Banach spaces in various positions ${ }^{\text {th }}$

Jesús M.F. Castillo ${ }^{\text {a,* }}$, Anatolij Plichko ${ }^{\text {b }}$
${ }^{\text {a }}$ Departamento de Matemáticas, Universidad de Extremadura, Avenida de Elvas, 06071 Badajoz, Spain
${ }^{\mathrm{b}}$ Department of Mathematics, Cracow University of Technology, ul. Warszawska 24, 31-155 Cracow, Poland

Received 19 December 2009; accepted 23 June 2010

Communicated by N. Kalton

Abstract

We formulate a general theory of positions for subspaces of a Banach space: we define equivalent and isomorphic positions, study the automorphy index $\mathfrak{a}(Y, X)$ that measures how many non-equivalent positions Y admits in X, and obtain estimates of $\mathfrak{a}(Y, X)$ for X a classical Banach space such as $\ell_{p}, L_{p}, L_{1}, C\left(\omega^{\omega}\right)$ or $C[0,1]$. Then, we study different aspects of the automorphic space problem posed by Lindenstrauss and Rosenthal; namely, does there exist a separable automorphic space different from c_{0} or ℓ_{2} ? Recall that a Banach space X is said to be automorphic if every subspace Y admits only one position in X; i.e., $\mathfrak{a}(Y, X)=1$ for every subspace Y of X. We study the notion of extensible space and uniformly finitely extensible space (UFO), which are relevant since every automorphic space is extensible and every extensible space is UFO. We obtain a dichotomy theorem: Every UFO must be either an \mathcal{L}_{∞}-space or a weak type 2 near-Hilbert space with the Maurey projection property. We show that a Banach space all of whose subspaces are UFO (called hereditarily UFO spaces) must be asymptotically Hilbertian; while a Banach space for which both X and X^{*} are UFO must be weak Hilbert. We then refine the dichotomy theorem for Banach spaces with some additional structure. In particular, we show that an UFO with unconditional basis must be either c_{0} or a superreflexive weak type 2 space; that a hereditarily UFO Köthe function space must be Hilbert; and that a rearrangement invariant space UFO must be either L_{∞} or a superreflexive type 2 Banach lattice.

© 2010 Elsevier Inc. All rights reserved.
Keywords: Extension of isomorphisms; Positions in Banach spaces; Automorphic space problem

[^0]
1. Introduction

Lindenstrauss and Rosenthal [52] showed that c_{0} has the property that every isomorphism between two of its infinite codimensional subspaces can be extended to an automorphism of the whole space and formulated the so-called

Automorphic space problem. Are c_{0} and ℓ_{2} the only separable Banach spaces with that property?

This paper outgrowths from the study of different aspects of that problem, as we describe now.

In Section 3 we formulate a general theory of positions for subspaces of a Banach space: we define equivalent and isomorphic positions and borrow from [63] the notion of automorphy index $\mathfrak{a}(Y, X)$ that measures how many non-equivalent positions Y admits in X. We also define the automorphy index of X as $\mathfrak{a}(X)=\sup _{Y} \mathfrak{a}(Y, X)$. A Banach space is said to be automorphic if $\mathfrak{a}(X)=1$. Thus, the general automorphic space problem is whether there exist automorphic spaces different from $c_{0}(\Gamma)$ or $\ell_{2}(\Gamma)$. We obtain some general principles and basic techniques to estimate $\mathfrak{a}(Y, X)$.

In Section 4 we estimate the automorphy indices $\mathfrak{a}(Y, X)$ for classical Banach spaces. We obtain, among other results, the following: $\mathfrak{a}\left(c_{0}, X\right) \in\left\{0,1,2, \aleph_{0}\right\}$ for every separable Banach space $X ; \mathfrak{a}\left(Y, \ell_{p}\right)=\mathfrak{c}$ for all subspaces of $\ell_{p} p \neq 2 s$, and $\mathfrak{a}\left(Y, L_{p}\right)=\mathfrak{c}$ for all subspaces of L_{p}, $p>2$ not isomorphic to ℓ_{2}; while $\mathfrak{a}\left(\ell_{2}, L_{p}\right)=1$; for $1<p<2$ one has $\mathfrak{a}\left(Y, L_{p}\right)=\mathfrak{c}$ for all nonstrongly embedded subspaces of $L_{p} ; \mathfrak{a}\left(Y, L_{1}\right)=\mathfrak{c}$ for all nonreflexive subspaces of L_{1}, while $\mathfrak{a}\left(\ell_{2}, L_{1}\right)=\mathfrak{c} ; \mathfrak{a}(Y, C[0,1]) \in\{1, \mathfrak{c}\}$ for every separable Banach space Y. Examples of spaces admitting just one position in $C[0,1]$ include the subspaces of c_{0} and the weak*-closed subspaces of ℓ_{1} - with respect to the duality with c_{0}; while examples of spaces admitting a continuum of non-equivalent positions include ℓ_{p} for $1<p<\infty$ and those Y such that $C[0,1] / Y$ has separable dual. The results in Sections 3 and 4 support the conjecture that whenever there are two non-isomorphic positions of Y in X then $\mathfrak{a}(Y, X) \in\{0,1, \mathfrak{c}\}$ for X separable, while $\mathfrak{a}(Y, X) \in$ $\left\{0,1, \aleph_{0}, c\right\}$ for an arbitrary X.

Section 5 is devoted to study the notions of extensible and uniformly finitely extensible space (UFO). ℓ_{∞} would be the prototype of extensible non-automorphic space, while every \mathcal{L}_{∞} space is an UFO. These notions are relevant since it follows from [19,65] that every automorphic space is extensible and every extensible space is UFO. After establishing some stability properties we obtain a dichotomy theorem: Every UFO must be either an \mathcal{L}_{∞}-space or a weak type 2 nearHilbert space.

Section 6 refines the dichotomy theorem for Banach spaces with some additional properties: in particular, if both X and X^{*} are UFO then X must be weak Hilbert; and if all subspaces of X are UFO (we call this a hereditarily UFO or HUFO) then X must be asymptotically Hilbertian.

Section 7 refines the dichotomy for Banach spaces with some additional structure. In particular, we show that an UFO with unconditional basis must be either c_{0} or a superreflexive weak type 2 space; that an HUFO Köthe function space must be a Hilbert space; and that a rearrangement invariant UFO must be either L_{∞} or a superreflexive type 2 space.

The dichotomy theorem in Section 5, together with its refined versions in Sections 6 and 7, probably constitute the first sound support for the Lindenstrauss-Rosenthal conjecture.

2. Preliminaries

Throughout the paper we will use standard notation in Banach space theory, see e.g. [54,55]. Unless otherwise stated, all linear subspaces are assumed to be closed and all operators are supposed to be linear and bounded. Given two subspaces E and F of a Banach space $X, E \oplus F$ denotes the algebraic sum of E and F with conditions: $E \cap F=0$ and $E+F$ is closed. $E \simeq F$ denotes that E is isomorphic to F. By dist (E, F) we denote the Banach-Mazur distance between Banach spaces E and F, and by d_{E}, the Banach-Mazur distance from E to a Hilbert space of the same dimension (finite or infinite) as E. The projection constant $\lambda(E, X)$ of a subspace E of a Banach space X is defined as the infimum of the norms of the projections of X onto E. $i d_{X}$ denotes the identity operator in a space $X . S_{X}$ denotes the unit sphere of X and B_{X} its closed unit ball. The distance between subsets U and V of a Banach space X is defined as $\rho(U, V)=\inf \{\|u-v\|: u \in U, v \in V\}$. By $|\Gamma|$ we denote the cardinality of a set Γ.

A Banach space X is said to be of type $p(1 \leqslant p \leqslant 2)$, respectively cotype $q(2 \leqslant q<\infty)$ (see e.g. [55, p. 72]) if there exist constants c, C such that, for every elements $\left(x_{i}\right)_{1}^{n}$ in X

$$
\begin{equation*}
\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\| \leqslant C\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{1 / p}, \quad \text { resp. } \quad \mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\| \geqslant c\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{q}\right)^{1 / q}, \tag{1}
\end{equation*}
$$

where ε_{i} are independent symmetric Bernoulli variables. We set

$$
p(X)=\sup \{p: X \text { is of type } p\} \quad \text { and } \quad q(X)=\inf \{q: X \text { is of cotype } q\}
$$

Kwapien's theorem [47] establishes that a Banach space is isomorphic to a Hilbert space if and only if it has type 2 and cotype 2. A Banach space X is said to have the Maurey projection property [20, p. 127] if there is a function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that for each, not necessarily infinite dimensional, subspace Y of X with $d_{Y}<\infty$ there exists a projection $P: X \rightarrow Y$ with $\|P\| \leqslant f\left(d_{Y}\right)$. Type 2 spaces enjoy the Maurey projection property [20, p. 127]. Let us say that a Banach space is near-Hilbert if $p(X)=q(X)=2$. Szankowski [83] proves that a Banach space all of whose subspaces have the approximation property is near-Hilbert (without giving them a specific name). A Banach space X is said to be asymptotically Hilbertian [73] if there is a constant c such that for every n there is a subspace $X_{n} \subset X$ of finite codimension such that every n-dimensional subspace $E \subset X_{n}$ satisfies $d_{E} \leqslant c$. A Banach space X is said to have property upper (H), respectively property lower (H) (Casazza and Nielsen [19]) if there is a function $f(\lambda)$ (resp. $g(\lambda)$), so that for every normalized λ-unconditional basic sequence $\left(x_{i}\right)_{1}^{n}$ in X

$$
\begin{equation*}
\left\|\sum_{1}^{n} x_{i}\right\| \leqslant f(\lambda) \sqrt{n} \quad \text { resp. }\left\|\sum_{1}^{n} x_{i}\right\| \geqslant g(\lambda) \sqrt{n} . \tag{2}
\end{equation*}
$$

A Banach space X is said to have property (H) if it has the properties upper (H) and lower (H) simultaneously.

A Banach space X is said to have weak type 2 [74, p. 172] if there is a constant C and a $\delta \in(0,1)$, so that whenever E is a subspace of X and an operator $T: E \rightarrow \ell_{2}^{n}$, there is an orthogonal projection P on ℓ_{2}^{n} of rank $>\delta n$ and an operator $S: X \rightarrow \ell_{2}^{n}$ with

$$
S x=P T x \quad \text { for all } x \in E, \quad \text { and } \quad\|S\| \leqslant C\|T\| .
$$

Analogously, X is said to have weak cotype 2 [74, p. 153] if there is a constant C and a $\delta \in(0,1)$, so that whenever E is a finite dimensional subspace of X then there is a subspace F of E with

$$
\operatorname{dim} F \geqslant \delta \cdot \operatorname{dim} E \quad \text { and } \quad d_{F} \leqslant C
$$

A space having simultaneously weak type and weak cotype 2 is called a weak Hilbert space. A weak type 2 space X verifies $p(X)=2[74, \mathrm{p}$. 170] while a weak cotype 2 space X verifies $q(X)=2[74$, p. 159]. One therefore has the gradation

$$
\text { weak Hilbert } \Rightarrow \text { property }(H) \Rightarrow \text { asymptotically Hilbertian } \Rightarrow \text { near-Hilbert }
$$

Each asymptotically Hilbertian space with a symmetric basis is isomorphic to Hilbert. Actually, this statement is valid for more general bases (sf. [74, p. 219]). Each minimal (see Section 3 for definition) asymptotically Hilbertian space is isomorphic to a Hilbert space (Johnson [39]). Every weak Hilbert space is asymptotically Hilbertian [73, Section 4].

An exact sequence

$$
\begin{equation*}
0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0 \tag{3}
\end{equation*}
$$

is a diagram formed by Banach spaces and linear continuous operators in which the kernel of each arrow coincides with the image of the preceding. Two exact sequences $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$ and $0 \rightarrow Y \rightarrow X_{1} \rightarrow Z \rightarrow 0$ are said to be equivalent if there exists an operator $\tau: X \rightarrow X_{1}$ making commutative the diagram

The exact sequence (3) is said to split if it is equivalent to the trivial sequence $0 \rightarrow Y \rightarrow Y \oplus Z \rightarrow$ $Z \rightarrow 0$; this exactly means that $j(Y)$ is complemented in X.

Following the notation and terminology of [24], two positions (i.e. into isomorphisms, see Section 3 for details) $i: Y \rightarrow X$ and $j: Y \rightarrow X_{1}$ are said to be semi-equivalent if the operator j can be extended to an operator $J: X \rightarrow X_{1}$ through i and the operator i can be extended to an operator $I: X_{1} \rightarrow X$ through j. Dually, two quotient maps $p: X \rightarrow Z$ and $q: X_{1} \rightarrow Z$ are said to be semi-equivalent if one can be lifted through the other and vice-versa.

Recall from [22,17,24] the identification of exact sequences $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$ of Banach spaces with z-linear maps $F: Z \rightarrow Y$; namely, homogeneous maps such that for some constant $K>0$ and every finite set x_{1}, \ldots, x_{n} one has $\left\|F\left(\sum x_{k}\right)-\sum F x_{k}\right\| \leqslant K \sum\left\|x_{k}\right\|$. The identification between an exact sequence and a z-linear map will be written as $0 \rightarrow Y \rightarrow X \rightarrow$ $Z \rightarrow 0 \equiv F$. Two z-linear maps F, G are said to be equivalent, and written $F \equiv G$, when the
associated exact sequences are equivalent. Under these identifications, the lower sequence in the diagram

is called the pull-back sequence of F and τ, and its associated z-linear map is $F \tau$ (standard composition as maps). Dually, the lower sequence in a diagram

is called the push-out sequence of τ and F, and its associated z-linear map is τF. The pushout construction enjoys the following universal property: Given operators $\alpha_{1}: Y_{1} \rightarrow M$ and α : $X \rightarrow M$ such that $\alpha j=\alpha_{1} \tau$ there exists a unique operator $\gamma: P O \rightarrow M$ such that $\alpha_{1}=\gamma j_{1}$ and $\alpha=\gamma u$.

3. Positions

We state the following general problem:

Problem. Let Y, X be Banach spaces. How many different positions Y admits in X ?
Even if the problem is meaningful in other categories, we restrict ourselves to work within the category of (mainly separable) Banach spaces and linear continuous operators. Let us first give a precise meaning to the words "different positions" and "the same position". An embedding i : $Y \rightarrow X$ is an into isomorphism, and a position of Y in X is defined by an embedding $i: Y \rightarrow X$. Unless otherwise stated, all embeddings are assumed to be infinite codimensional; i.e., $X / i(Y)$ is infinite dimensional.

Definition. Two positions $i: Y \rightarrow X$ and $j: Y \rightarrow X$ are said to be equivalent, and represented as $i \sim j$, if there exists an automorphism $\sigma: X \rightarrow X$ such that $\sigma i=j$.

This definition has a homological root since $i \sim j$ if and only if there exist isomorphisms σ, σ^{\prime} making commutative the diagram

This definition corresponds to Kalton's notion of "strongly equivalent embeddings" [44], and is consistent with Moreno's notion of automorphy index introduced in [63] (see Section 3.2) as an attempt to quantify the problem of how many positions Y admits in X.

Other forms to define equal and different positions are possible:

Definition. Consider Y, Y^{\prime} subspaces of X via the canonical embedding. Let us say that Y and Y^{\prime} have isomorphic positions if there is an automorphism σ in X such that $\sigma(Y)=Y^{\prime}$.

Thus, Y and Y^{\prime} are in two non-isomorphic positions in X when no automorphism σ of X verifies $\sigma(Y)=Y^{\prime}$. This definition corresponds to Kalton's notion [44] of "equivalent embeddings": there exist isomorphisms i, j, k making commutative the diagram

namely, the two exact sequences are isomorphically equivalent in the sense of [23].
It is clear that equivalent positions are isomorphic, although isomorphic positions can be nonequivalent (see examples below). We do not know if the fact that all positions of Y in X are isomorphic implies that all positions of Y in X are equivalent.

The following lemma detects non-equivalent positions; its proof is just mimicry of that of [65, Prop. 3.1].

Lemma 3.1. Let Y, Y^{\prime} be isomorphic subspaces of a Banach space X such that every isomorphism $Y \rightarrow Y^{\prime}$ can be extended to an automorphism of X. Then every bounded linear operator $Y \rightarrow Y^{\prime}$ can be extended to a bounded linear operator in X.

Therefore, if one gets two positions $i: Y \rightarrow X$ and $j: Y \rightarrow X$ in such a way that the operator j cannot be extended to an operator $J: X \rightarrow X$ through i, the positions are not equivalent. There is a clean homological way to formulate this: the notion of semi-equivalent positions.

3.1. Semi-equivalent positions and the parallel lines principle

The semi-equivalence of the sequences $0 \rightarrow Y \xrightarrow{i} X \rightarrow X / i(Y) \rightarrow 0$ and $0 \rightarrow Y \xrightarrow{j} X_{1} \rightarrow$ $X_{1} / j(Y) \rightarrow 0$ exactly means that they are one pull-back of the other. Dually, the semiequivalence of the sequences $0 \rightarrow \operatorname{ker} p \rightarrow X \xrightarrow{p} Z \rightarrow 0$ and $0 \rightarrow \operatorname{ker} q \rightarrow X_{1} \xrightarrow{q} Z \rightarrow 0$ exactly means that they are one push-out of the other. One has:

Proposition 3.2. Assume one has the following commutative diagram

Then the exact sequences F and G are semi-equivalent if and only if the sequences H and I are semi-equivalent.

Proof. This result is part of a general principle regarding couples of exact sequences involved in a pull-back/push-out diagram. Indeed, there are three possible situations; one is as described, and the other two are

and

In each of them, the sequences F, G are semi-equivalent if and only if I, H are semi-equivalent. A unifying proof for the three assertions is as follows: From [24, Lem. 1] we know that the semi-equivalence of the couple (F, G) is equivalent to $0=F q_{g}=G q_{f}$ (in the first and second diagram, and to $0=g F=f G$ in the third); while the semi-equivalence of the couple (I, H) corresponds to $0=i H=g H$ (in the first and third diagram, and to $0=H q_{g}=G q_{H}$ in the second). But $F q_{g}=j I$ since this is the diagonal sequence $0 \rightarrow X \rightarrow Z \oplus X_{1} \rightarrow Z_{1} \rightarrow 0$ (in the second diagram the equality is $F q_{g}=H q_{I}$ while in the third diagram is $f G=h I$).

Remark. A classical proof of the necessity in the situation described in diagram (4), which is the case we will mostly consider, is as follows:

Proof. Assume there is an extension T of h through i. We prove that there is a lifting v of q_{g} through q_{f}; i.e., $q_{f} v=q_{g}$. To this end, let T be the extension mentioned in the hypothesis. The operator $i d_{X_{1}}-f T$ verifies $\left(i d_{X_{1}}-f T\right) f h=f h-f T f h=f h-f h=0$ and so there is an operator $v: Z_{2} \rightarrow X_{1}$ such that $i d_{X_{1}}-f T=v q_{i}$. This operator v is a lifting of q_{g} through q_{f} because $q_{f} v q_{i}=q_{f}\left(i d_{X_{1}}-f T\right)=q_{f}-q_{f} h T=q_{f}=q_{g} q_{i}$; since q_{i} is surjective, $q_{f} v=q_{g}$.

Corollary 3.3. Let X be a separable Banach space containing an uncomplemented copy of itself $j: X \rightarrow X$ and let $i: Y \rightarrow X$ be a position of Y in X. Assume that one of the following conditions holds
(1) $X / i(Y) \simeq c_{0}$;
(2) $X / j(X)$ is an \mathcal{L}_{1}-space and $X / i(Y)$ is either complemented in some dual space or a subspace of c_{0}.

Then the positions i and $j i$ are not equivalent.

Proof. Consider the commutative diagram

In each case the lower sequence splits (Sobczyk's theorem [54, p. 106] in (1), Lindenstrauss lifting principle [49] in the first part of (2) and the vector valued version of Sobczyk's theorem [26] in the second part of (2)) but the middle sequence does not, they cannot be semi-equivalent. Hence i cannot extend through $j i$.

3.2. The automorphy index

Following [63], we define the automorphy index of Y in X and the automorphy index of X as follows. Recall that the density character of a Banach space X, denoted by dens X, is defined as the smallest cardinal of a dense subset in E. Let Y, X be Banach spaces and α a cardinal. Let $\mathfrak{i}_{\alpha}(Y, X)$ be the set of all (infinite codimensional) embeddings $i: Y \rightarrow X$ with dens $X / i(Y)=\alpha$. The elements of the quotient space $\mathfrak{i}_{\alpha}(Y, X) / \sim$ will be called the space of α-automorphy classes of Y into X. We agree that it is empty when Y cannot be embedded into X with the condition dens $X / i(Y)=\alpha$.

Definition. The automorphy index of Y in X is defined as the number of automorphy classes:

$$
\mathfrak{a}(Y, X)=\sup _{\alpha}\left|\mathfrak{i}_{\alpha}(Y, X) / \sim\right| .
$$

The automorphy index of X is defined as

$$
\mathfrak{a}(X)=\sup _{Y} \mathfrak{a}(Y, X)
$$

Thus, the automorphy index of Y in X measures in how many different forms Y can be embedded into X. Since the number of isomorphic embeddings of a separable space into a separable superspace is \mathfrak{c} one always has $\mathfrak{a}(Y, X) \leqslant \mathfrak{c}$ for separable X. A Banach space X is said to be Y-automorphic if $\mathfrak{a}(Y, X)=1$. A Banach space X is said to be automorphic (see [24]) if $\mathfrak{a}(X)=1$. It is clear that $\mathfrak{a}(Y, X)$ is an isomorphic invariant; which we formulate for later use as:

Lemma 3.4. If $\mathfrak{a}(Y, X)=\mathfrak{m}$ and Y^{\prime} is isomorphic to Y then $\mathfrak{a}\left(Y^{\prime}, X\right)=\mathfrak{m}$. In particular, if Y is isomorphic to its hyperplanes then Y and each of its finite codimensional subspaces have the same automorphy index in X.

This justifies the initial restriction of considering infinite codimensional positions only. One has

Proposition 3.5. Let Y be a Banach space.

- For a set Γ with uncountable cardinal $|\Gamma|=\aleph_{\alpha}$ for which α is not a limit ordinal and such that $|\Gamma|>\operatorname{dens} Y$ one has $\mathfrak{a}\left(Y, \ell_{\infty}(\Gamma)\right)=1$.
- There exists a Banach superspace X for which $\mathfrak{a}(Y, X)>1$.

Proof. We prove the first assertion. Let $j: Y \rightarrow \ell_{\infty}(\Gamma)$ be an isometric embedding. Let $\Gamma_{n}\left\{\gamma \in \Gamma: \rho\left(e_{\gamma}, j(Y)\right)>\frac{1}{n}\right\}$, where $\left(e_{\gamma}\right)$ are the standard unit vectors of $\ell_{\infty}(\Gamma)$. Since $|\Gamma|=\left|\bigcup_{n} \Gamma_{n}\right|+\left|\left\{\gamma: e_{\gamma} \in j(Y)\right\}\right|$, for some n one has $\left|\Gamma_{n}\right|=|\Gamma|$. By Rosenthal [75], the quotient map $q: \ell_{\infty}(\Gamma) \rightarrow \ell_{\infty}(\Gamma) / j(Y)$ fixes a copy of $c_{0}(\Gamma)$, hence of $\ell_{\infty}(\Gamma)$. Thus, the following sequences are isomorphically equivalent:

Let now $i: Y \rightarrow \ell_{\infty}(\Gamma)$ be another embedding. Since the two sequences

are semi-equivalent, the diagonal principles [24] yield that the following exact sequences are isomorphically equivalent:

which concludes the proof.
We prove now the second assertion. If Y is injective, i.e. complemented in any superspace then, by Rosenthal's theorem [75], it contains a complemented subspace isomorphic to ℓ_{∞}, hence $Y=\ell_{\infty} \oplus E=\ell_{\infty} \oplus \ell_{\infty} \oplus E$, and thus Y has in $X=Y \oplus \ell_{2}$ two evident different positions: one that gives ℓ_{2} as the quotient and the other that gives $\ell_{\infty} \oplus \ell_{2}$ as the quotient. If Y is not injective
then there exists a superspace Z in which Y is uncomplemented. So, Y has in $X=Y \oplus Z$ at least two different positions: one, complemented; and the other, uncomplemented.

When Y is separable, the superspace X for which $\mathfrak{a}(Y, X)>1$ can be chosen separable: indeed, if $Y \simeq c_{0}$ then $Y=Z \oplus Z$ has in $X=Y \oplus \ell_{2}$ two evident different positions: Z and $Z \oplus Z$. If $Y \not \not c_{0}$ then, by the well-known Zippin theorem [85], there exists a separable superspace Z in which Y is uncomplemented. So, Y has in $X=Y \oplus Z$ at least two different positions: one, complemented; and the other, uncomplemented.

The technique shown in the previous proof can be isolated to detect equal positions:
Definition. Let us say that a position $i: Y \rightarrow X$ of Y into X is small if the corresponding quotient operator $q: X \rightarrow X / i(Y)$ is an isomorphism on a complemented copy of X. The subspace Y of X is said to be small if all positions of Y into X are small.

In particular, every infinite codimensional subspace of c_{0} is small [2]. If X is a Banach space with unconditional basis and containing ℓ_{1}, then the kernel of every surjection $q: \ell_{1} \rightarrow X$ is embedded in a small form since a Banach space with an unconditional basis containing ℓ_{1} must also contain a complemented copy of ℓ_{1} [30]. If the dual to $C[0,1] / Y$ is nonseparable then Y is small [78, p. 766].

The argument of the first part of Proposition 3.5 also shows that, under the hypothesis on the cardinal of Γ, all subspaces of $\ell_{\infty}(\Gamma)$ with density character strictly smaller than $|\Gamma|$ are small, as well as all separable subspaces of ℓ_{∞}.

Moreover, we have
Proposition 3.6. Let X be a Banach space such that every operator $Z \rightarrow X$ from a subspace Z of X can be extended to the whole X (these will be called extensible in Section 5). If Y is a small subspace of X then X is Y-automorphic.

Therefore, we have
Corollary 3.7. (See [53, p. 235].) $\mathfrak{a}\left(Y, \ell_{\infty}\right)=1$ for every separable subspace $Y \subset \ell_{\infty}$.
Returning to the general situation, let us recall a few notions. H. Rosenthal defined (see [7]) a Banach space X to be minimal if each of its infinite dimensional subspaces contains a copy of X, and complementably minimal if each of its infinite dimensional subspaces contains a complemented (in X) copy of X. We will say that the space Y is fully complemented in X if every copy of Y in X is complemented. A Banach space X is prime [7] if each of its complemented subspaces (finite codimensional too) is isomorphic to X. The spaces Y, X are said to be totally incomparable (Rosenthal [20, p. 95]) if they have no isomorphic subspaces. For instance, the space ℓ_{p} is complementably minimal (Pełczyński [68]). All subspaces of ℓ_{p} are minimal. The Tsirelson's space \mathcal{T} fails to have a minimal subspace. Its dual \mathcal{T}^{*} is minimal [20, pp. 54-59], but not complementably minimal. Hence, every subspace of \mathcal{T}^{*} is minimal. The arbitrarily distortable Schlumprecht space S is complementably minimal. This space is also 'partially' prime (Androulakis and Schlumprecht [7]). The space c_{0} is the only space that is fully complemented in every separable superspace. The spaces ℓ_{2} and c_{0} are minimal, prime and fully complemented in themselves [68]. We do not know other spaces with these properties. The definition of fully complemented subspace is a reformulation of problem 2° in [68]. Fully complemented subspaces
of L_{p} are discussed by Rosenthal [78, p. 770]. The spaces ℓ_{p} are prime for $1 \leqslant p \leqslant \infty$ as well as c_{0} and every indecomposable space which is isomorphic to its hyperplanes (such spaces exist (Gowers and Maurey [36])). There are known no other prime spaces [84].

Lemma 3.8. Let Y be a minimal Banach space fully complemented in X. Then one of the following alternatives holds:
(i) The complement of each copy of Y in X contains a (complemented) copy of Y.
(ii) $X \simeq Y \oplus Z$ with Z totally incomparable with Y.

Hence, alternative (i) leads to the following characterization of when X is Y-automorphic (see also [8, Lem. 1.38]).

Proposition 3.9. Let Y be a separable Banach space isomorphic to its square and fully complemented in X. Then X is Y-automorphic (i.e. $\mathfrak{a}(Y, X)=1$) if and only if every complement Z of Y in X contains a copy of Y.

Proof. Let us show the sufficiency. Indeed, $X \simeq Y \oplus Z$ and

$$
Z \simeq Y \oplus Z^{\prime} \simeq(Y \oplus Y) \oplus Z^{\prime} \simeq Y \oplus\left(Y \oplus Z^{\prime}\right) \simeq Y \oplus Z \simeq X
$$

Therefore, if $Y_{1} \simeq Y_{2} \simeq Y$ are subspaces of X then $X=Y_{1} \oplus Z_{1}, X=Y_{2} \oplus Z_{2}$ and $Z_{1} \simeq$ $Z_{2} \simeq X$. So one can extend the isomorphism $Y_{1} \simeq Y_{2}$ to an automorphism in X.

As for the necessity, since $X \simeq Y \oplus Z \simeq Y \oplus Y \oplus Z$ and X is Y-automorphic one gets $Z \simeq$ $Y \oplus Z$.

Proposition 3.10. Let X be a separable Banach space. Assume $X=Y \oplus Z$ with Y and Z totally incomparable and Y is minimal, prime and fully complemented in itself.
(1) If Z is isomorphic to its hyperplanes then $\mathfrak{a}(Y, X)=2$.
(2) If Z is not isomorphic to its hyperplanes then $\mathfrak{a}(Y, X)=\aleph_{0}$.

Proof. There are two evident different positions of Y in $X: Y_{1}=Y \subset Y \oplus Z$ and $Y_{2} \subset Y_{1}$, $Y_{2} \simeq Y, \operatorname{dim} Y_{2}=\operatorname{dim} Y_{1} / Y_{2}=\infty$ (since Y is minimal, such Y_{2} exists).

Let $V \subset X, V \simeq Y$. By Lemma 3.4, we may pay no attention to finite dimensional subspaces and assume that

$$
V \cap Z=0 \quad \text { and } \quad V+Z \text { is closed. }
$$

Let Y^{\prime} be a subspace of Y such that $V / Z=Y^{\prime} / Z$. Then Y^{\prime} is isomorphic to Y and, since Y is fully complemented in itself, has a complement E in Y. So

$$
X=(V \oplus E) \oplus Z=V \oplus(E \oplus Z) .
$$

There are tree possibilities.
a) $\operatorname{dim} E<\infty$ and Z is isomorphic to its hyperplanes. Then $E \oplus Z \simeq Z$. So one can extend the isomorphism $V \simeq Y_{1}$ to an automorphism in X.
b) $\operatorname{dim} E=n$ and Z is not isomorphic to its hyperplanes. Then, since Y is prime, $Y \simeq Y \oplus E$, and for different n, the positions of $Y \oplus E$ are different.
c) $\operatorname{dim} E=\infty$. Then, since Y is prime, $E \oplus Z \simeq Y \oplus Z$. So one can extend the isomorphism $V \simeq Y_{2}$ to an automorphism in X.

Corollary 3.11. Let Y be isomorphic to its square and assume that $X \simeq Y \oplus Z$ with $Z \nsucceq X$. Then $\mathfrak{a}(Y, X)>1$.

Proof. Indeed, from $X \simeq Y \oplus Z$ and $X \simeq(Y \oplus Y) \oplus Z \simeq Y \oplus(Y \oplus Z) \simeq Y \oplus X$ we obtain two positions of Y in X.

Corollary 3.12. Let Y be a Banach space isomorphic to its square, minimal, prime and fully complemented in X. Then $\mathfrak{a}(Y, X) \in\left\{1,2, \aleph_{0}\right\}$.

Proof. By Lemma 3.8, either (i) holds in which case, by Proposition 3.9, $\mathfrak{a}(Y, X)=1$; or (ii) holds in which case, by Proposition 3.10, $\mathfrak{a}(Y, X)=2$ or $=\aleph_{0}$.

In order to estimate the automorphy index $\mathfrak{a}(Y, X)$, observe that the simplest way to get two different positions of Y in X is to have one complemented (with infinite dimensional complement) and the other uncomplemented. We present two versions of this observation.

Lemma 3.13.

(1) Assume that a Banach space Y has in a Banach space X two positions i and j such that no isomorphism of $i(Y)$ onto $j(Y)$ can be extended to a bounded linear operator in X. If X is isomorphic to its square, then $\mathfrak{a}(Y, X) \geqslant \aleph_{0}$.
(2) If, moreover, X is isomorphic to $\ell_{p}(X)$ for some $1 \leqslant p \leqslant+\infty$ or to $c_{0}(X)$, then $\mathfrak{a}(Y, X) \geqslant \mathfrak{c}$.

Proof. We prove (1). Since X is isomorphic to its square, we can consider, for each $n, X^{n}=$ $X_{1} \oplus \cdots \oplus X_{n}$ with $X_{k}=X$ instead of X. Let p_{k} be the natural projection of X^{n} onto X_{k}. Denote by $i_{k}: Y \rightarrow X_{k}$ and $j_{k}: Y \rightarrow X_{k}$ the copies of $i(Y)$ and $j(Y)$ in $X_{k}, k=1, \ldots, n$. No isomorphism of $i_{k}(Y)$ onto $j_{k}(Y)$ can be extended to a bounded linear operator in X_{k}. Each $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$, with $\theta_{k} \in\left\{i_{k}, j_{k}\right\}$, is a position of Y in X^{n}. We show that two different positions θ and θ^{\prime} are not equivalent.

Assume that, say, $\theta_{m}=i_{m}$ and $\theta_{m}^{\prime}=j_{m}$ for some m. The operator $\sigma: \theta(Y) \rightarrow \theta^{\prime}(Y)$ defined by $\sigma\left(\theta_{1}(y), \ldots, \theta_{n}(y)\right)=\left(\theta_{1}^{\prime}(y), \ldots, \theta_{n}^{\prime}(y)\right)$ is an isomorphism, because for every k

$$
\sigma_{k}:=\left.\sigma\right|_{\theta_{k}(Y)}=\theta_{k}^{\prime} \theta_{k}^{-1}
$$

If there were an extension of σ to an automorphism Θ of X^{n}, then $\left.p_{m} S\right|_{X_{m}}$ is an extension of the isomorphism $\sigma_{m}: i_{m}(Y) \rightarrow j_{m}(Y)$ to a bounded linear operator in X_{m} since

$$
\left.p_{m} \Theta\right|_{X_{m}} i_{m}=\sigma_{m} i_{m}=\sigma \theta_{m}=\theta_{m}^{\prime}=j_{m}
$$

which is a contradiction
To prove (2) we repeat the argument with some variations. Since $X \simeq \ell_{p}(X)$, we can consider $\ell_{p}\left(X_{k}\right)$ with $X_{k}=X$ instead of X. The meaning of $i_{k}: Y \rightarrow X_{k}$ and $j_{k}: Y \rightarrow X_{k}$
is as before, as well as p_{k}. For every sequence $\left(\theta_{1}, \theta_{2}, \ldots\right)$, with $\theta_{k} \in\left\{i_{k}, j_{k}\right\}$, the operator $\theta=\left(2^{-1} \theta_{1}, \ldots, 2^{-k} \theta_{k}, \ldots\right)$ is a position of Y in $\ell_{p}\left(X_{k}\right)$ and there is a continuum of such different sequences. Let us show that any two of them θ and θ^{\prime} are not equivalent.

Assume that for some m one has, say, $\theta_{m}=i_{m}$ and $\theta_{m}^{\prime}=j_{m}$. The operator $\sigma: \theta(Y) \rightarrow \theta^{\prime}(Y)$ defined by

$$
\sigma\left(2^{-1} \theta_{1}, \ldots, 2^{-k} \theta_{k}, \ldots\right)=\left(2^{-1} \theta_{1}^{\prime}, \ldots, 2^{-k} \theta_{k}^{\prime}, \ldots\right)
$$

is an isomorphism since, for every k,

$$
\sigma_{k}:=\left.\sigma\right|_{\theta_{k}(Y)}=2^{-k} \theta_{k}^{\prime} 2^{k} \theta_{k}^{-1}
$$

If there were an extension of σ to an automorphism Θ in $\ell_{p}\left(X_{k}\right)$ then we get a contradiction with the fact that $\left.p_{m} \Theta\right|_{X_{m}}$ is an extension of $\sigma_{m}: i_{m}(Y) \rightarrow j_{m}(Y)$ to a bounded linear operator in X_{m} :

$$
\left.p_{m} \Theta\right|_{X_{m}} i_{m}=\sigma_{m} i_{m}=\sigma \theta_{m}=\theta_{m}^{\prime}(y)=j_{m} .
$$

Remark. The condition $X \simeq \ell_{p}(X)$ in (2) can be replaced by the assumption that X is isomorphic to a countable unconditional sum of Banach spaces X_{k}, where $X \simeq X_{k}$ for each k. For example, X can be an arbitrary space with symmetric basis or any ri. function space with absolutely continuous norm.

The second version provides a lower estimate for the automorphy index:
Lemma 3.14. Let V be a complemented subspace of X. Then $\mathfrak{a}(V, V) \leqslant \mathfrak{a}(Y, X)$ for every $V \subset$ $Y \subset X$.

Proof. What we actually show is the following.
Claim. If Y is a subspace of a Banach space X and V is a subspace of Y that is complemented in X, in such a way that the following condition is satisfied:
(*) There are subspaces $\{V \gamma\}_{\gamma \in \Gamma}$ of V, isomorphic to V, where Γ is a set of ordinals, and isomorphisms $\tau_{\gamma \delta}: V_{\gamma} \rightarrow V_{\delta}, \gamma<\delta$, which cannot be extend to any bounded linear operators in V
then $\mathfrak{a}(Y, X) \geqslant|\Gamma|$.
This is enough since the largest cardinal of such a set Γ is precisely $\mathfrak{a}(V, V)$.
Proof of the Claim. Let P be projection of X onto V and $U=Y \cap \operatorname{ker} P$. Of course, each $U \oplus V_{\gamma}$ is isomorphic to Y. Define the isomorphism $\sigma_{\gamma \delta}: U \oplus V_{\gamma} \rightarrow U \oplus V_{\delta}, \gamma, \delta \in \Gamma$, by

$$
\sigma_{\gamma \delta}(u+v)=u+\tau_{\gamma \delta} v, \quad u \in U, v \in V_{\gamma}
$$

This isomorphism cannot be extended to an automorphism of X; because if an extension $S_{\gamma \delta}$ exists then the restriction $\left.P S_{\gamma \delta}\right|_{V}$ is a bounded linear operator in V extending $\tau_{\gamma \delta}$.

Sometimes a local version of the argument can be given. Recall the well-known fact that for every $1 \leqslant p<\infty, p \neq 2$, there is a sequence of subspaces $E_{k} \subset \ell_{p}^{n}, k=k(n)$ (and $n=$ $n(k)$), uniformly isomorphic to ℓ_{p}^{k}, such that projection constants $\lambda\left(E_{k}, \ell_{p}^{n}\right) \rightarrow \infty$ as $k \rightarrow \infty$ [11,13,76]. Fix p and let c be the mentioned constant of uniform isomorphism.

Proposition 3.15. In the space $\ell_{p}, 1 \leqslant p<\infty, p \neq 2$ there are uncomplemented subspaces Y_{i}, $i=1,2, \ldots$, uniformly isomorphic to ℓ_{p}, and isomorphisms $\tau_{i j}: X_{i} \rightarrow X_{j}, 1 \leqslant i<j<\infty$ which cannot be extended to bounded linear operators in ℓ_{p}.

Proof. Let us construct two non-equivalent uncomplemented positions of ℓ_{p} in itself.

1. Write $X=\ell_{p}$ in a form $X=\left(X_{1} \oplus X_{2}\right)_{p}$, where X_{1} and X_{2} are isometric to ℓ_{p}. Denote by $X_{1}=\sum_{n=1}^{\infty} \ell_{p}^{n}$ the natural decomposition of X_{1} into sum of n-dimensional subspaces. Let E_{k} be the mentioned k-dimensional subspaces of $\ell_{p}^{n}, n=n(k)$, which are c-isomorphic to ℓ_{p}^{k} and whose projection constants $\lambda\left(E_{k}, \ell_{p}^{n}\right) \rightarrow \infty$ as $k \rightarrow \infty$. Put $Y_{1}=\sum_{k} E_{k}$. Of course, Y_{1} is c-isomorphic to ℓ_{p}.

Choose an increasing sequence $i(k), k=1,2, \ldots$, of positive integers such that

$$
\frac{\lambda\left(E_{k}, \ell_{p}^{n(k)}\right)}{\lambda\left(E_{i(k)}, \ell_{p}^{n(i(k))}\right)} \rightarrow \infty \quad \text { as } k \rightarrow \infty
$$

Let for every k, F_{k} be $(k-i(k))$-dimensional subspaces spanned by the consecutive standard basic vectors of $X_{2}\left(=\ell_{p}\right)$. Take $G_{k}=E_{i(k)} \oplus F_{k}$. Of course, G_{k} are c-isomorphic to ℓ_{p}^{k}. Put $Y_{2}=\sum_{n=1}^{\infty} G_{k}$; then Y_{2} is c-isomorphic to ℓ_{p}. Let $\tau_{1,2}: Y_{1} \rightarrow Y_{2}$ be the natural linear operator which maps c^{2}-isomorphically E_{k} onto G_{k}. Then $\tau_{1,2}$ is c^{2}-isomorphism. Since ℓ_{p}^{n} is 1-complemented in X,

$$
\lambda\left(E_{k}, X\right)=\lambda\left(E_{k}, \ell_{p}^{n(k)}\right) ; \quad \lambda\left(E_{i(k)}, X\right) \lambda\left(E_{i(k)}, \ell_{p}^{n(i(k))}\right) \quad \text { and } \quad \lambda\left(G_{k}, X\right) \lambda\left(E_{i(k)}, X\right)
$$

Therefore,

$$
\frac{\lambda\left(E_{k}, X\right)}{\lambda\left(G_{k}, X\right)}=\frac{\lambda\left(E_{k}, X\right)}{\lambda\left(E_{i(k)}, X\right)} \frac{\lambda\left(E_{k}, \ell_{p}^{n(k)}\right)}{\lambda\left(E_{i(k)}, \ell_{p}^{n(i(k))}\right)} \rightarrow \infty \quad \text { as } k \rightarrow \infty
$$

So, by [65, Th. 4.4], $\tau_{1,2}$ cannot be extended to any bounded linear operator in X.
2. Write now X in a form $X=\left(X_{1} \oplus Y_{2} \oplus X_{3}\right)_{p}$, where X_{1}, X_{2} and X_{3} are isometric to ℓ_{p}. Let $\left(E_{k}\right)$ and $\left(G_{k}\right)$ be the subspaces from $\left(X_{1} \oplus X_{2}\right)_{p}$ in the item 1 . Similarly as we constructed $\left(G_{k}\right)$ by $\left(E_{k}\right)$, we can, starting from $\left(G_{k}\right)$, to construct in X a sequence of subspaces H_{k} which are c-isomorphic to ℓ_{p}^{k}, have intersected supports, and such that

$$
\frac{\lambda\left(G_{k}, X\right)}{\lambda\left(H_{k}, X\right)} \rightarrow \infty \quad \text { as } k \rightarrow \infty \quad\left(\text { and, hence }, \quad \frac{\lambda\left(E_{k}, X\right)}{\lambda\left(H_{k}, X\right)} \rightarrow \infty\right)
$$

Put $Y_{3}=\sum_{n=1}^{\infty} H_{k}$; then Y_{3} is c-isomorphic to ℓ_{p}. Let $\tau_{2,3}: Y_{2} \rightarrow Y_{3}$ be the natural linear operator which maps c^{2}-isomorphically G_{k} onto H_{k}. Then $\tau_{2,3}$ is c^{2}-isomorphism and, by [65, Th. 4.4], it cannot be extended to any bounded linear operator in X. The same arguments work for the natural linear operator $\tau_{1,3}: Y_{1} \rightarrow Y_{3}$ mapping c^{2}-isomorphically E_{k} onto H_{k}.

Corollary 3.16. Every subspace X of $\ell_{p}, 1 \leqslant p<\infty, p \neq 2$, and every subspace $Y \subset X$ verify $\mathfrak{a}(Y, X)=\mathfrak{c}$.

Proof. Let X be a subspace of ℓ_{p} and Y be a subspace of X. There exists a subspace V of Y which is isomorphic to ℓ_{p} and complemented in ℓ_{p} (Pełczyński [68]). So, we obtain the proof by combination of Lemma 3.14 and Proposition 3.15.

This dashes the hope that every Banach space could enjoy a partially automorphic character, as some earlier results (see $[8,9]$) might suggest.

4. Positions in classical Banach spaces

4.1. Positions of c_{0} and ℓ_{2}

Propositions 3.9, 3.10 and Sobczyk's theorem allow us to present a rather complete description of all possible positions of c_{0} in a separable superspace. Recall that a Banach space X is Y-saturated (Rosenthal [80]) if every closed infinite dimensional subspace of X contains a copy of Y. Isomorphically polyhedral spaces [31] and subspaces of $C(\alpha)$ for countable α [81, p. 1571] are c_{0}-saturated. In particular, Schreier-like spaces (see [3]), all its subspaces and all its quotients are c_{0}-saturated. For other c_{0}-saturated spaces see Leung [48] and Gasparis [34,35]. For us the following definition is more natural. We say that a Banach space X is complementably Y-saturated if X contains isomorphically Y and, moreover, any infinite dimensional complement of a copy of Y in X contains a complemented copy of Y. Every $C(K)$ space with metrizable K is complementably c_{0}-saturated [68]. See also [33] for additional information.

Proposition 4.1. Let X be a separable Banach space. Then

(1) $\mathfrak{a}\left(c_{0}, X\right) \in\left\{0,1,2, \aleph_{0}\right\}$.
(2) If X is complementably c_{0}-saturated, then $\mathfrak{a}\left(c_{0}, X\right)=1$.
(3) If X contains c_{0} but some quotient X / c_{0} does not then:
(a) $\mathfrak{a}\left(c_{0}, X\right)=2$ if X / c_{0} is isomorphic to its hyperplanes.
(b) $\mathfrak{a}\left(c_{0}, X\right)=\aleph_{0}$ if X / c_{0} is not isomorphic to its hyperplanes.

The same argument works for other Banach spaces X in which every copy of c_{0} is complemented, such as WCG or $C(\alpha)$-spaces for α an ordinal. There exist other (nonseparable) spaces, say ℓ_{∞}, in which c_{0} has a unique position (Lindenstrauss and Rosenthal [52]; see also Corollary 3.7). We do not know a Banach space X for which $2<\mathfrak{a}\left(c_{0}, X\right)<\aleph_{0}$. Note that part (1) of Lemma 3.13 requires to look for X where all copies of c_{0} are complemented, or all uncomplemented, or an X not isomorphic to its square; in other words, that a natural example to get a finite number of positions of c_{0} such as $c_{0} \oplus \ell_{\infty}$ actually verifies $\mathfrak{a}\left(c_{0}, c_{0} \oplus \ell_{\infty}\right) \geqslant \aleph_{0}$. Also, the Lindenstrauss-Pełczyński theorem [50], see also [24], yields that every subspace Y of c_{0} has in a separable $C(K)$-space exactly one position. The paper [25] characterizes the Banach spaces with this property.

The Hilbert space ℓ_{2} is the other separable automorphic space currently known. The theory of its positions is much more complicated than that of c_{0}. Our previous approach plainly works for Banach spaces in which every copy of ℓ_{2} is complemented; one therefore has

Proposition 4.2. Let X be a Banach space in which ℓ_{2} is fully complemented. Then

(1) $\mathfrak{a}\left(\ell_{2}, X\right) \in\left\{1,2, \aleph_{0}\right\}$.
(2) If X is complementably ℓ_{2}-saturated, then $\mathfrak{a}\left(\ell_{2}, X\right)=1$.
(3) If X contains ℓ_{2} but some quotient X / ℓ_{2} does not then:
(a) $\mathfrak{a}\left(\ell_{2}, X\right)=2$ if X / ℓ_{2} is isomorphic to its hyperplanes.
(b) $\mathfrak{a}\left(\ell_{2}, X\right)=\aleph_{0}$ if X / ℓ_{2} is not isomorphic to its hyperplanes.

The proof of this proposition is similar to that of Proposition 4.1. Banach spaces X in which ℓ_{2} is fully complemented include those with the Maurey projection property. Thus, the space $L_{p}(0,1), p \geqslant 2$ is complementably ℓ_{2}-saturated [41].

There are ℓ_{2}-saturated spaces where no copy of ℓ_{2} is complemented such as the BourgainDelbaen \mathcal{L}_{∞}-space constructed in [14]. Examples of non-Hilbert ℓ_{2}-saturated space where all copies of ℓ_{2} are complemented are the spaces $\ell_{2}\left(\ell_{p_{n}}^{m_{n}}\right)$ when $p_{n} \downarrow 2$, or the weak-Hilbert space constructed by Androulakis, Casazza and Kutzarova [6]. A natural example of an ℓ_{2}-saturated space which contains both complemented and uncomplemented ℓ_{2} is Bernstein's space, which can be described as follows. A finite subset $N=\left\{n_{1}<n_{2}<\cdots<n_{k}\right\}$ of natural numbers is said to be admissible if $k<n_{1}$. The family of admissible sets will be denoted \mathcal{A}. If N and M are finite non-void subsets of \mathbb{N}, we write $N<M$ for $\max N<\min M$. We write $N x$ to mean $x \cdot 1_{N}$, where 1_{N} is the characteristic function of N. The Bernstein's space \mathcal{B} [20] is defined as the completion of the space of finitely supported sequences with respect to the norm

$$
\|x\|_{\mathcal{B}}=\sup \left\{\sqrt{\sum_{k=1}^{n}\left\|N_{k} x\right\|_{\ell_{1}}^{2}}: N_{k} \in \mathcal{A} \text { and } N_{1}<N_{2}<\cdots<N_{n}, n=1,2, \ldots\right\} .
$$

This space is ℓ_{2}-saturated [20, p. 7] and, moreover:
Proposition 4.3. $\mathfrak{a}\left(\ell_{2}, \mathcal{B}\right)=\mathfrak{c}$.
Proof. (A sketch). Take first the subspace Z of \mathcal{B} spanned by a sequence of subspaces $\left\{N_{k} x\right.$: $x \in \mathcal{B}\}$ where $N_{k} \in \mathcal{A}, N_{1}<N_{2}<\cdots<N_{k}<\cdots$ and the gaps between N_{k} go to infinity very fast. This subspace Z is isomorphic to $\left(\sum_{k} \ell_{1}^{n_{k}}\right) \ell_{2}$ where $n_{k}=\left|N_{k}\right|$. If $\sup _{k} n_{k}=\infty$ then Z contains both complemented and uncomplemented subspaces isomorphic to ℓ_{2} [13]. Choosing Z so that, moreover, $Z \simeq \ell_{2}(Z)$ we get, by Lemma 3.13(2), $\mathfrak{a}\left(\ell_{2}, Z\right)=\mathfrak{c}$. This Z is complemented in \mathcal{B}, because is spanned by a subsequence of the standard (unconditional!) basis of \mathcal{B}. Moreover, repeating the proof of Lemma 3.14, with appropriate modifications, we get the result.

The following problem has been posed in [63]:
Problem. Does there exist a non-automorphic Banach space X such that $\mathfrak{a}(X)<\infty$?
Note that the identity $\mathfrak{a}(Y, X)=k$ means that X contains exactly k subspaces Y_{1}, \ldots, Y_{k}, each isomorphic to Y, such that for every $1 \leqslant m<n \leqslant k$ there exists an isomorphism $\tau_{m n}: Y_{m} \rightarrow$ Y_{n} which cannot be extended to an automorphism of X. Since $\mathfrak{a}\left(c_{0}\right)=1=\mathfrak{a}\left(\ell_{2}\right)$ a reasonable candidate to have finite automorphy index is $c_{0} \oplus \ell_{2}$. However, we only have:

Proposition 4.4. Let Z be a subspace of $c_{0} \oplus \ell_{2}$.
(1) $\mathfrak{a}\left(c_{0} \oplus \ell_{2}, c_{0} \oplus \ell_{2}\right)=3$.
(2) If Z contains no copies of c_{0}, then it is isomorphic to ℓ_{2} and complemented in $c_{0} \oplus \ell_{2}$.
(3) If Z contains no copies of ℓ_{2}, then it is isomorphic to a subspace of c_{0}.
(4) $\mathfrak{a}\left(c_{0}, c_{0} \oplus \ell_{2}\right)=\mathfrak{a}\left(\ell_{2}, c_{0} \oplus \ell_{2}\right)=2$.

Proof. Proof of (1). Denote $X:=c_{0} \oplus \ell_{2}$ and let Y be a subspace of X which is isomorphic to X. Pick a subspace $F \subset c_{0}$, isometric to c_{0}, with $\operatorname{dim} c_{0} / F=\infty$. Then F has in c_{0} a complement isometric to c_{0}. Pick a subspace $G \subset \ell_{2}$ with $\operatorname{dim} G=\operatorname{dim} \ell_{2} / G=\infty$. Then G has in ℓ_{2} a complement isometric to ℓ_{2}. So, there are three evident different positions of Y in $X: c_{0} \oplus G$, $F \oplus \ell_{2}$ and $F \oplus G$. Let $Y=Y_{0} \oplus Y_{1}, Y_{0} \simeq c_{0}$ and $Y_{1} \simeq \ell_{2}$. First we will show that there are subspaces E_{0} and E_{1} of X such that: else $E_{0} \simeq c_{0}$ or it is finite dimensional; else $E_{1} \simeq \ell_{2}$ or it is finite dimensional; and

$$
\begin{equation*}
X=\left(Y_{0} \oplus Y_{1}\right) \oplus\left(E_{0} \oplus E_{1}\right) . \tag{7}
\end{equation*}
$$

Since the Hilbert space Y_{1} is incomparable with c_{0} and with Y_{0}, there is a finite codimensional subspace Y_{1}^{\prime} of Y_{1} such that

$$
c_{0} \cap Y_{1}^{\prime}=0 \quad \text { and } \quad Y_{0} \cap Y_{1}^{\prime}=0
$$

Because Y_{1}^{\prime} is incomparable with c_{0}, there exists a bounded projection $c_{0} \oplus Y_{1}^{\prime} \rightarrow c_{0}$ along Y_{1}^{\prime}. By the Sobczyk theorem, one can find a superspace $Y_{2} \supset Y_{1}^{\prime}$ such that

$$
c_{0} \oplus Y_{2}=X
$$

Denote by E_{1} a complement of Y_{1}^{\prime} in Y_{2}. Of course, either $E_{1} \simeq \ell_{2}$ or it is finite dimensional.
By incomparability of Y_{0} and Y_{2},

$$
\operatorname{dim}\left(Y_{0} \cap Y_{2}\right)<\infty
$$

So there is a finite codimensional subspace Y_{0}^{\prime} of Y_{0} such that

$$
Y_{0}^{\prime} \cap Y_{2}=0
$$

Moreover, by the incomparability of Y_{0}^{\prime} and Y_{2},

$$
Y_{0}^{\prime} / Y_{2} \simeq Y_{0} \simeq c_{0}
$$

Since $c_{0} / Y_{2}=X / Y_{2}$, there is a subspace Z of c_{0} such that $Z / Y_{2}=Y_{0}^{\prime} / Y_{2}$. The subspace Z $\left(\simeq Z / Y_{2}\right)$ is isomorphic to c_{0}, hence has a complement E_{0} in c_{0}. So, $E_{0} / Y_{2} \oplus Y_{0}^{\prime} / Y_{2} c_{0} / Y_{2} \simeq c_{0}$. Therefore, $Y_{0}^{\prime} \oplus E_{0}$ is the complement of Y_{2} in X. Of course, either $E_{0} \simeq c_{0}$ or it is finite dimensional.

We thus get the decomposition

$$
X=\left(Y_{0}^{\prime} \oplus E_{0}\right) \oplus\left(Y_{1}^{\prime} \oplus E_{1}\right) \simeq\left(Y_{0}^{\prime} \oplus Y_{1}^{\prime}\right) \oplus\left(E_{0} \oplus E_{1}\right)
$$

To obtain the decomposition (7), one has to note that Y is isomorphic to its finite codimensional subspaces and use Lemma 3.4.

There are three possibilities:
(1) $\operatorname{dim} E_{0}<\infty$ and $\operatorname{dim} E_{1}=\infty$, hence $E_{0} \oplus E_{1} \simeq \ell_{2}$; in which case $Y_{0} \oplus Y_{1} \simeq c_{0} \oplus G$,
(2) $\operatorname{dim} E_{0}=\infty$ and $\operatorname{dim} E_{1}<\infty$, hence $E_{0} \oplus E_{1} \simeq c_{0}$; in which case $Y_{0} \oplus Y_{1} \simeq F \oplus \ell_{2}$,
(3) $\operatorname{dim} E_{0}=\infty$ and $\operatorname{dim} E_{1}=\infty$, hence $E_{0} \oplus E_{1} \simeq c_{0} \oplus \ell_{2}$; in which case $Y_{0} \oplus Y_{1} \simeq F \oplus G$,
and the extension to an automorphism in X is clear.

Proof of (2). Since Z and c_{0} are totally incomparable, then $Z \cap c_{0}$ is finite dimensional and $Z+c_{0}$ is closed. Let Z_{0} be a complement of $Z \cap c_{0}$ in Z. We consider the projection P : $x+y \in c_{0} \oplus \ell_{2} \rightarrow y \in \ell_{2}$. Then $\left.P\right|_{Z_{0}}$ is an isomorphism and $P\left(Z_{0}\right)$ is complemented in ℓ_{2}. If E is a complement of $P\left(Z_{0}\right)$ in ℓ_{2}, then $Z=Z_{0} \oplus P^{-1}(E)$; hence Z is isomorphic to ℓ_{2} and complemented in $c_{0} \oplus \ell_{2}$.

Proof of (3). Recall that an operator $T: X \rightarrow Y$ is upper semi-Fredholm if its kernel ker T is finite dimensional and its range $T(X)$ is closed. Let J denote the embedding of Z into $X=$ $c_{0} \oplus \ell_{2}$ and $P: x+y \in c_{0} \oplus \ell_{2} \rightarrow y \in \ell_{2}$. Since $P J$ is strictly singular, $\left(i d_{X}-P\right) J$ is upper semi-Fredholm. Since $\left(i d_{X}-P\right)(Z) \subset c_{0}, Z$ is isomorphic to a subspace of c_{0}.
(4) follows from (2), (3), Sobczyk's theorem and Propositions 4.1 and 4.2.

It is conceivable that $c_{0} \oplus \ell_{2}$ contains subspaces Y with $\mathfrak{a}\left(Y, c_{0} \oplus \ell_{2}\right) \geqslant \aleph_{0}$. We know no subspace having $4,5,6, \ldots$ positions.

4.2. Positions in ℓ_{p} and L_{p}

We have already shown in Corollary 3.16 that all subspaces Y of $\ell_{p}, 1 \leqslant p<\infty, p \neq 2$, verify $\mathfrak{a}\left(Y, \ell_{p}\right)=\mathfrak{c}$. The situation for subspaces of L_{p} is different.

Proposition 4.5.

(1) A separable Banach space Y is Hilbert if and only $\mathfrak{a}\left(Y, L_{p}\right)=1$ for some (all) $2<p<\infty$.
(2) Every complemented subspace of $L_{p}, 1 \leqslant p<\infty$ has only one complemented position in L_{p}. In particular, the spaces ℓ_{p} and L_{p} have only one complemented position in L_{p}. The space ℓ_{2} has only one complemented position in $L_{p}, 1<p<\infty$.
(3) Let Y be a non-strongly embedded subspace of $L_{p}, 1 \leqslant p<2$. Then $\mathfrak{a}\left(Y, L_{p}\right)=\mathfrak{c}$.
(4) Let Y be a subspace of $L_{p}, Y \nsucceq \ell_{2}, 2<p<\infty$. Then $\mathfrak{a}\left(Y, L_{p}\right)=\mathfrak{c}$.
(5) Let Y be a nonreflexive subspace of L_{1}. Then $\mathfrak{a}\left(Y, L_{1}\right)=\mathfrak{c}$.
(6) Let Y be a subspace of L_{1} which contains a complemented copy of ℓ_{2}. Then $\mathfrak{a}\left(Y, L_{1}\right)=\mathfrak{c}$. In particular, $\mathfrak{a}\left(L_{p}, L_{1}\right)=\mathfrak{c}$ for $1<p<2$.

Proof. (1). Since $L_{p}, 2 \leqslant p<\infty$, has type 2, the first part of the item (1) follows from Proposition 4.2. If Y is not isomorphic to ℓ_{2}, then, by Kadec and Pełczyński [41, Cor. 3], it contains a complemented (in L_{p}) subspace isomorphic to ℓ_{p}, and we can use Lemma 3.14.
(2). The item follows from Alspach, Enflo and Odell [4] (see also [59]) asserting that L_{p} is primary (i.e. if $L_{p} \simeq E \oplus F$ then either $E \simeq L_{p}$ or $F \simeq L_{p}$).
(3). Recall that a subspace Y of L_{p} is non-strongly embedded if and only if contains a copy of ℓ_{p} complemented in L_{p} [1, Th. 6.4.7]. Thus, Y contains a complemented copy of ℓ_{p}. Since ℓ_{p} contains an uncomplemented copy of ℓ_{p} [11], the same occurs to L_{p}, and thus we get from Lemma 3.14 the estimate $\mathfrak{a}\left(Y, L_{p}\right) \geqslant \mathfrak{a}\left(\ell_{p}, L_{p}\right)=\mathfrak{c}$.
(4). By [41, Cor. 3], Y either is isomorphic to ℓ_{2} or contains a complemented subspace, isomorphic to ℓ_{p}. Then apply the same reasoning as in (3).
(5). By [41, Th. 6], Y contains a complemented subspace, isomorphic to ℓ_{1}; Lemma 3.14 then yields $\mathfrak{c}=\mathfrak{a}\left(\ell_{1}, \ell_{1}\right) \leqslant \mathfrak{a}\left(Y, L_{1}\right)$.
(6). We first prove that $\mathfrak{a}\left(\ell_{2}, L_{1}\right) \geqslant 2$. Let $\left(r_{n}\right)$ be the Rademacher sequence and $\left(\gamma_{n}\right)$ be the sequence of standard Gaussian independent random variables on [0, 1]. The L_{1}-closed linear spans $\left[r_{n}\right]_{1}^{\infty}$ and $\left[\gamma_{n}\right]_{1}^{\infty}$ are isomorphic to $\ell_{2}[54$, p. 66] and $[74$, p. 14].

Lemma 4.6. (Essentially N. Kalton and A. Petczyński; see also [23].) In the space L_{1} does not exist any bounded linear operator isomorphically sending $\left[r_{n}\right]_{1}^{\infty}$ into $\left[\gamma_{n}\right]_{1}^{\infty}$. In particular, ℓ_{2} has in L_{1} at least two non-isomorphic positions.

Proof. Suppose, such operator T exists. Then $\xi_{n}=T\left(r_{n}\right)$ are independent random variables in $\left[\gamma_{n}\right]_{1}^{\infty}$ and there exists $a>0$ such that $\left\|\xi_{n}\right\| \geqslant a$ for each n. Multiplying T, if necessary, by $1 / a$ one can suppose $\left\|\xi_{n}\right\| \geqslant 1$ for each n. By the well-known properties of the Gaussian variables, $\left(\xi_{n}\right)$ is a sequence of Gaussian variables with 0 expectation.

The Rademacher sequence is obviously order bounded. Let us show that $\left(\xi_{n}\right)$ is order unbounded. Suppose $\left|\xi_{n}(t)\right| \leqslant \varphi(t)$ for each n, where $\varphi(t)$ is some measurable function. Given $\varepsilon>0$, there is $c>0$ such that the Lebesgue measure $\mu\{t \in[0,1]: \varphi(t)<c\}>1-\varepsilon$. However, since (ξ_{n}) are independent,

$$
\begin{aligned}
& \mu\left\{t:\left|\xi_{i}(t)\right|>c \text { for some } i \in\{1, \ldots, n\}\right\}=1-\prod_{1}^{n} \mu\left\{t:\left|\xi_{i}(t)\right| \leqslant c\right\} \\
& \quad \geqslant 1-\left(\mu\left\{t:\left\|\xi_{1}\right\|^{-1}\left|\xi_{1}(t)\right| \leqslant c\right\}\right)^{n} \rightarrow 1 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

So, the sequence $\left(\xi_{n}\right)$ is order unbounded.
By [82, p. 232, Th. 1.5(ii)], every bounded linear operator in L_{1} is order bounded, i.e. sends an order bounded sequence into order bounded one. So, does not exist any such operator T in L_{1} which translates $\left(r_{n}\right)_{1}^{\infty}$ onto $\left(\xi_{n}\right)_{1}^{\infty}$.

We need the following version of Lemma 3.14.
Lemma 4.7. Let X be isomorphic to its square and let Z be a complemented subspace of a subspace $Y \subset X$. Let Z^{\prime} be isomorphic to Z and such that no isomorphism $Z \rightarrow Z^{\prime}$ can be extended to an automorphism in X. Then $\mathfrak{a}(Y, X)>1$.

Proof. Let $X=V \oplus V^{\prime}, X \simeq V \simeq V^{\prime}$. Without loss of generality one can assume $Y \subset V$ and there is a subspace $Y^{\prime} \subset V^{\prime}, Y^{\prime} \simeq Y, Z^{\prime} \subset Y^{\prime}$ and complemented in Y^{\prime}. It is easy to construct an isomorphism $\tau: Y \rightarrow Y^{\prime}$ which cannot be extended to an automorphism in X.

It follows from Lemma 4.6 that ℓ_{2} admits two non-isomorphic positions in L_{1} and, in particular, $\mathfrak{a}\left(\ell_{2}, L_{1}\right) \geqslant 2$. By Lemma 3.13(2) one gets $\mathfrak{a}\left(l_{2}, L_{1}\right)=\mathfrak{c}$. So, by Lemma 4.7, one has $\mathfrak{a}\left(Y, L_{1}\right)=\mathfrak{c}$. Since L_{1} contains isomorphically L_{p} for $1<p<2$ (see e.g. [16]), and these contain complemented copies of ℓ_{2}, we have $\mathfrak{a}\left(L_{p}, L_{1}\right)=\mathfrak{c}$ for $1<p \leqslant 2$.

We conjecture that $\mathfrak{a}\left(Y, L_{p}\right)=\mathfrak{c}$ for $1 \leqslant p<\infty, p \neq 2$, and every subspace $Y \subset L_{p}$ not containing ℓ_{2}.

4.3. Positions in $C(K)$

Separable $C(K)$-spaces are isomorphic either $C(\alpha)$ for a countable ordinal α or $C[0,1]$ [69, §8]. Except when $\alpha<\omega^{\omega}$, in which case $C(\alpha) \simeq c_{0}$ is automorphic, the problem of calculating $\mathfrak{a}(Y, C(K))$ is mostly open. In what follows, $\delta: Y \rightarrow C\left(B_{Y^{*}}\right)$ represents the canonical embedding of a separable Banach space Y into $C\left(B_{Y^{*}}\right)$.

Proposition 4.8. For every separable Banach space Y one has

$$
\mathfrak{a}(Y, C[0,1]) \in\{1, \mathfrak{c}\} .
$$

Moreover,

(1) $\mathfrak{a}(Y, C[0,1])=\mathfrak{c}$ holds for:
(a) any Banach space containing a complemented copy of any $C(K)$-space different from c_{0};
(b) ℓ_{p} for $1<p<\infty$;
(c) a Banach space Y such that $C[0,1] / Y$ does not contain ℓ_{1};
(2) $\mathfrak{a}(Y, C[0,1])=1$ holds for:
(a) subspaces of c_{0};
(b) weak*-closed subspaces of ℓ_{1};
(c) $c_{0}(Y)$, when $\mathfrak{a}(Y, C[0,1])=1$;
(d) twisted sums of two spaces X, Y with $\mathfrak{a}(X, C[0,1])=1=\mathfrak{a}(Y, C[0,1])$.

Proof. Let K be a compact metric space such that $C(K) \not \nsim c_{0}$. Since $C[0,1]$ contains complemented and uncomplemented copies of $C(K)$ ([81, p. 1554], [5]) and $C(K) \simeq c_{0}(C(K))$ [81, pp. 1553, 1564], Lemma 3.13 implies that $\mathfrak{a}(C(K), C[0,1])=\mathfrak{c}$. Let 1 represent a complemented embedding and let L represent an uncomplemented embedding. We already know that all elements of $\{1, L\}^{\mathbb{N}}$ represent non-equivalent embeddings $c_{0}(C[0,1]) \rightarrow c_{0}(C[0,1])$.

By Milutin's theorem, we will consider δ as an embedding $\delta: Y \rightarrow C[0,1]$. Now, assume Y has in $C[0,1]$ at least two positions. A combination of [24, Prop. 4.6] and [44, Th. 2.8] shows that a position $j: Y \rightarrow C[0,1]$ is equivalent to $\delta: Y \rightarrow C[0,1]$ if and only if they are semiequivalent. Then there is $j: Y \rightarrow C[0,1]$ a position not semi-equivalent to $\delta: Y \rightarrow C[0,1]$. Form the embeddings $\Delta: Y \rightarrow c_{0}(C[0,1])$ defined as $\Delta(y)(n)=n^{-1} \delta(y)$ and $J: Y \rightarrow c_{0}(C[0,1])$ defined as $J(y)(n)=n^{-1} j(y)$.

Now, two different $u, v \in\{1, L\}^{\mathbb{N}}$ yield non-equivalent embeddings $u \Delta$ and $v J$ (or $v \Delta$ and $u J)$: since at some coordinate n one has, say, $u(n)=1$ and $v(n)=L$, the existence of some operator σ verifying $\sigma v J=u \Delta$ means the existence of a certain operator T verifying $T j=\delta$ something that does not occur.

Assertion (1.a) follows from the first sentence of this proof and Lemma 3.14.

Assertion (1.b) follows from Kalton [44], where he showed that $\mathfrak{a}\left(\ell_{p}, C[0,1]\right) \geqslant 2$.
We prove now assertion (1.c) following an idea taken from Kalton [44]. Recall that given a subspace $Y \subset C[0,1]$ the quotient space $C[0,1] / Y$ does not contain ℓ_{1} if and only if it has separable dual [77]; see also [81]. Let $j: Y \rightarrow C[0,1]$ be an embedding in such a way that $C[0,1] / j(Y)$ does not contain ℓ_{1}. Let \mathbf{D} denote Cantor ternary set. $\iota: \mathbf{D} \rightarrow[0,1]$ will be Lebesgue's map $\iota\left(\left(\varepsilon_{n}\right)\right)=\sum 2 \varepsilon_{n} 3^{-n}$. It is well known that the induced exact sequence

$$
0 \longrightarrow C[0,1] \xrightarrow{\iota^{\circ}} C(\mathbf{D}) \xrightarrow{q} c_{0} \longrightarrow 0
$$

does not split. A little less known is that if $\left[p_{n}, q_{n}\right.$] denotes the sequence of different intervals $[1 / 3,2 / 3],[1 / 9,2 / 9],[7 / 9,8 / 9], \ldots$ generating the Cantor set \mathbf{D} then no lifting of no subsequence $\left(e_{p_{n}}\right)$ of the canonical basis of c_{0}, for which the set of indices $\left(p_{n}\right)$ is dense in \mathbf{D}, can be weakly Cauchy (see also [18]). To show this, let $f_{n} \in C(\mathbf{D})$ be a lifting of the canonical basis $\left(e_{n}\right)$; this means that $\left|f_{n}\left(q_{n}\right)-f_{n}\left(p_{n}\right)\right|=1$. Take f_{1}. Choose p_{1} or $q_{1}-$ say, $p_{1}-$ and set an open interval I_{1} of it on which f_{1} has oscillation lesser than or equal to $1 / 4$. By the denseness, there is some $\left[p_{n_{2}}, q_{n_{2}}\right] \subset I_{1}$. Take $f_{n_{2}}$ and observe that at one of the points $p_{n_{2}}, q_{n_{2}}$ one has say $p_{n_{2}}$ again -

$$
\left|f_{n_{2}}\left(p_{n_{2}}\right)-f_{1}\left(p_{1}\right)\right| \geqslant 1 / 2
$$

and choose some new interval I_{2} of $p_{n_{2}}$ where $f_{n_{2}}$ has oscillation at most $1 / 8$. Continues in this way obtaining a nested sequence I_{k}, and points $p_{n_{k}}$ in such a way that

$$
\left|f_{n_{k+1}}\left(p_{n_{k+1}}\right)-f_{n_{k}}\left(p_{n_{k}}\right)\right| \geqslant 1 / 2
$$

while $f_{n_{k}}$ has oscillation at most $1 / 2^{k}$. Take $p \in \bigcap I_{k}$. One has

$$
\left|f_{n_{k+1}}(p)-f_{n_{k}}(p)\right| \geqslant 1 / 4
$$

which is enough to make it non-weakly Cauchy.
We show now that the exact sequences

are not isomorphic, showing that the embeddings j and $\iota^{\circ} j$ are not equivalent. By Milyutin's theorem [62], we identify $C[0,1]$ and $C(\mathbf{D})$. Consider the commutative diagram

and let us show that the two horizontal sequences are not semi-equivalent; namely, that no operator $v: C[0,1] / \iota^{\circ} j(Y) \rightarrow C[0,1]$ can exist such that $q v=Q$. Since the dual of $C[0,1] / j(Y)$ is separable, let us number a dense set of functionals $\left(x_{k}^{*}\right)$ and a basis $\left(B_{n}\right)$ for the topology of $[0,1]$ to get

$$
\forall n \exists u_{n}, v_{n} \in B_{n}: \forall 1 \leqslant k \leqslant n: \quad x_{k}^{*}\left(p f_{u_{n}}-p f_{v_{n}}\right) \leqslant 2^{-k}
$$

which simply follows because the map $\left(x_{1}^{*} p, \ldots, x_{n}^{*} p\right): C[0,1] \rightarrow \mathbb{R}^{n}$ is finite dimensional, and thus from the images of each sequence $\left(f_{j}\right)$ (with indices $j \in B_{n}$) one can extract a convergent subsequence. The existence of the operator v transforms this into a weakly convergent lifting of $\left(e_{u_{n}}-e_{v_{n}}\right)$, which we have already shown cannot exist.

Assertion (2.a) follows from Lindenstrauss-Pełczyński theorem [51] ($C(K)$-valued operators defined on subspaces of c_{0} can be extended to c_{0}), which shows that all positions of a subspace H of c_{0} in $C[0,1]$ are semi-equivalent to the canonical one $\delta: H \rightarrow C\left(B_{H^{*}}\right)$. Assertion (2.b) was proved by Kalton in [43] and [44, Th. 5.2], and (2c) and (2.d) in [44].

Proposition 4.8 completes the results of Moreno [63] who showed that there were at least \aleph_{1} different mutually non-isomorphic positions of $C[0,1]$ inside $C[0,1]$. Kalton asked in [42] if $\mathfrak{a}(Y, C[0,1])=1$ can hold for a superreflexive space Y. For countable compacta one has:

Proposition 4.9. For every Banach space Y and $\omega^{\omega} \leqslant \alpha<\omega_{1}$ one has

$$
\mathfrak{a}(Y, C(\alpha)) \in\{0,1, \mathfrak{c}\} .
$$

Moreover,
(1) $\mathfrak{a}(Y, C(\alpha))=\mathfrak{c}$ holds for any Banach space containing complemented copies of $C(\beta)$, $\beta \geqslant \omega^{\omega}$;
(2) $\mathfrak{a}(Y, C(\alpha))=1$ holds for subspaces Y of c_{0}.

A distinguished class of subspaces of the spaces of continuous functions on countable compacta is formed by the Schreier-like spaces. The Schreier space \mathcal{S} constructed over the family \mathcal{A} of admissible sets is the completion of the space of finitely supported sequences with respect to the norm $\|x\|_{\mathcal{S}}=\sup _{N \in \mathcal{A}}\|N x\|_{\ell_{1}}$. The family \mathcal{A} is countable and forms a closed, hence compact, subspace of $\{0,1\}^{\mathbb{N}}$; in fact, it is homeomorphic to ω^{ω}. On the other hand, \mathcal{S} is a subspace of $C(\mathcal{A})$ through the canonical embedding $\delta: \mathcal{S} \rightarrow C(\mathcal{A})$ given by $\delta(x)(A)=\sum_{j \in A} x_{j}$. The space \mathcal{S} is therefore c_{0}-saturated, hence $\mathfrak{a}\left(c_{0}, \mathcal{S}\right)=1$ by Proposition 4.1.

Since \mathcal{S} contains uniformly complemented ℓ_{1}^{n}, and also contains ℓ_{1}^{n} but not uniformly complemented (since it contains c_{0}) it cannot be an UFO (for definition see the next section). Since $\mathcal{S}=c_{0}(\mathcal{S})$, the space \mathcal{S} contains a complemented copy of $c_{0}\left(\ell_{1}^{n}\right)$ and also an uncomplemented one through the embedding $c_{0}\left(\ell_{1}^{n}\right) \rightarrow c_{0}\left(c_{0}\right)=c_{0} \rightarrow \mathcal{S}$; therefore $\mathfrak{a}\left(c_{0}\left(\ell_{1}^{n}\right), \mathcal{S}\right)=\mathfrak{c}$. This and Lemma 3.14 immediately yield $\mathfrak{a}(\mathcal{S}, \mathcal{S})=\mathfrak{c}$. We feel tempted to conjecture that $\mathfrak{a}\left(\mathcal{S}, C\left(\omega^{\omega}\right)\right)=1=\mathfrak{a}(\mathcal{S}, C[0,1])$.

Among embeddings between $C(K)$-spaces, a special role is played by isometric embeddings of the form $\varphi^{\circ}: C(L) \rightarrow C(K)$, where $\varphi: K \rightarrow L$ is a continuous surjection, and $\varphi^{\circ}(f)=f \circ \varphi$. The following apparently open problem was posed by Pełczyński [70]:

Problem. Is every exact sequence

$$
0 \longrightarrow C[0,1] \xrightarrow{j} C[0,1] \longrightarrow V \longrightarrow 0
$$

isomorphically equivalent to an exact sequence

$$
0 \longrightarrow C[0,1] \xrightarrow{\varphi^{\circ}} C[0,1] \longrightarrow W \longrightarrow 0 ?
$$

However, even if the answer to the previous problem was to be no, an analogous argument to that of Proposition 3.13 shows that there exists a continuum of different positions of $C(\mathbf{D})$ inside $C(\mathbf{D})$ of the form φ°. Indeed, let K, L be compact Hausdorff spaces. Two continuous surjections $\varphi: K \rightarrow L$ and $\psi: K \rightarrow L$ will be called equivalent if the embeddings φ° and ψ° are equivalent.

We will show:

Proposition 4.10. There is a continuum of mutually non-equivalent continuous surjections D \rightarrow D.

Proof. Let us consider $\varphi: \mathbf{D} \rightarrow \mathbf{D}$ a continuous surjection such that φ° is an uncomplemented position and $\psi: \mathbf{D} \rightarrow \mathbf{D}$ a continuous surjection such that ψ° is a complemented position. So φ° and ψ° are not semi-equivalent. Let us show that $\{\psi, \varphi\}^{\mathbb{N}}$ is a continuum of mutually nonisomorphic continuous surjections $\eta=\left(\eta_{n}\right): \mathbf{D}^{\mathbb{N}} \rightarrow \mathbf{D}^{\mathbb{N}}$ given by $\left(\eta_{n}\right)\left(\left(x_{n}\right)\right)\left(\eta_{n} x_{n}\right)$. Take two different elements $\eta, \mu \in\{\psi, \varphi\}^{\mathbb{N}}$; let k be a coordinate where $\eta_{k}=\varphi$ and $\mu_{k}=\psi$, and let $p_{k}: \mathbf{D}^{\mathbb{N}} \rightarrow \mathbf{D}$ be projection onto the k th-coordinate. If some isomorphism $\sigma: C\left(\mathbf{D}^{\mathbb{N}}\right) \rightarrow C\left(\mathbf{D}^{\mathbb{N}}\right)$ exists such that $\sigma \eta^{\circ}=\mu^{\circ}$, then $\sigma \eta^{\circ} p_{k}^{\circ}=\mu^{\circ} p_{k}^{\circ}$.

It is therefore enough to show that the surjections $\psi \oplus \varphi: \mathbf{D} \times \mathbf{D} \rightarrow \mathbf{D} \times \mathbf{D}$ and $\varphi \oplus \psi$: $\mathbf{D} \times \mathbf{D} \rightarrow \mathbf{D} \times \mathbf{D}$ are not equivalent because the embeddings $C(\mathbf{D}) \oplus C(\mathbf{D}) \rightarrow C(\mathbf{D}) \oplus C(\mathbf{D})$ given by $\left(\psi^{\circ}, \varphi^{\circ}\right)$ and $\left(\varphi^{\circ}, \psi^{\circ}\right)$ are not semi-equivalent. To show this, assume that there could
exist an extension $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right): C(\mathbf{D}) \oplus C(\mathbf{D}) \rightarrow C(\mathbf{D}) \oplus C(\mathbf{D})$ of $\left(\psi^{\circ}, \varphi^{\circ}\right)$ through $\left(\varphi^{\circ}, \psi^{\circ}\right)$. This means that for all $x, x^{\prime} \in C(\mathbf{D})$ one has

$$
\left(\alpha \varphi^{\circ} x+\beta \psi^{\circ} x^{\prime}, \gamma \varphi^{\circ} x+\delta \psi^{\circ} x^{\prime}\right)=\left(\psi^{\circ} x, \varphi^{\circ} x^{\prime}\right)
$$

Setting $x^{\prime}=0$ implies $\alpha \varphi^{\circ} x=\psi^{\circ} x$. Therefore also φ° admits a projection, against the hypothesis.

That is enough to prove the assertion about $C(\mathbf{D})$ since \mathbf{D} is homeomorphic to $\mathbf{D}^{\mathbb{N}}$, and if h : $K \rightarrow L$ is a homeomorphism between compact spaces and $q: K \rightarrow M$ is a continuous surjection then:

- q° admits a projection if and only if $q h$ admits a projection: indeed, if P verifies $P(q h)^{\circ}=1$ then $\left(P h^{\circ}\right) q^{\circ}=1$ and if Q verifies $Q q^{\circ}=1$ then $Q\left(h^{\circ}\right)^{-1}(q h)^{\circ}=1$.
- Two arbitrary continuous surjections φ and ϕ are equivalent if and only if φh and ϕh are equivalent: if σ is the automorphism so that $\sigma \varphi^{\circ}=\phi^{\circ}$ then $h^{\circ} \sigma\left(h^{\circ}\right)^{-1}$ verifies $h^{\circ} \sigma\left(h^{\circ}\right)^{-1}(\varphi h)^{\circ}=(\phi h)^{\circ}$.

Problem. Determine when two continuous surjections $\varphi, \psi:[0,1] \rightarrow[0,1]$ are equivalent. Does there exist a continuum of mutually non-equivalent continuous surjections $[0,1] \rightarrow[0,1]$?

5. A dichotomy for extensible Banach spaces

Extensible Banach spaces were introduced in [65] after the observation in Lemma 3.1 that if X is Y-automorphic then all operators $Y \rightarrow X$ can be extended to X.

Definition. A Banach space X is said to be extensible if for every subspace $Y \subset X$ every operator $\tau: Y \rightarrow X$ can be extended to an operator $T: X \rightarrow X$. If there is a $\lambda>0$ such that some extension exists verifying $\|T\| \leqslant \lambda\|\tau\|$ then we will say that X is λ-extensible. The space X is said to be uniformly extensible if it is λ-extensible for some λ (see also [64]).

Automorphic spaces are extensible [65, Th. 3.2]. The converse does not hold since ℓ_{∞} (injective spaces in general) is extensible and not automorphic. It was proved in [40] (resp. [65]) that the spaces $c_{0}(\Gamma)$ are extensible (resp. automorphic). Obviously, each subspace of a Hilbert space is extensible, while a subspace of c_{0} is extensible if and only if it is $c_{0}[56,65]$.

Lemma 5.1. (See [19,65].) A Banach space X containing an uncomplemented and a complemented copy of a space Y cannot be extensible.

Proof. Let $i: Y \rightarrow X$ be an uncomplemented position and let $j: Y \rightarrow X$ be a complemented one with projection $P: X \rightarrow Y$; i.e., $P j=i d_{Y}$. If X were extensible, there would be an extension $J: X \rightarrow X$ of j through i, i.e., $J i=j$. Therefore $P J$ would be a projection through i since $P J i=P j=i d_{Y}$.

Extensible spaces do enjoy very few stability properties:

Proposition 5.2.

(1) A complemented subspace of an extensible space is extensible.
(2) The product of extensible spaces is not necessarily extensible; hence the class of extensible spaces does not have the 3-space property.
(3) The quotient of two extensible spaces is not necessarily extensible.

Proof. Assertion (1) is clear. The example $c_{0} \oplus \ell_{\infty}$ proves (2); which moreover exhibits a separably injective non-extensible space. Even the product of incomparable extensible spaces need not be extensible, as the space $c_{0} \oplus \ell_{2}$ shows: since $\ell_{\infty}\left(\ell_{2}^{n}\right)$ contains complemented copies of ℓ_{2} (an explicit proof can be seen in [21]), there exists an operator $\ell_{\infty}\left(\ell_{2}^{n}\right) \rightarrow \ell_{2}$ which is not 2 -summing and cannot therefore be extended to ℓ_{∞}. Since all operators $X \rightarrow \ell_{2}$ are 2-summing if and only if all operators $X^{* *} \rightarrow \ell_{2}$ are 2 -summing, there necessarily exists an operator $c_{0}\left(\ell_{2}^{n}\right) \rightarrow \ell_{2}$ that is not 2 -summing and cannot therefore be extended to an operator $c_{0} \rightarrow \ell_{2}$.

We prove now (3): recall that calling $\mathbb{N}^{*}=\beta \mathbb{N}-\mathbb{N}$ one has the identification $C\left(\mathbb{N}^{*}\right)=\ell_{\infty} / c_{0}$.
Proposition 5.3. Under the continuum hypothesis (in short $\mathbf{C H}$), the space $C\left(\mathbb{N}^{*}\right)$ is not extensible.

Proof. It is enough if we prove that under $\mathbf{C H}, C\left(\mathbb{N}^{*}\right)$ contains an uncomplemented subspace isometric to $C\left(\mathbb{N}^{*}\right)$. We refine Amir's proof [5] that $C\left(\mathbb{N}^{*}\right)$ is not complemented in $\ell_{\infty}\left(2^{\mathbb{N}^{*}}\right)$ to show that there exists a Banach space X of density character \mathfrak{c} that contains an uncomplemented copy of $C\left(\mathbb{N}^{*}\right)$. Following Amir's paper [5], let Σ be a family of subsets of \mathbb{N}^{*} that contains a basis for the topology of \mathbb{N}^{*}, and which is closed under complementation, finite union and the closure operation. We can consider the Banach space $B(\Sigma)$, sitting as $C\left(\mathbb{N}^{*}\right) \subset B(\Sigma) \subset \ell_{\infty}\left(\mathbb{N}^{*}\right)$ defined as the subspace of $\ell_{\infty}\left(\mathbb{N}^{*}\right)$ generated by the characteristic functions of the elements of Σ. Let also D_{Σ} be the union of the boundaries of all open sets living in Σ. By [5, Cor. 1], if $C\left(\mathbb{N}^{*}\right)$, is complemented in $B(\Sigma)$, then D_{Σ} is nowhere dense in \mathbb{N}^{*}. We indicate now how to construct such a family Σ of cardinality \mathfrak{c} and with D_{Σ} dense in \mathbb{N}^{*}, so that the space $X=B(\Sigma)$ is as stated in the theorem. For every clopen subset A of \mathbb{N}^{*}, choose $U_{A} \subset A$ be an open not closed set. Consider then Σ the least family of subsets of \mathbb{N}^{*} that contains all clopen A and all open sets U_{A} and that is closed under complementation, finite union and the closure operation.

Now, it is a consequence of Parovičenko's theorem [12] that \mathbb{N}^{*} can be mapped onto every compact space of weight at most \aleph_{1}. Therefore, every Banach space of density character at most \aleph_{1} is isometric to a subspace of $C\left(\mathbb{N}^{*}\right)$. Applying this to the space X constructed above yields the result.

This example also show that ultrapowers need not be extensible: Bankston [10] proved under $\mathbf{C H}$ that if \mathcal{U} is a free ultrafilter on the integers and \mathbf{D} denotes the Cantor set then the ultrapower $\mathbf{D}_{\mathcal{U}}$ is homeomorphic to \mathbb{N}^{*}. Therefore, under $\mathbf{C H}$, one has $C[0,1]_{\mathcal{U}}=C\left(\mathbb{N}^{*}\right)$ which proves the claim. In [8] it is proved that infinite dimensional ultrapowers $X_{\mathcal{U}}$ are never injective. We conjecture they are never extensible (apart from Hilbert).

Two problems about extensible spaces were posed in [65] and remain unsolved.
Extensible space problem. Do there exist separable extensible spaces different from c_{0} and ℓ_{2} ?

Uniformity problem. Is every extensible space uniformly extensible?
The extensible space problem can be considered as an approach to the automorphic space problem, in combination with the remaining question: Must a separable extensible space be automorphic? Let us present a partial positive solution to the uniformity problem.

Lemma 5.4. Let X be an extensible Banach space such that $X=Y_{1} \oplus Z_{1}$ and that for each n one has $Z_{n}=Y_{n+1} \oplus Z_{n+1}$. Then all except a finite number of the Y_{n} must be uniformly extensible.

Proof. In the proof we use ideas of [19, Th. 1.1] and [65, Lem. 4.1]. Observe that there is a simple construction of a sequence of bounded projections $P_{n}: X \rightarrow \operatorname{lin}\left(Y_{i}\right)_{1}^{n}$ verifying ker $P_{n} \supset$ $\operatorname{lin}\left(Y_{i}\right)_{n+1}^{\infty}$, because $X=Y_{1} \oplus \cdots \oplus Y_{n} \oplus Z_{n},\left(Y_{i}\right)_{n+1}^{\infty} \subset Z_{n}$.

Assume now that each Y_{n} is not uniformly extensible. Then there are subspaces E_{n} of Y_{n} and operators $\tau_{n}: E_{n} \rightarrow Y_{n}$ such that $\left\|\tau_{n}\right\|=1$ for each n, and the norm of every extension of τ_{n} to an operator $Y_{n} \rightarrow Y_{n}$ is greater than $2^{n}\left(\left\|P_{n}\right\|+\left\|P_{n-1}\right\|\right) n$. Define the operator $\tau: \operatorname{lin}\left(E_{n}\right)_{1}^{\infty} \rightarrow X$ by

$$
\tau\left(\sum x_{n}\right)=\sum 2^{-n} \tau_{n} x_{n}, \quad x_{n} \in E_{n} .
$$

By construction, $\|\tau\| \leqslant 1$. Suppose that there exists an extension $T: X \rightarrow X$ of τ. Put $S_{n}=$ $\left.2^{n}\left(P_{n}-P_{n-1}\right) T\right|_{Y_{n}}$. Then S_{n} is an extension of τ_{n} to an operator $Y_{n} \rightarrow Y_{n}$ and

$$
\left\|S_{n}\right\| \leqslant 2^{n}\left(\left\|P_{n}\right\|+\left\|P_{n-1}\right\|\right)\|T\| ;
$$

which is impossible for large n.
Theorem 5.5. An extensible space isomorphic to its square is uniformly extensible.
We conjecture that a separable extensible space that is isomorphic to its square is automorphic. The notion of uniformly extensible space can be localized as follows:

Definition. (See [65].) A Banach space X is said to be uniformly finitely extensible (an UFO, in short) if there exists a $\lambda \geqslant 1$ such that for every finite dimensional subspace $E \subset X$ each linear operator $\tau: E \rightarrow X$ can be extended to a linear operator $T: X \rightarrow X$ with $\|T\| \leqslant \lambda\|\tau\|$.

The two following results were proved in [19, Th. 1.1] and [65, Prop. 4.2] and are essential for our purposes:

Lemma 5.6.

(1) Every extensible space is an UFO.
(2) Every μ-uniformly finitely extensible space that is λ-complemented in its bidual is $\lambda \mu$ extensible.

Every \mathcal{L}_{∞}-space is an UFO [53, p. 334], so an UFO does not have to be extensible. Let us recall that a subspace Y of a Banach space X is locally complemented if there exists a constant $\lambda \geqslant 1$ such that whenever F is a finite dimensional subspace of X and $\varepsilon>0$, there is a linear
operator $S: F \rightarrow Y$ with $S y=y$ for all $y \in F \cap Y$ and $\|S\| \leqslant \lambda+\varepsilon$. The principle of local reflexivity [53, Th. 3.1] tells us, in particular, that any Banach space is locally complemented in its bidual.

Lemma 5.7. A locally complemented subspace of an UFO is an UFO.
Proof. Let E be a finite dimensional subspace of Y, a locally complemented subspace of an UFO X. Let $\tau: E \rightarrow Y$ be an operator and let $T: X \rightarrow X$ be an extension of it. By the definition of locally complemented subspace, for the subspace $F=\tau(E)$ there exists an operator $S: F \rightarrow$ Y such that $\left.S\right|_{F \cap Y}=i d_{F \cap Y}$ and $\|S\| \leqslant \lambda+\varepsilon$. Then $\left.S T\right|_{Y}$ is an extension for τ since for $e \in E$ one has $S T(e)=S \tau e=\tau e$ and $\|S T\| \leqslant(\lambda+\varepsilon)\|T\|$.

Proposition 5.8. If X is an UFO and \mathcal{U} is an ultrafilter on a set I then the ultrapower $X_{\mathcal{U}}$ is an UFO.

Proof. Let λ be the constant with which X is an UFO and let $\varepsilon>0$. Let E be a subspace of dimension N of an ultrapower $X_{\mathcal{U}}$ of X, and let $\phi: E \rightarrow X_{\mathcal{U}}$ be an operator. Let $\eta_{1}, \ldots, \eta_{N}$ be a basis for E and let $\nu_{k}=\phi \eta_{k}$ be with $\eta_{k}=\left[x_{i}^{k}\right]$ and $\nu_{k}=\left[y_{i}^{k}\right]$. It is clear that there is some $B \in \mathcal{U}$ such that for all $i \in B$ the space $\left[x_{i}^{k}\right]_{k}$ is of dimension N.

Let $\left(\lambda_{1}, \ldots, \lambda_{n}(\varepsilon)\right)$ be a δ-net for the unit ball of E. For a fixed λ_{l} one has

$$
\lim _{\mathcal{U}}\left\|\sum_{k} \lambda_{l}(k) y_{i}^{k}\right\| \leqslant\|\phi\| \lim _{\mathcal{U}}\left\|\sum_{k} \lambda_{l}(k) x_{i}^{k}\right\|
$$

which implies that there must be a set $A_{l} \in \mathcal{U}$ so that

$$
\left\|\sum_{k} \lambda_{l}(k) y_{i}^{k}\right\| \leqslant(1+\varepsilon)\|\phi\|\left\|\sum_{k} \lambda_{l}(k) x_{i}^{k}\right\|
$$

for all $i \in A_{l}$. Let $A=B \cap \bigcap_{1 \leqslant l \leqslant n(\varepsilon)} A_{l} \in \mathcal{U}$. Thus, for $j \in A$ we set $E_{j}=\left[x_{j}^{k}: 1 \leqslant k \leqslant N\right]$ and define an operator $\tau_{j}: E_{j} \rightarrow X$ as $\tau_{j}\left(x_{j}^{k}\right)=y_{j}^{k}$. Given a point $\sum_{k} \lambda(k) x_{j}^{k}$ in the unit ball of E_{j} there is some λ_{l} such that

$$
\begin{aligned}
\left\|\tau_{j}\left(\sum \lambda(k) x_{j}^{k}\right)\right\| & =\left\|\sum \lambda(k) y_{j}^{k}\right\| \\
& \leqslant\left\|\sum\left(\lambda-\lambda_{l}(k)\right) y_{j}^{k}\right\|+\left\|\sum \lambda_{l}(k) y_{j}^{k}\right\| \\
& \leqslant \delta \operatorname{dist}\left(E, \ell_{1}^{N}\right)+(1+\varepsilon)\|\phi\|
\end{aligned}
$$

This yields $\left\|\tau_{j}\right\| \leqslant(1+2 \varepsilon)\|\phi\|$, with the proper choice $\delta \leqslant \varepsilon \operatorname{dist}\left(E, \ell_{1}^{N}\right)$. Let $T_{j}: X \rightarrow X$ be an extension of τ_{j} with norm at most $\lambda(1+2 \varepsilon)\|\phi\|$. Let $T: X_{\mathcal{U}} \rightarrow X_{\mathcal{U}}$ be the ultrapower operator $T\left[x_{i}\right]=\left[R_{i} x_{i}\right]$ with $R_{i}=T_{i}$ if $i \in A$ and $R_{i}=0$ if $i \notin A$. One has $T \eta_{k}=T\left[x_{i}^{k}\right]=\left[R_{i} x_{i}^{k}\right]$; thus, when $i \in A$ we get $R_{i} x_{i}^{k}=T_{i} x_{i}^{k}=\tau_{i} x_{i}^{k} y_{i}^{k}$, hence $T_{\mid E}=\phi$.

Corollary 5.9. If X is an UFO then $X^{* *}$ is uniformly extensible.

Proof. If X is an UFO, the ultrapower $X_{\mathcal{U}}$ is UFO. Since $X^{* *}$ is a complemented subspace of some ultrapower of X, it must also be an $U F O$, hence uniformly extensible.

Theorem 5.10. An UFO Banach space X is either an \mathcal{L}_{∞}-space or a weak type 2 near-Hilbert space with the Maurey projection property.

Proof. Assume X is an UFO containing ℓ_{1}^{n} uniformly. The ultrapower $X_{\mathcal{U}}$ via a free ultrafilter on \mathbb{N} is an UFO and contains $\left(\ell_{1}^{n}\right)_{\mathcal{U}}$, which in turn contains ℓ_{1}. So, its bidual $E=\left(X_{\mathcal{U}}\right)^{* *}$ is extensible (Lemma 5.7 and Proposition 5.8) and contains ℓ_{1}. We show below that an extensible space containing ℓ_{1} must be separably injective, hence an \mathcal{L}_{∞}-space. Therefore $X_{\mathcal{U}}$ must also be an \mathcal{L}_{∞}-space, as well as X.

Thus, let Z be an extensible space containing ℓ_{1}. Let B be a separable space and let i : $A \rightarrow B$ be a subspace. Pick an exact sequence $0 \rightarrow K \xrightarrow{k} \ell_{1} \xrightarrow{q} B / A \rightarrow 0$ and then form the commutative push-out diagram

Let $j: \ell_{1} \rightarrow Z$ be an embedding, and let $\tau: A \rightarrow Z$ be an operator. Let $\widehat{\tau \phi}: Z \rightarrow Z$ be an extension of $\tau \phi$ through $j k$. Since $\widehat{\tau \phi} j k=\tau \phi$, by the universal property of the push-out, there exists an operator $\nu: B \rightarrow Z$ making commutative the diagram

which in particular means $v i=\tau$.
If X does not contain ℓ_{1}^{n} uniformly then it contains ℓ_{2}^{n} uniformly complemented [72]. The ultrapower $X_{\mathcal{U}}$ contains ℓ_{2} complemented; hence, its bidual $\left(X_{\mathcal{U}}\right)^{* *}$ also contains ℓ_{2} via some embedding $i: \ell_{2} \rightarrow\left(X_{\mathcal{U}}\right)^{* *}$ and complemented via a projection p. Let $\delta: X \rightarrow\left(X_{\mathcal{U}}\right)^{* *}$ be the canonical embedding. The following diagram

shows that every operator $\phi: E \rightarrow \ell_{2}$ from a subspace $j: E \rightarrow X$ into a Hilbert space can be extended to X. A theorem of Milman and Pisier [61, Th. 10] establishes that X must have weak type 2 (see comments below). By the Maurey-Pisier theorem [60], X contains uniformly $\ell_{p(X)}^{n}$ and $\ell_{q(X)}^{n}$. So, if $p(X)<2$ then, by [11], X contains a sequence of subspaces E_{n}, uniformly isomorphic to ℓ_{2}^{n}, for which $\lambda\left(E_{n}, X\right) \rightarrow \infty$ as $n \rightarrow \infty$. So, by [65, Th. 4.4], X is non-UFO unless $p(X)=2$. Now let $q(X)>2$. If X has exactly cotype $q(X)$, then there exist uniformly complemented copies of $\ell_{q(X)}^{n}$ in X; otherwise there exist such copies, $O\left(n^{\varepsilon}\right)$-complemented in X, where $\varepsilon>0$ is arbitrary. By Rosenthal's theorem [76] (see also Lemma 6.11 below), for $q>2, \ell_{q}$ contains a sequence of subspaces E_{n} for which $\lambda\left(E_{n}, \ell_{q}\right) \geqslant 2^{-1} n^{\frac{q-2}{2 q}}$. So, we can apply [65, Th. 4.4] once more.

To show that X has Maurey projection property observe that since X is UFO there is a uniform constant C so that all subspaces ℓ_{2}^{n} are C-complemented (otherwise there would be a sequence of ℓ_{2}^{n} with n increasing not uniformly complemented, and X could not be UFO). So $\lambda(E, X) \leqslant$ $C d_{E}$. Passing to the limit, the same occurs to infinite dimensional E.

Corollary 5.11. An UFO complemented in its bidual is either injective or near-Hilbert.
Corollary 5.12. A separable Banach space containing ℓ_{1} cannot be extensible.
Proof. An extensible space containing ℓ_{1} must be separably injective; but Zippin showed [85] that c_{0} is the only separable separably injective space.

Remarks. Let us say that a couple (Y, X) of Banach spaces is an UFO pair if there exists $C \geqslant 1$ such that for every finite dimensional subspace E of Y and every linear operator $\tau: E \rightarrow X$, there exists a linear extension $T: Y \rightarrow X$ with $\|T\| \leqslant C\|\tau\|$. This definition has been modelled upon $[19,65]$. If (Y, X) is an UFO pair and X^{\prime} is locally complemented subspace of $X, X^{\prime} \supset Y$, then $\left(Y, X^{\prime}\right)$ is an UFO pair. The proof of this statement repeats the proof of Lemma 5.7. In [19, Cor. 1.2] the following assertion was proved for a dual space Y. A few variations in the proof yield that if a Banach space Y^{\prime} is finitely representable in a Banach space Y and X is a complemented subspace of its dual. If (Y, X) is an UFO pair then $\left(Y^{\prime}, X\right)$ is an UFO pair too. Moreover, if every operator from a subspace of Y to X extends to an operator from the whole Y to X, then every operator from a subspace of Y^{\prime} to X extends to an operator from the whole Y^{\prime} to X. The spaces Y for which $\left(Y, \ell_{p}\right)$ is an UFO pair were investigated in [19] under the name M_{p} spaces, and Maurey's extension theorem (see e.g. [86]) can be reformulated in this language as: Each type 2 space is M_{2}. It is an open problem whether the converse also holds. A partial solution for this problem is precisely the already mentioned Milman-Pisier theorem [61, Th. 10]: Each M_{2} space has weak type 2 . The M_{2} spaces are closely connected with the spaces possessing the Maurey projection property. We do not know whether these properties are equivalent or whether the Maurey projection property is equivalent to type 2.

6. Extensible spaces with additional properties

In Theorem 5.10 we have shown that an UFO X must be either an \mathcal{L}_{∞}-space or a weak type 2 near-Hilbert space with the Maurey projection property. Thus, the automorphic space problem has been transformed in two problems:

- Is a separable automorphic \mathcal{L}_{∞} space isomorphic to c_{0} ?
- Is a separable automorphic near-Hilbert space with Maurey projection property isomorphic to ℓ_{2} ?

Let us explore both possibilities.

6.1. On automorphic \mathcal{L}_{∞} spaces

Which known \mathcal{L}_{∞}-spaces could be automorphic? After the results of [9], amongst $C(K)$ spaces we can only still consider very large $C(K)$ spaces. Then, an automorphic space containing ℓ_{1} must be separably injective, hence it cannot be separable, since Zippin's theorem asserts that c_{0} is the only separable separably injective space. This excludes all Bourgain-Pisier exotic \mathcal{L}_{∞}-spaces constructed in [15]. If the space contains ℓ_{∞} then it must enjoy the property that every separable subspace is contained in a copy of ℓ_{∞} contained in the space, hence it must be universally separably injective, in the language of [8]. \mathcal{L}_{∞}-spaces with unconditional basis must also be excluded by part (3) of Theorem 7.1. One moreover has

Proposition 6.1. Let X be a separable automorphic \mathcal{L}_{∞}-space different from c_{0}. Then X cannot be isomorphic to its square, every copy of X inside X is complemented and if some infinite codimensional copy of X inside X exists then $X \simeq X \oplus c_{0}$.

Proof. Recall that every separable \mathcal{L}_{∞}-space has a quotient isomorphic to c_{0}. So, [24, Prop. 5.2] shows that if X is isomorphic to its square, c_{0} must contain a complemented copy of X, so $X \simeq c_{0}$. The second item is valid for any Banach space: if $Y \subset X$ is an uncomplemented copy of X then the isomorphism $\tau: Y \rightarrow X$ cannot be extended to a bounded operator $T: X \rightarrow X$. So, X is not extensible, hence is not automorphic. Set $X=X \oplus Y$; the existence of the exact sequences $0 \rightarrow E \rightarrow X \rightarrow c_{0} \rightarrow 0$ and $0 \rightarrow E \rightarrow X \oplus Y \rightarrow c_{0} \oplus Y \rightarrow 0$ yields $c_{0} \simeq c_{0} \oplus Y$, hence $Y \simeq c_{0}$. In particular, X must contain c_{0}.

6.2. On near-Hilbert extensible spaces

Besides being automorphic, Hilbert spaces enjoy two additional properties: the dual space is also automorphic, and all their subspaces are automorphic. Let us show that an UFO with any of these properties is very close to be a Hilbert space. One has

Corollary 6.2. If X is a Banach space such that both X and X^{*} are UFO then it is a weak Hilbert space.

Proof. Since \mathcal{L}_{1}-spaces cannot be UFO, X must be a weak type 2 space, as well as X^{*}. So both have weak type 2 and weak cotype 2 i.e., are weak Hilbert spaces [73].

Definition. A Banach space is said to be hereditarily UFO (an HUFO, in short) if each of its subspaces is an UFO.

Theorem 6.3. Every hereditarily UFO space is asymptotically Hilbertian.
Proof. For every n, X contains subspaces $F_{n}^{k}, k=1,2, \ldots$, of the same dimension for which

$$
\rho\left(S_{F_{n}^{k}}, F_{n}^{l}\right)>1-\varepsilon \quad \text { for } k<l, \text { and } d_{F_{n}^{k}}>n .
$$

By a compactness argument, among them there are, for every $\varepsilon>0$, two $(1+\varepsilon)$-isometric. Denote them by E_{n} and E_{n}^{\prime}. Thus, we can construct a sequence of subspaces which satisfy conditions of the following Lemma 6.4, and therefore X contains a non-UFO subspace.

Lemma 6.4. Let $a>0$ and $b \geqslant 1$. Let a Banach space X contain a sequence of finite dimensional subspaces $E_{n}, E_{n}^{\prime}, n=1,2, \ldots$, such that:
(i) $\rho\left(S_{E_{n}}, E_{n}^{\prime}\right)>a$ for each n;
(ii) $d_{E_{n}} \rightarrow \infty$ as $n \rightarrow \infty$;
(iii) $\operatorname{dist}\left(E_{n}, E_{n}^{\prime}\right) \leqslant b$ for each n.

Then X contains a non-UFO subspace.
Proof. Let $J_{n}: E_{n} \rightarrow E_{n}^{\prime}$ be the isomorphisms given by the condition (iii). We formulate the fist step as a sublemma:

Sublemma 6.4.1. Let $\left(E_{n}, E_{n}^{\prime}\right)$ be a sequence of subspaces verifying (i), (ii), (iii) from Lemma 6.4. Then for every positive integer k and every finite codimensional subspace Z of X there is $n=n(k)$ and subspaces $F \subset E_{n} \cap Z$ and $F^{\prime} \subset E_{n}^{\prime} \cap Z$ such that $d_{F}>k$ and $\operatorname{dist}\left(F, F^{\prime}\right) \leqslant b$.

Indeed, by (ii) one has $d_{E_{n}} \rightarrow \infty$, hence

$$
d_{E_{n} \cap Z} \rightarrow \infty \quad \text { as } n \rightarrow \infty,
$$

moreover, $d_{J_{n}\left(E_{n} \cap Z\right)} \rightarrow \infty$ and $d_{J_{n}\left(E_{n} \cap Z\right) \cap Z} \rightarrow \infty$. Thus, for sufficiently large n, the subspaces

$$
F^{\prime}=J_{n}\left(E_{n} \cap Z\right) \cap Z \quad \text { and } \quad F=J_{n}^{-1}\left(J_{n}\left(E_{n} \cap Z\right) \cap Z\right)
$$

satisfy the conditions of the sublemma.
Following [65, Lem. 4.1] it can be shown that given subspaces (E_{n}, E_{n}^{\prime}) verifying (i)-(iii) one can construct subspaces F_{k}, F_{k}^{\prime} of $X, k=1,2, \ldots$ in such a way that
(iv) $F_{1}, F_{1}^{\prime}, \ldots, F_{k}, F_{k}^{\prime}, \ldots$ form a finite dimensional Schauder decomposition in its closed linear span;
(v) $\operatorname{dim} F_{k}=\operatorname{dim} F_{k}^{\prime}$;
(vi) $d_{F_{k}} \rightarrow \infty$ as $k \rightarrow \infty, \operatorname{dist}\left(F_{k}, F_{k}^{\prime}\right) \leqslant b$.

Indeed, let $\varepsilon>0$. Set $F_{1}=E_{1}$ and $F_{1}^{\prime}=E_{1}^{\prime}$. Take Φ_{1} a finite subset of the unit sphere $S_{X^{*}}$ which $(1-\varepsilon)$-norms $F_{1}+F_{1}^{\prime}$ and let $\Phi_{1}^{\top} \subset X$ be its (finite codimensional) annihilator. By Sublemma 6.4.1, there exists a positive integer n_{2} and subspaces F_{2} of $E_{n_{2}} \cap \Phi_{1}^{\top}$ and F_{2}^{\prime} of $E_{n_{2}}^{\prime} \cap \Phi_{1}^{\top}$ such that $d_{F_{2}}>2$ and $\operatorname{dist}\left(F_{2}, F_{2}^{\prime}\right) \leqslant b$. Take Φ_{2} a finite subset of $S_{X^{*}}$ which $(1-\varepsilon)$ norms $F_{1} \oplus F_{1}^{\prime}+F_{2}+F_{2}^{\prime}$ and continue inductively.

Let us now recall a result of [$29, \mathrm{Th} .6 .7$] as sublemma.
Sublemma 6.4.2. There is a function $\lambda \rightarrow f(\lambda)$ so that if E is a Banach space with $\operatorname{dim} E=n$ such that for every $F \subset E$ there is a projection of norm $\leqslant \lambda$ from E onto F then $d_{E} \leqslant f(\lambda)$. One can take $f(\lambda)=c \lambda^{32}$ for a suitable constant c.

Using this Sublemma 6.4.2, we can obtain subspaces G_{k} in F_{k} for which

$$
\lambda\left(G_{k}, F_{k}\right) \rightarrow \infty .
$$

Denote by Y the closed linear span of the subspaces $G_{k}, F_{k}^{\prime}, k=1,2, \ldots$ Then G_{k} are uniformly complemented in Y. On the other hand, the F_{k}^{\prime} contain subspaces G_{k}^{\prime}, uniformly isomorphic to G_{k}, for which

$$
\lambda\left(G_{k}^{\prime}, Y\right) \geqslant \lambda\left(G_{k}^{\prime}, F_{k}^{\prime}\right) \rightarrow \infty
$$

By [65, Th. 4.4], this implies that Y is not UFO.
One could also consider the notion of hereditarily extensible space: a Banach space in which every subspace is extensible. It is clear that every hereditarily extensible space is HUFO, and Theorem 6.3 implies that the converse also holds: HUFO are asymptotically Hilbert, hence reflexive (see [74, p. 220]), and reflexive UFO are extensible. Therefore

Corollary 6.5. Hereditarily UFO and hereditarily extensible spaces coincide.
Also, the uniformity problem has a positive answer for HUFO: since hereditarily extensible spaces are reflexive, Lemma 5.6(2) yields:

Corollary 6.6. If a Banach space is hereditarily extensible there exists a $\lambda>0$ such that every subspace is λ-extensible.

All this suggests whether every HUFO space must be isomorphic to a Hilbert space. The converse of Theorem 6.3, however, does not hold:

Example 6.7. There exist weak Hilbert spaces that are not hereditarily UFO.
The example is Tsirelson's 2-convexified space \mathcal{T}_{2}, which can be obtained as follows. Define inductively a sequence of norms $\left\|\|_{i}\right.$ on c_{00} as follows $\| x\left\|_{0}=\right\| x \|_{c_{0}}$ and for $i>0$

$$
\|x\|_{i+1}=\max \left(\|x\|_{i}, \frac{1}{2} \sup \left\{\sqrt{\sum_{k=1}^{n}\left\|N_{k} x\right\|_{i}^{2}}: N_{k} \in \mathcal{A} ; N_{1}<\cdots<N_{n}, n=1,2, \ldots\right\}\right) .
$$

It is easy to see that $\|x\|_{i} \leqslant\|x\|_{\ell_{2}}$ for every i and thus $\lim _{i}\|x\|_{i}=:\|x\|$ exists for every $x \in c_{00}$. The completion of c_{00} with respect to the limiting norm is denoted by \mathcal{T}_{2}. The space \mathcal{T}_{2} is a weak Hilbert space by [74, p. 205]. To show it contains a non-UFO subspace, we state a result presented without proof in [20, p. 117]; it can be proved in a similar way as for the usual Tsirelson's space.

Lemma 6.8. Denote by $X_{1}\left(X_{2}\right)$ the subspace of \mathcal{T}_{2} spanned by odd (resp. even) unit basic vectors e_{k} and by $S: X_{1} \rightarrow X_{2}$ the shift operator: $S e_{k}=e_{k+1}$. Then S is an isomorphism from X_{1} onto X_{2}.

Now, since the unit vectors form an unconditional basis of \mathcal{I}_{2}, the existence of a non-UFO subspace follows from the previous lemma and the following

Proposition 6.9. Assume that X contains a subspace of the form $Y \oplus Y^{\prime}, Y \simeq Y^{\prime}$ for some $Y \nsucceq \ell_{2}$. Then X contains a non-UFO subspace.

Proof. Since $Y \not \not \ell_{2}$, it contains a sequence of finite dimensional subspaces E_{n} verifying condition (ii) of Lemma 6.4 [50, Section 7]. Since $Y \simeq Y^{\prime}$, the subspace Y^{\prime} contains a sequence of subspaces E_{n}^{\prime}, uniformly isomorphic to E_{n}. The condition $X \supset Y \oplus Y^{\prime}$ includes the demand $\rho\left(S_{Y}, Y^{\prime}\right)>0$, hence $\inf _{n} \rho\left(S_{E_{n}}, E_{n}^{\prime}\right)>0$. So, by Lemma 6.4, X contains a non-UFO subspace.

We do not know if the space \mathcal{T}_{2} is itself an UFO (in which case it would be the first reflexive extensible non-Hilbert space). In fact we do not know if a weak Hilbert space must be UFO. We show that asymptotically Hilbertian spaces need not be UFO.

Example 6.10. Examples of asymptotically Hilbertian non-UFO spaces.
They are provided by Johnson's spaces (see e.g. [55, p. 112]) of the form

$$
\begin{equation*}
Z=\ell_{2}\left(\ell_{p_{n}}^{k_{n}}\right) \quad \text { with } p_{n} \downarrow 2 \text { and } k_{n} \uparrow \infty \tag{8}
\end{equation*}
$$

under some additional conditions. By the Gurariĭ-Kadec-Macaev formula [37], the space Z is not isomorphic to a Hilbert space if and only if

$$
\begin{equation*}
\sup _{n} k_{n}^{\frac{\left|p_{n}-2\right|}{2 p_{n}}} \sup _{n} d_{\ell_{p n}^{k_{n}}}=\infty \tag{9}
\end{equation*}
$$

Let us show that the space Z of the form (8) with the condition (9) is non-UFO. Observe that Z contains uniformly complemented subspaces $\ell_{p_{n}}^{k_{n}}$ satisfying the condition (9) and, by Dvoretzky's theorem, uniformly Euclidean subspaces too. So, the claim follows from [65, Th. 4.4] once proved that the projection constants tend to infinity:

Lemma 6.11. The space $E=\left(\ell_{p}^{n} \oplus \ell_{2}^{n}\right)_{\infty}, p>2$, contains a subspace F which is isometric to ℓ_{p}^{n} and such that

$$
\begin{equation*}
\lambda(F, E) \geqslant 2^{-1} n^{\frac{p-2}{2 p}} \tag{10}
\end{equation*}
$$

Proof. We use an idea of [76, Lem. 2A]. Take standard bases $\left(e_{i}\right)_{1}^{n}$ and $\left(h_{i}\right)_{1}^{n}$ of ℓ_{p}^{n} and ℓ_{2}^{n}, and put

$$
f_{i}=e_{i}+n^{-\frac{p-2}{2 p}} h_{i}, \quad i=1, \ldots, n
$$

By the Hölder inequality, for all scalars $\left(a_{i}\right)$

$$
\sum_{1}^{n}\left|a_{i}\right|^{2} \leqslant\left(\sum_{1}^{n}\left|a_{i}\right|^{2 \frac{p}{2}}\right)^{\frac{2}{p}} n^{1-\frac{2}{p}}
$$

so

$$
\left\|\sum_{1}^{n} a_{i} h_{i}\right\| \leqslant\left\|\sum_{1}^{n} a_{i} e_{i}\right\| n^{\frac{p-2}{2 p}} .
$$

Hence, the subspace $F=\operatorname{lin}\left(f_{i}\right)_{1}^{n}$ is isometric to ℓ_{p}^{n}.
There is a common ingredient in Example 6.10 and the second part of Theorem 5.10 that guarantees the non-UFO character.

Definition. We say that a Banach space X has the property \mathcal{P} if it contains a sequence of uniformly complemented subspaces E_{n}, uniformly isomorphic to $\ell_{p_{n}}^{k_{n}}$, for which $\left(p_{n}\right)$ is bounded and verifying the condition (9).

Proposition 6.12. A Banach space X with the property \mathcal{P} is non-UFO.
Proof. Let us consider two possibilities.
(i). There exists a subsequence $\left(p_{n_{k}}\right) \subset\left(p_{n}\right)$ with $p_{n_{k}}>2$ for every k and verifying the condition (9). Then we repeat the proof of Proposition 6.10.
(ii). There exists a subsequence $\left(p_{n_{k}}\right) \subset\left(p_{n}\right)$ with $p_{n_{k}}<2$ and verifying the condition (9). Without loss of generality one may suppose $1<a<p_{n}<2$ for some a and each n. By [29, Ex. 3.1], there exists a constant $c \in(0,1)$ so that every $\ell_{p}^{k}, 1<p<2$, contains a subspace E of dimension $c k$ with $d_{E} \leqslant 2$. Let p^{\prime} be such that $1 / p+1 / p^{\prime}=1$. If $P: \ell_{p}^{k} \rightarrow E_{k}$ is a projection then $\ell_{p^{\prime}}^{k}$ contains a subspace $F_{k}=P^{*}\left(\ell_{p^{\prime}}^{k}\right)$ with $d_{F} \leqslant 2\|P\|$. Moreover, by [11, p. 182], there exists an universal constant b (connected with the Khintchine inequality) so that for every subspace F of $\ell_{p^{\prime}}^{k}$

$$
d_{F} \geqslant b k^{1 / 2}(\operatorname{dim} F)^{-1 / p^{\prime}}
$$

Hence,

$$
\|P\| \geqslant \frac{1}{2} b k^{1 / 2}(c k)^{-1 / p^{\prime}} \frac{b}{2} c^{-1 / p^{\prime}} k^{1 / 2-1 / p^{\prime}} \geqslant \frac{b}{2 c} k^{\frac{2-p}{2 p}}
$$

Thus, our hypotheses yield that $\ell_{p_{n}}^{k_{n}}$ contain subspaces $E_{n}, \operatorname{dim} E_{n}=c k_{n}$ with $d_{E_{n}} \leqslant 2$ and projection constants $\lambda\left(E_{n}, \ell_{p_{n}}^{k_{n}}\right) \rightarrow \infty$ as $n \rightarrow \infty$. On the other hand, since $1<a<p_{n}<2$, X contains uniformly complemented $\ell_{2}^{c k_{n}}$. The result [65, Th. 4.4] ensures that X is not UFO.

Observe that a Banach space with the property (H) cannot contain a sequence of subspaces E_{n}, uniformly isomorphic to $\ell_{p_{n}}^{k_{n}}$ with the condition (9). In particular, spaces with property \mathcal{P} cannot have property (H) or be weak Hilbert spaces. Analogously, spaces with the upper (resp. lower) property (H) cannot contain a sequence of subspaces E_{n}, uniformly isomorphic to $\ell_{p_{n}}^{k_{n}}$, with the condition (9) and $p_{n}>2$ (resp. $p_{n}<2$).

7. Automorphic spaces with lattice structure

Further partial solutions to the automorphic space problem can be obtained for Banach spaces with an additional lattice or unconditional structure. Recall that Theorem 5.10 establishes that an UFO is either an \mathcal{L}_{∞}-space or a weak type 2 near-Hilbert space. One moreover has (see below for unexplained notation and definitions):

Theorem 7.1.

(1) An UFO space X with unconditional basis is either lattice isomorphic to c_{0} or a superreflexive weak type 2 near-Hilbert space with Boyd indices $\alpha(X)=\beta(X)=2$.
(2) An UFO Banach lattice X with p.l.u.st. is either an \mathcal{L}_{∞}-lattice or a superreflexive weak type 2 near-Hilbert space.
(3) An UFO ri. function space X on the interval $(0,1)$ is either L_{∞} or a superreflexive type 2 near-Hilbert space.
(4) If X is an ri. function space on the interval $(0,1)$ and both X and X^{*} are UFO then $X=L_{2}$.
(5) An HUFO Köthe function space on $(0,1)$ is lattice isomorphic to L_{2}.

Proof. Assertion (1). Let us show that an \mathcal{L}_{∞} UFO with unconditional basis is lattice isomorphic to c_{0} : let X be an \mathcal{L}_{∞} UFO with unconditional basis $\left(e_{n}\right)$. So, X contains ℓ_{∞}^{n} uniformly. Since the spaces $E_{n}=\left[e_{1}, \ldots, e_{n}\right]$ are uniformly complemented with uniformly bounded unconditional constants, if they are not uniformly isomorphic to the corresponding ℓ_{∞}^{n} it follows from [65, Cor. 4.7] that X cannot be an UFO. But if they are uniformly isomorphic to ℓ_{∞}^{n} the sequence (e_{n}) must be weakly 1 -summable, hence equivalent to the canonical basis of c_{0} (see e.g., [27, Cor. V.7]).

The assertion about Boyd indices can be proved as follows: if X does not contain ℓ_{∞}^{n} then one can apply [79] to obtain that ℓ_{p} is block finite represented in the unconditional basis (e_{i}) of X for every $\alpha(X) \leqslant p \leqslant \beta(X)$ with

$$
\alpha(X)=\underline{\lim }_{n \rightarrow \infty} \frac{\log n}{\log \left\|\sum_{1}^{n} e_{i}\right\|} ; \quad \beta(X)=\varlimsup_{n \rightarrow \infty} \frac{\log n}{\log \left\|\sum_{1}^{n} e_{i}\right\|}
$$

So, by [24, Cor. 4.6], unless $\alpha=\beta=2$ the space X is not extensible.
This result partially responds to a question of Galego [32], who asked whether a space with unconditional basis different from c_{0} or ℓ_{2} can be automorphic. It is quite tempting to conjecture that if X is a reflexive UFO then also X^{*} is an UFO; or, what is the same, if X is a reflexive extensible space then also X^{*} is extensible. It is not hard to see that if X is a reflexive UFO then X^{*} is a co-UFO (with the obvious meaning that operators into finite dimensional quotients can be uniformly lifted). So the question is whether a reflexive UFO must also be a co-UFO. If this were true, by (1) we would get a positive answer to the Lindenstrauss-Rosenthal conjecture for spaces with unconditional basis. It would be enough to show that if X is a reflexive UFO then also $\ell_{2}(X)$ is an UFO. Recall that this is false when X is not reflexive since $\ell_{2}\left(c_{0}\right)$ is not an UFO.

We pass to assertion (2). Denote by $u(F)$ the unconditional basic constant of a finite dimensional space F. Recall (see e.g. [38]) that a Banach space X has the (Dubinsky-Pełczyński-Rosenthal-)local unconditional structure (l.u.st.) provided there is a constant C such that for every finite dimensional subspace E in X there is a finite dimensional subspace $E \subset F \subset X$ such that $u(F) \leqslant C$.

Definition. We will say that X has the projectional local unconditional structure (p.l.u.st.) if, in addition to l.u.st., the estimate $\lambda(F, X) \leqslant C$ holds for the projection constant.

Spaces with unconditional bases as well as \mathcal{L}_{p}-spaces, $1 \leqslant p \leqslant \infty$, have p.l.u.st. [53, p. 328]. Banach lattices have l.u.st. [38, p. 227], but since there are (superreflexive) Banach lattices without the approximation property [55, Ch. 1.g], not every Banach lattice has p.l.u.st. It seems possible to develop for spaces with p.l.u.st. a theory similar to the existing one for spaces with l.u.st. as in [28], but we currently know very few publications about p.l.u.st. One has

Proposition 7.2. An ri. function space X on $(0,1)$ has p.l.u.st.
Proof. It is consequence of the fact that a finite set $\left(x_{i}\right)_{1}^{n}$ of characteristic functions of disjoint sets admits a contractive projection $P: X \rightarrow \operatorname{lin}\left(x_{i}\right)_{1}^{n}[55$, p. 122] (for the definition of rearrangement invariant (r.i.) space see [55, p. 118]).

Let us say that a Banach lattice X is an \mathcal{L}_{∞}-lattice provided there is a constant C such that for every finite dimensional subspace E of X and every $\varepsilon>0$ there exists a finite collection $\left(x_{i}\right)_{1}^{n} \subset X$ of pairwise disjoint elements C-equivalent to the standard basis of ℓ_{∞}^{n}, such that $\rho\left(S_{E}, \operatorname{lin}\left(x_{i}\right)_{1}^{n}\right)<\varepsilon$. We do not know whether this definition has already appeared in the literature, or whether a lattice which is an \mathcal{L}_{∞}-space must also be an \mathcal{L}_{∞}-lattice.

For the proof of (2) recall from [38] that a Banach space X with l.u.st. either contains uniformly ℓ_{∞}^{n}, or uniformly complemented ℓ_{1}^{n} or is superreflexive. There is an analogue for the p.l.u.st., whose proof is implicit in [38, Cor. III.5] and, more explicit, in [58,71], [46, Th. II.1], [79, Prop. 3.1].

Lemma 7.3. Let X be a Banach lattice. Then X contains either a lattice copy of ℓ_{∞}^{n} or uniformly complemented ℓ_{1}^{n} or is superreflexive.

The second alternative (containing ℓ_{1}^{n} uniformly complemented) cannot hold in an UFO.
Proof of (3). For any order continuous Banach lattice X we can denote an associated Banach lattice $X\left(\ell_{2}\right)$ (using the Krivine calculus [55, pp. 40-42]) as the space of sequences $\left(x_{n}\right)$ in X such that $\left(\sum_{1}^{n}\left|x_{k}\right|^{2}\right)^{1 / 2}$ is order bounded (and hence is a convergent sequence) in $X . X\left(\ell_{2}\right)$ becomes an order continuous Banach lattice when normed by $\left\|\left(x_{n}\right)\right\|=\left\|\left(\sum_{1}^{\infty}\left|x_{n}\right|^{2}\right)^{1 / 2}\right\|$. If X has nontrivial cotype then $X\left(\ell_{2}\right)$ is naturally isomorphic to the space $\operatorname{Rad} X$ which is the subspace of $L_{2}(X)$ of functions of the form $\sum_{n=1}^{\infty} x_{n} r_{n}$ where $\left(r_{n}\right)$ is the sequence of Rademacher functions. For the definition of Köthe function space see [55, p. 28].

Proposition 7.4. (See [19, Th. 3.10].) Let X be a Köthe function space on $(0,1)$ with an unconditional basis. If X is an M_{2} space then it has type 2.

Proof. Every M_{2} space has the weak type 2 [61, Th. 10 and Remark 11]. Next, a Banach space has type 2 if and only if $\operatorname{Rad} X$ (which is equal to $X\left(\ell_{2}\right)$ for Banach lattice with nontrivial cotype) has weak type 2 [74, p. 174]. Finally, by [45], X, as an order continuous, nonatomic Banach lattice with an unconditional basis, is isomorphic as a Banach space to $X\left(\ell_{2}\right)(=\operatorname{Rad} X)$.

Corollary 7.5. Let X be an UFO (superreflexive) ri. Banach space on $(0,1)$ which is not isomorphic to L_{∞}. Then X has type 2 and $q(X)=2$.

Proof. Since X contains complemented ℓ_{2} [55, p. 135], it cannot be an \mathcal{L}_{∞}-space, and the dichotomy Theorem 5.10 yields all the properties except type 2. This is provided by Proposition 7.4 since X has an unconditional basis [55, p. 156].

The proof of (3) follows from this and the following, probably known, result:
Proposition 7.6. If an r.i. function space X on $(0,1)$ is an \mathcal{L}_{∞}-lattice then it is lattice isomorphic to L_{∞}.
(Hint: Let C be from the definition of \mathcal{L}_{∞}-lattice. We consider the natural embedding $L_{\infty} \subset X$ and note that it is a C-isomorphism on the linear span of finitely valued functions. This span is dense in both spaces.)

To prove (4) recall that, by Corollary 7.5, X and X^{*} have type 2 . Hence X has type and cotype 2 ; which, by Kwapień theorem [47], makes it L_{2}.

Our proof for assertion (5) is consequence of Theorem 6.3 and the following result:
Proposition 7.7. If X is a Köthe function space on $(0,1)$, which is asymptotically Hilbertian, then X is lattice isomorphic to L_{2}.

Proof. Let c be the constant from the definition of asymptotically Hilbertian space. We wish to show that every finite sequence of normalized and mutually disjoint elements $\left(x_{i}\right)_{1}^{n}$ of X is c-equivalent to the unit vector basis of a Euclidean space. It then follows from [55, Th. 1.b.13] that X is lattice isomorphic to L_{2}.

Let $E=\left(x_{i}\right)_{1}^{n}$ and X_{n} be a finite codimensional subspace of X from the definition of asymptotically Hilbertian space. The asymptotically Hilbertian space is reflexive [74, p. 220], so its norm and the norm of its dual are absolutely continuous. If we will pay no attention to ε, we can assume that there exists a decomposition of [0,1] into disjoint sum of intervals $\left(I_{k}\right)_{1}^{m}$ so that the annihilator $X_{n}^{\perp} \subset X^{*}$ belongs to the linear span $\operatorname{lin}\left(z_{k}\right)_{1}^{m}$ of characteristic functions z_{k} of I_{k} and $\left(x_{i}\right)_{1}^{n}$ is a block-basis of $\left(z_{k}\right)_{1}^{m}$. Let the function z_{k}^{\prime} be equal 1 on a half of the interval I_{k} and be equal to -1 on the second half of I_{k}. Then $\operatorname{lin}\left(z_{k}^{\prime}\right)_{1}^{m} \subset\left(\operatorname{lin}\left(z_{k}\right)_{1}^{m}\right)^{\top} \subset X_{n}$ hence is c-isomorphic to a Euclidean space. But the spaces $\operatorname{lin}\left(z_{k}\right)_{1}^{m}$ and $\operatorname{lin}\left(z_{k}^{\prime}\right)_{1}^{m}$ are isometric and the basis $\left(z_{k}\right)_{1}^{m}$ is 1-unconditional. Therefore $\left(z_{k}\right)_{1}^{m}$ is c-equivalent to an orthogonal basis of a Euclidean space. Hence, its block-basis $\left(x_{i}\right)_{1}^{n}$ is c-equivalent to an orthogonal basis of a Euclidean space too.

A similar statement, under the stronger assumption that X is weak Hilbert, was proved by Nielsen [66] using some complicated calculations of [67]. Previously, Mascioni [57] proved a similar statement for Orlicz spaces.

References

[1] F. Albiac, N.J. Kalton, Topics in Banach Space Theory, Springer, New York, 2006.
[2] D.E. Alspach, Quotients of c_{0} are almost isometric to subspaces of c_{0}, Proc. Amer. Math. Soc. 76 (1979) 285-289.
[3] D.E. Alspach, S. Argyros, Complexity of weakly null sequences, Dissertationes Math. (Rozprawy Mat.) 321 (1992).
[4] D. Alspach, P. Enflo, E. Odell, On the structure of separable \mathcal{L}_{p} spaces $(1<p<\infty)$, Studia Math. 60 (1) (1977) 79-90.
[5] D. Amir, Projections onto continuous function spaces, Proc. Amer. Math. Soc. 15 (1964) 396-402.
[6] G. Androulakis, P.G. Casazza, D. Kutzarova, Some more weak Hilbert spaces, Canad. Math. Bull. 43 (2000) 257267.
[7] G. Androulakis, T. Schlumprecht, The Banach space S is complementably minimal and subsequentially prime, Studia Math. 156 (2003) 227-242.
[8] A. Avilés, F. Cabello, J.M.F. Castillo, M. González, Y. Moreno, On separably injective Banach spaces, preprint 2010.
[9] A. Avilés, Y. Moreno, Automorphisms in spaces of continuous functions on Valdivia compacta, Topology Appl. 155 (2008) 2027-2030.
[10] P. Bankston, Reduced coproducts of compact Hausdorff spaces, J. Symbolic Logic 52 (1987) 404-424.
[11] G. Bennett, L.E. Dor, V. Goodman, W.B. Johnson, C.M. Newman, On uncomplemented subspaces of $L_{p}, 1<p<$ 2, Israel J. Math. 26 (2) (1977) 178-187.
[12] A. Błaszyk, A. Szymański, Concerning Parovičenko’s theorem, Bull. Pol. Acad. Sci. Math. 28 (1980) 311-314.
[13] J. Bourgain, A counterexample to a complementation problem, Compos. Math. 43 (1981) 133-144.
[14] J. Bourgain, F. Delbaen, A class of special \mathcal{L}_{∞} spaces, Acta Math. 145 (1980) 155-176.
[15] J. Bourgain, G. Pisier, A construction of \mathcal{L}_{∞}-spaces and related Banach spaces, Bol. Soc. Bras. Mat. 14 (1983) 109-123.
[16] J. Bretagnolle, D. Dacunha-Castelle, J.L. Krivine, Lois stable et espaces L^{p}, Ann. Inst. H. Poincaré Sect. B 2 (1966) 231-259.
[17] F. Cabello Sánchez, J.M.F. Castillo, Duality and twisted sums of Banach spaces, J. Funct. Anal. 175 (2000) 1-16.
[18] F. Cabello Sánchez, J.M.F. Castillo, N.J. Kalton, D.T. Yost, Twisted sums with $C(K)$ spaces, Trans. Amer. Math. Soc. 355 (2003) 4523-4541.
[19] P.G. Casazza, N.J. Nielsen, The Maurey extension property for Banach spaces with the Gordon-Lewis property and related structures, Studia Math. 155 (2003) 1-21.
[20] P.G. Casazza, T.J. Shura, Tsirelson's Space, Lecture Notes in Math., vol. 1363, Springer, Berlin, 1980.
[21] J.M.F. Castillo, M. González, On the Dunford-Pettis property in Banach spaces, Acta Univ. Carolin. 35 (1994) 5-12.
[22] J.M.F. Castillo, M. González, Three-Space Problems in Banach Space Theory, Lecture Notes in Math., vol. 1667, Springer, Berlin, 1997.
[23] J.M.F. Castillo, Y. Moreno, On isomorphically equivalent extensions of quasi-Banach spaces, in: K.D. Bierstedt, J. Bonet, M. Maestre, J. Schmets (Eds.), Recent Progress in Functional Analysis, in: North-Holland Math. Stud., vol. 187, 2000, pp. 263-272.
[24] J.M.F. Castillo, Y. Moreno, On the Lindenstrauss-Rosenthal theorem, Israel J. Math. 140 (2004) 253-270.
[25] J.M.F. Castillo, Y. Moreno, J. Suárez, On the structure of Lindenstrauss-Pełczyński spaces, Studia Math. 194 (2009) 105-115.
[26] J.M.F. Castillo, Y. Moreno, Sobczyk's theorem and the bounded approximation property in Banach spaces, preprint 2009.
[27] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math., vol. 92, Springer, 1984.
[28] T. Figiel, W.B. Johnson, L. Tzafriri, On Banach lattices and spaces having local unconditional structure with applications to Lorentz function spaces, J. Approx. Theory 13 (1975) 395-412.
[29] T. Figiel, J. Lindenstrauss, V.D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977) 53-94.
[30] C. Finol, M. Wójtowicz, Complemented copies of ℓ_{1} in Banach spaces with an unconditional basis, J. Math. Anal. Appl. 342 (2008) 83-88.
[31] V.P. Fonf, Polyhedral Banach spaces, Mat. Zametki 30 (4) (1981) 627-634 (in Russian).
[32] E. Galego, personal communication.
[33] E. Medina Galego, A. Plichko, On Banach spaces containing complemented and uncomplemented subspaces isomorphic to c_{0}, Extracta Math. 18 (3) (2003) 315-319.
[34] I. Gasparis, New examples of c_{0}-saturated Banach spaces, Math. Ann. 344 (2009) 491-500.
[35] I. Gasparis, New examples of c_{0}-saturated Banach spaces II, J. Funct. Anal. 256 (2009) 3830-3840.
[36] W.T. Gowers, B. Maureu, Banach spaces with small spaces of operators, Math. Ann. 307 (1997) 543-568.
[37] V.I. Gurariĭ, M.I. Kadec, V.I. Macaev, On Banach-Mazur distance between certain Minkowski spaces, Bull. Pol. Acad. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965) 719-722.
[38] W.B. Johnson, On finite dimensional subspaces of Banach spaces with local unconditional structure, Studia Math. 51 (1974) 225-240.
[39] W.B. Johnson, Homogeneous Banach spaces, in: Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 201204.
[40] W.B. Johnson, M. Zippin, Extension of operators from subspaces of $c_{0}(\Gamma)$ into $C(K)$ space, Proc. Amer. Math. Soc. 107 (1989) 751-754.
[41] M.I. Kadec, A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces L_{p}, Studia Math. 21 (1962) 161-176.
[42] N.J. Kalton, Extension problems for $\mathcal{C}(K)$-spaces and twisted sums, in: Methods in Banach Space Theory, in: London Math. Soc. Lecture Note Ser., vol. 337, Cambridge Univ. Press, 2006, pp. 159-168.
[43] N.J. Kalton, Extension of linear operators and Lipschitz maps into $\mathcal{C}(K)$-spaces, New York J. Math. 13 (2007) 317-381.
[44] N. Kalton, Automorphisms of $\mathcal{C}(K)$ spaces and extension of linear operators, Illinois J. Math. 52 (2008) 279-317.
[45] N.J. Kalton, P. Wojtaszczyk, On nonatomic Banach lattices and Hardy spaces, Proc. Amer. Math. Soc. 120 (1994) 731-741.
[46] J.L. Krivine, Sous-espaces de dimension finie des espaces de Banach réticulés, Ann. of Math. 104 (1976) 1-29.
[47] S. Kwapien, Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math. 44 (1972) 583-595.
[48] D.H. Leung, Some stability properties of c_{0}-saturated spaces, Math. Proc. Cambridge Philos. Soc. 118 (1995) 287301.
[49] J. Lindenstrauss, On a certain subspace of l_{1}, Bull. Pol. Acad. Sci. 12 (1964) 539-542.
[50] J. Lindenstrauss, A. Pełczyński, Absolutely summing operators, Studia Math. 29 (1968) 275-326.
[51] J. Lindenstrauss, A. Pełczyński, Contributions to the theory of the classical Banach spaces, J. Funct. Anal. 8 (1971) 225-249.
[52] J. Lindenstrauss, H.P. Rosenthal, Automorphisms in c_{0}, l_{1} and m, Israel J. Math. 7 (1969) 227-239.
[53] J. Lindenstrauss, H.P. Rosenthal, The \mathcal{L}_{p} spaces, Israel J. Math. 7 (1969) 325-349.
[54] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I, Springer, Berlin, 1977.
[55] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II, Springer, Berlin, 1979.
[56] R.H. Lohman, Isomorphisms of c_{0}, Canad. Math. Bull. 14 (1971) 571-572.
[57] V. Mascioni, On weak cotype and weak type in Banach spaces, Note Mat. 8 (1988) 67-110.
[58] B. Maurey, Type et cotype dans les espaces muni de structures locales inconditionelles, Séminaire MaureySchwartz, École Polytechnique, Paris (1973/1974) Exposés n ${ }^{\circ} 24-25,25$ pp.
[59] B. Maurey, Sous-espaces compléméntes de L^{p} d'apres P. Enflo, Séminaire Maurey-Schwartz, École Polytechnique, Paris (1974/1975) Exposé ${ }^{\circ} 3$ 3, 14 pp.
[60] B. Maurey, G. Pisier, Series de variables aletoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976) 45-90.
[61] V.D. Milman, G. Pisier, Banach spaces with a weak cotype 2 property, Israel J. Math. 54 (1986) 139-158.
[62] A.A. Milyutin, Isomorphism of the spaces of continuous functions over compact sets of the cardinality of the continuum, Teor. Funkcii Funkcional. Anal. Priložen. (Kharkov) 2 (1966) 150-156 (in Russian).
[63] Y. Moreno, The diagonal functors, Appl. Categ. Structures 16 (2008) 617-627.
[64] Y. Moreno, A. Plichko, Extension of operators, in: V.K. Maslyuchenko, A.M. Plichko (Eds.), Some Open Problems on Functional Analysis and Function Theory, in: Extracta Math., vol. 20, 2005, pp. 51-70.
[65] Y. Moreno, A. Plichko, On automorphic Banach spaces, Israel J. Math. 169 (2009) 29-45.
[66] N.J. Nielsen, A note on unconditional structures in weak Hilbert spaces, Illinois J. Math. 38 (1994) 390-393.
[67] N.J. Nielsen, N. Tomczak-Jaegermann, Banach lattices with property (H) and weak Hilbert spaces, Illinois J. Math. 36 (1992) 345-371.
[68] A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960) 209-228.
[69] A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. (Rozprawy Mat.) 58 (1968).
[70] A. Pełczyński, personal communication.
[71] G. Pisier, Sur les espaces qui ne contiennent pas de l_{n}^{1} uniformément, Séminaire Maurey-Schwartz, École Polytechnique, Paris (1973/1974) Exposé $\mathrm{n}^{\circ} 7,19$ pp.
[72] G. Pisier, Holomorphic semi-groups and the geometry of Banach spaces, Ann. of Math. 115 (1982) 375-392.
[73] G. Pisier, Weak Hilbert spaces, Proc. London Math. Soc. 56 (1988) 547-579.
[74] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Math., vol. 94, Cambridge Univ. Press, Cambridge, 1989.
[75] H.P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970) 13-36.
[76] H.P. Rosenthal, On the subspaces of $L^{p}(p>2)$ spanned by sequence of independent random variables, Israel J. Math. 8 (1970) 273-303.
[77] H.P. Rosenthal, On factors of $C([0,1])$ with non-separable dual, Israel J. Math. 13 (1972) 361-378.
[78] H. Rosenthal, The Banach spaces $C(K)$ and $L^{p}(\mu)$, Bull. Amer. Math. Soc. 81 (1975) 763-781.
[79] H.P. Rosenthal, On a theorem of J.L. Krivine concerning block finite representability of l^{p} in general Banach spaces, J. Funct. Anal. 28 (1978) 197-225.
[80] H. Rosenthal, Some aspects of the subspace structure of infinite-dimensional Banach spaces, in: C. Chuy (Ed.), Approximation Theory and Functional Analysis, Academic Press, 1991, pp. 151-176.
[81] H.P. Rosenthal, The Banach spaces $C(K)$, in: W.B. Johnson, J. Lindenstrauss (Eds.), Handbook of the Geometry of Banach Spaces, vol. 2, Elsevier, Amsterdam, 2003, pp. 1547-1602.
[82] H.H. Schaefer, Banach Lattices and Positive Operators, Springer, New York, 1974.
[83] A. Szankowski, Subspaces without the approximation property, Israel J. Math. 30 (1978) 123-129.
[84] H.M. Wark, A class of primary Banach spaces, J. Math. Anal. Appl. 326 (2007) 1427-1436.
[85] M. Zippin, The separable extension problem, Israel J. Math. 26 (1977) 372-387.
[86] M. Zippin, Extension of bounded linear operators, in: W.B. Johnson, J. Lindenstrauss (Eds.), Handbook of the Geometry of Banach Spaces, vol. 2, Elsevier, Amsterdam, 2003, pp. 1703-1741.

[^0]: *7 This research has been partially supported by the project MTM2007-67994-C02-02. The second author enjoyed a sabbatical year grant SAAB2006-0174 at the University of Extremadura.

 * Corresponding author.

 E-mail addresses: castillo@unex.es (J.M.F. Castillo), aplichko@usk.pk.edu.pl (A. Plichko).

