-

View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by Elsevier - Publisher Connector

J. Math. Anal. Appl. 393 (2012) 434-444

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and
Applications

journal homepage: www.elsevier.com/locate/jmaa == TEEEE

Asymptotics on Laguerre or Hermite polynomial expansions and their
applications in Gauss quadrature

Shuhuang Xiang

Department of Applied Mathematics and Software, Central South University, Changsha, Hunan 410083, PR China

ARTICLE INFO ABSTRACT
Arfidf-’ history: In this paper, we present asymptotic analysis on the coefficients of functions expanded
Received 20 November 2011 in forms of Laguerre or Hermite polynomial series, which shows the decay of the

Available online 17 April 2012

! . coefficients and derives new error bounds on the truncated series. Moreover, by applying
Submitted by Michael J. Schlosser

the asymptotics, new estimates on the errors for Gauss-Laguerre, Radau-Laguerre and
Gauss-Hermite quadrature are deduced. These results show that Gauss-Laguerre-type and
Gauss-Hermite-type quadratures are nearly of same convergence rates.

© 2012 Elsevier Inc. All rights reserved.

Keywords:

Asymptotic

Laguerre polynomial
Hermite polynomial
Truncated error
Gauss-type quadrature

1. Introduction
Laguerre polynomials L,(,a) (x) and Hermite polynomials H,(x) are well-known in Gaussian quadrature to numerically
compute integrals of the forms

+00 +o0 )
/ e f(x)dx (o > —1), / e f(x)dx.
0 —00
Laguerre or Hermite expansions have many uses in the Mathieu equation, prolate spheroidal wave equation, Laplace’s tidal
equation, Vlasov-Maxwell equation, quantum mechanics etc. The expressions of the derivatives of these polynomials are
quite simple and thus it is easy to use them to solve differential equations [1-8].

The decay of the coefficients of f (x) expanded in an orthogonal polynomial series in a finite interval has been extensively
studied [9,1,10-16]. Unlike most other sets of orthogonal polynomials in a finite interval, the Laguerre and Hermite
polynomials increase exponentially with the degree n, so it is difficult to work with unnormalized functions without
encountering overflow [1,17].

Suppose f (x) can be expanded in the form of series of {L;“) (x) }}?o or {H;(x) }]‘?OO [1,10,18-21]

—0 —
@ L[ @

fx) = Zaij x), a= U—a/ e *x f(x)Lj (x)dx (1.1a)
=0 i Jo
oo 1 +o00

fG) = hHix), b= ” / e f ()H; (x)dx. (1.1b)
=0 n J—oco
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A natural approximation to f (x) is the truncated polynomial
N N
PR =Y gL ) or PLx) =Y hHi).
=0 j=0
The Parseval identity leads to a truncated error

o0 o0
f
IFQ) = PRI o400 = D G0 08 W= RONE oy = D G
: Plarord j=N+1

which implies that the convergence of the truncated error solely depends on the decay of the expansion coefficients [20].

Let {xj}}"= , be zeros of L,(\‘,’) (x) or Hy (x), and w; be the weights in the Gauss-Laguerre quadrature Q,S;L [f] or Gauss-Hermite
quadrature Q,f,;” [f]. Here x; and w; can be computed quickly by Golub and Welsch [22] with O(N?) operations and Glaser
et al. [17] with O(N) operations, respectively (the efficient algorithms can be found in [23]).

Using the orthogonality of the polynomials, from I[L'* (x)] = 0 and I[H,(x)] = O forn > 1, and Q,\?L[Lf,“) ] = IIL* )]
and QM [Hy(x)] = I[H,(x)] for 0 < n < 2N — 1, we see that

171 - Q' f1 = ) anQ{M LY (0]
n=2N
and

[o¢]
171 - Q"If1 = ) mQy" [Ha (0],
n=2N
which implies that the error bounds for Gauss-Laguerre and Gauss-Hermite quadrature can be estimated by the asymptotics
of the coefficents of the expansions.
The following error estimates are widely cited [18, p. 223]

N (N1)?

+o0
fo X% f(x)dx = ; waf (%) + mf(”’)(s), 0 <& < 400, (1.2a)

feN(E), —oo <& < 4oo. (1.2b)

+00 N |
2 N7
e f(x)dx = wnf (%
/_w i = 3 wnf ) + s
However, in (1.2a)-(1.2b), £ is difficult to determine. In particular, for some special functions such as f (x) = sin(x)e*/?,
the estimate on f®") (&) can be very large if £ is not specified.
Considering the convergence of formulas of the Gauss-Laguerre and Gauss-Hermite quadrature, Uspensky [24] showed
that if the function f (x) satisfies the inequality for all sufficiently large values of x

Fxl <
X

for some p > 0,

prrerwl
or
e
fx)| < |X|Tp’ for some p > 0,
then
+00 +o0 )
lim QS'[f] = / x“e*f (x)dx, lim QM[f]1= / e~ f(x)dx,
N—oo 0 N—oo — 00
respectively. Particularly, for entire functions represented by f(z) = Z;?io b,z", Lubinsky [25] proved geometric
convergence of Q¢ [f] and Q" [f]: Let
nJ/|b
A = limsup | “', B = limsup /|bn|\/n/2. (1.3)
n—o00 2 n—oo
IfA < 1and B < 1 then, for sufficiently large N,
+o00
‘ / X*e*f (x)dx — Qu[f1| < AN (1.4a)
0
+00 )
‘/ e fx)dx — Q"If1| < B*N. (1.4b)
—00

In this paper, we will present new asymptotics on the coefficients a, and h, for the Laguerre and Hermite expansions.
Applying these asymptotics, we will derive new error bounds on the truncated series, Gauss-Laguerre and Gauss-Hermite
type quadrature.
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2. Laguerre expansions and Gauss-Laguerre quadrature

Assume f (x) is a suitably smooth function in [0, +00) of finite regularity and f0+°° e *x“f (x)dx < oo fora > —1.Then
f(x) can be expanded with respect to w(x) = e *x* into

o0
FOO =) all ) (2.1)
n=0
[26, p. 110] with the expansion coefficient
+00
a, = — e *x*f (x)L,(f‘) x)dx,

O—’g 0
where L,(.,“) (x) is the Laguerre polynomial of degree n and
o 'n+a+1)

n

n!
[27, p. 774].
Theorem 2.1. Suppose f, f', ..., f* are absolutely continuous in [0, +00) and satisfies for j = 0, 1, ..., k for some k > 1
that
“T e—x/2x1+j+0tf(})(x) =0, V = / X1+k+ae—x[f(k+1)(x)]2dx < 00, (2.2)
X— 400 0

then for the Laguerre expansion it follows that

% n!
N ED IR I e N (232)

_ 2VVN
||f(X) ‘/N(X)||L,2,,[0,+oo) < (k — ])\/(N — 1) — (N — k) s k > 2. (23b)

Proof. From Rodrigues’s formulas [26, p. 101]
14" [e—xxn+ot]
n! dxn

= () —
e XL (x) =

_ 1 1 d dnfl(efxxnﬂx)
T n (n—=1Ddx dxn—1

we see that
B de"‘x“"‘L(Lﬁa) (%)
ne LW (x) = ——— 1 "2
dx

and

1 oo 1 (14a)
— a
G = — fxyde™ %L (x)
no 0

1 +o00 1
= - / e XL (0)f (x)dx
0

o
noy

(=D T ke (1) (kD)
= — e Lo of ¥V (x)dx,
on(n—1)---(n—k) Jo

where we used the following inequalities [27, p. 786], [19, p. 31]
<2 _I'+a+n
nr(l+w)
I'l+a+n)
nr+a)’
and identities forj =0, 1, ...,k

) , —l<a<0
|e”‘/2L,(1°‘)(x)| < x>0,n=0,1,..., (2.4)

a>0

67XX1+j+af(i) (X)Lnt;j_-l—]a) (X) |(-)I-OO — efx/2X1+j+vtf(i) (X)efx/ZLr(]]_‘;j_-ﬁiDl) (X) |[—)0—oo —0.
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By using the Cauchy-Schwarz inequality we deduce

(= Uk“ e X 1+k+a (1+k+a) (k+1)
- L, e Of (x)dx

ol = on(n—1)--
‘f0+00 [e—x/zx(1+I<+a>/szlL4;<liwL1a)(x)] [/ 2kt 24 (3) dx‘
- ocon(n—1)---(n—k)
v ok
< 9
T ofnn—1)---(n—k)
which together with
l+k+o¢
\/ n—k—1 —1)- (n— k) n!
nm — e
ri+n+aw
yields (2.3a).

Expression (2.3b) follows from

IIf (x) — ‘(/)[)\CI(X)”LZw[O.-Q-oo) = |: Z |an|20-r(1x:|

n=N+1

o0
> lanl oy

n=N+1

1
2

IA

(o) 1% o 1+k+a

n—k—1
2 n=D =y o (V(E3)

B n=N+1
-y v
Wi /=1 (n—k)

IA
=
Pk
I
\—:I
<
—_~~
—_
Z|= Z|=
SN—
=
+
3
X‘
ST
&

- 2V/N
T k—-DJN-D---(N—k

Remark 1. From Theorem 2.1, we see that, foro = 0,

e VN
" k-DJN=-D---(N—Fk)

00 n=N+1

N
e ’f () = ) anly(®)

n=0

where L, (x) = e~/2L, (x).

437

(2.5)

The asymptotics can be applied to establish the computational error bounds for Gauss-Laguerre quadrature for functions

of finite regularity.

Theorem 2.2 (Error Bounds for Gauss-Laguerre Quadrature). Suppose f(x) satisfies (2.2) for some k > 3, then for each

N=k+1/2+1,

23tey (2N — 1)
, —l<a<0
(k—2)/2N=2)@2N—=3)---2N—k—1)
I1IF1 = QSHIFI < VN — 1  4=0
(k—1DV/@N=2)@2N—=3)---2N—k—1)
4V(2N = 1)
, O<a<1.
(k—2)/2N=2)@2N—=3)---2N—k—1)

(2.6)
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Proof. From expression (2.1) and by I[L,(f‘)(x)] = 0forn > 1, we have

o0 o0
1= QA1 = | ) anQ LY (01 < Y laal QS LS (011
n=2N n=2N
Applying [18, p. 223]
r N i
= ( +O:+ ). (a)xl (x; are the zeros of L' (x))
N! [LN+1(X1')]2
yields
. F(1+a+N) xed2
QL GOl = |3 wil ()| < Z T ol Ll
i=1 i=1 [ N+l( 1)]

< €721 (%) [l Qx (€]

I n
217 r (1 4+ @) Z—w , —1l<a<0
nl"(1+«a)
=12, =0
21+aw 0<a
n!
22" r(1 4 a), —1<a<0
< 2, a=0
N 21+01F(1+7?+n)! 0<a,
n!

where in the proof of the above third inequality we use inequality (2.4) and the estimate on QﬁL [e*/2] by (1.2a)

N rA+a+N)  xeh?
0 < Qf'[e”?’] = .
,-; N! L P

_ /+OO e—anex/ZdX ( ) (eX/Z)(ZN)(%-)
0 (2N)!
+o00
< / e *x% e % dx
0

— 21+ar(1 +O{)
These together with (2.3a) yield

@ S VIQEHLY n!
1] QNU]|§H:22;VJn(n—l)-~-(n—I<) ri4+n+aw)
> 27t r(1 4+ a)V n!
, —l<a<0
HZN\/n(n—l)u-(n—k) r+n+w)
= n;Jn(n—l) =k’ «=0
) T+o
Z 2TV 1"(1+n+ot)’ 0<a<1
S /nn—1)---(n—k) n!
o] 2+a
271+ )V ’ 1< <0
m—1)---(n—k)
< HZ;VJn(n—l) o 270
e O
Z 2N , O<a<1,
m—1)---(n—k)
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where in the proof of the last inequality we use

n! I'(l1+n
———— <n for —1<a <0, Mfﬂ—}—l for0 <o <1.
Irl+n+ow) n!

By a similar proof to (2.3b)on > 2, m it leads to the desired result. O

For entire functions the geometric convergence of QﬁL [f] can be improved as

Theorem 2.3. Suppose f (x) = Z;";O b,x™ and
= e ' limsup n\/|b,| < 1
n—oo
then for each § > 0 with A1 + § < 1, there exists Ny > 0 such that for N > Ny

A1+ 8>

+00
o ,—X GL
/0‘ X'e f(X)dX QN [f ‘ = m -1 <a. (27)

Proof. From (1.2a) it follows that
+oo
0 < Q' [x"] < / X" Xdx = I'(14+a +n)
0

and then

+00
/ x*e *f (x)dx —
0

i Z Ibal 111X"] — QUTIX"|

n=2N

o0

> ballx"]

n=2N

IA

e}

> 1bal P (1 + a4 n).

n=2N

Applying I'(n + n) ~ /2 Tent—2 [27, Eq. (6.1.39)] yields

S T(1 v/n!
lim M:l, lim ﬂ:e_1, limsup v/ |bp|T(1 4+ +n) =

n— o0 n! n—oo n n—o00

Thus, for each § > 0 with A; 4+ § < 1, there exists Ny > 0 such that forn > Ny
Ibal T (14 a +n) < (A1 4 8)".
These together prove (2.7). O

Remark 2. Comparing A; with A in (1.3), we find that A; = 2e~'A, which shows that the upper bound in Theorem 2.3 is
sharper than that given by Lubinsky [25].

Corollary 2.1 (Error Bounds for Radau-Laguerre Quadrature). Suppose f(x) satisfies (2.2) for some k > 3, then for each
N>k/2+1,

27VN —1<a<0
k—2)J@N-D@N-2) - @N -} “
11— QIF1l < V2N L a=0 (238)
k—1)JeN-—D@EN=2)-- 2N -~
8UN
W—EJQN—DQN—ZrnaN—m’O<a§L

Proof. Corresponding to the Radau rule with a preassigned abscissa at 0

NIr(l+a)I'2+a)
I'C+a+N)

N
'l = FO)+ ) tonf ()

n=1
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10° &

[f-Q ]l

\
n

10
107°
107}
—-10
107"° 10
_ 2
{=00500 f(x)=1/(14x?)
107 107'°
0 20 40 60 80 100 0 20 40 60 80 100
10°

n from 1 to 100 n from 1 to 100
Fig. 1. Absolute errors |[[f] — QC[f]| for Gauss-Laguerre quadrature and a,: n = 1 : 100.
(see [18, p. 223]), it follows that

NIT(1+a) (2 + &)
r2+a+N)

NII'2+a + N)
(2N + 1)!

N
FO)+ Y b Ra) + FEN @)

+00
/ x*e*f(x)dx =
0 n=1
for some 0 < ¢ < +o0 (see [18, p 224]), where X; are the zeros of L,(\,H”‘) (x) and
N 'l+a+N)
w; = .
CONI( 4+ ML G)P

Applying a similar proof to Theorem 2.2 yields (2.8). O

Remark 3. From the proof of Theorem 2.1 and by using 292%™ — 0(n%) [27,26], we see that

n!
lay] = ON~®F1HO2) g > —1

and
IF1 = QyIf1 = ON~U 102y ] — gt ff] = o= 171el2) - —1 <o < 1,

which shows that the smoother f (x) is, the faster the decay of the coefficients and the errors of Gauss-type quadrature are

as N increases.

Remark 4. Comparing the error bounds of Gauss-Laguerre quadrature with Radau-Laguerre quadrature, we see that these
two quadratures have almost the same convergence.

In the following, we illustrate the Gauss-Laguerre quadrature QﬁL[f] (¢ = 0) and the asympotics of the coefficients a, for
f (x) being an entire function cos(x), an analytic function Hﬁ in a neighborhood of [0, +00) but not throughout the complex
plane, a C* function e~1% and a nonsmooth function |x — 1], respectively (see Fig. 1), where a, = fooo e *f(x)L,(x)dx is
computed by Gauss-Laguerre quadrature Q3" with N = 1500.

3. Hermite expansions and Gauss-Hermite quadrature

In this section, we restrict our attention to the asymptotics of the coefficients of f (x) expanded in the form of Hermite
polynomial series. Assume f (x) is a suitably smooth function in (—o0, +00) of finite regularity and

+oo
/ e f(x)dx < oo.

(o]
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Then f (x) can be expanded corresponding to w(x) = e~ into
o0
F =" haHy(x),
n=0
with the expansion coefficient

1 +oo 2
By = / e F (OHy (),
Yn J-—co

where H,,(x) is of degree n and

2
de™™
o= Nm2Ml HU®) =20H, (0, eV Ha(x) = (=1)" o
X
(see [27, p. 774] and [26, pp. 105-106,110]).
Theorem 3.1. Suppose f,f', ..., f*=D are absolutely continuous in (—oo, +00) and satisfies for j = 0,1, ...
k > 1 that
) X +o00
lim e ¥/ fP(x) =0, U= / e~ [f*+D (x)]2dx < oo,
X—00 oo
then for the Hermite expansion it follows that
U
|h”| = n+k+1
272 Yrnin—1)---(n—k)J(n—k—=1)!
UVN
_pf
IIF &) ‘/N(X)”L%;(—OO&OO) = (k= 1)2k+D2 /(N=1)---(N—k)

Proof. Integrating by parts, it establishes by (3.2) and (3.3) and Cramér’s inequality [27, p. 787]

|e—x2/2Hn(X)| < COZ”/Z«/E, cop &~ 1.086435

that
1 [T 2 1 [T 2
ol = |— [ fGodle™ 1"V =|— [ fle™ " Vdx
n J—oo n J—oo
- 1 Foo 2
— 7/ f(k+])(X)[€7X ](nfkfl)dx
Vﬂ —00
1 Foo 2
= |5 f FEV ™ Hygor (x)dx
n —00
U/ Vn—k—
< okt (Cauchy-Schwarz inequality)
Vn
which yields (3.4a).

Expression (3.4b) directly follows by a similar proof to (2.3b). O

441

, k for some

(3.3)

(3.4a)

(3.4b)

Theorem 3.2 (Error Bounds for Gauss-Hermite Quadrature). Suppose f (x) satisfies (3.3) for some k > 2, then for each N >

k/2 +1,

1.632/n (N — 1)U

_ nGH

Proof. To easily control the overflow on H,(x), following [1, p. 506] and [17], we define

e—xz/z

Hy(X) i= caHn(x),  Hy(X) = ———H,
(%) = cyHp(%) (%) Py (x)

— 1
Hy(x) = ——
! ma2n2/nl

(3.5)
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and consider

o0

F&) =" haHy(x)

n=0

with the expansion coefficient

_ 1 +00 )
h, = / e f(x)H,(x)dx.
CaVn J—o0
In the same way as the proof of (3.4a), we have
- U/Vn—k-1 u
lhy| < - = Tk s (3.6)
Cn¥n 27 Jnn—1)---(n—k)
which, together with I[H,(x)] = 0 and Q" [Han—1(x)] = Q" [H2q—1(x)] = O for n > 1, yields

. < UIQEH Ha)]]
IIF] - Q¥ v]ls;m(m_l)...(zn—k)'

Notice that by Glaser et al. [17] we see that for n even

7 L 2e TH ) _ g 2e797
GH Hn — 7’1:
Q" [Hn ()1l ; [Hy, ()12 Z[va("f)]

< 0.816Q%" /2],

—x? /ZH (X])

where we used e /2[Hp, (x)| = |Hn(x)| < 0.816 for all x [1, p. 506].
Furthermore, noting by (1.2b) that

+o0
./ e e dx = (e + 2N(;§),[6XZ/ZJ(ZN)(S ), —00 <& < 400

and observing

77 =xe™, [ = A+, 719 = Bx+0)e, 17719 = 3+ 62 + xHe
it is easy to verify by induction that

2 _ 2 2 2

(/1% D = xp 1 (e, [ = p(x)et 2,
where py_1(t) and pi(t) are polynomials of degree k — 1 and k respectively whose coefficients are nonnegative. Thus,
[¢7/212W) (&) > 0,0 < Q{'[e¥"/2] < I[e”] = v/27 and

Q" [H,(0)]] < 0.816Q5"[¢/%] < 0.816v/27.
These together yield

o 0 0.816+/27U
If] = Qy U]|—Z¢2n(2n_]) @2n—k

Then by a similar proof to (2.3b) it directly leads to the desired result. O

Remark 5. For expansion f(x) = Z;’io haH, (x), even though h,, decays much slower than h,. However, from the proof of
Theorem 3.2, it follows that

< Um
T (k—1206D2 /(N=1)---(N—k)

N
F) = haHy(x)
n=0

12,(—00,+00)
which is the same as (3.4b). Furthermore, from Theorem 3.1, we find that

o 0. S]GUI
<0816 Y  |h| < (k—1)2*k=D2/(N=1)---(N—k)

(3.7)

N
e f(x) = Y hpHy(x)
n=1
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10° 10°
i Gauss-Laguerre
I Gauss—Hermite :
10° | 107 H,
1 !
—10 | f(x)=cos(x) —10 v
10 10 v
"
10715 10715 M‘, by
2 10 ‘ 107 ‘
5 0 100 200 300 400 500 0 100 200 300 400 500
E
2
] 10% 10°
10° ‘5

=1/
107"° foo-e
1072
0 100 200 300 400 500
N=1:500 N=1:500
Fig. 2. Absolute errors for Gauss-Laguerre and Gauss-Hermite quadrature: N = 1 : 500.
Remark 6. For normalized Hermite functions, Boyd [28] showed that for f(x) = Zﬁioﬁan(x) with H,(x) =
2
e—X°/2
J11/42;1/2\/51'1“(")

A, = o(n~+72)
under the condition

x‘f9(x) are bounded and integrable in (—oo, +00) for £,j =0, 1, ..., k+ 1.
It is easy to verify that f (x) satisfies (3.3) and then @, = hs.

Theorem 3.3. Suppose f (x) = Z;";O b,x" is an entire function and

By = 2e~ ! lim sup n/|bo,| < 1,

n—oo
then for each § > 0 with By + § < 1, there exists Ng > 0 such that for N > Ny
+00 B ) N
/ e (e — o) < 1O (3.8)
1-B; -6

Proof. From (1.2b), it follows that
+oo 5
0 < Q"] < / e X x¥dx = /7 2™n!
—0Q
and then

+o00 )
/ e f(x)dx — QSH

e}

< Z |zl 11x*"] — Q™[]
< D Ibal[¥"]
n=N

=Y |byl/72"n!
n=N

8

3

Applying in the same way to the proof of Theorem 2.3 leads to the desired result. O

Remark 7. Comparing B; with B in (1.3), we find that B; < 2e~!B?, which shows that the upper bound in Theorem 3.3 is
sharper than that given by Lubinsky [25].
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From Theorems 2.2 and 3.2, we see that Gauss-Laguerre quadrature QS'[f] (@ = 0) and Gauss-Hermite Q" [f]
quadrature have nearly the same convergence rates. We illustrate here the convergence rates on Gauss-Laguerre quadrature

and Gauss-Hermite quadrature for f (x) being cos(x), ﬁ, e~/ and |x — 1], respectively (see Fig. 2).
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