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Background: Screening for colorectal cancer (CRC) and precancerous colorectal adenoma (CRA) can detect cur-
able disease. However, participation in colonoscopy and sensitivity of fecal heme for CRA are low.
Methods: Microbiota metrics were determined by Illumina sequencing of 16S rRNA genes amplified from DNA
extracted from feces self-collected in RNAlater. Among fecal immunochemical test-positive (FIT+) participants,
colonoscopically-defined normal versus CRA patients were compared by regression, permutation, and random
forest plus leave-one-out methods.
Findings: Of 95 FIT+ participants, 61 had successful fecal microbiota profiling and colonoscopy, identifying 24
completely normal patients, 20 CRA patients, 2 CRC patients, and 15 with other conditions. Phylum-level fecal
community composition differed significantly between CRA and normal patients (permutation P = 0.02).
Rank phylum-level abundance distinguished CRA from normal patients (area under the curve = 0.767, permu-
tation P = 0.006). CRA prevalence was 59% in phylum-level cluster B versus 20% in cluster A (exact P = 0.01).
Most of the difference reflected 3-fold higher median relative abundance of Proteobacteria taxa (Wilcoxon

signed-rank P = 0.03, positive predictive value = 67%). Antibiotic exposure and other potential confounders
did not affect the associations.
Interpretation: If confirmed in larger, more diverse populations, fecal microbiota analysis might be employed to
improve screening for CRA and ultimately to reduce mortality from CRC.
Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Screening the general adult population for colorectal cancer (CRC)
and precancerous colorectal adenoma (CRA) can detect curable disease
and reduce mortality. However, all the screening methods in current
use have substantial limitations (Kuipers et al., 2013; Lieberman,
2014). Screening by colonoscopy or detection of fecal occult blood
greatly reduces long-term CRC mortality (Zauber et al., 2012), but at
least half of CRC mortality in the U.S.A. can be attributed to avoidance
of screening (Meester et al., 2015). Colonoscopy, the primary modality
used in the U.S.A., is costly and invasive, and its efficacy depends on
the endoscopist's skill and the patient's bowel preparation. Computed
tomographic colonography has different challenges, and the require-
ment to pursue detected lesions with colonoscopy limits its use for
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primary screening (Kuipers et al., 2013). Detecting occult blood in
feces, particularly with the fecal immunochemical test (FIT) for human
hemoglobin, has reasonable acceptability, cost, and accuracy for detect-
ingCRC (single-test sensitivity, 60%–85%; specificity, N90%) (Lieberman,
2014). Improving the predictive value of a positive FIT (FIT+)withmo-
lecular analyses of feces or serum is a high priority (Ahlquist et al., 2012;
Carmona et al., 2013; Goedert et al., 2014b; Imperiale et al., 2014;
Kuipers et al., 2013; Lieberman, 2014), especially because the sensitivity
of FIT for CRA is less than 50% and because many FIT+ patients decline
follow-up colonoscopy (Lieberman, 2014).

Research on differences or alterations in the distal gut microbiota
has focused on the pathogenesis of CRC (Collins et al., 2011; Schwabe
and Jobin, 2013; Sears and Pardoll, 2011; Tjalsma et al., 2012), and
such differences may ultimately prove to be helpful for screening. Com-
prehensive comparisons of the fecal microbiota have been reported by
four studies, totaling 176 CRC cases and 241 controls (Ahn et al., 2013;
Wang et al., 2012; Weir et al., 2013; Wu et al., 2013; Zeller et al.,
2014). Four of these studies reported that butyrate-producing bacteria
were significantly less abundant in feces from CRC cases compared to
ense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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controls, although the particular taxa varied. In addition, the three larger
studies reported that CRC cases had significantly higher carriage or
abundance of potentially pathogenic Fusobacteria and Proteobacteria
(Ahn et al., 2013;Wang et al., 2012; Zeller et al., 2014). Similar or differ-
ent bacteriamay contribute to the CRA stage of neoplasia (Tjalsma et al.,
2012), and data to address this hypothesis are starting to emerge.
Abundance of several bacterial taxa was reported to differ in rectal mu-
cosa of CRA cases compared to healthy controls (McCoy et al., 2013;
Mira-Pascual et al., 2014; Sanapareddy et al., 2012; Shen et al., 2010),
including two studies in which well characterized cases' unaffected
mucosa had higher levels of Proteobacteria taxa than did the controls'
mucosa (Mira-Pascual et al., 2014; Shen et al., 2010).

With fecal DNA, Chen and colleagues reported that the overall com-
position of the microbiota differed between 47 CRA cases and 47
colonoscopically normal, age- and sex-matched controls (Chen et al.,
2013). Nominally significant differences in relative abundance, not ad-
justed for multiple comparisons, were reported for six bacterial genera
— two increased (Enterococcus and Streptococcus) and four decreased
(Bacteroides, Clostridium, Roseburia, and Eubacterium) in CRA cases
(Chen et al., 2013). Likewise, Zackular et al. identified a dozen of differ-
entially abundant fecal taxa in CRA cases, although they did not consider
multiple comparisons, overall diversity or composition (Zackular et al.,
2014). In two very small studies, no large or statistically significant dif-
ferences in the fecal microbiota of CRA cases were found (Brim et al.,
2013; Mira-Pascual et al., 2014). The fecal microbiota of patients with
small, benign adenoma (polyp) resembles that of normal controls
(Zeller et al., 2014).

The current project had two objectives. We evaluated the feasibility
of adding fecal microbiota analysis to the ongoing, population-based
CRC screening program in Shanghai, andwe sought to identify fecal mi-
crobial and other differences betweenwell characterized CRA cases and
colonoscopically normal controls from the same population.

2. Methods

2.1. Overview

The research protocol and procedures were reviewed and approved
by institutional review boards at the U.S. National Cancer Institute and
at the Shanghai Municipal Center for Disease Control and Prevention
(SCDC). It is registered at ClinicalTrials.gov (identifier: NCT01778595)
and conformswith the STROBE guidelines for reporting standards in ob-
servational cohort and case–control studies (http://www.strobe-
statement.org/).

Staff at the Minhang and Xuhui district community health centers
were trained and provided supplies for 100 participants. Consecutive
patients aged 50–74 years who presented for CRC screening, in whom
hemewas detected by the fecal immunochemical test [FIT+, Baso Diag-
nostics Inc. (www.baso.com.cn/en/), prevalence = 14%], were sched-
uled for colonoscopy at the local hospital and also were invited to
participate in the research study. The objectives and required proce-
dures were presented and discussed individually, signed informed con-
sent was obtained, and a CRC risk factor questionnaire was completed.
The participant was instructed to collect the fecal specimens within
the next few days, and well before bowel cleansing for colonoscopy
which was scheduled about 2 weeks later. Colonoscopy and histopa-
thology results, based on review by a single pathologist at the Fudan
University Cancer Center, were electronically transmitted by the local
hospital to the community health center and the SCDC.

2.2. Fecal Specimen Collection

The participant was provided with written and illustrated instruc-
tions, a cup for catching stool, and bar-coded 20 mL fecal collection
vials (SARSTEDT, Nümbrecht, Germany). The vials for the current pro-
ject had been preloaded with 5 mL of RNAlater (QIAGEN, Hilden,
Germany) supplemented with kanamycin 300 μg/mL. In this media,
fecal microbiota diversity and composition are unaltered and stable
for up to seven days at room temperature (submitted for publication).
The participant recorded the time of collection and promptly brought
the specimens to the community health center where they were imme-
diately frozen at−20 °C. The specimenswere transferredweekly on dry
ice to the SCDC repository where they were inventoried and stored at
−80 °C. One vial from each participant was shipped overnight on dry
ice to BGI for testing.

2.3. DNA Extraction and 16S rRNA Amplification, Sequencing, and Analysis

DNA isolation and purification were performed as described previ-
ously (Qin et al., 2012). One samplewas found to be completely degrad-
ed. For unbiased representation of the fecal microbiota as described
previously in detail (Fadrosh et al., 2014), approximately 469 bp of the
16S rRNA gene V3–V4 hypervariable region of the fecal DNAwas ampli-
fied with primers that included a linker sequence (suitable for the
IlluminaMiSeq 250PE instrument), a 12 bp index sequence, a heteroge-
neity spacer (to minimize bias with low-diversity amplicons), and 16S
rRNA universal primers 319F/806R. DNA products were quantified by
a Qubit fluorometer (Life Technologies, Grand Island New York,
U.S.A.). The amplicons were sequenced in a single pool in one run
with the MiSeq 250PE, generating approximately 2.22 Gb of data. The
raw sequences were processed to concatenate forward and reverse
reads and to sort and match paired end sequences and barcodes.
Using the pipeline of the Institute of Genome Sciences, University of
Maryland Medical School, the processed reads were clustered, and the
operational taxonomic units (OTUs) were assigned to taxa by matching
to the Ribosomal Data Project naïve Bayesian classifier (Wang et al.,
2007). Richness (number of observed species) and alpha diversity met-
rics (Chao1, Shannon index, and Phylogenetic Diversity whole-tree)
were calculated using the Quantitative Insights Into Microbial Ecology
(QIIME) pipeline (Caporaso et al., 2010).

2.4. Statistical Analysis

Primary analyses comparedmicrobiota diversities, both alpha diver-
sity and beta diversity, with CRA (any combination of tubular or villous
histology or ≥1 cm diameter) versus normal colonoscopy. Secondary
analyses compared CRA patients to all participants and also excluded
participants who had received an antibiotic within 24 weeks of enroll-
ment. Linear regression was used to assess the association of alpha di-
versity metrics. Quantile–quantile (QQ) plots of P-values were used to
evaluate the global association patterns for taxa. Wilcoxon rank-sum
tests were used to assess associations of individual taxon relative abun-
dances, without adjustment for multiple comparisons. Differences of all
taxon relative abundances in CRA cases, normals and other participants
are provided but, these were not formally analyzed because of lack of
statistical power considering the small sample size and heavy multiple
testing burden.

Weperformed receiver operating characteristic (ROC) analysis to as-
sess the potential of differentiating CRA/normal status based on micro-
biota composition. We used random forest (RF), a powerful supervised
learning algorithm, to build classifiers based on taxon relative abun-
dances with or without sex. Because of the small sample size, we
could not partition the data into discovery and validation. For unbiased
area-under-the-curve (AUC) assessment, we performed leave-one-out
(LOO) analysis. Briefly, for each given participant, we built a classifier
with all other participants and used the classifier to calculate the poste-
rior probability for the given participant to be a CRA case. The AUC was
then calculated based on the posterior probabilities. We also performed
permutation analysis to investigate whether the method for assessing
AUCwas biased upward, i.e., higher than 0.5, for non-discriminative fea-
tures. In each permutation, we randomly permuted the CRA/normal
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Table 1
Characteristics of the study participants.

Characteristic No. Median (interquartile range)

Age 65 (61–69)
Male 28
Female 40
Pregnancy, no. 2 (1.75, 3)
Height, cm 162 (158, 168)
Weight, current, kg 65 (57, 70)
BMI, current, kg/m2 24 (21, 27)
Weight, age 18, kg 51 (48, 59)
Weight, 10 years ago, kg 60 (56, 67)
Weight change, past 10 years 0 (−0.3, 5)
Defecation frequency

N1/day 21
~1/day 37
Every 2 days 4
~2–3/week 6

Red meat consumption
Never 3
b4/month 21
1–2/week 29
N2/week 15

Aspirin use
None 54
Any 14

Smoking, men
Yes 21
No 7

Alcohol, men
None 16
b4/month 3
1–2/week 1
N2/week 8

Antibiotic (most recent exposure)
More than 24 weeks 47
Between 12 and 24 weeks 11
Less than 12 weeks 10

Colonoscopy result
Normal 24
Colorectal adenoma 20
Colorectal cancer 2
Benign polyp 9
Lymphoma 1
Other/unsuccessful 6
Refused 6
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status and applied the RF+ LOO procedure to calculate AUC. The mean
and standard deviation were estimated based on the permuted AUCs.

Across all specimens, we calculated the beta diversity distance met-
rics, including unweighted and weighted UniFrac distance metrics. Fol-
lowing associations with taxon relative abundance based on the
Wilcoxon rank-sum test, we developed a novel rank-based distance
metric (RDM) tominimize the effect of outliers for comparisons of over-
all beta diversity. Given K exclusive taxa, each specimenwas represent-
ed as a relative abundance vector Xi = (xi1, …, xiK). For each taxon, we
calculated the rank of the relative abundance across all specimens to de-
rive a new rank vector Ri = (ri1, …, riK). The RDM was defined as the
sum of rank distances summarizing all taxa in consideration: dij =
|ri1 − rj1| + … + |riK − rjK|. For additional insights, we considered
Euclidian and Kullback-Leibler (K–L) distance metrics, as previously
described (Goedert et al., 2014a).

Given a distancematrix D= (dij) for N specimens, we testedwheth-
er CRA cases and normals were separated in the distance matrix by a
permutation test. Briefly, we defined Z00 as the average distance in the
control group, Z11 as the average distance in the CRA group and Z01 as
the average distance for all CRA/normal pairs. The statistic was defined
as Z = (Z00 + Z11) / 2− Z01, and its significance was evaluated by per-
muting CRA/normal status. Because sex is a risk factor for CRA, we fur-
ther developed a permutation method to adjust the sex effect. Briefly,
we calculated the statistics for males and females separately, denoted
as Zmale and Zfemale. The overall statistic was defined as Zboth =
(Zmale + Zfemale). The significance was evaluated by permuting the
CRA/normal status in the male and female groups separately.

Furthermore, we performed clustering analysis to visualize the mi-
crobiota profile. After clustering, we tested whether some clusters
were significantly enriched with CRA cases compared to other clusters.
Since sexwas associatedwith CRA status, associationswere also adjust-
ed for sex to investigate whether the detected associations were con-
founded by sex using the Cochran–Mantel–Haenszel exact test.

3. Results

Informed consent was provided by 95 consecutive FIT+ patients.
Several days prior to bowel cleansing, 68 (72%) patients returned, less
than 2 h after defecation, with all four vials of feces in the media-
loaded vials. These 68 participants with specimenswere predominantly
female (59%), and they had a median age of 65 [interquartile range
(IQR) = 61–69] years and median body mass index (BMI) of 24
(IQR = 21–27) kg/m2. Other characteristics are provided in Table 1.
Cigarette smokingwas reported by21 (75%)men and 1woman. Alcohol
consumption was reported by 10 men and 2 women. Ten participants
reported receiving an antibiotic within 12 weeks of enrollment, 11
others received an antibiotic 12–24 weeks before enrollment, and the
remaining 47 had no antibiotic use within 24 weeks.

Six participants refused colonoscopy, and it was unsuccessful in one.
The 61 completed colonoscopies included 24 (39%) completely normal,
20 (33%) CRA, 5 (8%) enteritis/irritable bowel, 9 (15%) low-risk polyp, 1
ileocecal follicular lymphoma (grade 1), and 2 CRC (in follow-up,
T2N0M0 and T3N1aM0, respectively) patients.

Variables that might confound comparison of the CRA and normal
participants are presented in Supplemental Table 1. The two groups
did not differ in age (P = 0.86), but they were more likely to be male
(P = 0.04). Sex accounted completely for small differences between
CRA and normal participants in BMI (P= 0.12) and redmeat consump-
tion (P = 0.05). CRA was associated with antibiotic exposure less than
12 weeks (N = 5 vs 1, P = 0.04) and 12–24 weeks (N = 5 vs 2, P =
0.07) before enrollment.

One fecal DNA specimen, in a participant who refused colonoscopy,
failed to amplify. In the 67 successful fecal microbiota profiles, a median
of 70,583 (range=48,807–170,668) 16S rRNA sequenceswas clustered
by 97% identity into 2922 OTUs, which were assigned to taxa from the
phylum to the species level, including 18 different phyla, 38 classes,
64 orders, 115 families, 227 genera, and 303 species. Taxa in the
Firmicutes and Bacteroidetes phyla were most common, followed by
Proteobacteria, Actinobacteria and Fusobacteria, but individual differ-
ences were substantial (Supplemental Fig. 1).

3.1. CRA Associations with Fecal Microbiota Diversity

CRA and normal participants did not differ in four estimates of fecal
microbiota richness or alpha diversity (Supplemental Table 2). In con-
trast, CRA patients and normals differed in microbiota composition
(beta diversity), as shown by the deviation from the null of the
phylum-level (L2) quantile–quantile (QQ) plot (Fig. 1). Mean relative
abundance in CRA patients and normals for each of the 18 phyla is pre-
sented in Supplemental Fig. 2. Similar deviations from null were found
in QQ plots at the order level and family level (L4 and L5, respectively,
Supplemental Fig. 3). With the beta-diversity matrix calculated using
rank distance, the 20 CRA and 24 normal participants differed signifi-
cantly at the phylum level (P = 0.02 based on 10,000 permutations,
Supplemental Table 3).When adjusted for sex, thiswas no longer statis-
tically significant (P = 0.11), implying confounding.

In secondary analyses, excluding participants who had taken an an-
tibiotic within the previous 24 weeks, the remaining 10 CRA patients
differed from the 21 normal participants in rank distance at the L2, L6
(genus) and L7 (species) levels, and they differed from all 36 non-CRA
participants in K–L distance at the L3 and L4 levels, and in Euclidean



Fig. 1.Quantile–quantile (QQ) plot of expected (x-axis) and observed (y-axis) P-values for
Wilcoxon rank-sum tests of colorectal adenoma versus colonoscopically normal partici-
pants across all 18 fecal microbiota taxa classified at the phylum level. P-values (red
dots) diverged from the null (diagonal dashed) line for 15of 18 phyla. The twomost diver-
gent phyla (red dots, top middle) were Proteobacteria (P = 0.03) and TM7 (P = 0.04).

Fig. 2. Dendrogram of rank distances and hierarchical clusters of 16S rRNA sequences
across all 18 detected phyla for 20 participants with colorectal adenoma (red bar) and
24 with normal colonoscopy (green bar). The phyla are ordered by mean relative abun-
dance; gray scale shows the rank within each phylum (highest black; lowest white). The
proportion of participants with adenoma was significantly higher in cluster B (17 of 29,
59%) than in cluster A (3 of 15, 20%, P = 0.01).

Fig. 3. Receiver operating characteristic (ROC) curve to distinguish between colorectal
adenoma and colonoscopically normal participants, using rank relative abundance of all
phylum-level taxa and the random forest plus leave-one-out procedure. Compared to
diagonal null line, area under the curve (AUC) was 0.767 (permutation P = 0.006). The
predicted (0.5 cutoff) and actual distribution of the 20 adenoma and 24 normal partici-
pants is provided.
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distance at the L5, L6 and L7 levels (all P ≤ 0.05, Supplemental Table 3).
Without the antibiotic exclusion, community composition did not differ
for CRA participants by Euclidean, K–L, or UniFrac distance estimates,
nor when the 20 CRA participants were compared to all 41 non-CRA
participants (Supplemental Table 3).

Without antibiotic exclusion, clustering analyses based on the rank-
distance beta-diversity matrix revealed that CRA patients and normals
differed in phylum-level phylogenetic distances regardless of the num-
ber of clusters (Fisher's exact P=0.01 for two clusters, Fig. 2; chi-square
test P = 0.02 for 3 clusters, and P = 0.03 for 4 clusters). The phylum-
level dendrogram in Fig. 2 shows that CRA was significantly more
prevalent in cluster B (17 of 29, 59%) than in cluster A (3 of 15, 20%,
Fisher's exact P = 0.01).

Using rank relative abundance for all phylum-level taxa and the ran-
dom forest plus leave-one-out procedure, Fig. 3 presents a receiver op-
erating characteristic (ROC) curve distinguishing CRA patients from
normals [area under the curve (AUC) = 0.767, permutation P = 0.006
versus null (AUC = 0.5)]. Adding sex did not improve the prediction.
A similar discrimination was observed with all order-level taxa
(AUC = 0.77).

3.2. CRA Associations with Fecal Microbiota Taxa

Most of the compositional difference between CRA patients and
normals reflected the relative abundance of Proteobacteria taxa
(P = 0.03) and, to a lesser extent, rare candidate division TM7
taxa (P = 0.04). The relative abundance of Fusobacteria taxa was
non-significantly lower in CRA cases than in normals (0.4% vs
1.0%, P=0.46). These testswere not adjusted formultiple comparisons.
Themedian relative abundance of Proteobacteria taxawas 3-fold higher
in CRA patients than in normals (8.7% vs 2.9%, P= 0.03) and intermedi-
ate in the 23 other participants (4.4%). The Proteobacteria relative
abundance was not associated with antibiotic exposure (P ≥ 0.55) or
any of the other covariates (all P ≥ 0.07, Supplemental Table 4). The
Proteobacteria association with CRA was not confounded by sex
(Fig. 4) and was mostly with taxa in Gammaproteobacteria families
Pseudomonadaceae, Legionellaceae, Halomonadaceae, and Enterobac-
teriaceae and genera Serratia, Shigella, Salmonella, Pantoea, Morganella,
Trabulsiella, and Escherichia (Supplemental Table 5).



Fig. 4. Box plots of relative abundance of fecal Proteobacteria taxa by sex and colonoscopy result. Data for participants found to have colorectal adenoma are in red, those with normal
colonoscopy are in green, and all others (including thosewho refused colonoscopy) are in gray. Boxes are the interquartile range; bandswithin the boxes are themedian values; individual
outliers are dots. Relative abundance of Proteobacteria was significantly higher with adenoma compared to normal colonoscopy (Wilcoxon rank-sum test P = 0.03), and this was true in
both females (median = 0.102 vs 0.027) and males (median = 0.087 vs 0.038).
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4. Discussion

We found CRA in 33% of 61 Shanghai residents aged 50–74 who had
occult blood in feces (FIT+) andwho completed colonoscopy. The over-
all composition of the fecal microbiota differed significantly between
CRA and normal-colonoscopy participants, with good discrimination
(AUC = 0.767). Unlike Zackular et al. (2014), this calculation was
based on the entire microbial community rather than on a handful of
taxa selected to maximize the discrimination. Of potential functional
interest, we noted that CRA was associated with significantly higher
abundance of fecal Proteobacteria, the phylum that includes established
gut pathogens— Pseudomonas, Escherichia, Shigella, Salmonella, Serratia,
Klebsiella, and Helicobacter. Our findings corroborate those from a prior
study in Shanghai, in which fecal microbial communities differed
between 47 CRA patients and 47 normal-colonoscopy patients (Chen
et al., 2013). In that latter study, the abundance of Proteobacteria
taxa was modestly higher with CRA (mean = 3.7% vs 3.0%), but
most of the compositional difference was attributed to other bacterial
taxa (Chen et al., 2013). CRA cases also had higher abundance of
Proteobacteria in feces in a small study in Spain (Mira-Pascual et al.,
2014) and in biopsies of unaffected rectal mucosa (Mira-Pascual et al.,
2014; Shen et al., 2010). Only one of the dozen CRA-associated taxa
noted in the American study, Pseudomonas, was in the Proteobacteria
phylum (Zackular et al., 2014).

Following detection of CRA, surveillance colonoscopy after 3 years is
strongly recommended (Lieberman et al., 2012), and this was rein-
forced by the recent finding that a 5-year interval was insufficient
(Loberg et al., 2014). Our resultsmay help to inform CRA/CRC screening,
particularly where referral for colonoscopy is based on FIT+. Nearly 9%
of our FIT+ participants refused colonoscopy, which is clearly subopti-
mal. Perhaps adherence to follow-up colonoscopy would be increased
with a higher sensitivity primary screen. The positive predictive value
for CRA with above-median Proteobacteria was 67% (12 of 18) in our
FIT+ participants, although this was optimized for the Proteobacteria
distribution that we observed and would be much lower in FIT-
negative and -untested populations.

Fecal microbiota alpha diversity and richness (e.g., number of
different taxa) were not associated with CRA in our study, whereas
one study reported decreased richness in feces from CRC cases (Ahn
et al., 2013) and another reported increased richness in unaffected
mucosa from CRA cases (Sanapareddy et al., 2012). We also did not
find an association of Fusobacteriawith CRA, in contrast to the relatively
strong and consistent detection of Fusobacteria inmalignant CRC tumor
tissue (Castellarin et al., 2012; Flanagan et al., 2014; Kostic et al., 2012;
Warren et al., 2013) and in feces (Ahn et al., 2013; Wu et al., 2013;
Zeller et al., 2014) from CRC cases. Data on Fusobacteria in CRA are
sparse. One study reported increased Fusobacteria abundance in CRA
tissue, but only with high-grade dysplasia (Flanagan et al., 2014). A
second study found that CRA cases, some with very small tumors, had
increased Fusobacteria abundance in unaffected rectal mucosa com-
pared to the mucosa of normal controls (McCoy et al., 2013). In our
study, Fusobacteria was the fifth most abundant phylum (Fig. 2), but
its relative abundance was less than 1% irrespective of CRA status, sug-
gesting that it is not required for CRA. The possibility remains that un-
balanced amplification (“primer bias”) with our newly developed
method (Fadrosh et al., 2014) might have contributed to our null asso-
ciationwith Fusobacteria. On a broader level, deeper sequencing, aswell
as additional, larger, and prospective studies of the fecal microbiota in
diverse populations, will be needed to clarify whether and how alpha
diversity, community composition, Fusobacteria, Proteobacteria, and
other potentially pathogenic microbes contribute to the etiology and
early detection of colorectal neoplasia (Collins et al., 2011; Tjalsma
et al., 2012).

The strengths of our study include nesting within a population-
based CRC screening program, fecal specimens collected prior to
bowel cleansing and into a chemical stabilizer, and state-of-the-art am-
plification, sequencing, and statistical analysis methods. Particularly
noteworthy is our development and application of a rank-based dis-
tancemetric to quantify and test for differences in composition (beta di-
versity). This development originatedwith theWilcoxon rank-sum test,
which we used to reduce the influence of extreme values and with
which we observed CRA associations across most of the 18 detected
phyla. Also noteworthy is our use of random forests plus leave-one-
out, which is equivalent to repeated cross-validation, to quantify the
discrimination between CRA and normal patients. The major weak-
nesses of our study are the lack of an a priori hypothesis, cross-
sectional design and very small size, which preclude detecting changes
over time, associations with minor taxa, potential interactions with
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known risk factors for CRA, and a statistically robust set of CRA-
associated taxa.

In conclusion, we found that the microbial composition of fecal
specimens in both men and women differed significantly between pa-
tients with CRA and patients with a normal colonoscopy. In secondary
analyses, excluding participants who had antibiotic exposure within
24 weeks, the difference with CRA was significant with various esti-
mates of composition and down to the species level. The difference
was predominantly and significantly due to higher abundance of
Proteobacteria taxa in the CRA feces. Because Proteobacteria includes
several well established gut pathogens and because colorectal neoplasia
is closely tied to mucosal inflammation (Beaugerie et al., 2013; Collins
et al., 2011; Tjalsma et al., 2012), the association with CRA that we
found is plausible. Larger, longitudinal studies will be needed to deter-
mine whether and which Proteobacteria taxa contribute to early colo-
rectal neoplasia and the potential use of fecal microbiota analysis to
improve CRA screening and ultimately to reduce CRC mortality.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2015.04.010.
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