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Abstract

We formulate a general theory of positions for subspaces of a Banach space: we define equivalent and iso-
morphic positions, study the automorphy index a(Y,X) that measures how many non-equivalent positions Y

admits in X, and obtain estimates of a(Y,X) for X a classical Banach space such as �p,Lp,L1,C(ωω)

or C[0,1]. Then, we study different aspects of the automorphic space problem posed by Lindenstrauss and
Rosenthal; namely, does there exist a separable automorphic space different from c0 or �2? Recall that a Ba-
nach space X is said to be automorphic if every subspace Y admits only one position in X; i.e., a(Y,X) = 1
for every subspace Y of X. We study the notion of extensible space and uniformly finitely extensible space
(UFO), which are relevant since every automorphic space is extensible and every extensible space is UFO.
We obtain a dichotomy theorem: Every UFO must be either an L∞-space or a weak type 2 near-Hilbert
space with the Maurey projection property. We show that a Banach space all of whose subspaces are UFO
(called hereditarily UFO spaces) must be asymptotically Hilbertian; while a Banach space for which both
X and X∗ are UFO must be weak Hilbert. We then refine the dichotomy theorem for Banach spaces with
some additional structure. In particular, we show that an UFO with unconditional basis must be either c0 or
a superreflexive weak type 2 space; that a hereditarily UFO Köthe function space must be Hilbert; and that
a rearrangement invariant space UFO must be either L∞ or a superreflexive type 2 Banach lattice.
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1. Introduction

Lindenstrauss and Rosenthal [52] showed that c0 has the property that every isomorphism
between two of its infinite codimensional subspaces can be extended to an automorphism of the
whole space and formulated the so-called

Automorphic space problem. Are c0 and �2 the only separable Banach spaces with that prop-
erty?

This paper outgrowths from the study of different aspects of that problem, as we describe
now.

In Section 3 we formulate a general theory of positions for subspaces of a Banach space:
we define equivalent and isomorphic positions and borrow from [63] the notion of automorphy
index a(Y,X) that measures how many non-equivalent positions Y admits in X. We also define
the automorphy index of X as a(X) = supY a(Y,X). A Banach space is said to be automorphic
if a(X) = 1. Thus, the general automorphic space problem is whether there exist automorphic
spaces different from c0(Γ ) or �2(Γ ). We obtain some general principles and basic techniques
to estimate a(Y,X).

In Section 4 we estimate the automorphy indices a(Y,X) for classical Banach spaces. We
obtain, among other results, the following: a(c0,X) ∈ {0,1,2,ℵ0} for every separable Banach
space X; a(Y, �p) = c for all subspaces of �p p �= 2s, and a(Y,Lp) = c for all subspaces of Lp ,
p > 2 not isomorphic to �2; while a(�2,Lp) = 1; for 1 < p < 2 one has a(Y,Lp) = c for all non-
strongly embedded subspaces of Lp; a(Y,L1) = c for all nonreflexive subspaces of L1, while
a(�2,L1) = c; a(Y,C[0,1]) ∈ {1, c} for every separable Banach space Y . Examples of spaces
admitting just one position in C[0,1] include the subspaces of c0 and the weak∗-closed subspaces
of �1 – with respect to the duality with c0; while examples of spaces admitting a continuum
of non-equivalent positions include �p for 1 < p < ∞ and those Y such that C[0,1]/Y has
separable dual. The results in Sections 3 and 4 support the conjecture that whenever there are
two non-isomorphic positions of Y in X then a(Y,X) ∈ {0,1, c} for X separable, while a(Y,X) ∈
{0,1,ℵ0, c} for an arbitrary X.

Section 5 is devoted to study the notions of extensible and uniformly finitely extensible space
(UFO). �∞ would be the prototype of extensible non-automorphic space, while every L∞ space
is an UFO. These notions are relevant since it follows from [19,65] that every automorphic space
is extensible and every extensible space is UFO. After establishing some stability properties we
obtain a dichotomy theorem: Every UFO must be either an L∞-space or a weak type 2 near-
Hilbert space.

Section 6 refines the dichotomy theorem for Banach spaces with some additional properties:
in particular, if both X and X∗ are UFO then X must be weak Hilbert; and if all subspaces of X

are UFO (we call this a hereditarily UFO or HUFO) then X must be asymptotically Hilbertian.
Section 7 refines the dichotomy for Banach spaces with some additional structure. In partic-

ular, we show that an UFO with unconditional basis must be either c0 or a superreflexive weak
type 2 space; that an HUFO Köthe function space must be a Hilbert space; and that a rearrange-
ment invariant UFO must be either L∞ or a superreflexive type 2 space.

The dichotomy theorem in Section 5, together with its refined versions in Sections 6 and 7,
probably constitute the first sound support for the Lindenstrauss–Rosenthal conjecture.
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2. Preliminaries

Throughout the paper we will use standard notation in Banach space theory, see e.g. [54,55].
Unless otherwise stated, all linear subspaces are assumed to be closed and all operators are
supposed to be linear and bounded. Given two subspaces E and F of a Banach space X, E ⊕ F

denotes the algebraic sum of E and F with conditions: E ∩ F = 0 and E + F is closed. E 	 F

denotes that E is isomorphic to F . By dist(E,F ) we denote the Banach–Mazur distance between
Banach spaces E and F , and by dE , the Banach–Mazur distance from E to a Hilbert space of
the same dimension (finite or infinite) as E. The projection constant λ(E,X) of a subspace E

of a Banach space X is defined as the infimum of the norms of the projections of X onto E.
idX denotes the identity operator in a space X. SX denotes the unit sphere of X and BX its
closed unit ball. The distance between subsets U and V of a Banach space X is defined as
ρ(U,V ) = inf{‖u − v‖: u ∈ U, v ∈ V }. By |Γ | we denote the cardinality of a set Γ .

A Banach space X is said to be of type p (1 � p � 2), respectively cotype q (2 � q < ∞) (see
e.g. [55, p. 72]) if there exist constants c,C such that, for every elements (xi)

n
1 in X

E

∥∥∥∥∥
n∑

i=1

εixi

∥∥∥∥∥ � C

(
n∑

i=1

‖xi‖p

)1/p

, resp. E

∥∥∥∥∥
n∑

i=1

εixi

∥∥∥∥∥ � c

(
n∑

i=1

‖xi‖q

)1/q

, (1)

where εi are independent symmetric Bernoulli variables. We set

p(X) = sup{p: X is of type p} and q(X) = inf{q: X is of cotype q}.
Kwapien’s theorem [47] establishes that a Banach space is isomorphic to a Hilbert space if and
only if it has type 2 and cotype 2. A Banach space X is said to have the Maurey projection
property [20, p. 127] if there is a function f : R

+ → R
+ such that for each, not necessarily

infinite dimensional, subspace Y of X with dY < ∞ there exists a projection P : X → Y with
‖P ‖ � f (dY ). Type 2 spaces enjoy the Maurey projection property [20, p. 127]. Let us say that a
Banach space is near-Hilbert if p(X) = q(X) = 2. Szankowski [83] proves that a Banach space
all of whose subspaces have the approximation property is near-Hilbert (without giving them
a specific name). A Banach space X is said to be asymptotically Hilbertian [73] if there is a
constant c such that for every n there is a subspace Xn ⊂ X of finite codimension such that every
n-dimensional subspace E ⊂ Xn satisfies dE � c. A Banach space X is said to have property
upper (H), respectively property lower (H) (Casazza and Nielsen [19]) if there is a function
f (λ) (resp. g(λ)), so that for every normalized λ-unconditional basic sequence (xi)

n
1 in X∥∥∥∥∥

n∑
1

xi

∥∥∥∥∥ � f (λ)
√

n resp.

∥∥∥∥∥
n∑
1

xi

∥∥∥∥∥ � g(λ)
√

n. (2)

A Banach space X is said to have property (H) if it has the properties upper (H) and lower (H)

simultaneously.
A Banach space X is said to have weak type 2 [74, p. 172] if there is a constant C and a

δ ∈ (0,1), so that whenever E is a subspace of X and an operator T : E → �n
2 , there is an

orthogonal projection P on �n
2 of rank > δn and an operator S : X → �n

2 with

Sx = PT x for all x ∈ E, and ‖S‖ � C‖T ‖.
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Analogously, X is said to have weak cotype 2 [74, p. 153] if there is a constant C and a
δ ∈ (0,1), so that whenever E is a finite dimensional subspace of X then there is a subspace F

of E with

dimF � δ · dimE and dF � C.

A space having simultaneously weak type and weak cotype 2 is called a weak Hilbert space.
A weak type 2 space X verifies p(X) = 2 [74, p. 170] while a weak cotype 2 space X verifies
q(X) = 2 [74, p. 159]. One therefore has the gradation

weak Hilbert ⇒ property (H) ⇒ asymptotically Hilbertian ⇒ near-Hilbert

Each asymptotically Hilbertian space with a symmetric basis is isomorphic to Hilbert. Actu-
ally, this statement is valid for more general bases (sf. [74, p. 219]). Each minimal (see Section 3
for definition) asymptotically Hilbertian space is isomorphic to a Hilbert space (Johnson [39]).
Every weak Hilbert space is asymptotically Hilbertian [73, Section 4].

An exact sequence

0 Y
j

X
q

Z 0 (3)

is a diagram formed by Banach spaces and linear continuous operators in which the kernel of each
arrow coincides with the image of the preceding. Two exact sequences 0 → Y → X → Z → 0
and 0 → Y → X1 → Z → 0 are said to be equivalent if there exists an operator τ : X → X1

making commutative the diagram

0 Y X

τ

Z 0

0 Y X1 Z 0.

The exact sequence (3) is said to split if it is equivalent to the trivial sequence 0 → Y → Y ⊕Z →
Z → 0; this exactly means that j (Y ) is complemented in X.

Following the notation and terminology of [24], two positions (i.e. into isomorphisms, see
Section 3 for details) i : Y → X and j : Y → X1 are said to be semi-equivalent if the operator j

can be extended to an operator J : X → X1 through i and the operator i can be extended to an
operator I : X1 → X through j . Dually, two quotient maps p : X → Z and q : X1 → Z are said
to be semi-equivalent if one can be lifted through the other and vice-versa.

Recall from [22,17,24] the identification of exact sequences 0 → Y → X → Z → 0 of Ba-
nach spaces with z-linear maps F : Z → Y ; namely, homogeneous maps such that for some
constant K > 0 and every finite set x1, . . . , xn one has ‖F(

∑
xk) − ∑

Fxk‖ � K
∑‖xk‖. The

identification between an exact sequence and a z-linear map will be written as 0 → Y → X →
Z → 0 ≡ F . Two z-linear maps F,G are said to be equivalent, and written F ≡ G, when the
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associated exact sequences are equivalent. Under these identifications, the lower sequence in the
diagram

0 Y X Z 0 ≡ F

0 Y PB Z1

τ

0 ≡ Fτ

is called the pull-back sequence of F and τ , and its associated z-linear map is Fτ (standard
composition as maps). Dually, the lower sequence in a diagram

0 Y
j

τ

X Z 0 ≡ F

0 Y1
j1

PO Z 0 ≡ τF

is called the push-out sequence of τ and F , and its associated z-linear map is τF . The push-
out construction enjoys the following universal property: Given operators α1 : Y1 → M and α :
X → M such that αj = α1τ there exists a unique operator γ : PO → M such that α1 = γj1 and
α = γ u.

3. Positions

We state the following general problem:

Problem. Let Y,X be Banach spaces. How many different positions Y admits in X?

Even if the problem is meaningful in other categories, we restrict ourselves to work within the
category of (mainly separable) Banach spaces and linear continuous operators. Let us first give
a precise meaning to the words “different positions” and “the same position”. An embedding i :
Y → X is an into isomorphism, and a position of Y in X is defined by an embedding i : Y → X.
Unless otherwise stated, all embeddings are assumed to be infinite codimensional; i.e., X/i(Y )

is infinite dimensional.

Definition. Two positions i : Y → X and j : Y → X are said to be equivalent, and represented
as i ∼ j , if there exists an automorphism σ : X → X such that σ i = j .

This definition has a homological root since i ∼ j if and only if there exist isomorphisms σ,σ ′
making commutative the diagram

0 Y
i

X

σ

X/i(Y )

σ ′

0

0 Y
j

X X/j (Y ) 0.
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This definition corresponds to Kalton’s notion of “strongly equivalent embeddings” [44], and
is consistent with Moreno’s notion of automorphy index introduced in [63] (see Section 3.2) as
an attempt to quantify the problem of how many positions Y admits in X.

Other forms to define equal and different positions are possible:

Definition. Consider Y,Y ′ subspaces of X via the canonical embedding. Let us say that Y and
Y ′ have isomorphic positions if there is an automorphism σ in X such that σ(Y ) = Y ′.

Thus, Y and Y ′ are in two non-isomorphic positions in X when no automorphism σ of X ver-
ifies σ(Y ) = Y ′. This definition corresponds to Kalton’s notion [44] of “equivalent embeddings”:
there exist isomorphisms i, j, k making commutative the diagram

0 Y

i

X

j

X/Y

k

0

0 Y ′ X X/Y ′ 0,

namely, the two exact sequences are isomorphically equivalent in the sense of [23].
It is clear that equivalent positions are isomorphic, although isomorphic positions can be non-

equivalent (see examples below). We do not know if the fact that all positions of Y in X are
isomorphic implies that all positions of Y in X are equivalent.

The following lemma detects non-equivalent positions; its proof is just mimicry of that of
[65, Prop. 3.1].

Lemma 3.1. Let Y , Y ′ be isomorphic subspaces of a Banach space X such that every isomor-
phism Y → Y ′ can be extended to an automorphism of X. Then every bounded linear operator
Y → Y ′ can be extended to a bounded linear operator in X.

Therefore, if one gets two positions i : Y → X and j : Y → X in such a way that the operator j

cannot be extended to an operator J : X → X through i, the positions are not equivalent. There
is a clean homological way to formulate this: the notion of semi-equivalent positions.

3.1. Semi-equivalent positions and the parallel lines principle

The semi-equivalence of the sequences 0 → Y
i−→ X → X/i(Y ) → 0 and 0 → Y

j−→ X1 →
X1/j (Y ) → 0 exactly means that they are one pull-back of the other. Dually, the semi-
equivalence of the sequences 0 → kerp → X

p−→ Z → 0 and 0 → kerq → X1
q−→ Z → 0 exactly

means that they are one push-out of the other. One has:

Proposition 3.2. Assume one has the following commutative diagram
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0 0

Y

h

Y

i

0 X
f

qh

X1
qf

qi

Z2 0 ≡ F

0 Z1 g
Z2 qg

X′′ 0 ≡ G

0 0

H I.

(4)

Then the exact sequences F and G are semi-equivalent if and only if the sequences H and I are
semi-equivalent.

Proof. This result is part of a general principle regarding couples of exact sequences involved
in a pull-back/push-out diagram. Indeed, there are three possible situations; one is as described,
and the other two are

0 0

0 Y X
qf

Z 0 ≡ F

0 X′

qh

P
qg

qi

Z 0 ≡ G

Z′ Z′

0 0

H I

(5)
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and

0 0

Y ′

h

Y ′

i

0 Y
f

P Z 0 ≡ F

0 Y
g

X Z 0 ≡ G

0 0

H I.

(6)

In each of them, the sequences F,G are semi-equivalent if and only if I,H are semi-equivalent.
A unifying proof for the three assertions is as follows: From [24, Lem. 1] we know that the
semi-equivalence of the couple (F,G) is equivalent to 0 = Fqg = Gqf (in the first and second
diagram, and to 0 = gF = f G in the third); while the semi-equivalence of the couple (I,H)

corresponds to 0 = iH = gH (in the first and third diagram, and to 0 = Hqg = GqH in the
second). But Fqg = jI since this is the diagonal sequence 0 → X → Z ⊕ X1 → Z1 → 0 (in the
second diagram the equality is Fqg = HqI while in the third diagram is f G = hI ). �
Remark. A classical proof of the necessity in the situation described in diagram (4), which is the
case we will mostly consider, is as follows:

Proof. Assume there is an extension T of h through i. We prove that there is a lifting ν of qg

through qf ; i.e., qf ν = qg . To this end, let T be the extension mentioned in the hypothesis. The
operator idX1 − f T verifies (idX1 − f T )f h = f h − f Tf h = f h − f h = 0 and so there is an
operator ν : Z2 → X1 such that idX1 −f T = νqi . This operator ν is a lifting of qg through qf be-
cause qf νqi = qf (idX1 − f T ) = qf − qf hT = qf = qgqi ; since qi is surjective, qf ν = qg . �
Corollary 3.3. Let X be a separable Banach space containing an uncomplemented copy of itself
j : X → X and let i : Y → X be a position of Y in X. Assume that one of the following conditions
holds

(1) X/i(Y ) 	 c0;
(2) X/j (X) is an L1-space and X/i(Y ) is either complemented in some dual space or a sub-

space of c0.

Then the positions i and ji are not equivalent.
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Proof. Consider the commutative diagram

0 0

Y

i

Y

ji

0 X
j

a

X
q

p

X/j (X) 0

0 X/i(Y )
b

A
Q

B 0

0 0.

In each case the lower sequence splits (Sobczyk’s theorem [54, p. 106] in (1), Lindenstrauss
lifting principle [49] in the first part of (2) and the vector valued version of Sobczyk’s theorem
[26] in the second part of (2)) but the middle sequence does not, they cannot be semi-equivalent.
Hence i cannot extend through ji. �
3.2. The automorphy index

Following [63], we define the automorphy index of Y in X and the automorphy index of X

as follows. Recall that the density character of a Banach space X, denoted by densX, is defined
as the smallest cardinal of a dense subset in E. Let Y,X be Banach spaces and α a cardinal. Let
iα(Y,X) be the set of all (infinite codimensional) embeddings i : Y → X with densX/i(Y ) = α.
The elements of the quotient space iα(Y,X)/∼ will be called the space of α-automorphy classes
of Y into X. We agree that it is empty when Y cannot be embedded into X with the condition
densX/i(Y ) = α.

Definition. The automorphy index of Y in X is defined as the number of automorphy classes:

a(Y,X) = sup
α

∣∣iα(Y,X)/∼∣∣.
The automorphy index of X is defined as

a(X) = sup
Y

a(Y,X).

Thus, the automorphy index of Y in X measures in how many different forms Y can be
embedded into X. Since the number of isomorphic embeddings of a separable space into a sep-
arable superspace is c one always has a(Y,X) � c for separable X. A Banach space X is said
to be Y -automorphic if a(Y,X) = 1. A Banach space X is said to be automorphic (see [24]) if
a(X) = 1. It is clear that a(Y,X) is an isomorphic invariant; which we formulate for later use as:
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Lemma 3.4. If a(Y,X) = m and Y ′ is isomorphic to Y then a(Y ′,X) = m. In particular, if Y

is isomorphic to its hyperplanes then Y and each of its finite codimensional subspaces have the
same automorphy index in X.

This justifies the initial restriction of considering infinite codimensional positions only. One
has

Proposition 3.5. Let Y be a Banach space.

• For a set Γ with uncountable cardinal |Γ | = ℵα for which α is not a limit ordinal and such
that |Γ | > densY one has a(Y, �∞(Γ )) = 1.

• There exists a Banach superspace X for which a(Y,X) > 1.

Proof. We prove the first assertion. Let j : Y → �∞(Γ ) be an isometric embedding. Let
Γn{γ ∈ Γ : ρ(eγ , j (Y )) > 1

n
}, where (eγ ) are the standard unit vectors of �∞(Γ ). Since

|Γ | = |⋃n Γn| + |{γ : eγ ∈ j (Y )}|, for some n one has |Γn| = |Γ |. By Rosenthal [75], the quo-
tient map q : �∞(Γ ) → �∞(Γ )/j (Y ) fixes a copy of c0(Γ ), hence of �∞(Γ ). Thus, the following
sequences are isomorphically equivalent:

0 Y
j

�∞(Γ ) �∞(Γ )/j (Y ) 0

0 Y
(j,0)

�∞(Γ ) ⊕ �∞(Γ ) �∞(Γ )/j (Y ) ⊕ �∞(Γ ) 0.

Let now i : Y → �∞(Γ ) be another embedding. Since the two sequences

0 Y
j

�∞(Γ ) �∞(Γ )/j (Y ) 0

0 Y
i

�∞(Γ ) �∞(Γ )/i(Y ) 0

are semi-equivalent, the diagonal principles [24] yield that the following exact sequences are
isomorphically equivalent:

0 Y
(j,0)

�∞(Γ ) ⊕ �∞(Γ ) �∞(Γ )/j (Y ) ⊕ �∞(Γ ) 0

0 Y
(i,0)

�∞(Γ ) ⊕ �∞(Γ ) �∞(Γ )/i(Y ) ⊕ �∞(Γ ) 0,

which concludes the proof.
We prove now the second assertion. If Y is injective, i.e. complemented in any superspace

then, by Rosenthal’s theorem [75], it contains a complemented subspace isomorphic to �∞, hence
Y = �∞ ⊕E = �∞ ⊕ �∞ ⊕E, and thus Y has in X = Y ⊕ �2 two evident different positions: one
that gives �2 as the quotient and the other that gives �∞ ⊕ �2 as the quotient. If Y is not injective
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then there exists a superspace Z in which Y is uncomplemented. So, Y has in X = Y ⊕Z at least
two different positions: one, complemented; and the other, uncomplemented. �

When Y is separable, the superspace X for which a(Y,X) > 1 can be chosen separable: in-
deed, if Y 	 c0 then Y = Z ⊕Z has in X = Y ⊕ �2 two evident different positions: Z and Z ⊕Z.
If Y �	 c0 then, by the well-known Zippin theorem [85], there exists a separable superspace Z

in which Y is uncomplemented. So, Y has in X = Y ⊕ Z at least two different positions: one,
complemented; and the other, uncomplemented.

The technique shown in the previous proof can be isolated to detect equal positions:

Definition. Let us say that a position i : Y → X of Y into X is small if the corresponding quotient
operator q : X → X/i(Y ) is an isomorphism on a complemented copy of X. The subspace Y

of X is said to be small if all positions of Y into X are small.

In particular, every infinite codimensional subspace of c0 is small [2]. If X is a Banach space
with unconditional basis and containing �1, then the kernel of every surjection q : �1 → X is
embedded in a small form since a Banach space with an unconditional basis containing �1 must
also contain a complemented copy of �1 [30]. If the dual to C[0,1]/Y is nonseparable then Y is
small [78, p. 766].

The argument of the first part of Proposition 3.5 also shows that, under the hypothesis on the
cardinal of Γ , all subspaces of �∞(Γ ) with density character strictly smaller than |Γ | are small,
as well as all separable subspaces of �∞.

Moreover, we have

Proposition 3.6. Let X be a Banach space such that every operator Z → X from a subspace Z

of X can be extended to the whole X (these will be called extensible in Section 5). If Y is a small
subspace of X then X is Y -automorphic.

Therefore, we have

Corollary 3.7. (See [53, p. 235].) a(Y, �∞) = 1 for every separable subspace Y ⊂ �∞.

Returning to the general situation, let us recall a few notions. H. Rosenthal defined (see [7])
a Banach space X to be minimal if each of its infinite dimensional subspaces contains a copy
of X, and complementably minimal if each of its infinite dimensional subspaces contains a com-
plemented (in X) copy of X. We will say that the space Y is fully complemented in X if every
copy of Y in X is complemented. A Banach space X is prime [7] if each of its complemented
subspaces (finite codimensional too) is isomorphic to X. The spaces Y,X are said to be totally
incomparable (Rosenthal [20, p. 95]) if they have no isomorphic subspaces. For instance, the
space �p is complementably minimal (Pełczyński [68]). All subspaces of �p are minimal. The
Tsirelson’s space T fails to have a minimal subspace. Its dual T ∗ is minimal [20, pp. 54–59],
but not complementably minimal. Hence, every subspace of T ∗ is minimal. The arbitrarily dis-
tortable Schlumprecht space S is complementably minimal. This space is also ‘partially’ prime
(Androulakis and Schlumprecht [7]). The space c0 is the only space that is fully complemented
in every separable superspace. The spaces �2 and c0 are minimal, prime and fully complemented
in themselves [68]. We do not know other spaces with these properties. The definition of fully
complemented subspace is a reformulation of problem 2◦ in [68]. Fully complemented subspaces
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of Lp are discussed by Rosenthal [78, p. 770]. The spaces �p are prime for 1 � p � ∞ as well
as c0 and every indecomposable space which is isomorphic to its hyperplanes (such spaces exist
(Gowers and Maurey [36])). There are known no other prime spaces [84].

Lemma 3.8. Let Y be a minimal Banach space fully complemented in X. Then one of the follow-
ing alternatives holds:

(i) The complement of each copy of Y in X contains a (complemented) copy of Y .
(ii) X 	 Y ⊕ Z with Z totally incomparable with Y .

Hence, alternative (i) leads to the following characterization of when X is Y -automorphic (see
also [8, Lem. 1.38]).

Proposition 3.9. Let Y be a separable Banach space isomorphic to its square and fully comple-
mented in X. Then X is Y -automorphic (i.e. a(Y,X) = 1) if and only if every complement Z of
Y in X contains a copy of Y .

Proof. Let us show the sufficiency. Indeed, X 	 Y ⊕ Z and

Z 	 Y ⊕ Z′ 	 (Y ⊕ Y) ⊕ Z′ 	 Y ⊕ (
Y ⊕ Z′) 	 Y ⊕ Z 	 X.

Therefore, if Y1 	 Y2 	 Y are subspaces of X then X = Y1 ⊕ Z1, X = Y2 ⊕ Z2 and Z1 	
Z2 	 X. So one can extend the isomorphism Y1 	 Y2 to an automorphism in X.

As for the necessity, since X 	 Y ⊕ Z 	 Y ⊕ Y ⊕ Z and X is Y -automorphic one gets Z 	
Y ⊕ Z. �
Proposition 3.10. Let X be a separable Banach space. Assume X = Y ⊕ Z with Y and Z totally
incomparable and Y is minimal, prime and fully complemented in itself.

(1) If Z is isomorphic to its hyperplanes then a(Y,X) = 2.
(2) If Z is not isomorphic to its hyperplanes then a(Y,X) = ℵ0.

Proof. There are two evident different positions of Y in X: Y1 = Y ⊂ Y ⊕ Z and Y2 ⊂ Y1,
Y2 	 Y , dimY2 = dimY1/Y2 = ∞ (since Y is minimal, such Y2 exists).

Let V ⊂ X, V 	 Y . By Lemma 3.4, we may pay no attention to finite dimensional subspaces
and assume that

V ∩ Z = 0 and V + Z is closed.

Let Y ′ be a subspace of Y such that V/Z = Y ′/Z. Then Y ′ is isomorphic to Y and, since Y is
fully complemented in itself, has a complement E in Y . So

X = (V ⊕ E) ⊕ Z = V ⊕ (E ⊕ Z).

There are tree possibilities.
a) dimE < ∞ and Z is isomorphic to its hyperplanes. Then E ⊕ Z 	 Z. So one can extend

the isomorphism V 	 Y1 to an automorphism in X.
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b) dimE = n and Z is not isomorphic to its hyperplanes. Then, since Y is prime, Y 	 Y ⊕ E,
and for different n, the positions of Y ⊕ E are different.

c) dimE = ∞. Then, since Y is prime, E ⊕ Z 	 Y ⊕ Z. So one can extend the isomorphism
V 	 Y2 to an automorphism in X. �
Corollary 3.11. Let Y be isomorphic to its square and assume that X 	 Y ⊕ Z with Z �	 X.
Then a(Y,X) > 1.

Proof. Indeed, from X 	 Y ⊕ Z and X 	 (Y ⊕ Y) ⊕ Z 	 Y ⊕ (Y ⊕ Z) 	 Y ⊕ X we obtain two
positions of Y in X. �
Corollary 3.12. Let Y be a Banach space isomorphic to its square, minimal, prime and fully
complemented in X. Then a(Y,X) ∈ {1,2,ℵ0}.

Proof. By Lemma 3.8, either (i) holds in which case, by Proposition 3.9, a(Y,X) = 1; or (ii)
holds in which case, by Proposition 3.10, a(Y,X) = 2 or = ℵ0. �

In order to estimate the automorphy index a(Y,X), observe that the simplest way to get two
different positions of Y in X is to have one complemented (with infinite dimensional comple-
ment) and the other uncomplemented. We present two versions of this observation.

Lemma 3.13.

(1) Assume that a Banach space Y has in a Banach space X two positions i and j such that no
isomorphism of i(Y ) onto j (Y ) can be extended to a bounded linear operator in X. If X is
isomorphic to its square, then a(Y,X) � ℵ0.

(2) If, moreover, X is isomorphic to �p(X) for some 1 � p � +∞ or to c0(X), then a(Y,X) � c.

Proof. We prove (1). Since X is isomorphic to its square, we can consider, for each n, Xn =
X1 ⊕ · · · ⊕ Xn with Xk = X instead of X. Let pk be the natural projection of Xn onto Xk .
Denote by ik : Y → Xk and jk : Y → Xk the copies of i(Y ) and j (Y ) in Xk , k = 1, . . . , n. No
isomorphism of ik(Y ) onto jk(Y ) can be extended to a bounded linear operator in Xk . Each
θ = (θ1, . . . , θn), with θk ∈ {ik, jk}, is a position of Y in Xn. We show that two different positions
θ and θ ′ are not equivalent.

Assume that, say, θm = im and θ ′
m = jm for some m. The operator σ : θ(Y ) → θ ′(Y ) defined

by σ(θ1(y), . . . , θn(y)) = (θ ′
1(y), . . . , θ ′

n(y)) is an isomorphism, because for every k

σk := σ |θk(Y ) = θ ′
kθ

−1
k .

If there were an extension of σ to an automorphism Θ of Xn, then pmS|Xm is an extension of
the isomorphism σm : im(Y ) → jm(Y ) to a bounded linear operator in Xm since

pmΘ|Xmim = σmim = σθm = θ ′
m = jm,

which is a contradiction
To prove (2) we repeat the argument with some variations. Since X 	 �p(X), we can con-

sider �p(Xk) with Xk = X instead of X. The meaning of ik : Y → Xk and jk : Y → Xk
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is as before, as well as pk . For every sequence (θ1, θ2, . . .), with θk ∈ {ik, jk}, the operator
θ = (2−1θ1, . . . ,2−kθk, . . .) is a position of Y in �p(Xk) and there is a continuum of such differ-
ent sequences. Let us show that any two of them θ and θ ′ are not equivalent.

Assume that for some m one has, say, θm = im and θ ′
m = jm. The operator σ : θ(Y ) → θ ′(Y )

defined by

σ
(
2−1θ1, . . . ,2−kθk, . . .

) = (
2−1θ ′

1, . . . ,2−kθ ′
k, . . .

)
is an isomorphism since, for every k,

σk := σ |θk(Y ) = 2−kθ ′
k2kθ−1

k .

If there were an extension of σ to an automorphism Θ in �p(Xk) then we get a contradiction
with the fact that pmΘ|Xm is an extension of σm : im(Y ) → jm(Y ) to a bounded linear operator
in Xm:

pmΘ|Xmim = σmim = σθm = θ ′
m(y) = jm. �

Remark. The condition X 	 �p(X) in (2) can be replaced by the assumption that X is isomor-
phic to a countable unconditional sum of Banach spaces Xk , where X 	 Xk for each k. For
example, X can be an arbitrary space with symmetric basis or any r.i. function space with abso-
lutely continuous norm.

The second version provides a lower estimate for the automorphy index:

Lemma 3.14. Let V be a complemented subspace of X. Then a(V ,V ) � a(Y,X) for every V ⊂
Y ⊂ X.

Proof. What we actually show is the following.

Claim. If Y is a subspace of a Banach space X and V is a subspace of Y that is complemented
in X, in such a way that the following condition is satisfied:

(∗) There are subspaces {V γ }γ∈Γ of V , isomorphic to V , where Γ is a set of ordinals, and iso-
morphisms τγ δ : Vγ → Vδ , γ < δ, which cannot be extend to any bounded linear operators
in V

then a(Y,X) � |Γ |.

This is enough since the largest cardinal of such a set Γ is precisely a(V ,V ).

Proof of the Claim. Let P be projection of X onto V and U = Y ∩ kerP . Of course, each
U ⊕ Vγ is isomorphic to Y . Define the isomorphism σγ δ : U ⊕ Vγ → U ⊕ Vδ , γ, δ ∈ Γ , by

σγ δ(u + v) = u + τγ δv, u ∈ U, v ∈ Vγ .

This isomorphism cannot be extended to an automorphism of X; because if an extension Sγ δ

exists then the restriction PSγδ|V is a bounded linear operator in V extending τγ δ . �
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Sometimes a local version of the argument can be given. Recall the well-known fact that
for every 1 � p < ∞, p �= 2, there is a sequence of subspaces Ek ⊂ �n

p , k = k(n) (and n =
n(k)), uniformly isomorphic to �k

p , such that projection constants λ(Ek, �
n
p) → ∞ as k → ∞

[11,13,76]. Fix p and let c be the mentioned constant of uniform isomorphism.

Proposition 3.15. In the space �p , 1 � p < ∞, p �= 2 there are uncomplemented subspaces Yi ,
i = 1,2, . . . , uniformly isomorphic to �p , and isomorphisms τij : Xi → Xj , 1 � i < j < ∞
which cannot be extended to bounded linear operators in �p .

Proof. Let us construct two non-equivalent uncomplemented positions of �p in itself.
1. Write X = �p in a form X = (X1 ⊕ X2)p , where X1 and X2 are isometric to �p . Denote

by X1 = ∑∞
n=1 �n

p the natural decomposition of X1 into sum of n-dimensional subspaces. Let
Ek be the mentioned k-dimensional subspaces of �n

p , n = n(k), which are c-isomorphic to �k
p

and whose projection constants λ(Ek, �
n
p) → ∞ as k → ∞. Put Y1 = ∑

k Ek . Of course, Y1 is
c-isomorphic to �p .

Choose an increasing sequence i(k), k = 1,2, . . . , of positive integers such that

λ(Ek, �
n(k)
p )

λ(Ei(k), �
n(i(k))
p )

→ ∞ as k → ∞.

Let for every k, Fk be (k − i(k))-dimensional subspaces spanned by the consecutive stan-
dard basic vectors of X2 (= �p). Take Gk = Ei(k) ⊕ Fk . Of course, Gk are c-isomorphic to �k

p .
Put Y2 = ∑∞

n=1 Gk ; then Y2 is c-isomorphic to �p . Let τ1,2 : Y1 → Y2 be the natural linear op-
erator which maps c2-isomorphically Ek onto Gk . Then τ1,2 is c2-isomorphism. Since �n

p is
1-complemented in X,

λ(Ek,X) = λ
(
Ek, �

n(k)
p

); λ(Ei(k),X)λ
(
Ei(k), �

n(i(k))
p

)
and λ(Gk,X)λ(Ei(k),X).

Therefore,

λ(Ek,X)

λ(Gk,X)
= λ(Ek,X)

λ(Ei(k),X)

λ(Ek, �
n(k)
p )

λ(Ei(k), �
n(i(k))
p )

→ ∞ as k → ∞.

So, by [65, Th. 4.4], τ1,2 cannot be extended to any bounded linear operator in X.
2. Write now X in a form X = (X1 ⊕ Y2 ⊕ X3)p , where X1, X2 and X3 are isometric to �p .

Let (Ek) and (Gk) be the subspaces from (X1 ⊕ X2)p in the item 1. Similarly as we constructed
(Gk) by (Ek), we can, starting from (Gk), to construct in X a sequence of subspaces Hk which
are c-isomorphic to �k

p , have intersected supports, and such that

λ(Gk,X)

λ(Hk,X)
→ ∞ as k → ∞

(
and, hence,

λ(Ek,X)

λ(Hk,X)
→ ∞

)
.

Put Y3 = ∑∞
n=1 Hk ; then Y3 is c-isomorphic to �p . Let τ2,3 : Y2 → Y3 be the natural linear

operator which maps c2-isomorphically Gk onto Hk . Then τ2,3 is c2-isomorphism and, by
[65, Th. 4.4], it cannot be extended to any bounded linear operator in X. The same arguments
work for the natural linear operator τ1,3 : Y1 → Y3 mapping c2-isomorphically Ek onto Hk . �
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Corollary 3.16. Every subspace X of �p , 1 � p < ∞, p �= 2, and every subspace Y ⊂ X verify
a(Y,X) = c.

Proof. Let X be a subspace of �p and Y be a subspace of X. There exists a subspace V of Y

which is isomorphic to �p and complemented in �p (Pełczyński [68]). So, we obtain the proof
by combination of Lemma 3.14 and Proposition 3.15. �

This dashes the hope that every Banach space could enjoy a partially automorphic character,
as some earlier results (see [8,9]) might suggest.

4. Positions in classical Banach spaces

4.1. Positions of c0 and �2

Propositions 3.9, 3.10 and Sobczyk’s theorem allow us to present a rather complete descrip-
tion of all possible positions of c0 in a separable superspace. Recall that a Banach space X

is Y -saturated (Rosenthal [80]) if every closed infinite dimensional subspace of X contains a
copy of Y . Isomorphically polyhedral spaces [31] and subspaces of C(α) for countable α [81,
p. 1571] are c0-saturated. In particular, Schreier-like spaces (see [3]), all its subspaces and all its
quotients are c0-saturated. For other c0-saturated spaces see Leung [48] and Gasparis [34,35].
For us the following definition is more natural. We say that a Banach space X is complementably
Y -saturated if X contains isomorphically Y and, moreover, any infinite dimensional complement
of a copy of Y in X contains a complemented copy of Y . Every C(K) space with metrizable K

is complementably c0-saturated [68]. See also [33] for additional information.

Proposition 4.1. Let X be a separable Banach space. Then

(1) a(c0,X) ∈ {0,1,2,ℵ0}.
(2) If X is complementably c0-saturated, then a(c0,X) = 1.
(3) If X contains c0 but some quotient X/c0 does not then:

(a) a(c0,X) = 2 if X/c0 is isomorphic to its hyperplanes.
(b) a(c0,X) = ℵ0 if X/c0 is not isomorphic to its hyperplanes.

The same argument works for other Banach spaces X in which every copy of c0 is comple-
mented, such as WCG or C(α)-spaces for α an ordinal. There exist other (nonseparable) spaces,
say �∞, in which c0 has a unique position (Lindenstrauss and Rosenthal [52]; see also Corol-
lary 3.7). We do not know a Banach space X for which 2 < a(c0,X) < ℵ0. Note that part (1)
of Lemma 3.13 requires to look for X where all copies of c0 are complemented, or all uncom-
plemented, or an X not isomorphic to its square; in other words, that a natural example to get
a finite number of positions of c0 such as c0 ⊕ �∞ actually verifies a(c0, c0 ⊕ �∞) � ℵ0. Also,
the Lindenstrauss–Pełczyński theorem [50], see also [24], yields that every subspace Y of c0 has
in a separable C(K)-space exactly one position. The paper [25] characterizes the Banach spaces
with this property.

The Hilbert space �2 is the other separable automorphic space currently known. The theory of
its positions is much more complicated than that of c0. Our previous approach plainly works for
Banach spaces in which every copy of �2 is complemented; one therefore has
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Proposition 4.2. Let X be a Banach space in which �2 is fully complemented. Then

(1) a(�2,X) ∈ {1,2,ℵ0}.
(2) If X is complementably �2-saturated, then a(�2,X) = 1.
(3) If X contains �2 but some quotient X/�2 does not then:

(a) a(�2,X) = 2 if X/�2 is isomorphic to its hyperplanes.
(b) a(�2,X) = ℵ0 if X/�2 is not isomorphic to its hyperplanes.

The proof of this proposition is similar to that of Proposition 4.1. Banach spaces X in which
�2 is fully complemented include those with the Maurey projection property. Thus, the space
Lp(0,1), p � 2 is complementably �2-saturated [41].

There are �2-saturated spaces where no copy of �2 is complemented such as the Bourgain–
Delbaen L∞-space constructed in [14]. Examples of non-Hilbert �2-saturated space where all
copies of �2 are complemented are the spaces �2(�

mn
pn

) when pn ↓ 2, or the weak-Hilbert space
constructed by Androulakis, Casazza and Kutzarova [6]. A natural example of an �2-saturated
space which contains both complemented and uncomplemented �2 is Bernstein’s space, which
can be described as follows. A finite subset N = {n1 < n2 < · · · < nk} of natural numbers is
said to be admissible if k < n1. The family of admissible sets will be denoted A. If N and M

are finite non-void subsets of N, we write N < M for maxN < minM . We write Nx to mean
x · 1N , where 1N is the characteristic function of N . The Bernstein’s space B [20] is defined as
the completion of the space of finitely supported sequences with respect to the norm

‖x‖B = sup

{√√√√ n∑
k=1

‖Nkx‖2
�1

: Nk ∈ A and N1 < N2 < · · · < Nn, n = 1,2, . . .

}
.

This space is �2-saturated [20, p. 7] and, moreover:

Proposition 4.3. a(�2, B) = c.

Proof. (A sketch). Take first the subspace Z of B spanned by a sequence of subspaces {Nkx:
x ∈ B} where Nk ∈ A, N1 < N2 < · · · < Nk < · · · and the gaps between Nk go to infinity very
fast. This subspace Z is isomorphic to (

∑
k �

nk

1 )�2 where nk = |Nk|. If supk nk = ∞ then Z

contains both complemented and uncomplemented subspaces isomorphic to �2 [13]. Choosing Z

so that, moreover, Z 	 �2(Z) we get, by Lemma 3.13(2), a(�2,Z) = c. This Z is complemented
in B, because is spanned by a subsequence of the standard (unconditional!) basis of B. Moreover,
repeating the proof of Lemma 3.14, with appropriate modifications, we get the result. �

The following problem has been posed in [63]:

Problem. Does there exist a non-automorphic Banach space X such that a(X) < ∞?

Note that the identity a(Y,X) = k means that X contains exactly k subspaces Y1, . . . , Yk , each
isomorphic to Y , such that for every 1 � m < n � k there exists an isomorphism τmn : Ym →
Yn which cannot be extended to an automorphism of X. Since a(c0) = 1 = a(�2) a reasonable
candidate to have finite automorphy index is c0 ⊕ �2. However, we only have:
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Proposition 4.4. Let Z be a subspace of c0 ⊕ �2.

(1) a(c0 ⊕ �2, c0 ⊕ �2) = 3.
(2) If Z contains no copies of c0, then it is isomorphic to �2 and complemented in c0 ⊕ �2.
(3) If Z contains no copies of �2, then it is isomorphic to a subspace of c0.
(4) a(c0, c0 ⊕ �2) = a(�2, c0 ⊕ �2) = 2.

Proof. Proof of (1). Denote X := c0 ⊕�2 and let Y be a subspace of X which is isomorphic to X.
Pick a subspace F ⊂ c0, isometric to c0, with dim c0/F = ∞. Then F has in c0 a complement
isometric to c0. Pick a subspace G ⊂ �2 with dimG = dim�2/G = ∞. Then G has in �2 a
complement isometric to �2. So, there are three evident different positions of Y in X: c0 ⊕ G,
F ⊕ �2 and F ⊕ G. Let Y = Y0 ⊕ Y1, Y0 	 c0 and Y1 	 �2. First we will show that there are
subspaces E0 and E1 of X such that: else E0 	 c0 or it is finite dimensional; else E1 	 �2 or it
is finite dimensional; and

X = (Y0 ⊕ Y1) ⊕ (E0 ⊕ E1). (7)

Since the Hilbert space Y1 is incomparable with c0 and with Y0, there is a finite codimensional
subspace Y ′

1 of Y1 such that

c0 ∩ Y ′
1 = 0 and Y0 ∩ Y ′

1 = 0.

Because Y ′
1 is incomparable with c0, there exists a bounded projection c0 ⊕ Y ′

1 → c0 along Y ′
1.

By the Sobczyk theorem, one can find a superspace Y2 ⊃ Y ′
1 such that

c0 ⊕ Y2 = X.

Denote by E1 a complement of Y ′
1 in Y2. Of course, either E1 	 �2 or it is finite dimensional.

By incomparability of Y0 and Y2,

dim(Y0 ∩ Y2) < ∞.

So there is a finite codimensional subspace Y ′
0 of Y0 such that

Y ′
0 ∩ Y2 = 0.

Moreover, by the incomparability of Y ′
0 and Y2,

Y ′
0/Y2 	 Y0 	 c0.

Since c0/Y2 = X/Y2, there is a subspace Z of c0 such that Z/Y2 = Y ′
0/Y2. The subspace Z

(	 Z/Y2) is isomorphic to c0, hence has a complement E0 in c0. So, E0/Y2 ⊕Y ′
0/Y2c0/Y2 	 c0.

Therefore, Y ′
0 ⊕ E0 is the complement of Y2 in X. Of course, either E0 	 c0 or it is finite dimen-

sional.
We thus get the decomposition

X = (
Y ′ ⊕ E0

) ⊕ (
Y ′ ⊕ E1

) 	 (
Y ′ ⊕ Y ′) ⊕ (E0 ⊕ E1).
0 1 0 1
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To obtain the decomposition (7), one has to note that Y is isomorphic to its finite codimensional
subspaces and use Lemma 3.4.

There are three possibilities:

(1) dimE0 < ∞ and dimE1 = ∞, hence E0 ⊕ E1 	 �2; in which case Y0 ⊕ Y1 	 c0 ⊕ G,
(2) dimE0 = ∞ and dimE1 < ∞, hence E0 ⊕ E1 	 c0; in which case Y0 ⊕ Y1 	 F ⊕ �2,
(3) dimE0 = ∞ and dimE1 = ∞, hence E0 ⊕ E1 	 c0 ⊕ �2; in which case Y0 ⊕ Y1 	 F ⊕ G,

and the extension to an automorphism in X is clear.

Proof of (2). Since Z and c0 are totally incomparable, then Z ∩ c0 is finite dimensional and
Z + c0 is closed. Let Z0 be a complement of Z ∩ c0 in Z. We consider the projection P :
x + y ∈ c0 ⊕ �2 → y ∈ �2. Then P |Z0 is an isomorphism and P(Z0) is complemented in �2. If
E is a complement of P(Z0) in �2, then Z = Z0 ⊕ P −1(E); hence Z is isomorphic to �2 and
complemented in c0 ⊕ �2.

Proof of (3). Recall that an operator T : X → Y is upper semi-Fredholm if its kernel kerT
is finite dimensional and its range T (X) is closed. Let J denote the embedding of Z into X =
c0 ⊕ �2 and P : x + y ∈ c0 ⊕ �2 → y ∈ �2. Since PJ is strictly singular, (idX − P)J is upper
semi-Fredholm. Since (idX − P)(Z) ⊂ c0, Z is isomorphic to a subspace of c0.

(4) follows from (2), (3), Sobczyk’s theorem and Propositions 4.1 and 4.2. �
It is conceivable that c0 ⊕ �2 contains subspaces Y with a(Y, c0 ⊕ �2) � ℵ0. We know no

subspace having 4,5,6, . . . positions.

4.2. Positions in �p and Lp

We have already shown in Corollary 3.16 that all subspaces Y of �p , 1 � p < ∞, p �= 2,
verify a(Y, �p) = c. The situation for subspaces of Lp is different.

Proposition 4.5.

(1) A separable Banach space Y is Hilbert if and only a(Y,Lp) = 1 for some (all) 2 < p < ∞.
(2) Every complemented subspace of Lp , 1 � p < ∞ has only one complemented position

in Lp . In particular, the spaces �p and Lp have only one complemented position in Lp .
The space �2 has only one complemented position in Lp , 1 < p < ∞.

(3) Let Y be a non-strongly embedded subspace of Lp , 1 � p < 2. Then a(Y,Lp) = c.
(4) Let Y be a subspace of Lp , Y �	 �2, 2 < p < ∞. Then a(Y,Lp) = c.
(5) Let Y be a nonreflexive subspace of L1. Then a(Y,L1) = c.
(6) Let Y be a subspace of L1 which contains a complemented copy of �2. Then a(Y,L1) = c. In

particular, a(Lp,L1) = c for 1 < p < 2.

Proof. (1). Since Lp , 2 � p < ∞, has type 2, the first part of the item (1) follows from Propo-
sition 4.2. If Y is not isomorphic to �2, then, by Kadec and Pełczyński [41, Cor. 3], it contains a
complemented (in Lp) subspace isomorphic to �p , and we can use Lemma 3.14.
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(2). The item follows from Alspach, Enflo and Odell [4] (see also [59]) asserting that Lp is
primary (i.e. if Lp 	 E ⊕ F then either E 	 Lp or F 	 Lp).

(3). Recall that a subspace Y of Lp is non-strongly embedded if and only if contains a copy
of �p complemented in Lp [1, Th. 6.4.7]. Thus, Y contains a complemented copy of �p . Since
�p contains an uncomplemented copy of �p [11], the same occurs to Lp , and thus we get from
Lemma 3.14 the estimate a(Y,Lp) � a(�p,Lp) = c.

(4). By [41, Cor. 3], Y either is isomorphic to �2 or contains a complemented subspace, iso-
morphic to �p . Then apply the same reasoning as in (3).

(5). By [41, Th. 6], Y contains a complemented subspace, isomorphic to �1; Lemma 3.14 then
yields c = a(�1, �1) � a(Y,L1).

(6). We first prove that a(�2,L1) � 2. Let (rn) be the Rademacher sequence and (γn) be the
sequence of standard Gaussian independent random variables on [0,1]. The L1-closed linear
spans [rn]∞1 and [γn]∞1 are isomorphic to �2 [54, p. 66] and [74, p. 14].

Lemma 4.6. (Essentially N. Kalton and A. Pełczyński; see also [23].) In the space L1 does not
exist any bounded linear operator isomorphically sending [rn]∞1 into [γn]∞1 . In particular, �2
has in L1 at least two non-isomorphic positions.

Proof. Suppose, such operator T exists. Then ξn = T (rn) are independent random variables in
[γn]∞1 and there exists a > 0 such that ‖ξn‖ � a for each n. Multiplying T , if necessary, by 1/a

one can suppose ‖ξn‖ � 1 for each n. By the well-known properties of the Gaussian variables,
(ξn) is a sequence of Gaussian variables with 0 expectation.

The Rademacher sequence is obviously order bounded. Let us show that (ξn) is order un-
bounded. Suppose |ξn(t)| � ϕ(t) for each n, where ϕ(t) is some measurable function. Given
ε > 0, there is c > 0 such that the Lebesgue measure μ{t ∈ [0,1]: ϕ(t) < c} > 1 − ε. However,
since (ξn) are independent,

μ
{
t :

∣∣ξi(t)
∣∣ > c for some i ∈ {1, . . . , n}} = 1 −

n∏
1

μ
{
t :

∣∣ξi(t)
∣∣ � c

}
� 1 − (

μ
{
t : ‖ξ1‖−1

∣∣ξ1(t)
∣∣ � c

})n → 1 as n → ∞.

So, the sequence (ξn) is order unbounded.
By [82, p. 232, Th. 1.5(ii)], every bounded linear operator in L1 is order bounded, i.e. sends

an order bounded sequence into order bounded one. So, does not exist any such operator T in L1
which translates (rn)

∞
1 onto (ξn)

∞
1 . �

We need the following version of Lemma 3.14.

Lemma 4.7. Let X be isomorphic to its square and let Z be a complemented subspace of a
subspace Y ⊂ X. Let Z′ be isomorphic to Z and such that no isomorphism Z → Z′ can be
extended to an automorphism in X. Then a(Y,X) > 1.

Proof. Let X = V ⊕ V ′, X 	 V 	 V ′. Without loss of generality one can assume Y ⊂ V and
there is a subspace Y ′ ⊂ V ′, Y ′ 	 Y , Z′ ⊂ Y ′ and complemented in Y ′. It is easy to construct an
isomorphism τ : Y → Y ′ which cannot be extended to an automorphism in X. �
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It follows from Lemma 4.6 that �2 admits two non-isomorphic positions in L1 and, in par-
ticular, a(�2,L1) � 2. By Lemma 3.13(2) one gets a(l2,L1) = c. So, by Lemma 4.7, one has
a(Y,L1) = c. Since L1 contains isomorphically Lp for 1 < p < 2 (see e.g. [16]), and these con-
tain complemented copies of �2, we have a(Lp,L1) = c for 1 < p � 2. �

We conjecture that a(Y,Lp) = c for 1 � p < ∞, p �= 2, and every subspace Y ⊂ Lp not
containing �2.

4.3. Positions in C(K)

Separable C(K)-spaces are isomorphic either C(α) for a countable ordinal α or C[0,1]
[69, §8]. Except when α < ωω, in which case C(α) 	 c0 is automorphic, the problem of cal-
culating a(Y,C(K)) is mostly open. In what follows, δ : Y → C(BY ∗) represents the canonical
embedding of a separable Banach space Y into C(BY ∗).

Proposition 4.8. For every separable Banach space Y one has

a
(
Y,C[0,1]) ∈ {1, c}.

Moreover,

(1) a(Y,C[0,1]) = c holds for:
(a) any Banach space containing a complemented copy of any C(K)-space different from c0;
(b) �p for 1 < p < ∞;
(c) a Banach space Y such that C[0,1]/Y does not contain �1;

(2) a(Y,C[0,1]) = 1 holds for:
(a) subspaces of c0;
(b) weak∗-closed subspaces of �1;
(c) c0(Y ), when a(Y,C[0,1]) = 1;
(d) twisted sums of two spaces X,Y with a(X,C[0,1]) = 1 = a(Y,C[0,1]).

Proof. Let K be a compact metric space such that C(K) �	 c0. Since C[0,1] contains com-
plemented and uncomplemented copies of C(K) ([81, p. 1554], [5]) and C(K) 	 c0(C(K))

[81, pp. 1553, 1564], Lemma 3.13 implies that a(C(K),C[0,1]) = c. Let 1 represent a comple-
mented embedding and let L represent an uncomplemented embedding. We already know that
all elements of {1,L}N represent non-equivalent embeddings c0(C[0,1]) → c0(C[0,1]).

By Milutin’s theorem, we will consider δ as an embedding δ : Y → C[0,1]. Now, assume Y

has in C[0,1] at least two positions. A combination of [24, Prop. 4.6] and [44, Th. 2.8] shows
that a position j : Y → C[0,1] is equivalent to δ : Y → C[0,1] if and only if they are semi-
equivalent. Then there is j : Y → C[0,1] a position not semi-equivalent to δ : Y → C[0,1]. Form
the embeddings � : Y → c0(C[0,1]) defined as �(y)(n) = n−1δ(y) and J : Y → c0(C[0,1])
defined as J (y)(n) = n−1j (y).

Now, two different u,v ∈ {1,L}N yield non-equivalent embeddings u� and vJ (or v� and
uJ ): since at some coordinate n one has, say, u(n) = 1 and v(n) = L, the existence of some
operator σ verifying σvJ = u� means the existence of a certain operator T verifying Tj = δ

something that does not occur.
Assertion (1.a) follows from the first sentence of this proof and Lemma 3.14.
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Assertion (1.b) follows from Kalton [44], where he showed that a(�p,C[0,1]) � 2.
We prove now assertion (1.c) following an idea taken from Kalton [44]. Recall that given

a subspace Y ⊂ C[0,1] the quotient space C[0,1]/Y does not contain �1 if and only if it
has separable dual [77]; see also [81]. Let j : Y → C[0,1] be an embedding in such a way
that C[0,1]/j (Y ) does not contain �1. Let D denote Cantor ternary set. ι : D → [0,1] will be
Lebesgue’s map ι((εn)) = ∑

2εn3−n. It is well known that the induced exact sequence

0 C[0,1] ι◦
C(D)

q
c0 0

does not split. A little less known is that if [pn, qn] denotes the sequence of different intervals
[1/3,2/3], [1/9,2/9], [7/9,8/9], . . . generating the Cantor set D then no lifting of no subse-
quence (epn) of the canonical basis of c0, for which the set of indices (pn) is dense in D, can
be weakly Cauchy (see also [18]). To show this, let fn ∈ C(D) be a lifting of the canonical basis
(en); this means that |fn(qn) − fn(pn)| = 1. Take f1. Choose p1 or q1 – say, p1 – and set an
open interval I1 of it on which f1 has oscillation lesser than or equal to 1/4. By the denseness,
there is some [pn2, qn2 ] ⊂ I1. Take fn2 and observe that at one of the points pn2 , qn2 one has –
say pn2 again –

∣∣fn2(pn2) − f1(p1)
∣∣ � 1/2

and choose some new interval I2 of pn2 where fn2 has oscillation at most 1/8. Continues in this
way obtaining a nested sequence Ik , and points pnk

in such a way that

∣∣fnk+1(pnk+1) − fnk
(pnk

)
∣∣ � 1/2

while fnk
has oscillation at most 1/2k . Take p ∈ ⋂

Ik . One has

∣∣fnk+1(p) − fnk
(p)

∣∣ � 1/4

which is enough to make it non-weakly Cauchy.
We show now that the exact sequences

0 Y
j

C[0,1] C[0,1]/j (Y ) 0

0 Y
ι◦j

C(D) ι◦j (Y ) 0
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are not isomorphic, showing that the embeddings j and ι◦j are not equivalent. By Milyutin’s
theorem [62], we identify C[0,1] and C(D). Consider the commutative diagram

0 0

Y

j

Y

ι◦j

0 C[0,1] ι◦

p

C[0,1] q
c0 0

0 C[0,1]/j (Y )
b

C[0,1]/ι◦j (Y )
Q

c0 0

0 0

and let us show that the two horizontal sequences are not semi-equivalent; namely, that no op-
erator ν : C[0,1]/ι◦j (Y ) → C[0,1] can exist such that qν = Q. Since the dual of C[0,1]/j (Y )

is separable, let us number a dense set of functionals (x∗
k ) and a basis (Bn) for the topology of

[0,1] to get

∀n∃un, vn ∈ Bn: ∀1 � k � n: x∗
k (pfun − pfvn) � 2−k

which simply follows because the map (x∗
1p, . . . , x∗

np) : C[0,1] → R
n is finite dimensional, and

thus from the images of each sequence (fj ) (with indices j ∈ Bn) one can extract a convergent
subsequence. The existence of the operator ν transforms this into a weakly convergent lifting of
(eun − evn), which we have already shown cannot exist.

Assertion (2.a) follows from Lindenstrauss–Pełczyński theorem [51] (C(K)-valued operators
defined on subspaces of c0 can be extended to c0), which shows that all positions of a subspace H

of c0 in C[0,1] are semi-equivalent to the canonical one δ : H → C(BH ∗). Assertion (2.b) was
proved by Kalton in [43] and [44, Th. 5.2], and (2c) and (2.d) in [44]. �

Proposition 4.8 completes the results of Moreno [63] who showed that there were at least ℵ1
different mutually non-isomorphic positions of C[0,1] inside C[0,1]. Kalton asked in [42] if
a(Y,C[0,1]) = 1 can hold for a superreflexive space Y . For countable compacta one has:

Proposition 4.9. For every Banach space Y and ωω � α < ω1 one has

a
(
Y,C(α)

) ∈ {0,1, c}.
Moreover,

(1) a(Y,C(α)) = c holds for any Banach space containing complemented copies of C(β),
β � ωω;

(2) a(Y,C(α)) = 1 holds for subspaces Y of c0.
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A distinguished class of subspaces of the spaces of continuous functions on countable com-
pacta is formed by the Schreier-like spaces. The Schreier space S constructed over the family A
of admissible sets is the completion of the space of finitely supported sequences with respect to
the norm ‖x‖S = supN∈A ‖Nx‖�1 . The family A is countable and forms a closed, hence com-
pact, subspace of {0,1}N; in fact, it is homeomorphic to ωω. On the other hand, S is a subspace
of C(A) through the canonical embedding δ : S → C(A) given by δ(x)(A) = ∑

j∈A xj . The
space S is therefore c0-saturated, hence a(c0, S) = 1 by Proposition 4.1.

Since S contains uniformly complemented �n
1 , and also contains �n

1 but not uniformly com-
plemented (since it contains c0) it cannot be an UFO (for definition see the next section).
Since S = c0(S), the space S contains a complemented copy of c0(�

n
1) and also an uncom-

plemented one through the embedding c0(�
n
1) → c0(c0) = c0 → S ; therefore a(c0(�

n
1), S) = c.

This and Lemma 3.14 immediately yield a(S, S) = c. We feel tempted to conjecture that
a(S,C(ωω)) = 1 = a(S,C[0,1]).

Among embeddings between C(K)-spaces, a special role is played by isometric embeddings
of the form ϕ◦ : C(L) → C(K), where ϕ : K → L is a continuous surjection, and ϕ◦(f ) = f ◦ϕ.
The following apparently open problem was posed by Pełczyński [70]:

Problem. Is every exact sequence

0 C[0,1] j
C[0,1] V 0

isomorphically equivalent to an exact sequence

0 C[0,1] ϕ◦
C[0,1] W 0 ?

However, even if the answer to the previous problem was to be no, an analogous argument to
that of Proposition 3.13 shows that there exists a continuum of different positions of C(D) inside
C(D) of the form ϕ◦. Indeed, let K , L be compact Hausdorff spaces. Two continuous surjections
ϕ : K → L and ψ : K → L will be called equivalent if the embeddings ϕ◦ and ψ◦ are equivalent.

We will show:

Proposition 4.10. There is a continuum of mutually non-equivalent continuous surjections
D → D.

Proof. Let us consider ϕ : D → D a continuous surjection such that ϕ◦ is an uncomplemented
position and ψ : D → D a continuous surjection such that ψ◦ is a complemented position. So
ϕ◦ and ψ◦ are not semi-equivalent. Let us show that {ψ,ϕ}N is a continuum of mutually non-
isomorphic continuous surjections η = (ηn) : DN → DN given by (ηn)((xn))(ηnxn). Take two
different elements η,μ ∈ {ψ,ϕ}N; let k be a coordinate where ηk = ϕ and μk = ψ , and let
pk : DN → D be projection onto the kth-coordinate. If some isomorphism σ : C(DN) → C(DN)

exists such that ση◦ = μ◦, then ση◦p◦
k = μ◦p◦

k .
It is therefore enough to show that the surjections ψ ⊕ ϕ : D × D → D × D and ϕ ⊕ ψ :

D × D → D × D are not equivalent because the embeddings C(D) ⊕ C(D) → C(D) ⊕ C(D)

given by (ψ◦, ϕ◦) and (ϕ◦,ψ◦) are not semi-equivalent. To show this, assume that there could



2122 J.M.F. Castillo, A. Plichko / Journal of Functional Analysis 259 (2010) 2098–2138
exist an extension
( α β

γ δ

) : C(D) ⊕ C(D) → C(D) ⊕ C(D) of (ψ◦, ϕ◦) through (ϕ◦,ψ◦). This
means that for all x, x′ ∈ C(D) one has

(
αϕ◦x + βψ◦x′, γ ϕ◦x + δψ◦x′) = (

ψ◦x,ϕ◦x′).
Setting x′ = 0 implies αϕ◦x = ψ◦x. Therefore also ϕ◦ admits a projection, against the hy-

pothesis.
That is enough to prove the assertion about C(D) since D is homeomorphic to DN, and if h :

K → L is a homeomorphism between compact spaces and q : K → M is a continuous surjection
then:

• q◦ admits a projection if and only if qh admits a projection: indeed, if P verifies P(qh)◦ = 1
then (Ph◦)q◦ = 1 and if Q verifies Qq◦ = 1 then Q(h◦)−1(qh)◦ = 1.

• Two arbitrary continuous surjections ϕ and φ are equivalent if and only if ϕh and φh

are equivalent: if σ is the automorphism so that σϕ◦ = φ◦ then h◦σ(h◦)−1 verifies
h◦σ(h◦)−1(ϕh)◦ = (φh)◦. �

Problem. Determine when two continuous surjections ϕ,ψ : [0,1] → [0,1] are equivalent. Does
there exist a continuum of mutually non-equivalent continuous surjections [0,1] → [0,1]?

5. A dichotomy for extensible Banach spaces

Extensible Banach spaces were introduced in [65] after the observation in Lemma 3.1 that if
X is Y -automorphic then all operators Y → X can be extended to X.

Definition. A Banach space X is said to be extensible if for every subspace Y ⊂ X every operator
τ : Y → X can be extended to an operator T : X → X. If there is a λ > 0 such that some extension
exists verifying ‖T ‖ � λ‖τ‖ then we will say that X is λ-extensible. The space X is said to be
uniformly extensible if it is λ-extensible for some λ (see also [64]).

Automorphic spaces are extensible [65, Th. 3.2]. The converse does not hold since �∞ (injec-
tive spaces in general) is extensible and not automorphic. It was proved in [40] (resp. [65]) that
the spaces c0(Γ ) are extensible (resp. automorphic). Obviously, each subspace of a Hilbert space
is extensible, while a subspace of c0 is extensible if and only if it is c0 [56,65].

Lemma 5.1. (See [19,65].) A Banach space X containing an uncomplemented and a comple-
mented copy of a space Y cannot be extensible.

Proof. Let i : Y → X be an uncomplemented position and let j : Y → X be a complemented one
with projection P : X → Y ; i.e., Pj = idY . If X were extensible, there would be an extension
J : X → X of j through i, i.e., J i = j . Therefore PJ would be a projection through i since
PJ i = Pj = idY . �

Extensible spaces do enjoy very few stability properties:
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Proposition 5.2.

(1) A complemented subspace of an extensible space is extensible.
(2) The product of extensible spaces is not necessarily extensible; hence the class of extensible

spaces does not have the 3-space property.
(3) The quotient of two extensible spaces is not necessarily extensible.

Proof. Assertion (1) is clear. The example c0 ⊕ �∞ proves (2); which moreover exhibits a sep-
arably injective non-extensible space. Even the product of incomparable extensible spaces need
not be extensible, as the space c0 ⊕ �2 shows: since �∞(�n

2) contains complemented copies
of �2 (an explicit proof can be seen in [21]), there exists an operator �∞(�n

2) → �2 which
is not 2-summing and cannot therefore be extended to �∞. Since all operators X → �2 are
2-summing if and only if all operators X∗∗ → �2 are 2-summing, there necessarily exists an
operator c0(�

n
2) → �2 that is not 2-summing and cannot therefore be extended to an operator

c0 → �2.
We prove now (3): recall that calling N

∗ = βN−N one has the identification C(N∗) = �∞/c0.

Proposition 5.3. Under the continuum hypothesis (in short CH), the space C(N∗) is not extensi-
ble.

Proof. It is enough if we prove that under CH, C(N∗) contains an uncomplemented subspace
isometric to C(N∗). We refine Amir’s proof [5] that C(N∗) is not complemented in �∞(2N

∗
) to

show that there exists a Banach space X of density character c that contains an uncomplemented
copy of C(N∗). Following Amir’s paper [5], let Σ be a family of subsets of N

∗ that contains a
basis for the topology of N

∗, and which is closed under complementation, finite union and the
closure operation. We can consider the Banach space B(Σ), sitting as C(N∗) ⊂ B(Σ) ⊂ �∞(N∗)
defined as the subspace of �∞(N∗) generated by the characteristic functions of the elements of Σ .
Let also DΣ be the union of the boundaries of all open sets living in Σ . By [5, Cor. 1], if C(N∗),
is complemented in B(Σ), then DΣ is nowhere dense in N

∗. We indicate now how to construct
such a family Σ of cardinality c and with DΣ dense in N

∗, so that the space X = B(Σ) is as
stated in the theorem. For every clopen subset A of N

∗, choose UA ⊂ A be an open not closed
set. Consider then Σ the least family of subsets of N

∗ that contains all clopen A and all open sets
UA and that is closed under complementation, finite union and the closure operation.

Now, it is a consequence of Parovičenko’s theorem [12] that N
∗ can be mapped onto every

compact space of weight at most ℵ1. Therefore, every Banach space of density character at most
ℵ1 is isometric to a subspace of C(N∗). Applying this to the space X constructed above yields
the result. �

This example also show that ultrapowers need not be extensible: Bankston [10] proved under
CH that if U is a free ultrafilter on the integers and D denotes the Cantor set then the ultrapower
DU is homeomorphic to N

∗. Therefore, under CH, one has C[0,1]U = C(N∗) which proves
the claim. In [8] it is proved that infinite dimensional ultrapowers XU are never injective. We
conjecture they are never extensible (apart from Hilbert).

Two problems about extensible spaces were posed in [65] and remain unsolved.

Extensible space problem. Do there exist separable extensible spaces different from c0 and �2?
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Uniformity problem. Is every extensible space uniformly extensible?

The extensible space problem can be considered as an approach to the automorphic space
problem, in combination with the remaining question: Must a separable extensible space be au-
tomorphic? Let us present a partial positive solution to the uniformity problem.

Lemma 5.4. Let X be an extensible Banach space such that X = Y1 ⊕Z1 and that for each n one
has Zn = Yn+1 ⊕ Zn+1. Then all except a finite number of the Yn must be uniformly extensible.

Proof. In the proof we use ideas of [19, Th. 1.1] and [65, Lem. 4.1]. Observe that there is a
simple construction of a sequence of bounded projections Pn : X → lin(Yi)

n
1 verifying kerPn ⊃

lin(Yi)
∞
n+1, because X = Y1 ⊕ · · · ⊕ Yn ⊕ Zn, (Yi)

∞
n+1 ⊂ Zn.

Assume now that each Yn is not uniformly extensible. Then there are subspaces En of Yn and
operators τn : En → Yn such that ‖τn‖ = 1 for each n, and the norm of every extension of τn to
an operator Yn → Yn is greater than 2n(‖Pn‖+‖Pn−1‖)n. Define the operator τ : lin(En)

∞
1 → X

by

τ
(∑

xn

)
=

∑
2−nτnxn, xn ∈ En.

By construction, ‖τ‖ � 1. Suppose that there exists an extension T : X → X of τ . Put Sn =
2n(Pn − Pn−1)T |Yn . Then Sn is an extension of τn to an operator Yn → Yn and

‖Sn‖ � 2n
(‖Pn‖ + ‖Pn−1‖

)‖T ‖;
which is impossible for large n. �
Theorem 5.5. An extensible space isomorphic to its square is uniformly extensible.

We conjecture that a separable extensible space that is isomorphic to its square is automorphic.
The notion of uniformly extensible space can be localized as follows:

Definition. (See [65].) A Banach space X is said to be uniformly finitely extensible (an UFO, in
short) if there exists a λ � 1 such that for every finite dimensional subspace E ⊂ X each linear
operator τ : E → X can be extended to a linear operator T : X → X with ‖T ‖ � λ‖τ‖.

The two following results were proved in [19, Th. 1.1] and [65, Prop. 4.2] and are essential
for our purposes:

Lemma 5.6.

(1) Every extensible space is an UFO.
(2) Every μ-uniformly finitely extensible space that is λ-complemented in its bidual is λμ-

extensible.

Every L∞-space is an UFO [53, p. 334], so an UFO does not have to be extensible. Let us
recall that a subspace Y of a Banach space X is locally complemented if there exists a constant
λ � 1 such that whenever F is a finite dimensional subspace of X and ε > 0, there is a linear
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operator S : F → Y with Sy = y for all y ∈ F ∩ Y and ‖S‖ � λ + ε. The principle of local
reflexivity [53, Th. 3.1] tells us, in particular, that any Banach space is locally complemented in
its bidual.

Lemma 5.7. A locally complemented subspace of an UFO is an UFO.

Proof. Let E be a finite dimensional subspace of Y , a locally complemented subspace of an
UFO X. Let τ : E → Y be an operator and let T : X → X be an extension of it. By the definition
of locally complemented subspace, for the subspace F = τ(E) there exists an operator S : F →
Y such that S|F∩Y = idF∩Y and ‖S‖ � λ + ε. Then ST |Y is an extension for τ since for e ∈ E

one has ST (e) = Sτe = τe and ‖ST ‖ � (λ + ε)‖T ‖. �
Proposition 5.8. If X is an UFO and U is an ultrafilter on a set I then the ultrapower XU is an
UFO.

Proof. Let λ be the constant with which X is an UFO and let ε > 0. Let E be a subspace of
dimension N of an ultrapower XU of X, and let φ : E → XU be an operator. Let η1, . . . , ηN be a
basis for E and let νk = φηk be with ηk = [xk

i ] and νk = [yk
i ]. It is clear that there is some B ∈ U

such that for all i ∈ B the space [xk
i ]k is of dimension N .

Let (λ1, . . . , λn(ε)) be a δ-net for the unit ball of E. For a fixed λl one has

lim
U

∥∥∥∥∑
k

λl(k)yk
i

∥∥∥∥ � ‖φ‖ lim
U

∥∥∥∥∑
k

λl(k)xk
i

∥∥∥∥
which implies that there must be a set Al ∈ U so that∥∥∥∥∑

k

λl(k)yk
i

∥∥∥∥ � (1 + ε)‖φ‖
∥∥∥∥∑

k

λl(k)xk
i

∥∥∥∥
for all i ∈ Al . Let A = B ∩⋂

1�l�n(ε) Al ∈ U . Thus, for j ∈ A we set Ej = [xk
j : 1 � k � N ] and

define an operator τj : Ej → X as τj (x
k
j ) = yk

j . Given a point
∑

k λ(k)xk
j in the unit ball of Ej

there is some λl such that∥∥∥τj

(∑
λ(k)xk

j

)∥∥∥ =
∥∥∥∑

λ(k)yk
j

∥∥∥
�

∥∥∥∑(
λ − λl(k)

)
yk
j

∥∥∥ +
∥∥∥∑

λl(k)yk
j

∥∥∥
� δ dist

(
E,�N

1

) + (1 + ε)‖φ‖.

This yields ‖τj‖ � (1 + 2ε)‖φ‖, with the proper choice δ � ε dist(E, �N
1 ). Let Tj : X → X be

an extension of τj with norm at most λ(1+2ε)‖φ‖. Let T : XU → XU be the ultrapower operator
T [xi] = [Rixi] with Ri = Ti if i ∈ A and Ri = 0 if i /∈ A. One has T ηk = T [xk

i ] = [Rix
k
i ]; thus,

when i ∈ A we get Rix
k
i = Tix

k
i = τix

k
i yk

i , hence T|E = φ. �
Corollary 5.9. If X is an UFO then X∗∗ is uniformly extensible.



2126 J.M.F. Castillo, A. Plichko / Journal of Functional Analysis 259 (2010) 2098–2138
Proof. If X is an UFO, the ultrapower XU is UFO. Since X∗∗ is a complemented subspace of
some ultrapower of X, it must also be an UFO , hence uniformly extensible. �
Theorem 5.10. An UFO Banach space X is either an L∞-space or a weak type 2 near-Hilbert
space with the Maurey projection property.

Proof. Assume X is an UFO containing �n
1 uniformly. The ultrapower XU via a free ultrafilter

on N is an UFO and contains (�n
1)U , which in turn contains �1. So, its bidual E = (XU )∗∗ is

extensible (Lemma 5.7 and Proposition 5.8) and contains �1. We show below that an extensible
space containing �1 must be separably injective, hence an L∞-space. Therefore XU must also be
an L∞-space, as well as X.

Thus, let Z be an extensible space containing �1. Let B be a separable space and let i :
A → B be a subspace. Pick an exact sequence 0 → K

k−→ �1
q−→ B/A → 0 and then form the

commutative push-out diagram

0 K
k

φ

�1
q

B/A 0

0 A
i

B B/A 0.

Let j : �1 → Z be an embedding, and let τ : A → Z be an operator. Let τ̂ φ : Z → Z be an
extension of τφ through jk. Since τ̂ φjk = τφ, by the universal property of the push-out, there
exists an operator ν : B → Z making commutative the diagram

K
k

φ

�1
j

Z

τ̂φA
i

B

ν

A
τ

Z,

which in particular means νi = τ .
If X does not contain �n

1 uniformly then it contains �n
2 uniformly complemented [72]. The

ultrapower XU contains �2 complemented; hence, its bidual (XU )∗∗ also contains �2 via some
embedding i : �2 → (XU )∗∗ and complemented via a projection p. Let δ : X → (XU )∗∗ be the
canonical embedding. The following diagram

E
j

φ

X
δ

(XU )∗∗

�2
i

(XU )∗∗p
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shows that every operator φ : E → �2 from a subspace j : E → X into a Hilbert space can be
extended to X. A theorem of Milman and Pisier [61, Th. 10] establishes that X must have weak
type 2 (see comments below). By the Maurey–Pisier theorem [60], X contains uniformly �n

p(X)

and �n
q(X). So, if p(X) < 2 then, by [11], X contains a sequence of subspaces En, uniformly

isomorphic to �n
2 , for which λ(En,X) → ∞ as n → ∞. So, by [65, Th. 4.4], X is non-UFO

unless p(X) = 2. Now let q(X) > 2. If X has exactly cotype q(X), then there exist uniformly
complemented copies of �n

q(X) in X; otherwise there exist such copies, O(nε)-complemented
in X, where ε > 0 is arbitrary. By Rosenthal’s theorem [76] (see also Lemma 6.11 below), for

q > 2, �q contains a sequence of subspaces En for which λ(En, �q) � 2−1n
q−2
2q . So, we can apply

[65, Th. 4.4] once more.
To show that X has Maurey projection property observe that since X is UFO there is a uniform

constant C so that all subspaces �n
2 are C-complemented (otherwise there would be a sequence

of �n
2 with n increasing not uniformly complemented, and X could not be UFO). So λ(E,X) �

CdE . Passing to the limit, the same occurs to infinite dimensional E. �
Corollary 5.11. An UFO complemented in its bidual is either injective or near-Hilbert.

Corollary 5.12. A separable Banach space containing �1 cannot be extensible.

Proof. An extensible space containing �1 must be separably injective; but Zippin showed [85]
that c0 is the only separable separably injective space. �
Remarks. Let us say that a couple (Y,X) of Banach spaces is an UFO pair if there exists C � 1
such that for every finite dimensional subspace E of Y and every linear operator τ : E → X,
there exists a linear extension T : Y → X with ‖T ‖ � C‖τ‖. This definition has been modelled
upon [19,65]. If (Y,X) is an UFO pair and X′ is locally complemented subspace of X, X′ ⊃ Y ,
then (Y,X′) is an UFO pair. The proof of this statement repeats the proof of Lemma 5.7. In
[19, Cor. 1.2] the following assertion was proved for a dual space Y . A few variations in the
proof yield that if a Banach space Y ′ is finitely representable in a Banach space Y and X is a
complemented subspace of its dual. If (Y,X) is an UFO pair then (Y ′,X) is an UFO pair too.
Moreover, if every operator from a subspace of Y to X extends to an operator from the whole Y

to X, then every operator from a subspace of Y ′ to X extends to an operator from the whole Y ′
to X. The spaces Y for which (Y, �p) is an UFO pair were investigated in [19] under the name Mp

spaces, and Maurey’s extension theorem (see e.g. [86]) can be reformulated in this language as:
Each type 2 space is M2. It is an open problem whether the converse also holds. A partial solution
for this problem is precisely the already mentioned Milman–Pisier theorem [61, Th. 10]: Each
M2 space has weak type 2. The M2 spaces are closely connected with the spaces possessing the
Maurey projection property. We do not know whether these properties are equivalent or whether
the Maurey projection property is equivalent to type 2.

6. Extensible spaces with additional properties

In Theorem 5.10 we have shown that an UFO X must be either an L∞-space or a weak type 2
near-Hilbert space with the Maurey projection property. Thus, the automorphic space problem
has been transformed in two problems:

• Is a separable automorphic L∞ space isomorphic to c0?
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• Is a separable automorphic near-Hilbert space with Maurey projection property isomorphic
to �2?

Let us explore both possibilities.

6.1. On automorphic L∞ spaces

Which known L∞-spaces could be automorphic? After the results of [9], amongst C(K)

spaces we can only still consider very large C(K) spaces. Then, an automorphic space contain-
ing �1 must be separably injective, hence it cannot be separable, since Zippin’s theorem asserts
that c0 is the only separable separably injective space. This excludes all Bourgain–Pisier exotic
L∞-spaces constructed in [15]. If the space contains �∞ then it must enjoy the property that
every separable subspace is contained in a copy of �∞ contained in the space, hence it must be
universally separably injective, in the language of [8]. L∞-spaces with unconditional basis must
also be excluded by part (3) of Theorem 7.1. One moreover has

Proposition 6.1. Let X be a separable automorphic L∞-space different from c0. Then X cannot
be isomorphic to its square, every copy of X inside X is complemented and if some infinite
codimensional copy of X inside X exists then X 	 X ⊕ c0.

Proof. Recall that every separable L∞-space has a quotient isomorphic to c0. So, [24, Prop. 5.2]
shows that if X is isomorphic to its square, c0 must contain a complemented copy of X, so
X 	 c0. The second item is valid for any Banach space: if Y ⊂ X is an uncomplemented copy
of X then the isomorphism τ : Y → X cannot be extended to a bounded operator T : X → X.
So, X is not extensible, hence is not automorphic. Set X = X ⊕ Y ; the existence of the exact
sequences 0 → E → X → c0 → 0 and 0 → E → X ⊕ Y → c0 ⊕ Y → 0 yields c0 	 c0 ⊕ Y ,
hence Y 	 c0. In particular, X must contain c0. �
6.2. On near-Hilbert extensible spaces

Besides being automorphic, Hilbert spaces enjoy two additional properties: the dual space is
also automorphic, and all their subspaces are automorphic. Let us show that an UFO with any of
these properties is very close to be a Hilbert space. One has

Corollary 6.2. If X is a Banach space such that both X and X∗ are UFO then it is a weak Hilbert
space.

Proof. Since L1-spaces cannot be UFO, X must be a weak type 2 space, as well as X∗. So both
have weak type 2 and weak cotype 2 i.e., are weak Hilbert spaces [73]. �
Definition. A Banach space is said to be hereditarily UFO (an HUFO, in short) if each of its
subspaces is an UFO.

Theorem 6.3. Every hereditarily UFO space is asymptotically Hilbertian.

Proof. For every n, X contains subspaces Fk
n , k = 1,2, . . . , of the same dimension for which

ρ
(
SFk ,F

l
n

)
> 1 − ε for k < l, and dFk > n.
n n
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By a compactness argument, among them there are, for every ε > 0, two (1 + ε)-isometric.
Denote them by En and E′

n. Thus, we can construct a sequence of subspaces which satisfy
conditions of the following Lemma 6.4, and therefore X contains a non-UFO subspace. �
Lemma 6.4. Let a > 0 and b � 1. Let a Banach space X contain a sequence of finite dimensional
subspaces En,E

′
n, n = 1,2, . . . , such that:

(i) ρ(SEn,E
′
n) > a for each n;

(ii) dEn → ∞ as n → ∞;
(iii) dist(En,E

′
n) � b for each n.

Then X contains a non-UFO subspace.

Proof. Let Jn : En → E′
n be the isomorphisms given by the condition (iii). We formulate the fist

step as a sublemma:

Sublemma 6.4.1. Let (En,E
′
n) be a sequence of subspaces verifying (i), (ii), (iii) from Lemma 6.4.

Then for every positive integer k and every finite codimensional subspace Z of X there is
n = n(k) and subspaces F ⊂ En ∩ Z and F ′ ⊂ E′

n ∩ Z such that dF > k and dist(F,F ′) � b.

Indeed, by (ii) one has dEn → ∞, hence

dEn∩Z → ∞ as n → ∞,

moreover, dJn(En∩Z) → ∞ and dJn(En∩Z)∩Z → ∞. Thus, for sufficiently large n, the subspaces

F ′ = Jn(En ∩ Z) ∩ Z and F = J−1
n

(
Jn(En ∩ Z) ∩ Z

)
satisfy the conditions of the sublemma.

Following [65, Lem. 4.1] it can be shown that given subspaces (En,E
′
n) verifying (i)–(iii) one

can construct subspaces Fk,F
′
k of X, k = 1,2, . . . in such a way that

(iv) F1,F
′
1, . . . ,Fk,F

′
k, . . . form a finite dimensional Schauder decomposition in its closed linear

span;
(v) dimFk = dimF ′

k ;
(vi) dFk

→ ∞ as k → ∞, dist(Fk,F
′
k) � b.

Indeed, let ε > 0. Set F1 = E1 and F ′
1 = E′

1. Take Φ1 a finite subset of the unit sphere SX∗
which (1 − ε)-norms F1 + F ′

1 and let Φ�
1 ⊂ X be its (finite codimensional) annihilator. By

Sublemma 6.4.1, there exists a positive integer n2 and subspaces F2 of En2 ∩ Φ�
1 and F ′

2 of
E′

n2
∩ Φ�

1 such that dF2 > 2 and dist(F2,F
′
2) � b. Take Φ2 a finite subset of SX∗ which (1 − ε)-

norms F1 ⊕ F ′
1 + F2 + F ′

2 and continue inductively.
Let us now recall a result of [29, Th. 6.7] as sublemma.

Sublemma 6.4.2. There is a function λ → f (λ) so that if E is a Banach space with dimE = n

such that for every F ⊂ E there is a projection of norm � λ from E onto F then dE � f (λ). One
can take f (λ) = cλ32 for a suitable constant c.
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Using this Sublemma 6.4.2, we can obtain subspaces Gk in Fk for which

λ(Gk,Fk) → ∞.

Denote by Y the closed linear span of the subspaces Gk,F
′
k , k = 1,2, . . . . Then Gk are uniformly

complemented in Y . On the other hand, the F ′
k contain subspaces G′

k , uniformly isomorphic
to Gk , for which

λ
(
G′

k, Y
)
� λ

(
G′

k,F
′
k

) → ∞.

By [65, Th. 4.4], this implies that Y is not UFO. �
One could also consider the notion of hereditarily extensible space: a Banach space in which

every subspace is extensible. It is clear that every hereditarily extensible space is HUFO, and
Theorem 6.3 implies that the converse also holds: HUFO are asymptotically Hilbert, hence re-
flexive (see [74, p. 220]), and reflexive UFO are extensible. Therefore

Corollary 6.5. Hereditarily UFO and hereditarily extensible spaces coincide.

Also, the uniformity problem has a positive answer for HUFO: since hereditarily extensible
spaces are reflexive, Lemma 5.6(2) yields:

Corollary 6.6. If a Banach space is hereditarily extensible there exists a λ > 0 such that every
subspace is λ-extensible.

All this suggests whether every HUFO space must be isomorphic to a Hilbert space. The
converse of Theorem 6.3, however, does not hold:

Example 6.7. There exist weak Hilbert spaces that are not hereditarily UFO.

The example is Tsirelson’s 2-convexified space T2, which can be obtained as follows. Define
inductively a sequence of norms ‖ ‖i on c00 as follows ‖x‖0 = ‖x‖c0 and for i > 0

‖x‖i+1 = max

(
‖x‖i ,

1

2
sup

{√√√√ n∑
k=1

‖Nkx‖2
i : Nk ∈ A; N1 < · · · < Nn, n = 1,2, . . .

})
.

It is easy to see that ‖x‖i � ‖x‖�2 for every i and thus limi ‖x‖i =: ‖x‖ exists for every x ∈ c00.
The completion of c00 with respect to the limiting norm is denoted by T2. The space T2 is a weak
Hilbert space by [74, p. 205]. To show it contains a non-UFO subspace, we state a result presented
without proof in [20, p. 117]; it can be proved in a similar way as for the usual Tsirelson’s space.

Lemma 6.8. Denote by X1 (X2) the subspace of T2 spanned by odd (resp. even) unit basic
vectors ek and by S : X1 → X2 the shift operator: Sek = ek+1. Then S is an isomorphism from X1
onto X2.

Now, since the unit vectors form an unconditional basis of T2, the existence of a non-UFO
subspace follows from the previous lemma and the following
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Proposition 6.9. Assume that X contains a subspace of the form Y ⊕Y ′, Y 	 Y ′ for some Y �	 �2.
Then X contains a non-UFO subspace.

Proof. Since Y �	 �2, it contains a sequence of finite dimensional subspaces En verifying con-
dition (ii) of Lemma 6.4 [50, Section 7]. Since Y 	 Y ′, the subspace Y ′ contains a sequence
of subspaces E′

n, uniformly isomorphic to En. The condition X ⊃ Y ⊕ Y ′ includes the de-
mand ρ(SY ,Y ′) > 0, hence infn ρ(SEn,E

′
n) > 0. So, by Lemma 6.4, X contains a non-UFO

subspace. �
We do not know if the space T2 is itself an UFO (in which case it would be the first reflexive

extensible non-Hilbert space). In fact we do not know if a weak Hilbert space must be UFO. We
show that asymptotically Hilbertian spaces need not be UFO.

Example 6.10. Examples of asymptotically Hilbertian non-UFO spaces.

They are provided by Johnson’s spaces (see e.g. [55, p. 112]) of the form

Z = �2
(
�kn
pn

)
with pn ↓ 2 and kn ↑ ∞ (8)

under some additional conditions. By the Gurariı̆–Kadec–Macaev formula [37], the space Z is
not isomorphic to a Hilbert space if and only if

sup
n

k

|pn−2|
2pn

n sup
n

d
�
kn
pn

= ∞. (9)

Let us show that the space Z of the form (8) with the condition (9) is non-UFO. Observe that
Z contains uniformly complemented subspaces �

kn
pn

satisfying the condition (9) and, by Dvoret-
zky’s theorem, uniformly Euclidean subspaces too. So, the claim follows from [65, Th. 4.4] once
proved that the projection constants tend to infinity:

Lemma 6.11. The space E = (�n
p ⊕�n

2)∞, p > 2, contains a subspace F which is isometric to �n
p

and such that

λ(F,E) � 2−1n
p−2
2p . (10)

Proof. We use an idea of [76, Lem. 2A]. Take standard bases (ei)
n
1 and (hi)

n
1 of �n

p and �n
2 , and

put

fi = ei + n
− p−2

2p hi, i = 1, . . . , n.

By the Hölder inequality, for all scalars (ai)

n∑
|ai |2 �

(
n∑

|ai |2 p
2

) 2
p

n
1− 2

p ,
1 1
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so ∥∥∥∥∥
n∑
1

aihi

∥∥∥∥∥ �
∥∥∥∥∥

n∑
1

aiei

∥∥∥∥∥n
p−2
2p .

Hence, the subspace F = lin(fi)
n
1 is isometric to �n

p . �
There is a common ingredient in Example 6.10 and the second part of Theorem 5.10 that

guarantees the non-UFO character.

Definition. We say that a Banach space X has the property P if it contains a sequence of uni-
formly complemented subspaces En, uniformly isomorphic to �

kn
pn

, for which (pn) is bounded
and verifying the condition (9).

Proposition 6.12. A Banach space X with the property P is non-UFO.

Proof. Let us consider two possibilities.
(i). There exists a subsequence (pnk

) ⊂ (pn) with pnk
> 2 for every k and verifying the con-

dition (9). Then we repeat the proof of Proposition 6.10.
(ii). There exists a subsequence (pnk

) ⊂ (pn) with pnk
< 2 and verifying the condition (9).

Without loss of generality one may suppose 1 < a < pn < 2 for some a and each n. By
[29, Ex. 3.1], there exists a constant c ∈ (0,1) so that every �k

p , 1 < p < 2, contains a subspace E

of dimension ck with dE � 2. Let p′ be such that 1/p + 1/p′ = 1. If P : �k
p → Ek is a projec-

tion then �k
p′ contains a subspace Fk = P ∗(�k

p′) with dF � 2‖P ‖. Moreover, by [11, p. 182],
there exists an universal constant b (connected with the Khintchine inequality) so that for every
subspace F of �k

p′

dF � bk1/2(dimF)−1/p′
.

Hence,

‖P ‖ � 1

2
bk1/2(ck)−1/p′ b

2
c−1/p′

k1/2−1/p′ � b

2c
k

2−p
2p .

Thus, our hypotheses yield that �
kn
pn

contain subspaces En, dimEn = ckn with dEn � 2 and

projection constants λ(En, �
kn
pn

) → ∞ as n → ∞. On the other hand, since 1 < a < pn < 2,

X contains uniformly complemented �
ckn

2 . The result [65, Th. 4.4] ensures that X is not UFO. �
Observe that a Banach space with the property (H) cannot contain a sequence of sub-

spaces En, uniformly isomorphic to �
kn
pn

with the condition (9). In particular, spaces with prop-
erty P cannot have property (H) or be weak Hilbert spaces. Analogously, spaces with the upper
(resp. lower) property (H) cannot contain a sequence of subspaces En, uniformly isomorphic
to �

kn
p , with the condition (9) and pn > 2 (resp. pn < 2).
n
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7. Automorphic spaces with lattice structure

Further partial solutions to the automorphic space problem can be obtained for Banach spaces
with an additional lattice or unconditional structure. Recall that Theorem 5.10 establishes that an
UFO is either an L∞-space or a weak type 2 near-Hilbert space. One moreover has (see below
for unexplained notation and definitions):

Theorem 7.1.

(1) An UFO space X with unconditional basis is either lattice isomorphic to c0 or a superreflex-
ive weak type 2 near-Hilbert space with Boyd indices α(X) = β(X) = 2.

(2) An UFO Banach lattice X with p.l.u.st. is either an L∞-lattice or a superreflexive weak
type 2 near-Hilbert space.

(3) An UFO r.i. function space X on the interval (0,1) is either L∞ or a superreflexive type 2
near-Hilbert space.

(4) If X is an r.i. function space on the interval (0,1) and both X and X∗ are UFO then X = L2.
(5) An HUFO Köthe function space on (0,1) is lattice isomorphic to L2.

Proof. Assertion (1). Let us show that an L∞ UFO with unconditional basis is lattice isomor-
phic to c0: let X be an L∞ UFO with unconditional basis (en). So, X contains �n∞ uniformly.
Since the spaces En = [e1, . . . , en] are uniformly complemented with uniformly bounded un-
conditional constants, if they are not uniformly isomorphic to the corresponding �n∞ it follows
from [65, Cor. 4.7] that X cannot be an UFO. But if they are uniformly isomorphic to �n∞ the
sequence (en) must be weakly 1-summable, hence equivalent to the canonical basis of c0 (see
e.g., [27, Cor. V.7]).

The assertion about Boyd indices can be proved as follows: if X does not contain �n∞ then one
can apply [79] to obtain that �p is block finite represented in the unconditional basis (ei) of X

for every α(X) � p � β(X) with

α(X) = lim
n→∞

logn

log‖∑n
1 ei‖; β(X) = lim

n→∞
logn

log‖∑n
1 ei‖ .

So, by [24, Cor. 4.6], unless α = β = 2 the space X is not extensible.
This result partially responds to a question of Galego [32], who asked whether a space with

unconditional basis different from c0 or �2 can be automorphic. It is quite tempting to conjecture
that if X is a reflexive UFO then also X∗ is an UFO; or, what is the same, if X is a reflexive
extensible space then also X∗ is extensible. It is not hard to see that if X is a reflexive UFO then
X∗ is a co-UFO (with the obvious meaning that operators into finite dimensional quotients can
be uniformly lifted). So the question is whether a reflexive UFO must also be a co-UFO. If this
were true, by (1) we would get a positive answer to the Lindenstrauss–Rosenthal conjecture for
spaces with unconditional basis. It would be enough to show that if X is a reflexive UFO then
also �2(X) is an UFO. Recall that this is false when X is not reflexive since �2(c0) is not an UFO.

We pass to assertion (2). Denote by u(F ) the unconditional basic constant of a finite dimen-
sional space F . Recall (see e.g. [38]) that a Banach space X has the (Dubinsky–Pełczyński–
Rosenthal-)local unconditional structure (l.u.st.) provided there is a constant C such that for
every finite dimensional subspace E in X there is a finite dimensional subspace E ⊂ F ⊂ X

such that u(F ) � C.
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Definition. We will say that X has the projectional local unconditional structure (p.l.u.st.) if, in
addition to l.u.st., the estimate λ(F,X) � C holds for the projection constant.

Spaces with unconditional bases as well as Lp-spaces, 1 � p � ∞, have p.l.u.st. [53, p. 328].
Banach lattices have l.u.st. [38, p. 227], but since there are (superreflexive) Banach lattices with-
out the approximation property [55, Ch. 1.g], not every Banach lattice has p.l.u.st. It seems
possible to develop for spaces with p.l.u.st. a theory similar to the existing one for spaces with
l.u.st. as in [28], but we currently know very few publications about p.l.u.st. One has

Proposition 7.2. An r.i. function space X on (0,1) has p.l.u.st.

Proof. It is consequence of the fact that a finite set (xi)
n
1 of characteristic functions of disjoint

sets admits a contractive projection P : X → lin(xi)
n
1 [55, p. 122] (for the definition of rearrange-

ment invariant (r.i.) space see [55, p. 118]). �
Let us say that a Banach lattice X is an L∞-lattice provided there is a constant C such that

for every finite dimensional subspace E of X and every ε > 0 there exists a finite collection
(xi)

n
1 ⊂ X of pairwise disjoint elements C-equivalent to the standard basis of �n∞, such that

ρ(SE, lin(xi)
n
1) < ε. We do not know whether this definition has already appeared in the litera-

ture, or whether a lattice which is an L∞-space must also be an L∞-lattice.
For the proof of (2) recall from [38] that a Banach space X with l.u.st. either contains uni-

formly �n∞, or uniformly complemented �n
1 or is superreflexive. There is an analogue for the

p.l.u.st., whose proof is implicit in [38, Cor. III.5] and, more explicit, in [58,71], [46, Th. II.1],
[79, Prop. 3.1].

Lemma 7.3. Let X be a Banach lattice. Then X contains either a lattice copy of �n∞ or uniformly
complemented �n

1 or is superreflexive.

The second alternative (containing �n
1 uniformly complemented) cannot hold in an UFO.

Proof of (3). For any order continuous Banach lattice X we can denote an associated Banach
lattice X(�2) (using the Krivine calculus [55, pp. 40–42]) as the space of sequences (xn) in X

such that (
∑n

1 |xk|2)1/2 is order bounded (and hence is a convergent sequence) in X. X(�2) be-
comes an order continuous Banach lattice when normed by ‖(xn)‖ = ‖(∑∞

1 |xn|2)1/2‖. If X has
nontrivial cotype then X(�2) is naturally isomorphic to the space RadX which is the subspace of
L2(X) of functions of the form

∑∞
n=1 xnrn where (rn) is the sequence of Rademacher functions.

For the definition of Köthe function space see [55, p. 28].

Proposition 7.4. (See [19, Th. 3.10].) Let X be a Köthe function space on (0,1) with an uncon-
ditional basis. If X is an M2 space then it has type 2.

Proof. Every M2 space has the weak type 2 [61, Th. 10 and Remark 11]. Next, a Banach space
has type 2 if and only if RadX (which is equal to X(�2) for Banach lattice with nontrivial cotype)
has weak type 2 [74, p. 174]. Finally, by [45], X, as an order continuous, nonatomic Banach
lattice with an unconditional basis, is isomorphic as a Banach space to X(�2) (= RadX). �
Corollary 7.5. Let X be an UFO (superreflexive) r.i. Banach space on (0,1) which is not iso-
morphic to L∞. Then X has type 2 and q(X) = 2.
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Proof. Since X contains complemented �2 [55, p. 135], it cannot be an L∞-space, and the di-
chotomy Theorem 5.10 yields all the properties except type 2. This is provided by Proposition 7.4
since X has an unconditional basis [55, p. 156]. �

The proof of (3) follows from this and the following, probably known, result:

Proposition 7.6. If an r.i. function space X on (0,1) is an L∞-lattice then it is lattice isomorphic
to L∞.

(Hint: Let C be from the definition of L∞-lattice. We consider the natural embedding L∞ ⊂ X

and note that it is a C-isomorphism on the linear span of finitely valued functions. This span is
dense in both spaces.)

To prove (4) recall that, by Corollary 7.5, X and X∗ have type 2. Hence X has type and
cotype 2; which, by Kwapień theorem [47], makes it L2.

Our proof for assertion (5) is consequence of Theorem 6.3 and the following result:

Proposition 7.7. If X is a Köthe function space on (0,1), which is asymptotically Hilbertian,
then X is lattice isomorphic to L2.

Proof. Let c be the constant from the definition of asymptotically Hilbertian space. We wish
to show that every finite sequence of normalized and mutually disjoint elements (xi)

n
1 of X is

c-equivalent to the unit vector basis of a Euclidean space. It then follows from [55, Th. 1.b.13]
that X is lattice isomorphic to L2.

Let E = (xi)
n
1 and Xn be a finite codimensional subspace of X from the definition of asymp-

totically Hilbertian space. The asymptotically Hilbertian space is reflexive [74, p. 220], so its
norm and the norm of its dual are absolutely continuous. If we will pay no attention to ε, we can
assume that there exists a decomposition of [0,1] into disjoint sum of intervals (Ik)

m
1 so that the

annihilator X⊥
n ⊂ X∗ belongs to the linear span lin(zk)

m
1 of characteristic functions zk of Ik and

(xi)
n
1 is a block-basis of (zk)

m
1 . Let the function z′

k be equal 1 on a half of the interval Ik and be
equal to −1 on the second half of Ik . Then lin(z′

k)
m
1 ⊂ (lin(zk)

m
1 )� ⊂ Xn hence is c-isomorphic

to a Euclidean space. But the spaces lin(zk)
m
1 and lin(z′

k)
m
1 are isometric and the basis (zk)

m
1 is

1-unconditional. Therefore (zk)
m
1 is c-equivalent to an orthogonal basis of a Euclidean space.

Hence, its block-basis (xi)
n
1 is c-equivalent to an orthogonal basis of a Euclidean space too. �

A similar statement, under the stronger assumption that X is weak Hilbert, was proved by
Nielsen [66] using some complicated calculations of [67]. Previously, Mascioni [57] proved a
similar statement for Orlicz spaces.
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[69] A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of

spaces of continuous functions, Dissertationes Math. (Rozprawy Mat.) 58 (1968).
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