
Ž .JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 199, 637]653 1996
ARTICLE NO. 0167

Boolean Products of MV-Algebras:
Hypernormal MV-AlgebrasU

Roberto Cignoli

Departamento de Matematica, Facultad de Ciencias Exactas y Naturales, Unï ersidad´
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INTRODUCTION

w xMV-algebras were introduced by Chang 7, 8 as the algebraic counter-
Ž wpart of the Łukasiewicz infinite valued propositional logic see 34, pp.

x.47]52 . These algebras have appeared in the literature under different
w xnames and polynomially equivalent presentations: CN-algebras 20 , Wajs-

w x w xberg algebras 32, 16 , bounded commutatï e BCK-algebras 37, 27 , and
w x Ž w x.bricks 5 see also 4 . In the past few years it was discovered that

MV-algebras are naturally related to the Murray]von Neumann order of
projections in operator algebras on Hilbert spaces, and that they play an
interesting role as invariants of approximately finite-dimensional CU-alge-

Ž w xbras see 26, 28, 29, 11, 31 . They are also naturally related to Ulam’s
w xsearching games with lies 30 .

Ž w x.MV-algebras admit a natural lattice reduct see 7 , and hence a natural
order structure. Many important properties can be derived from the fact,

w xestablished by Chang 8 , that nontrivial MV-algebras are subdirect prod-
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ucts of MV-chains, i.e., totally ordered MV-algebras. To prove this funda-
mental result Chang introduced the notion of a prime ideal in an MV-alge-
bra.

The lattice of principal ideals of an MV-algebra A, ordered by inclusion,
is a dual completely normal lattice and hence the poset of prime ideals of an

Ž .MV-algebra is a spectral root system cardinal sum of spectral roots .
w xIndeed, as shown in 12 , each spectral root system is order isomorphic to

the poset of prime ideals of an MV-algebra. Special cases are the MV-
Ž .algebras whose prime spectra the set of prime ideals are cardinal sum of

chains.
By using the Stone]Zariski topology and some standard arguments,

Chang’s subdirect decompositions can be transformed into representations
by global sections of sheaves of totally ordered MV-algebras over spectral

Ž w x.spaces see for instance 5, Theorem 3.5, p. 95 . Special cases of represen-
tations by global sections are the representations as weak Boolean prod-

w xucts 22 . It is natural to try to classify MV-algebras by the order structure
of their spectra. The simplest case corresponds to the trivial order, i.e.,
when prime ideals are maximal. The algebras with this property are called
hyperarchimedean. This class contains the Boolean algebras, and more
generally, all subvarieties of MV-algebras which are generated by a finite
number of finite MV-chains. The hyperarchimedean MV-algebras are just

w xthe Boolean products of simple MV-algebras 35 . As a natural step
further, we investigate the class formed by the MV-algebras such that their
spectra are cardinal sums of chains. Following the nomenclature intro-

w xduced in 25 for lattice theory, we call the algebras in this class hypernor-
mal.

The aim of this paper is to give algebraic characterizations of hypernor-
mal MV-algebras and weak Boolean products of MV-chains reminiscent of

w x Ž .that given in 36 for Boolean products of MV-chains see Theorem 3.1 .
Concretely, we obtain characterizations of hypernormal MV-algebras and
weak Boolean products of local MV-algebras and, as a particular case of
both, weak Boolean products of MV-chains. These results are obtained in
Section 3. By considering MV-algebras of real continuous functions over
compact spaces, we show in Section 4 how the conditions established in
Section 3 are related to topological separation properties. Using different
topological spaces we give examples which show that the classes consid-
ered in Section 3 are indeed different.

We include in the paper two preliminary sections. In Section 1, we give
the definitions and results of the theory of MV-algebras which are needed
in the remainder of the paper. In Section 2, we recall some basic results on
the representation of MV-algebras as weak Boolean products. We obtain
as corollaries some known results on the representations of MV-algebras
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w xas weak Boolean products of totally ordered MV-algebras 35 . We also
w xgive a new characterization of the liminary MV-algebras introduced in 11 .

1. DEFINITIONS AND FIRST PROPERTIES

Ž . Ž .An MV-algebra is an algebra A s A, [ , !, 0 of type 2, 1, 0 fulfilling
the following equations:

Ž . Ž .MV1. x [ y [ z f x [ y [ z
MV2. x [ y f y [ x
MV3. x [ 0 f y

Ž .MV4. ! ! x f x
MV5. x [ !0 f !0

Ž . Ž .MV6. ! ! x [ y [ y f ! x [ ! y [ x.

By taking y s !0 in MV6, we deduce:
MV7. x [ ! x f !0.

Ž . ŽTherefore, if we set 1 s !0 and x( y s ! ! x [ ! y , then A, [ ,
. w x( , !, 0, 1 satisfies all the axioms given in 26, Lemma 2.6 , and hence the

w x Žabove definition of MV-algebras is equivalent to Chang’s definition 7 cf.
w x.11 .

We denote the set of natural numbers by v. We define 0 x s 0, x o s 1,
Ž . nq1 nand for each n g v, n q 1 x s x [ nx, x s x( x .

In the language of MV-algebras we consider the following terms:

x k y s x( ! y [ y , x n y s x [ ! y ( y.Ž . Ž .def def

Ž . Ž .Then for each MV-algebra A, the reduct L A s A, n , k , 0, 1 is a
distributive lattice, with least element 0 and greatest element 1. The
corresponding order relation, which we call the natural order of A, is given

Ž .by x F y if and only if ! x [ y s 1 or equivalently, x( ! y s 0 . More-
over, the following properties hold in any MV-algebra:

1.1. x( y F x n y F x k y F x [ y
Ž . Ž .1.2. x( ! y n y( ! x f 0
Ž . Ž .1.3. x( ! y [ y( ! x f 0 iff x f y

Ž . Ž .1.4. x n y f ! ! x k ! y , x k y f ! ! x n ! y
Ž .1.5. for any 0 - n g v, n a n b s H sa [ tb.sq tsn

An MV-algebra such that its natural order is total is called an MV-chain.
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Ž .Let G s G, q, 0, F be an abelian lattice ordered group and u a strictly
Ž . Žw x .positive element in G. Then G G, u s 0, u , [ , !, 0 is an MV-algebra

Ž w x w x. w x � 4 Žsee 26 and 23 , where 0, u s b g G : 0 F b F u , x [ y s u n x q
. Ž .y , and ! x s u y x. Moreover, x( y s 0 k x q y y u , !0 s u and the

natural order of this algebra is the restriction of the order of G. In
Ž .particular, G R, 1 , where R denotes the additive ordered group of the

reals, corresponds essentially to the matrix used by Łukasiewicz to define
Ž w x.an infinite-valued propositional calculus see 34, pp. 47]52 .

Let A be a MV-algebra. A subset I of A is called an ideal provided that:

Ž .I1 0 g I,
Ž .I2 a g I and b g I imply a [ b g I, and
Ž .I3 a F b and b g I imply a g I.

Ž .By 1.1, any ideal of A is a lattice ideal of L A . An ideal I of A is called
Ž .prime provided that it is prime as an ideal of L A : I / A, and a n b g I

implies a g I or b g I.
Ž .The set II A of all proper ideals of A, ordered by inclusion, is the

Ž .universe of an algebraic lattice, which we denote by I A . If A denotes
either an MV-algebra or a bounded distributive lattice, then Spec A will

Ž .denote the set of prime ideals of A and Spec A the poset Spec A, : .
Ž .Let Con A be the algebraic lattice of all congruence relations of A. The

correspondence

u ¬ J u s 0ru s a g A : a, 0 g u� 4Ž . Ž .

Ž . Ž .establishes an isomorphism J from Con A onto I A . The inverse of J is
given by

Jy1 I s a, b g A2 : a( ! b [ b( ! a g I� 4Ž . Ž . Ž . Ž .

Ž w x.for each ideal I see 7 . For any ideal I of A, we write ArI in place of
y1Ž .ArJ I .

w x w xIt was shown in 13 and in 16 that the variety of MV-algebras is
arithmetical, i.e., each MV-algebra A is congruence-permutable and the

Ž . Ž .lattice Con A is distributive. Therefore I A is a distributive lattice.
² :Given an MV-algebra A and a g A, a denotes the principal ideal

² : � 4generated by a in A, a s b g A : b F na for some n g v . It follows
from the definition of an ideal that for any a, b g A:

² : ² : ² : ² :1.6. a E b s a k b s a [ b .

w xMoreover, by an argument dual to the one used in 16, Theorem 14 , from
Ž w x.1.5 we deduce see also 2, Lemma 1 :

² : ² : ² :1.7. a l b s a n b .
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Ž .Hence the family of all principal ideals of A is a sublattice of I A . We
Ž .denote by Ip A this distributive lattice.

If A, B are MV-algebras, then any homomorphism h: A ª B induces a
Ž . Ž . Ž . Ž .Ž² :.homomorphism Ip h : Ip A ª Ip B by the prescription Ip h a

² Ž .:s h a , for each a g A. It also follows from the above remarks that the
Ž .compact elements of the algebraic closure system II A are just the

Ž .principal ideals. Hence the algebraic lattice I A is isomorphic to the
Ž . Ž w x.lattice of all ideals of the distributive lattice Ip A see 17, p. 80 .

Therefore we have:

LEMMA 1.8. Ip is a co¨ariant functor from the category of MV-algebras
to the category of bounded distributï e lattices. For each MV-algebra A, the

Ž .posets Spec A and Spec Ip A are isomorphic.

w xIt follows from 10, Theorem 1.9 that the functor Ip coincides with the
w xone defined by Belluce in 1 .

Ž w x.It follows from 1.3 see 7 that an ideal I of an MV-algebra A is prime
if and only if ArI is an MV-chain. Thus the partially ordered set of all prime
ideals containing a gï en prime ideal, ordered by inclusion, is a chain.
Bounded distributive lattices L such that Spec L satisfies this property are

Ž wknown in the literature as dual completely normal lattices see 25, 24, and
x.9 . Then, by Lemma 1.8, the range of the functor Ip is contained in the

Ž w x.class of dual completely normal lattices cf. 10, Corollary 1.7 .
Ž .For any MV-algebra A, B A denotes the Boolean algebra of all comple-

Ž . Ž .mented elements in L A . Since for any a g A and b g B A , a [ b s a k
Ž . w xb and a(b s a n b, B A is a subalgebra of A 7, 32 in which ! b is the

complement of b. We recall that a Stone ideal of a bounded distributive
Ž . Ž .lattice L s L, n , k , 0, 1 is a lattice ideal I generated by I l B L , i.e.,

given a g I there is a complemented element b in I such that a F b. A
Ž .Stone ultraideal of L is a Stone ideal I such that I l B L is a prime ideal

Ž . Ž . Ž Ž ..of B L . Let A be an MV-algebra, then B A s B L A . It is easy to check
Ž .that Stone ideals of L A are ideals of A. Moreover, given a Stone ideal I

Ž . Ž w x.of L A the associated congruence relation is given by see 32, p. 81 :

y1Ž . �Ž . Ž .1.9. J I s a, b g A = A: there is c g I l B A , such that a k
4c s b k c .

Ž . Ž . y1Ž² :.Given S ; B A , we shall write u S instead of J S .

2. BOOLEAN PRODUCTS OF MV-ALGEBRAS

Ž .A weak Boolean product of a family A : x g X of algebras over ax
Boolean space X is a subdirect product A of the given family such that the



CIGNOLI AND TORRENS642

following conditions hold:

Ž . � Ž . Ž .4a if a, b g A, then @a s b# s x g X : a x s b x is open;
Ž . < <b if a, b g A and Z is a clopen in X, then a j b g A.Z X R Z

Ž .By requiring in condition a that @a s b# be clopen we obtain the notion
of a Boolean product.

Ž .A weak Boolean representation of an MV-algebra A is an isomorphism
Ž .from A onto a weak Boolean product of MV-algebras. Without loss of

generality, we may assume that weak Boolean representations are proper,
Ž w x.i.e., all the algebras have at least two elements cf. 14 . Note that by 1.3,

Ž .condition a can be replaced by:

Ž X. Ž .a If a g A, then @a s 0# is open resp. clopen .

² :Given a subset B of A, B will represent the ideal of A generated by
Ž . ² :B. Then if B is an ideal of B A , B is a Stone ideal. We recall that the

cardinal sum of a family of posets is the poset whose universe is the
disjoint union of the universes of the members of the family and whose
partial order is the disjoint union of the orders of the members of the
family.

THEOREM 2.1. Let A be a nontrï ial MV-algebra. For each subalgebra C
Ž .of B A we ha¨e that A is representable as the weak Boolean product of the

family

Aru P : P g Spec CŽ .Ž .

o¨er the Boolean space Spec C, and Spec A is order isomorphic to the
cardinal sum of the posets

Spec Aru P : P g Spec C .Ž .Ž .

Moreo¨er, there is a one-to-one correspondence between the equï alence
classes of weak Boolean representations of a nontrï ial MV-algebra A and the

Ž .subalgebras of B A .

Ž .Proof. Assume that C is a subalgebra of B A . If P g Spec C, then
Ž .u P is the congruence relation associated to the Stone ideal generated by

Ž wP. Hence the claimed Boolean decomposition follows from 1.9 cf. 21,
x. Ž .Sect. 8.4; 14, p. 85; and 22, 4.34 . Let p : A ª Aru J be the naturalJ

� 4projection associated with J g Spec C, and T s P g Spec A : P l C s J .J
y1Ž .Then the correspondence Q ¬ p Q defines and order isomorphismJ

Ž . Ž .from Spec Aru J onto T , : , and it is plain that Spec A is the cardinalJ
ŽŽ . .sum of the posets T , : : J g Spec C .J

On the other hand, if a is a representation of A as a weak Boolean
Ž .product of a family A : x g X over a Boolean space X, then it is notx
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� Ž . � 4 4hard to see that C s a g A : a a x g 0, 1 for each x g X is the
Ž . �universe of a subalgebra C of B A . The correspondence x ¬ P s c gx

Ž . 4C : ac x s 0 is a homeomorphism from X onto Spec C, and for each
Ž .x g X, A ( Aru P .x x

Ž . � 4 ² : ² :Let A be an MV-algebra. If b g B A R 0, 1 , then b E ! b s A
² : ² : � 4 wand b l ! b s 0 . Since A is congruence-permutable, by 6, Theo-

x ² : ² : Ž w xrem 7.5 , A is isomorphic to direct product Ar b = Ar ! b see 32 for
.a direct description of the quotients . Conversely, if A and A are1 2

Ž . Ž . �Ž . Ž .4MV-algebras, then 1, 0 g B A = A R 0, 0 , 1, 1 . Hence an MV-al-1 2
Ž . Ž . � 4gebra A is directly indecomposable if and only if B A s 0, 1 . Thus an

MV-algebra A is indecomposable if and only if the Stone ideals of A are
� 40 and A.

THEOREM 2.2. Let a be a representation of an MV-algebra A as a weak
Ž .Boolean product of the family of MV-algebras A : x g X o¨er the Booleanx
Ž .space X, and let C be the subalgebra of B A associated to a . Then all

Ž .algebras A are indecomposable if and only if C s B A . Hence eachx
nontrï ial MV-algebra can be represented as a weak Boolean product of
indecomposable MV-algebras. Moreo¨er, all such representations are equï a-
lent.

Proof. Suppose that A is not indecomposable; then by the abovex
Ž . � 4remarks there is b in B A R 0, 1 . Since a is a subdirect representa-x x

Ž .tion, there is b in A such that a b x s b , and hence there is c g C suchx
Ž .that x g @ac s 0# : @a b n ! b s 0#. Let d g A be such that a d s

< < Ž .a b j 0 . Then d g B A R C. Conversely, suppose b g@ a cs0 # X R @ a cs0 #

Ž . Ž . � 4 Ž .B A R C. Then there is x g X such that a b x f 0, 1 , and since a b x
Ž . Ž . � 4g B A , it follows that B A / 0, 1 and A is not indecomposable.x x x

w xAn MV-algebra is said to be local 3 provided it has only one maximal
Ž . � 4ideal. Let A be an MV-algebra, and suppose b g B A R 0, 1 . Then there

are maximal ideals M and M of A such that b g M and ! b g M , and1 2 1 2
since b [ ! b s b k ! b s 1, M / M . Therefore, all local MV-algebras1 2

Ž w x.are indecomposable cf. 3 . The next result is an immediate consequence
of Theorems 2.1 and 2.2:

COROLLARY 2.3. A nontrï ial MV-algebra A is a weak Boolean product
Ž .of local MV-algebras if and only if each prime ideal of B A is contained in a

Ž .unique maximal ideal of A, and if and only if each Stone ultraideal of L A is
contained in a unique maximal ideal of A.

Ž . Ž .Given an MV-algebra A and P g Spec B A , Aru P is an MV-chain if
² :and only if P is a prime ideal of A. Since the MV-chains are local, we

obtain:
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w xTHEOREM 2.4 35, Theorem 4 . A nontrï ial MV-algebra A is a weak
Ž .Boolean product of MV-chains if and only if the Stone ultraideals of L A are

prime ideals of A. Any two representations of A as weak Boolean products of
MV-chains are equï alent.

Particular cases of MV-chains are the simple MV-algebras, i.e., the
Ž . Ž w x.subalgebras of G R, 1 see 8 . Since for any MV-algebra A, ArJ is

simple if and only if J is maximal ideal, it follows from Theorem 2.2 that

COROLLARY 2.5. An MV-algebra A is a weak Boolean product of simple
Ž .algebras if and only if each Stone ultraideal of L A is a maximal ideal of A.

Remark. Suppose that A is a weak Boolean product of simple MV-alge-
Ž .bras, and let a g A and P g Spec B A be such that P g @a / 0#. Then a

² : Ž .does not belong to the ideal P generated by P in L A , and since by
² : ² :Corollary 2.5 P is a maximal ideal of A, there are c g P and n g v

such that c [ na s 1, i.e., ! na F c. Hence there is b g P such that
! na F b, and this implies that P g @b s 0# : @a / 0#. Therefore @a s 0#

is clopen for each a g A, and we have that weak Boolean products of
Ž w x.simple MV-algebras are in fact Boolean products cf. 35 .

w x Ž .It is proved in 35, Theorem 10 that the weak Boolean products of
simple MV-algebras are precisely the hyperarchimedean MV-algebras
Ž w x.called archimedean in 32, 16, and 35 . These algebras have several

Ž w x.characterizations see 10, Theorem 2.2 and references given there . For
instance, A is hyperarchimedean if and only if each prime ideal of A is
maximal, hence the prime ideals of A are just the Stone ultraideals of A.

An MV-algebra A is called liminary provided that for any P g Spec A,
ArP is finite. These algebras correspond to the liminary CU-algebras with
Boolean primitive spectra, and they have the property that the MV-struc-

Ž w x .ture is uniquely determined by their order structure see 11 for details .
Let A be a liminary MV-algebra. Since ArJ is a finite MV-chain for each
prime ideal J, we have that all prime ideals are maximal. Hence A is
hyperarchimedean.

THEOREM 2.6. Let A be an MV-algebra. Then A is liminary if and only if
Ž .A is representable as a weak Boolean product of finite MV-chains.

Proof. Suppose that A is liminary. Since it is hyperarchimedean, it is
representable as a Boolean product of simple MV-algebras given by the
quotients ArUU, where UU are Stone ultraideals. Since the Stone ultraideals
are prime ideals of A, the quotients ArUU are finite chains.

Conversely, suppose that A is a weak Boolean product of finite MV-
chains. Then, by Theorem 2.4, the prime ideals of A are the Stone
ultraideals. By hypothesis, the quotient of A by a Stone ultraideal is a finite
MV-chain.
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3. HYPERNORMAL MV-ALGEBRAS

w xThe following theorem is proved in 36 :

THEOREM 3.1. The following are equï alent conditions for each MV-alge-
bra A:

Ž .i A is representable as a Boolean product of MV-chains.

Ž . Ž .ii For all a g A, there is b g B A such that for e¨ery c g A:
a n c s 0 if and only if c F b.

Boolean products of MV-chains are, in particular, weak Boolean prod-
ucts of MV-chains, as well as weak Boolean products of local MV-alge-
bras. They also have the property that their spectra are cardinal sums of
Ž .spectral chains. Our aim in this section is to characterize the classes of
MV-algebras determined by each of the above properties by means of

Ž .algebraic relations of the kind given in Theorem 3.1 ii .
We call an MV-algebra A hypernormal if and only if Spec A is a cardinal

Ž . Ž .sum of spectral chains, i.e., if and only if Ip A is a hypernormal lattice
w x w xin the sense of Monteiro 25 or a perfect lattice in the terminology of 15 .

Since a bounded distributive lattice is hypernormal if and only if it is
simultaneously completely normal and dual completely normal, by the
remarks following Lemma 1.8 we have that an MV-algebra A is hypernor-

Ž .mal if and only if Ip A is a completely normal lattice. The following result
gives an algebraic characterization of hypernormal MV-algebras.

THEOREM 3.2. The following are equï alent conditions for each MV-alge-
bra A:

Ž .i A is hypernormal.

Ž . ² : ² : ² :ii For any a, b g A, there exists t g A such that a l t : b
² : ² : ² :and b l ! t : a .

Ž .iii For any a, b g A, a n b s 0 implies that there exists t g A such
that a n t s 0 and b n ! t s 0.

Ž . Ž . Ž .Proof. i « ii : If A is hypernormal, then, in particular, Ip A is a
w x Ž w xcompletely normal lattice. Thus, by the results of 25 see also 24 and

w x. ² : ² : ² :9 , for any a, b g A, there exist c, d g A such that a l c : b ,
² : ² : ² : ² : ² : ² : ² :b l d : a , and c E d s A. If c E d s A, then there exists

Ž . ² : ² Ž .: ² : ² :n - v such that ! nc g d . Thus ! nc ; d , and hence b l
² Ž .: ² : ² : ² : ² :! nc : a . On the other hand, since nc s c , we have a l
² : ² : Ž .nc : b . Thus t s nc satisfies ii .
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Ž . Ž . ² : ² :ii « i : Because for any t g A, t E ! t s A.
Ž . Ž . Ž .ii « iii : If a n b s 0, then, by ii , there is t g A such that

² : ² : ² : ² : ² : ² : ² : ² : ² :a l t : b and b l ! t : a , and hence a l t ; a l
² : � 4b s 0 . Thus, a n t s 0. Similarly, we obtain b n ! t s 0.

Ž . Ž . Ž . Ž .iii « ii : Given a, b g A, by 1.2, a( ! b n b( ! a s 0. Hence
Ž . Ž .there is t g A such that a( ! b n t s 0 and b( ! a n ! t s 0. Then

² : ² : ² : ² : ² : ² :a l t : b k a l t s b [ a( ! b l tŽ .
² : ² : ² :s b E a( ! b l tŽ .Ž .
² : ² : ² : ² :s b l t E a( ! b l tŽ . Ž .
² : ² : ² :s b l t : b .

² : ² : ² :Similarly, we obtain b l ! t : a .

Our next result is an algebraic characterization of weak Boolean prod-
Ž .ucts of local MV-algebras see Corollary 2.3 .

THEOREM 3.3. The following are equï alent conditions for each MV-alge-
bra A:

Ž . Ž .i Each Stone ultraideal of L A is contained in a unique maximal
ideal of A.

Ž . Ž .ii Gï en a, b in A with a k b s 1 there are n - v and z g B A
Žsuch that z F na and ! z F nb or equï alently, ! z k na s 1 and z k nb

.s 1 .
Ž . Ž .iii Gï en a, b in A with a n b s 0, there are n - v and z g B A

n n Ž n nsuch that a F z and b F ! z or equï alently, ! z n a s 0 and z n b s
.0 .

Ž . Ž .Proof. i « ii : Suppose that a, b g A are such that a k b s 1, and
² : Ž . � Ž .let J s a l B A and F s z g B A : there exists n g v such that

4z k nb s 1 . If z g J l F, then there are k, l g v such that z F ka and
Ž .! z F lb, and by taking n s max k, l , we have z F na and ! z F nb.

Therefore to complete the proof we need to show that J l F / B.
Suppose not, i.e., J l F s B. It is plain that J and F are respectively an

Ž . Ž .ideal and a filter of B A , and hence there is a prime ideal P of B A such
² :that J : P and P l F s B. Then if a, P represents the ideal of A

� 4 ² : ² :generated by a j P, we have that b f a, P and a f b, P . Indeed, if
² :b g a, P then there would be n g v and p g P such that b F na [ p

s na k p. Hence 1 s a k b F na k b F na k p, and ! p F na, i.e., ! p
² : Ž . ² :g a l B A s J ; P, and P would not be proper. If a g b, P , then

there would be n g v and p g P such that a F nb k p. Then 1 s a k b
² :F nb k p, and we would have p g P l F s B. Therefore, a, P and
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² :b, P are proper ideals of A, and hence there are maximal ideals M and1
² : ² :M such that a, P : M and b, P : M . Since a k b s 1, b f M ,2 1 2 1

Ž .a f M , and M / M . But P : M l M . Therefore if i holds, J l F /2 1 2 1 2
Ž . Ž .B, i.e., i implies ii .

Ž . Ž . Ž .ii « i : Suppose ii holds and let M and M be distinct maxi-1 2
mal ideals of A. Let a g M and a f M . Then there is b g M such that1 2 2
² : ² : Ž .a k b s a [ b s A, and there is n g v such that 1 s n a k b s na

Ž . Ž . Ž .k nb. By ii there are m g v and z g B A such that z F m nc and
Ž . Ž . Ž .! z F m nb . Therefore z g M l B A and ! z g M l B A . Thus there1 2

is no Stone ultraideal contained in M l M .1 2

Ž . Ž .ii m iii : By duality.

Now we can look at MV-algebras which are representable as a weak
Boolean product of MV-chains as a particular case of both hypernormal
MV-algebras and of those representable as a weak Boolean product of
local MV-algebras. Using Theorems 3.2 and 3.3 we can give an algebraic
characterization of these algebras.

THEOREM 3.4. Let A be an MV-algebra. Then the following are equï a-
lent:

Ž .i A is representable as a weak Boolean product of MV-chains.
Ž . Ž .ii For any a, b g A, a n b s 0 implies that there exists t g B A

such that a n t s 0 and b n ! t s 0.
Ž .iii A is a hypernormal MV-algebra which is representable as a weak

Boolean product of local MV-algebras.

Ž . Ž . ŽProof. i « ii : If A is a weak Boolean product of the family A : x gx
.X of MV-chains, then a n b s 0 implies @a / 0# l @b / 0# s B. Since

the space X is Boolean, and @a / 0#, @b / 0# are disjoint closed sets, they
Ž .are separable by a clopen set. Hence, there exists t g B A such that

@a / 0# ; @ t s 0# and @b / 0# ; @! t s 0#. Clearly, a n t and b n ! t
belong to the intersection of the family of all Stone ultraideals and hence
a n t s b n ! t s 0.

Ž . Ž . Ž . Ž .ii « iii : ii is a particular case of both Theorem 3.2 iii and also
Ž .of Theorem 3.3 iii .

Ž . Ž . Ž .iii « i : Let UU be a Stone ultraideal of L A . By Corollary 2.3
there is only one maximal ideal of A, say M, such that UU : M. Since UU is
an ideal of A, it is an intersection of prime ideals, and each prime ideal
which contains UU is contained in M. Therefore UU is the intersection of a
chain of prime ideals. Then UU must be a prime ideal of A, and by Theorem

Ž .2.4, property i holds.

Ž . Ž .Remark. Both statements iii in Theorem 3.3 and ii in Theorem 3.4
remain true if n is replaced by (. This is not the case in Theorem 3.2.
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4. MV-ALGEBRAS OF REAL VALUED
CONTINUOUS FUNCTIONS

w xLet X be a topological space, and let I s 0, 1 be the closed unit
interval of the real line with the usual topology. Set

� 4W X s h: X ª I : h continuous .Ž .

Ž .In W X we define f [ g and ! f as follows:

f [ g x s min 1, f x q g x , ! f x s 1 y f x .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .
Ž .Then W X is closed under [ and !, and hence it is the universe of a

Ž .X Ž . Ž Ž . .subalgebra of the MV-algebra G R, 1 . Hence, W X s W X , [ , !, 0
is an MV-algebra, where 0 denotes the constant function associated with
0 g I.

Ž w x.As in the case of rings of real-valued continuous functions see 18 , we
can show that for any topological space X there exists a Tychonoff space
Ž . Ž .i.e., a completely regular and Hausdorff space Y, such that W X (
Ž .W Y . Hence we can assume without loss of generality that all topological

w x Žspaces considered are Tychonoff. On the other hand, as in 33 for the
. w x Žlattice ordered group of real-valued functions and 19, Theorem 1 for
.the lattice of real-valued continuous functions we can show that for

Ž .compact and Hausdorff spaces, W X determines X.
� < Ž .Given a topological space X, a zero-set of X is @h s 0# s x g X h xX

4 Ž . � < Ž . 4s 0 for some h g W X . A cozero-set is @h / 0# s x g X h x / 0X
Ž .for some h g W X . Clearly, zero-sets are closed in X and cozero-sets are

open.

Ž .LEMMA 4.1. For any topological space X and for all f , g g W X we
ha¨e

1. @ f n g s 0# s @ f s 0# j @ g s 0# , @ f n g / 0# s @ f / 0#X X X X X
l @ g / 0# .X

2. @ f k g s 0# s @ f s 0# l @ g s 0# , @ f k g / 0# s @ f / 0#X X X X X
j @ g / 0# .X

3. A subset N ; X is clopen if and only if it is the zero-set of a Boolean
Ž .element in W X .

Ž . Ž Ž ..4. For any h g W X and any f g B W X , h F f iff @ f s 0# : @hX
s 0# .X

Ž .5. For any h g W X , @h s 0# l @! h s 0# s B.X X

6. Suppose that X is compact. Then @ f s 0# l @ g s 0# s B, if andX X
Ž .only if there is h g W X , such that @ f s 0# : @h s 0# and @ g s 0# :X X X

@! h s 0# .X
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Proof. We are going to prove Lemma 4.1.6. The other facts require
simple verification.

² : ² :6. Let f and g be the principal ideals generated by f and g
respectively. We claim:

² : ² :@ f s 0# l @ g s 0# s B if and only if f E g s W X .Ž .X X

Assume that @ f s 0# l @ g s 0# s @ f k g s 0# s B. Then for any x gX X X
Ž .Ž .X, f k g x / 0. Since X is compact, there is x g X such that for anyo

Ž .Ž . Ž .Ž . Ž .x g X, f k g x F f k g x . Since G R, 1 is a simple MV-algebra,o
Ž .Ž .there is n - v such that n f k g x s 1, hence for any x g X, we haveo

Ž .Ž . Ž . Ž . ² :n f k g x s 1, and n f k g s 1. That is, W X s f k g s
² : ² : ² : ² : ² : Ž .f E g . Conversely, if f k g s f E g s W X , then there is

Ž . Ž .n - v such that n f k g s 1, and hence for any x g X, f x s 0 implies
Ž .g x / 0. This completes the proof of the claim.

² : ² : Ž .Now, if f E g s W X , then there is n g v such that ng [ nf s 1.
Ž .Take h s ng. Then ! h s ! ng F nf , and @ f s 0# : @! h s 0# .X X

² : ² :Moreover, since ng s g , we have @ g s 0# s @h s 0# .X X
The converse is an immediate consequence of 4.1.5.

Ž .Note that X is a connected space if and only if W X is indecompos-
able.

A topological space X is called an F-space provided that disjoint
Žcozero-sets are completely separable i.e., they are separated by disjoint

. Ž w x w x.zero-sets see 24 and 18 .

Ž .LEMMA 4.2. If X is a compact F-space, then W X is a hypernormal
MV-algebra.

Ž .Proof. Let f , g g W X be such that f n g s 0. Then, by 4.1.1 we have
@ f / 0# l @ g / 0# s B. Since X is an F-space, @ f / 0# and @ g / 0#X X X X

Ž .are separated by disjoint zero-sets. Hence, by 4.1.6, there exists h g W X
such that @ f / 0# : @h s 0# and @ g / 0# : @! h s 0# . It is straight-X X X X
forward to see that f n h s 0 and g n ! h s 0. So, by Theorem 3.2,
Ž .W X is hypernormal.

Ž .THEOREM 4.3. A topological space X is an F-space if and only if W X
is a hypernormal MV-algebra.

˘Proof. Let b X be the Stone]Cech compactification of X. Since X is
Ž . Ž .dense in b X we have W X ( W b X . Moreover, X is an F-space if and
Ž w x.only if b X is an F-space see 18, 14.25 . Then by Lemma 4.2, for each

Ž . Ž .F-space X, W X is hypernormal. Conversely, assume that W X is
Ž .hypernormal. Let f , g g W X be such that @ f / 0# l @ g / 0# s B.X X

Thus @ f n g / 0# s B, hence @ f n g s 0# s X and f n g s 0. Then, byX X
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Ž .Theorem 3.2, there exists h g W X such that f n h s 0 and g n ! h s
0; this implies @ f / 0# : @h s 0# and @ g / 0# : @! h s 0# . Thus byX X X X
4.1.5, @ f / 0# and @ g / 0# are completely separable.X X

We say that a topological space X is a strong F-space if and only if
disjoint cozero-sets are completely separable by clopen sets. Since each
clopen subset is a zero-set, any strong F-space is an F-space. The converse
is not true, as we will show by giving an example.

THEOREM 4.4. A topological space X is a strong F-space if and only if
Ž .W X is representable as a weak Boolean product of MV-chains.

Proof. Since the clopens of X are determined by the Boolean elements
Ž .of W X , the proof of the result is obtained as the proof of Theorem 4.3

by taking @h s 0# and @! h s 0# clopens.X X

We recall that a topological space is called basically disconnected if and
Ž .only if the closure of any cozero-set is open and hence it is clopen . Every

Ž wbasically disconnected space is an F-space; the converse fails see 18,
x.14N . We recall that every basically disconnected Tychonoff space has a

Ž w x w x.basis of clopen sets see 38, 14C.2 and 18, 4K.8 .

Ž .THEOREM 4.5. Let X be a Tychonoff topological space. Then W X is
representable as a Boolean product of MV-chains if and only if X is basically
disconnected.

Ž .Proof. Assume that W X is representable as a Boolean product of
Ž .MV-chains. Given h g W X , the pseudocomplement of h, sh, exists and

Ž .sh g B A . Then @h / 0# ; @ sh s 0# . Since X is a Tychonoff space, theX X
Ž Ž ..clopens form a basis for closed sets. For each f g B W X , @h / 0# ; @ fX

s 0# implies h n f s 0. Hence f F sh and, by 4.1.4, @ sh s 0# : @ f sX X
0# . Thus cl@h / 0# s @ sh s 0# . Conversely, assume that X is basicallyX X X

Ž . Ž Ž ..disconnected. Let h g W X and f g B W X such that @ f s 0# is theX
closure of @h / 0# . Then @h / 0# : @ f s 0# implies h n f s 0. On theX X X

Ž .other hand, if g g W X is such that h n g s 0, then @h / 0# : @ g sX
0# . Hence @ f s 0# : @ g s 0# , and by 4.1.4 g F h. Thus f is theX X X
pseudocomplement of h.

We can now give an example of a hypernormal and indecomposable
MV-algebra which is not representable as a weak Boolean product of
MV-chains.

Let Rq be the space of nonnegative reals with the topology induced by
q ˘the usual topology of R, and let bR be the Stone]Cech compactification

of Rq. The topological space bRqR Rq is a compact and connected
Ž w x. Ž q q.F-space see 18, p. 211 . Thus W bR R R is a hypernormal and

indecomposable MV-algebra. Moreover, by an argument similar to that
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w x Ž q q.used in 9, 2.5 , if W bR R R were representable as a weak Boolean
product of MV-chains, then bRqR Rq would have only one element. But

q q c Ž w x. Ž q q.bR R R has 2 elements see 18, p. 211 . Therefore, W bR R R is
not representable as a weak Boolean product of MV-chains. By 4.4,
bRqR Rq is not a strong F-space.

We are now going to give an example of a weak Boolean product of
MV-chains which is not representable as Boolean product of MV-chains.
To obtain the example we will exhibit a strong F-space which is not
basically disconnected.

w xWe consider the topological space M defined in 24, p. 84 as follows:
Let v be the first uncountable ordinal, and S be a countable set disjoint1

� 4 � 4from v j v . Consider the set M s v j v j S and let GG be a1 1 1 1
Žnonprincipal ultrafilter on S an ultrafilter containing the filter of all

.cofinite subsets . The topology on M is defined by taking as a basis of
neighborhoods the following sets:

�� 44}If x g v j S, we have x . That is the points of v j S are1 1
isolated.

w x}For v we take the subsets of the form a , v j E, where a - v ,1 1 1
w x � < 4and a , v s s a F s F v and E g GG.1 1

w xIn 24 it is shown that the space M is an F-space. By analyzing
Mandelker’s proof, we obtain the following fact:

LEMMA 4.6. Disjoint cozero-sets of M are separable by clopen sets. That
is, M is a strong F-space.

Ž .COROLLARY 4.7. W M is representable as a weak boolean product of
MV-chains.

THEOREM 4.8. M is not basically disconnected.

Proof. Since S is not closed, it cannot be a zero-set. But S is a
Ž .cozero-set. Indeed, it is the cozero-set of the function g g W M defined

as follows:

� 40 if x g v j v1 1g x sŽ . ½ 1rn if x s s ,n

� 4where S s s : n g v is an enumeration of S. Observe that for h gn
Ž Ž ..B W M , g n h s 0 if and only if S s @ g / 0# : @h s 0# . Now, anyM M

� 4clopen N containing S contains its closure S j v . Since N is open and1
contains a neighborhood of v , it follows that N contains a set of the form1
w xa , v j S, with a - v . Clearly, there is b , a - b - v , and T s1 1 1
w x � 4b , v j S is also clopen. Consequently, cl S s S j v is not open.1 1
Thus M is not basically disconnected.
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Ž .COROLLARY 4.9. W M is not representable as a Boolean product of
MV-chains.
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