
the hourly PM variation precisely even comparing with BPNN.
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1. Introduction

In the past twenty years, air pollution has been reduced in
most cities in Western Europe, North America as well as Asia. Most
air pollution improvement has resulted from better pollution–
control technologies and efficiency in facilities, power plants, and
other factories (Cunningham and Cunningham, 2008). Never
theless, the events of serious air pollution are often reported in
many countries.

For all air pollutants, the particulate matter (PM) concen
trations are of particular concern, because high PM concentrations
not only cause human health problems, but also deteriorate
environmental quality (Pope, 2000; Kara et al., 2014). Odabasi et al.
(2009) reported that PM emitted from industries contained iron,
iron oxides, zinc, chromium, nickel, lead, cadmium, and other
metals (and metal oxides). Epidemiological researches also show an
association between ambient PM pollutants and negative effects
on inhabitant health (Pope, 2000). Therefore, developing the
rapid–responded prediction technology for providing air pollution
information to the inhabitants becomes significantly important.

Traditionally, the atmospheric condition in one area is
influenced by other area, complex interrelations from other
administrative boundaries and various pollutants result in the
prediction difficulty of atmospheric pollution data. Many attempts
to predict atmospheric pollution have been implemented (Elbir,
2002; Elbir et al., 2010; Sofowote et al., 2014; Vanoye and
Mendoza, 2014). For example, linear regression methods have

been vastly utilized for several decades (Ryan, 1995; Shi and
Harrison, 1997; Slini et al., 2006). In addition, to precisely predict
complex, non–linear behaviors and chemical processes, back–
propagation neural networks (BPNN) and fuzzy logic approach have
been successfully applied because they can simulate nonlinear data
well (Perez et al., 2000; Kolehmainen et al., 2001; Wang et al.,
2003; Slini et al., 2006; Pai et al., 2009a; Pai et al., 2009b; Pai et al.,
2011a; Pai et al., 2013a).

Although BPNN can predict pollutant concentrations success
fully, it requires longer time for converging the solution and a large
quantity of data for establishing a model. In order to simplify
statistical complexity from the observation data for predicting
atmospheric pollutants, the grey system theory (GST) is an
applicable method.

GST specializes in the relational analysis, modeling, and
prediction of the incomplete data and has been carried out in the
previous studies (Deng, 2002; Deng, 2005; Pai et al., 2007a; Pai et
al., 2007b; Pai et al., 2008a; Pai et al., 2008b; Pai et al., 2008c; Pai
et al., 2011b; Pai et al., 2013b; Pai et al., 2014).

There are many analysis methods in GST including grey model
(GM). GM can be used to establish the relationship between
several sequences of data. One advantage of GM is that it is only a
process to solve a simple regression and another one is that it can
resolve the problem of small amount of data. If a more efficient
predicting technology could be constructed, a better response
strategy could be sought for emergency.
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The objectives of this study are listed as follows: (1) to
construct seven types of first–order and one–variable grey
differential equation model (abbreviated as GM (1, 1) model) for
predicting hourly PM10 and PM2.5 concentrations in Dali area of
Taichung City, Taiwan, (2) to compare the prediction performance
of seven types of GM (1, 1) model, (3) to employ BPNN for the
prediction of PM for comparison in this study.

2. Materials and Methods

2.1. Data set

Dali area, where the Dari industry district stands, has been
reported atmospherically polluted due to the growth of factories
and vehicles over the past decades. There are many factories which
are causing air pollution in Taichung City. The observation data
from air quality monitoring station of Dali area in Taichung City was
chosen for study (Figure 1). The concentrations of PM10 and PM2.5
from 29th of July to 16th of August 2008 were collected. The reason
why chose these data was that there was no typhoon occurred
during this period. They were automatically sampled for analyzing
every hour and the total number was 456. For all samples, 384
samples were utilized to determine the parameters of GM (1, 1)
and 72 samples were utilized as the observation data when
evaluating the performance of GM (1, 1) and BPNN. The number of
training data was about 5 times as that of test data. The mean
value of PM10 and PM2.5 was 42.11 and 29.51 μg m–3, respectively.
The standard deviation of both PM was 18.42 and 14.71 μg m–3,
respectively. GM (1, 1) simply adopts the previous (historic) data to
predict the future data of the air pollution time series. The
influence of meteorological conditions is contained implicitly and
naturally.

2.2. Grey modeling process

When information is insufficient, GM can be created to
describe the behavior of the system using fewer (at least 4) data
(Deng, 2002; Deng, 2005). By implementing accumulated gene
rating operation (AGO), the chaotic data may behave exponentially
such that a first–order differential equation can be utilized to
describe the system behavior. The analytic solution of the
differential equation will yield a time response equation for
prediction. By means of inverse accumulated generating operation
(IAGO), the prediction can be transformed into the sequence of
original series. Following steps describe the grey modeling process.

Assume that a data series with n observations is shown as:

(1)

where, the superscript (0) of X(0) represents the original series. Let
X(1) be the first–order AGO of X(0), whose elements are generated
from X(0):

(2)

where, . If the operation
of AGO continues, the r–order AGO series, X(r), will be yielded as:

(3)

where, . IAGO repre
sents the inverse operation of AGO. IAGO transforms the AGO–
operational series back to a lower order series. The IAGO for the
first–order series is operated as follows: x x and
x k x k –x k– k n The tendency of AGO
resembles an exponential function. Thus, the grey model GM (1, 1)
utilizes a first order differential equation to fit the series with AGO
operation,

(4)

where, the coefficient a is the developing coefficient and b is the
grey input. The coefficients a and b will determine the predicting
trend and interception of Equation (4). In accordance with the
definition, GM (1, 1) is the grey model that the order in grey
differential equation is equal to 1 and defined as follows:

(5)

where, z k x k x k k n Expanding
Equation (5), yielding,

(6)

Figure 1. Dali area.
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Transforming Equation (6) into matrix form yielding,

(7)

Then the parameters of a and b can be estimated by solving
matrix, ,

where,

Subsequently, the whitening type of GM (1, 1) model (or in
terms of GM (1, 1,W)) is described as:

(8)

(9)

In addition, there are still several types of GM (1, 1) models
derived from Equation (4) as follows.

Connotation type of GM (1, 1): GM (1, 1, C)

(10)

Grey difference type of GM (1, 1): GM (1, 1, x(1))

(11)

where, .

IAGO type of GM (1, 1): GM (1, 1, x(0))

(12)

Parameter–a type of GM (1, 1): GM (1, 1, a)

(13)

Parameter–b type of GM (1, 1): GM (1, 1, b)

(14)

Exponent type of GM (1, 1): GM (1, 1, e)

(15)

When utilizing GM (1, 1, x(0)), GM (1, 1, a), GM (1, 1, b), and
GM (1, 1, e), can be estimated as follows:

(16)

All seven types of GM (1, 1) models and their denotation are
summarized in Table 1. Details for derivation of these GM (1, 1)
model can be referred to the references (Deng, 2002; Deng, 2005;
Pai et al., 2007a; Pai et al., 2007b; Pai et al., 2008a; Pai et al.,

2008b; Pai et al., 2008c; Pai et al., 2011b; Pai et al., 2013b; Pai et
al., 2014).

Table 1. Seven types of GM (1, 1) models

Type Denotation Prediction equation
Whitening
type GM (1, 1,W)

Connotation
type GM (1, 1, C)

Grey
difference
type

GM (1, 1, x )

IAGO type
GM (1, 1, x )

Parameter–a
type GM (1, 1, a)

Parameter–b
type

GM (1, 1, b)

Exponent
type GM (1, 1, e)

2.3. Brief description on BPNN

The artificial neural network (ANN) simulates the important
operation features of human nervous system to determine
solutions by using information gained from historic data (Pai et al.,
2009a; Pai et al., 2009b; Pai et al., 2011a; Pai et al., 2013a). To
operate like a human brain, ANN uses many computational units
called artificial neurons that are interrelated by various weight
functions. Although each neuron can only perform a simple
computation, an ANN can perform complicated calculations based
on the multiple level structure of a network of connected neurons.
An ANN is composed mainly of three independent layers: input,
hidden, and output layers. Each layer contains many operation
neurons. Input neurons accept the input values that are fed to the
ANN, meanwhile the computational values in the output layer are
determined by the output neurons. The hidden layers act as
interfaces to relate input and output layers. Each neuron is linked
to every neuron in adjacent layers by a weight function. Each
neuron sums all of the values from previous inputs converts the
sum to an output value. To a prediction problem, a supervised
learning algorithm is often utilized to train ANN. The back
propagation algorithm is commonly selected to direct ANN, i.e.
BPNN. The steepest gradient descent method is commonly used to
minimize the errors between the BPNN outputs and observations.
The calculation of both GM (1, 1) and BPNN was also carried out
using MATLAB.

3. Results and Discussion

3.1. Determination of grey parameters

The observation of PM10 and PM2.5 were substituted into
Equation (6) and the coefficients were determined by solving
Equation (7). For PM10, parameters a and b were equal to
–0.00011973 and 41.236, respectively. For PM2.5, a=–0.00021118
and b=28.379. Since the coefficients a and b represent the
predicting trend and interception of Equation (4), the positive or
negative values of a and b were determined by the characteristics
of data set.
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3.2. Determination of BPNN

The appropriate BPNN model was also designed to compare
with GM (1, 1). Both BPNN models were comprised of three layers:
input, hidden, and output layers. According to previous study (Pai
et al., 2011b; Pai et al., 2013b), the GM (1, 1) equations of linear
types outperformed others, thus the linear function was selected
as the transfer function between the input, hidden, and output

layers for BPNN for comparison. The hidden layer consisted of 3
and 20 operating neurons for PM10 and PM2.5, respectively. The
training epochs were 1 000.

3.3. Simulation of PM10

Figure 2 illustrates the prediction results of PM10 using seven
types of GM (1, 1) model and BPNN.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2. Prediction results of PM10. (a) GM (1, 1, W), (b) GM (1, 1, C), (c) GM (1, 1, x(1)), (d) GM (1,
1, x(0)), (e) GM (1, 1, a), (f) GM (1, 1, b), (g) GM (1, 1, e), (h) BPNN.
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(g)

(h)

Figure 2. Continued.

In order to evaluate the prediction accuracy of GM (1, 1) and
BPNN, the mean absolute percentage error (MAPE), mean squared
error (MSE), and root mean squared error (RMSE) were adopted,
given by:

(17)

(18)

(19)

where N is the number of data, is the observation value,
is the prediction value.

All the values of MAPE, MSE, and RMSE are shown in Table 2.
As shown in Table 2, when training, MAPEs of PM10 were between
16.19% and 16.49% using GM (1, 1, x ), GM (1, 1, a), and GM (1, 1,
b), but they were 47.59–70.63% using other GM (1, 1) models.
When predicting, the MAPEs lay between 16.76% and 16.78%
employing GM (1, 1, x ), GM (1, 1, a), and GM (1, 1, b), but they
were between 42.62% and 71.28% when using others.

The MSE values of 53.82–53.84 using GM (1, 1, x ), GM (1, 1,
a), and GM (1, 1, b) were better than those of 335.77–1 359.60
using other GMs when training. When predicting, the values of
132.95–133.29 using GM (1, 1, x ), GM (1, 1, a), and GM (1, 1, b)
were also better than those of 644.68–1 900.80 using other GMs.
For training, the RMSE of 7.34 using GM (1, 1, x ), GM (1, 1, a),
and GM (1, 1, b) were lower than those of 18.32–36.87 using other
GMs. The RMSE values of 11.53–11.55 using GM (1, 1, x ), GM (1,
1, a), and GM (1, 1, b) were also lower than those of 25.39–43.60
using other GMs when predicting.

In the structure of GM (1, 1, x ), GM (1, 1, a), and GM (1, 1,
b), the point at time k is highly affected by the point at time k–1.
For the time series of hourly PM, the value of PM did not vary
significantly between hours. Therefore, the predicting perfor
mances of GM (1, 1, x ), GM (1, 1, a), and GM (1, 1, b) exactly
follow the observed pattern.

The prediction results of BPNN are also shown in Table 2.
When constructing model, the MAPE of GM (1, 1, x ) and GM (1,

1, a) was lower than those of BPNN. When predicting, the MAPE of
GM (1, 1, x ) and GM (1, 1, a) was higher than those of BPNN, but
their MAPE values were very close.

The calculation time was shown in Table 3. The calculation
time was 0.049 seconds when using seven types of GM (1, 1), but
that of BPNN was 10.465 seconds.

Analogous observations were made by Slini et al. (2006). Slini
et al. (2006) employed principal component analysis (PCA),
classification and regression trees (CART), linear regression analysis
(LRA), and ANN to predict daily PM10 concentrations. The RMSE
values for PCA, CART, LRA, and ANN were 8.142, 33.55, 11.236, and
7.126, respectively.

Diaz–Robles et al. (2008) used Box–Jenkins time series
(ARIMA) model, ANN, multiple linear regression (MLR), and a
hybrid ARIMA–ANN model to forecast PM in urban areas. The
RMSE values for ARIMA, ANN, MLR, and hybrid model were 28.46,
28.57, 28.39, and 8.80, respectively.

In this study, the RMSE values of 11.53–11.55 using GM (1, 1,
x ), GM (1, 1, a), and GM (1, 1, b) were obtained for predicting
hourly values of PM10.

3.4. Simulation of PM2.5

Figure 3 shows the prediction results of PM2.5. All statistical
values revealed that the performance of GM (1, 1, x ), GM (1, 1,
a), and GM (1, 1, b) outperformed other models.

As shown in Table 4, the training MAPEs values of PM2.5 were
between 17.42% and 17.89% using GM (1, 1, x ), GM (1, 1, a), and
GM (1, 1, b), but they were 62.37–77.20% using other GMs. The
predicting MAPEs lay between 21.64% and 21.67% when
employing GM (1, 1, x ), GM (1, 1, a), and GM (1, 1, b), but they
were between 60.90% and 74.55% when using other GMs.

The training MSE values of 25.32–25.52 using GM (1, 1, x ),
GM (1, 1, a), and GM (1, 1, b) were better than those of 214.79–
808.72 using other GMs. The predicting MSEs of 40.41–40.51 using
GM (1, 1, x ), GM (1, 1, a), and GM (1, 1, b) were also better than
those of 167.47–610.88 from other GMs. The training RMSE values
of 5.03–5.05 obtained from GM (1, 1, x ), GM (1, 1, a), and GM (1,
1, b) were lower than those of 14.66–28.44 from other GMs. The
predicting RMSE values of 6.36 from GM (1, 1, x ), GM (1, 1, a),
and GM (1, 1, b) were also lower than those of 12.94–24.72 from
other GMs.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. Prediction results of PM2.5. (a) GM (1, 1, W), (b) GM (1, 1, C), (c) GM (1, 1, x(1)), (d) GM (1, 1,
x(0)), (e) GM (1, 1, a), (f) GM (1, 1, b), (g) GM (1, 1, e), and (h) BPNN.
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(g)

(h)

Figure 3. Continued.

Table 2. The performance for PM10 using seven types of GM (1, 1) models and BPNN

MAPE MSE RMSE

Training Testing Training Testing Training Testing

GM (1, 1, W) 47.60 42.63 335.77 644.68 18.32 25.39
GM (1, 1, C) 47.59 42.62 335.77 644.71 18.32 25.39
GM (1, 1, x(1)) 47.60 42.65 335.82 644.72 18.33 25.39
GM (1, 1, x(0)) 16.19 16.78 53.84 133.29 7.34 11.55
GM (1, 1, a) 16.19 16.78 53.84 133.29 7.34 11.55
GM (1, 1, b) 16.49 16.76 53.82 132.95 7.34 11.53
GM (1, 1, e) 70.63 71.28 1 359.60 1 900.80 36.87 43.60
BPNN 16.76 16.61 51.30 127.64 7.16 11.30

Table 3. The calculation time for PM10 and PM2.5 using seven types of GM (1,
1) models and BPNN

PM10 PM2.5

GM (1, 1, W) 0.049 0.021

GM (1, 1, C) 0.049 0.021

GM (1, 1, x(1)) 0.049 0.021

GM (1, 1, x(0)) 0.049 0.021

GM (1, 1, a) 0.049 0.021

GM (1, 1, b) 0.049 0.021

GM (1, 1, e) 0.049 0.021

BPNN 10.465 15.501

The performance of BPNN is also shown in Table 4. The
training MAPE of GM (1, 1, x ) and GM (1, 1, a) was lower than
those of BPNN. The predicting MAPE of GM (1, 1, x ) and GM (1,
1, a) was higher than those of BPNN, but the MAPE values were
very close, too.

The calculation time for PM2.5 was also shown in Table 3. The
calculation time was 0.021 seconds when using seven types of GM
(1, 1), but that of BPNN was 15.501 seconds for PM2.5.

Perez et al. (2000) used linear perceptron model, ANN, and
persistence model to forecast PM2.5 hourly mean concentrations.
The MAPE values were between 20% and 80% for these three types
of model. In our study, the MAPEs lay between 21.64% and 21.67%

for predicting hourly PM2.5 concentrations using GM (1, 1, x ), GM
(1, 1, a), and GM (1, 1, b).

In accordance with the results, the GM (1, 1) model could
result in high predictability. Besides, the coefficient calculation in
GM (1, 1) model was only a process to solve a simple regression.
Besides, the atmosphere condition in Dali is indeed influenced by
other area and meteorological parameters. The data characteristic
of the atmosphere condition in Dali reveals the influence from
other area and meteorological parameters. GM (1, 1) simply adopts
the previous (historic) data to predict the future data of the air
pollution time series. The influence from other administrative
boundary and meteorological conditions is contained implicitly and
naturally. Therefore, GM could be applied successfully in predicting
PM even comparing with BPNN.

4. Conclusions

The hourly PM10 and PM2.5 concentrations in Dali area of
Taichung City were predicted using seven types of GM (1, 1)
models and BPNN. The conclusions can be drawn as follows. For
PM10, the minimum MAPE, MSE, and RMSE were 16.76%, 132.95,
and 11.53, respectively when predicting. For PM2.5, the minimum
MAPE, MSE, and RMSE value of 21.64%, 40.41, and 6.36, respec
tively could be achieved for prediction. The predicting performance
of GM (1, 1, x ), GM (1, 1, a), and GM (1, 1, b) outperformed other
models because of their equation structures. It revealed that GM
(1, 1) could successfully predict the hourly PM variation even
comparing with BPNN. The prediction performance of different
data size and long–term prediction can be discussed in the future
studies.
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Table 4. The performance for PM2.5 using seven types of GM (1, 1) models and BPNN

MAPE MSE RMSE

Training Testing Training Testing Training Testing

GM (1, 1, W) 62.39 60.98 214.79 167.75 14.66 12.95
GM (1, 1, C) 62.37 60.96 214.79 167.69 14.66 12.95
GM (1, 1, x(1)) 62.39 60.90 214.85 167.47 14.66 12.94
GM (1, 1, x(0)) 17.89 21.67 25.52 40.51 5.05 6.36
GM (1, 1, a) 17.89 21.67 25.52 40.51 5.05 6.36
GM (1, 1, b) 17.42 21.64 25.32 40.41 5.03 6.36
GM (1, 1, e) 77.20 74.55 808.72 610.88 28.44 24.72
BPNN 17.63 21.40 24.19 39.14 4.92 6.26
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