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Abstract

We study the problem of covering graphs with trees and a graph of bounded maximum degree. By
a classical theorem of Nash-Williams, every planar graph can be covered by three trees.We show that
every planar graph can be covered by two trees and a forest, and the maximum degree of the forest is
at most 8. Stronger results are obtained for some special classes of planar graphs.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

For a graphG, we useV (G) andE(G) to denote the vertex set and edge set ofG,
respectively. For two subgraphsH andK of a graph, we useH ∪ K to denote the union
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of H andK. We say that a graphG can becoveredby subgraphsG1, . . . ,Gk of G if⋃k
i=1Gi = G.
A well-known theorem of Nash-Williams[5] (based on a result proved independently in

[4,7]) states that the edges of a graphG can be covered byt trees if, and only if, for every
A ⊆ V (G), e(A)�(|A| − 1)t , wheree(A) denotes the number of edges ofG with both
ends inA. One way to extend this result is to cover graphs with trees (or forests) and a graph
with bounded degree.We say that a graph is(t,D)-coverableif it can be covered by at most
t forests and a graph of maximum degreeD.
It is easy to check that if a graphG is (t,D)-coverable, then, for any two disjoint subsets

A,B of V (G), ft (A) + e(A,B)�D · |A| + t (|A| + |B| − 1), wheree(A,B) denotes
the number of edges ofG with one endpoint inA and the other inB, ft (A) = e(A) if
e(A)� t (|A|−1), andft (A) = 2e(A)− t (|A|−1) otherwise. Unfortunately, this condition
is not sufficient. For example, by deleting one edge from the Petersen graph, we obtain a
graph that satisfies the above inequality witht = D = 1, but is not(1,1)-coverable.
It is interesting to know what can be said about planar graphs. The aforementioned

theorem of Nash-Williams implies that every planar graph is(3,0)-coverable. As pointed
out by Lovász[3] there are infinitely many planar graphs which are not (2,3)-coverable:
take a triangle, put a vertex inside and connect it to the vertices of the triangle, and repeat
this operation for each new triangle. After repeating this process for a while, we get a graph
onn vertices with roughly 2n/3 vertices of degree 3. This graph does not satisfy the above
inequality aboutft (A) (with t = 2,D = 3,B the set of vertices of degree 3, andA the set of
vertices of degree at least 4), and so, it is not (2,3)-coverable. The double wheel on 2D + 4
vertices (that is, a cycle of length 2D + 2 plus two vertices and all edges from these two
vertices to the cycle) shows that planar graphs need not be(1,D)-coverable. However, we
believe the following is correct.

Conjecture 1. Every simple planar graph is(2,4)-coverable.

As evidence for this conjecture, we shall prove that every simple planar graph is(2,8)-
coverable. This will be done in Section 3, with the help of a result from Section 2. In
Section 4, we shall show that every simple outerplanar graph is(1,3)-coverable, and as a
consequence, every 4-connected planar graph is(2,6)-coverable. We shall also consider
graphs which are series-parallel or contain noK3,2-subdivision. We conclude this section
with some notation.
Throughout the remainder of this paper, we shall consider only simple graphs. LetG be

a graph. An edge ofGwith endpointsx andywill be denoted byxyor yx. Paths and cycles
in Gwill be denoted by sequences of vertices ofG. For anyx ∈ V (G), letNG(x) := {y ∈
V (G) : xy ∈ E(G)}, and letdG(x) := |NG(x)|, the degree ofx. WhenG is known from
the context, we shall simply writeN(x) andd(x). Let�(G) := max{d(x) : x ∈ V (G)}.
For anyS ⊆ V (G), we useG − S to denote the graph with vertex setV (G) − S and edge
set{uv ∈ E(G) : {u, v} ⊆ V (G) − S}. For anyS ⊆ E(G), we useG − S to denote the
graph with vertex setV (G) and edge setE(G) − S. WhenS = {s}, we shall simply write
G − s. LetH be a subgraph ofG and letS ⊆ V (G) ∪ E(G) such that every edge ofG in
Shas both endpoints inV (H) ∪ (S ∩ V (G)), then we useH + S to denote the graph with
vertex setV (H) ∪ (S ∩ V (G)) and edge setE(H) ∪ (S ∩ E(G)).
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Recall that a plane graph is a graph drawn in the plane with no pairs of edges crossing.
A facial cycleof a plane graphG is a cycle that bounds a face ofG. A planar triangulation
is a plane graph in which every face is bounded by a triangle.

2. High vertices

In this section, we shall prove the following result about planar graphs. This result will
be used in the next section to prove that all planar graphs are(2,8)-coverable. LetG be a
graph andx ∈ V (G). Thenx is said to behigh if d(x)�11, andlow otherwise.

Theorem 2. Every planar graph contains a vertex of degree at most5which is adjacent to
at most two high vertices.

Proof. Suppose the statement is not true. Then there is a planar triangulationG such that
every vertex of degree at most 5 is adjacent to at least three high vertices. Therefore, all
vertices ofG have degree at least 3.
Let v ∈ V (G) with d(v) = 4. We say thatv is 4-independentif, for any u ∈ N(v),

d(u) 
= 4; otherwise, we say thatv is 4-dependent. Letu1, u2 be two adjacent 4-dependent
vertices. ThenG − {u1, u2} has a facial cyclev1v2v3v4v1, andv1, v2, v3, v4 are all high
vertices ofG. Furthermore, the notation can be chosen so thatv1, v3 are adjacent to bothu1
andu2, andv2 (respectively,v4) is adjacent withu1 (respectively,u2). In this case we say
thatv1, v3 areu1-weakandv2 is u1-strong, andv1, v3 areu2-weakandv4 is u2-strong.
Next, we define a weight function� : V (G) → R by making changes to the degree

functiond : V (G) → R. For each high vertexv of G, we make changes tod(v) andd(u)
for all u ∈ N(v) with d(u)�5, according to the following rules:

(R1) If u ∈ N(v) andd(u) = 3, then subtract 1 fromd(v) and add 1 tod(u).
(R2) If u ∈ N(v) andd(u) = 5, then subtract13 from d(v) and add13 to d(u).
(R3) If u ∈ N(v) andu is 4-independent, then subtract2

3 from d(v) and add23 to d(u).
(R4) If u ∈ N(v), u is 4-dependent, andv is u-strong, then subtract 1 fromd(v) and add 1

to d(u).
(R5) If u ∈ N(v), u is 4-dependent, andv is u-weak, then subtract12 from d(v) and add12

to d(u).

Let � : V (G) → R denote the resulting function. For convenience, when we subtract a
quantity� from d(v) and add a quantity� to d(u), we shall simply say thatv sendscharge
� to u or u receivescharge� from v.
Clearly,

∑
x∈V (G)

d(x) =
∑

x∈V (G)

�(x).

SinceG has 3|V (G)| − 6 edges,
∑

x∈V (G) d(x) < 6|V (G)|. Hence there exists a vertexx
of G such that�(x) < 6. We shall derive a contradiction by showing that�(x)�6 for all
x ∈ V (G). Let x ∈ V (G). We distinguish two cases.
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Case1: x is low.
If d(x) = 3 then, since all its neighbors are high,�(x) = d(x) + 3 = 3+ 3 = 6 by

(R1).
If d(x) = 5 then, sincex hask�3 high neighbors,�(x) = d(x) + k/3 = 5+ k/3�6

by (R2).
Now assumed(x) = 4. If x is 4-independent then, sincex hask�3 high neighbors,

�(x) = d(x) + 2k/3 = 4+ 2k/3�6 by (R3). Ifx is 4-dependent then, sincex has three
high neighbors (two arex-weak and one isx-strong),�(x) = 4+ 1

2 + 1
2 + 1 = 6 by (R4)

and (R5).
If 6�d(x)�10, then�(x) = d(x)�6.
Case2: x is high.
Let d(x) = k. Thenk�11. SinceG is a planar triangulation,G − x has a facial cycle

Ck such thatV (Ck) = N(x). We partitionV (Ck) into the following five sets. LetA :=
{u ∈ N(x) : d(u) = 3, oru is 4-dependent andx is u-strong}. LetB := {u ∈ N(x) : u is
4-dependent andx is u-weak}. LetC := {u ∈ N(x) : u is 4-independent}. LetD := {u ∈
N(x) : d(u) = 5}. Finally, letS := {u ∈ N(x) : d(u)�6}. Because every vertex of degree
at most 5 has at least 3 high neighbors, one can easily check that the following statements
hold:

(1) if u ∈ A, thenu has two neighbors inS, andu receives charge 1 fromx (by (R1) and
(R4)).

(2) if u ∈ B, then (by planarity)u has one neighbor inB and one neighbor inS, andu
receives charge12 from x (by (R5)).

(3) if u ∈ C, thenu has at least one neighbor inSand at most one neighbor inD, andu
receives charge23 from x (by (R3)).

(4) if u ∈ D, thenu can have neighbors inC ∪ D ∪ S, andu receives charge13 from x (by
(R2)).

(5) if u ∈ S, thenu receives no charge fromx.

Therefore, ifS = ∅, thenA = B = C = ∅, and hence,D = V (Ck) and, by (4),
�(x) = k − (k/3)� 22

3 > 6.
So assumeS 
= ∅. Let S = {s1, . . . , sm} such thats1, . . . , sm occur onCk in that

clockwise order. Ifm = 1, letS1 = Ck ands2 = s1. If m�2, the vertices inSdivideCk

into k internally disjoint paths: for 1� i�k, letSi denote the clockwise subpath ofCk from
si to si+1, wheresm+1 = s1. Let S′

i := Si − {si, si+1}.
We claim that, for each 1� i�m, one of the following holds:

(a) |V (S′
i )|�1.

(b) |V (S′
i )| = 2 andV (S′

i ) ⊆ B.
(c) |V (S′

i )| = 2,V (S′
i ) ⊆ C ∪ D andV (S′

i ) ∩ D 
= ∅.
(d) |V (S′

i )|�3,V (S′
i ) ⊆ C ∪ D and all internal vertices ofS′

i are contained inD.

To prove this claim, assume that|V (S′
i )|�2 (that is, not (a)) and letSi = x0x1, . . . ,

xnxn+1, wherex0 = si andxn+1 = si+1. Thus,x0, xn+1 ∈ S, n�2, andx1, . . . , xn /∈ S.
Recall that we allowx0 = xn+1, which occurs whenm = 1. Then, for each 1�j �n,
xj /∈ A; for otherwise, by (1),{xj−1, xj+1} ⊆ S, contradicting the fact thatx1, . . . , xn /∈ S.
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Now assume that there is somexj ∈ B. Sincexj has at least three high neighbors, one
element of{xj−1, xj+1} is high. By symmetry we may assume thatxj−1 is high. Then
xj−1 ∈ S. Sincexj ∈ B, x is xj -weak. Soxj+1 ∈ B, xj+2 is high, andxj+2 ∈ S. Hence,
xj−1 = x0 andxj+2 = xn+1,n = 2, and{x1, x2} ⊆ B. That is,V (S′

i ) consists of exactly two
vertices which are inB, and (b) holds. So we may assume that{x1, . . . , xn} ⊆ C ∪ D, that
is,V (S′

i ) ⊆ C∪D. Then, since eachxj has at least three high neighbors,x2, . . . , xn−1 ∈ D

and, ifn = 2 thenx1 ∈ D, or xn ∈ D. So we have (c) and (d).
Now, let us calculate�(x) by finding out how much chargex sends to vertices ofS′

i .
Suppose (a) holds forS′

i . If |V (S′
i )| = 1 then the charge thatx sends toS′

i is at most 1=
�|V (S′

i )|+1
2 �. If |V (S′

i )| = 0 then the charge thatx sends toS′
i is 0= �|V (S′

i )|+1
2 �. If (b) holds

for S′
i , then by (2), the charge thatxsends to vertices ofS

′
i is

1
2+ 1

2 = 1= �|V (S′
i )|/2�. Now

assume (c) or (d) holds forS′
i . If |V (S′

i )| = 2 then by (c) at least one vertex ofS′
i is inD, and

by (3) and (4), the charge thatxsends to vertices ofS′
i is atmost

2
3+ 1

3 = 1= �|V (S′
i )|/2�. If|V (S′

i )|�3, then by (d), all internal vertices ofS′
i are inD, and by (3) and (4), the charge that

x sends toS′
i is at most(n−2)/3+ 2

3 + 2
3 = (n+2)/3��(n+1)/2� = �(|V (S′

i )| +1)/2�
(becausen = |V (S′

i )|�3). By (5),xsends no charge to vertices inS. Hence, the total charge
thatx sends to its neighbors is at most

m∑
i=1

⌊ |V (S′
i )| + 1

2

⌋
�

⌊
(
∑m

i=1 |V (S′
i )|) + m

2

⌋
= �d(x)/2�.

So�(x)�d(x) − �d(x)/2�. Sinced(x)�11,�(x)�6. �

Theorem2 no longer holds if we define high vertices as those of degree 10 or more.
Consider a planar triangulation with vertices of degrees 6 and 5. Put into each triangle a
vertex and join it to all vertices of the triangle. We get a planar triangulation with vertices
of degrees 3,10,12, and each vertex has at least 3 neighbors of degree at least 10.

3. Covering with forests

In this section we prove that every planar graph is (2,8)-coverable. In fact, we prove the
following stronger result.

Theorem 3. For each planar graph G, there exist forestsT1, T2, andT3 such thatG =
T1 ∪ T2 ∪ T3 and�(T3)�8.

The proof is by way of contradiction. Suppose Theorem3 is not true. LetG be a counter
examplewith|V (G)|minimum.Without loss of generality,wemayassume thatG is a planar
triangulation. Hence the minimum degree ofG is at least 3. We shall derive a contradiction
to Theorem2 by showing that every vertex ofG with degree at most 5 has at least three
high neighbors.

Lemma 4. If x ∈ V (G) andd(x) = 3, then all three neighbors of x are high.
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Proof. Consider the graphG′ := G − x. By the choice ofG, G′ can be covered by three
forestsT ′

1,T
′
2, andT

′
3 such that�(T ′

3)�8.Without loss of generality, wemay further assume
thatT ′

1, T
′
2, T

′
3 are edge disjoint, and subject to this,|E(T ′

3)| is minimum. Therefore, for any
u ∈ V (T ′

3), dT ′
i
(u)�1 for i = 1,2. Hence,dT ′

3
(v)�dG′(v) − 2 for every vertexv of G′.

Suppose some neighbor ofx is not high, sayy. ThendG(y)�10. SodG′(y)�9, and
dT ′

3
(y)�dG′(y) − 2�7. Letv,w be the other two neighbors ofx. LetT1 := T ′

1 + {x, xv},
T2 := T ′

2+{x, xw}, and letT ′
3 := T3+{x, xy}. It is easy to check thatT1, T2, T3 are forests

and coverG. Note thatdT3(y) = dT ′
3
(y) + 1�8 and, for anyu ∈ V (T3) − {y}, dT3(u) =

dT ′
3
(u)�8. So�(T3)�8. Hence, the existence ofT1, T2, T3 contradicts the choice ofG. So

all neighbors ofx are high. �

Lemma 5. If x ∈ V (G) andd(x) = 4, then at least three neighbors of x are high.

Proof. Letu, y, v andzdenote the neighbors ofx, occurring in that clockwise order around
x. SinceG is planar,uv /∈ E(G) or yz /∈ E(G). Without loss of generality we may assume
that yz /∈ E(G). ThenG′ := (G − x) + yz is a planar triangulation. By the choice
of G, G′ can be covered by three forestsT ′

1, T
′
2, T

′
3 such that�(T ′

3)�8. We may further
assume thatT ′

1, T
′
2, T

′
3 are edge disjoint, and subject to this,|E(T ′

3)| is minimum. Therefore,
dT ′

3
(v)�dG′(v) − 2 for every vertexv of G′.
If yz ∈ E(T ′

3), we letT1 := T ′
1 + {x, ux}, T2 := T ′

2 + {x, vx} andT3 := (T ′
3 − yz) +

{x, yx, xz}. It is easy to see thatT1, T2, T3 are forests and coverG. Note thatdT3(x) = 2
and, for anyw ∈ V (T3) − {x}, dT3(w) = dT ′

3
(w)�8. So�(T3)�8. Hence, the existence

of T1, T2, T3 contradicts the choice ofG.
Soyz 
∈ E(T ′

3). Thenyz ∈ E(T ′
1) ∪ E(T ′

2). By symmetry, we may assume thatyz ∈
E(T ′

1).
We claim thatu must be high. For, supposeu is low. ThendG′(u) = dG(u) − 1�9

anddT ′
3
(u)�dG′(u) − 2�7. LetT1 := (T ′

1 − yz) + {x, xy, xz}, T2 := T ′
2 + {x, xv}, and

T3 := T ′
3 + {x, xu}. ThenT1, T2, T3 are forests and coverG. Note thatdT3(x) = 1 and

dT3(u) = dT ′
3
(u) + 1�8, and for anyw ∈ V (T3) − {u, x}, dT3(w) = dT ′

3
(w)�8. So

�(T3)�8. Hence the existence ofT1, T2, T3 contradicts the choice ofG.
By a symmetric argument, we can show thatv is also high.
Next we show thaty is high orz is high. Suppose bothyandzare low. SinceT ′

1 is a forest
andyz ∈ E(T ′

1), T
′
1 − yz does not contain both ay–v path and az–v path. By symmetry,

we may assume thatT ′
1 − yz contain noy–v path. LetT1 := (T ′

1 − yz) + {x, v, yx, xv},
T2 := T ′

2 + {x, ux} andT3 := T ′
3 + {x, xz}. ThenT1, T2, T3 are forests and coverG. Note

thatdT3(x) = 1 and, for anyw ∈ V (T3)−{x}, dT3(w) = dT ′
3
(w)�8. So�(T ′

3)�8. Hence,
the existence ofT1, T2, T3 contradicts the choice ofG.
Therefore, at least three neighbors ofx are high. �

Lemma 6. Letx ∈ V (G)withd(x) = 5,and letx0, x1, x2, x3 andx4 denote the neighbors
of x which occur around x in that clockwise order. For any0� i�4, if xixi+2 /∈ E(G) and
xixi−2 /∈ E(G), then bothxi−1 andxi+1 are high. (Subscripts are taken modulo5.)

Proof. SinceG is a planar triangulation,x0x1x2x3x4x0 is a facial cycle ofG− x. Suppose
0� i�4, xixi+2 /∈ E(G), andxixi−2 /∈ E(G). Then by the choice ofG,G′ = (G − x) +
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{xixi+2, xixi−2} can be covered by three forestsT ′
1, T

′
2, T

′
3, with�(T ′

3)�8.Wemay further
assume thatT ′

1, T
′
2, T

′
3 are edge disjoint, and subject to this,|E(T ′

3)| is minimum. Therefore,
dT ′

3
(v)�dG′(v) − 2 for every vertexv of G′.
Case1: {xixi+2, xixi−2} ⊆ E(T ′

3).
Let T1 := T ′

1 + {x, xxi+1}, T2 := T ′
2 + {x, xxi−1} andT3 := (T ′

3 − {xixi+2, xixi−2}) +
{x, xxi+2, xxi−2, xxi}. Clearly,T1, T2, T3 are forests and coverG. Note thatdT3(x) = 3
and, for anyw ∈ V (T3)− {x}, dT3(w) = dT ′

3
(w)�8. So�(T3)�8. Hence the existence of

T1, T2, T3 contradicts the choice ofG.
Case2: {xixi+2, xixi−2} ⊆ E(T ′

1) or {xixi+2, xixi−2} ⊆ E(T ′
2).

By symmetry, we may assume that{xixi+2, xixi−2} ⊆ E(T ′
1). We show that both

xi+1 and xi−1 are high. For, assume by symmetry thatxi−1 is low. ThendG′(xi−1) =
dG(xi−1) − 1�9 anddT ′

3
(xi−1)�dG′(xi−1) − 2�7. LetT1 := (T ′

1 − {xixi+2, xixi−2}) +
{x, xxi+2, xxi−2, xxi}, T2 := T ′

2 + {x, xi+1x}, T3 := T ′
3 + {x, xxi−1}. ThenT1, T2, T3 are

forests and coverG. Note thatdT3(x) = 1,dT3(xi−1)�8and, for anyw ∈ V (T3)−{x, xi−1},
dT3(w) = dT ′

3
(w)�8.So�(T3)�8.Hence theexistenceofT1, T2, T3 contradicts the choice

of G.
Case3: One element of{xixi+2, xixi−2} is inE(T ′

3) and the other is inE(T ′
1) ∪ E(T ′

2).
By symmetry, we may assume thatxixi+2 ∈ E(T ′

1) andxixi−2 ∈ E(T ′
3). We consider

five subcases.
Subcase3.1:T ′

1 − xixi+2 contains anxi-xi+1 path. ThenT ′
1 − xixi+2 contains noxi+1-

xi+2 path. In this case, letT1 := (T ′
1 − xixi+2)+ {x, xxi+2, xxi+1}, T2 := T ′

2 + {x, xxi−1}
andT3 := (T ′

3 − xixi−2) + {x, xxi, xxi−2}. ThenT1, T2, T3 are forests and coverG. Note
thatdT3(x) = 2 and, for anyw ∈ V (T3)− {x}, dT3(w) = dT ′

3
(w)�8. So�(T3)�8. Hence

the existence ofT1, T2, T3 contradicts the choice ofG.
Subcase3.2:T ′

1 − xixi+2 contains anxi-xi−1 path. ThenT ′
1 − xixi+2 contains noxi−1-

xi+2 path. In this case, letT1 := (T ′
1 − xixi+2)+ {x, xxi+2, xxi−1}, T2 := T ′

2 + {x, xxi+1}
andT3 := (T ′

3 − xixi−2) + {x, xxi, xxi−2}. ThenT1, T2, T3 are forests and coverG. Note
thatdT3(x) = 2 and, for anyw ∈ V (T3)− {x}, dT3(w) = dT ′

3
(w)�8. So�(T3)�8. Hence

the existence ofT1, T2, T3 contradicts the choice ofG.
Subcase3.3: T ′

1 − xixi+2 contains neither anxi-xi+1 path nor anxi-xi−1 path, and
xixi−1 ∈ E(T ′

3). LetT1 := (T ′
1−xixi+2)+{x, xi−1, xixi−1, xxi+2},T2 := T ′

2+{x, xxi+1},
andT3 := (T ′

3−{xixi−2, xixi−1})+{x, xxi, xxi−1, xxi−2}. ThenT1, T2, T3 are forests and
coverG. Note thatdT3(x) = 3, dT3(xi) = dT ′

3
(xi) − 1, and for anyw ∈ V (T ′

3) − {x, xi},
dT3(w) = dT ′

3
(w)�8.So�(T3)�8.Hence theexistenceofT1, T2, T3 contradicts the choice

of G.
Subcase3.4: T ′

1 − xixi+2 contains neither anxi-xi+1 path nor anxi-xi−1 path, and
xixi+1 ∈ E(T ′

3). LetT1 := (T ′
1−xixi+2)+{x, xi+1, xixi+1, xxi+2},T2 := T ′

2+{x, xxi−1},
andT3 := (T ′

3−{xixi−2, xixi+1})+{x, xxi, xxi+1, xxi−2}. ThenT1, T2, T3 are forests and
coverG. Note thatdT3(x) = 3, dT3(xi) = dT ′

3
(xi) − 1, and for anyw ∈ V (T ′

3) − {x, xi},
dT3(w) = dT ′

3
(w)�8.So�(T3)�8.Hence theexistenceofT1, T2, T3 contradicts the choice

of G.
Subcase3.5: T ′

1 − xixi+2 contains neither anxi-xi+1 path nor anxi-xi−1 path, and
xixi−1, xixi+1 /∈ E(T ′

3). Then xixi−1, xixi+1 ∈ E(T ′
2). Let T1 := (T ′

1 − xixi+2) +
{x, xi+1, xixi+1, xxi+2},T2 := (T ′

2−xixi+1)+{x, xxi−1, xxi+1}, andT3 := (T ′
3−xixi−2)+

{x, xxi, xxi−2}. ThenT1, T2, T3 are forests and coverG. Note thatdT3(x) = 2 and, for any
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w ∈ V (T ′
3) − {x}, dT3(w) = dT ′

3
(w)�8. So�(T3)�8. Hence the existence ofT1, T2, T3

contradicts the choice ofG.
Case4: One element of{xixi+2, xixi−2} is inE(T ′

1) and the other is inE(T ′
2).

Without loss of generality, we may assume thatxixi+2 ∈ E(T ′
1) andxixi−2 ∈ E(T ′

2).
Then, up to symmetry, it suffices to check the following six subcases.
Subcase4.1: T ′

1 − xixi+2 contains neither anxi-xi−1 path nor anxi-xi+1 path, and
T ′
2 − xixi−2 contains neither anxi-xi−1 path nor anxi-xi+1 path.
Then{xixi+1, xixi−1} ⊆ E(T ′

3). Let T1 := (T ′
1 − xixi+2) + {x, xi+1, xixi+1, xxi+2},

T2 := (T ′
2 − xixi−2) + {x, xi−1, xixi−1, xxi−2}, andT3 := (T ′

3 − {xixi+1, xixi−1}) +
{x, xxi+1, xxi, xxi−1}. ThenT1, T2, T3 are forests and coverG. Note thatdT3(x) = 3,
dT3(xi) = dT ′

3
(xi) − 1 and, for anyw ∈ V (T3) − {x, xi}, dT3(w) = dT ′

3
(w)�8. So

�(T3)�8. Hence the existence ofT1, T2, T3 contradicts the choice ofG.
Subcase4.2:T ′

1−xixi+2 contains both anxi-xi−1 path and anxi-xi+1 path, orT ′
2−xixi−2

contains both anxi-xi−1 path and anxi-xi+1 path.
By symmetry, we may assume thatT ′

1 − xixi+2 contains anxi-xi−1 path and an
xi-xi+1 path. ThenT ′

1 − xixi+2 contains noxi+1-xi+2 path. LetT1 := (T ′
1 − xixi+2) +

{x, xxi+1, xxi+2}, T2 := (T ′
2 − xixi−2) + {x, xxi, xxi−2}, andT3 := T ′

3 + {x, xxi−1}.
Then T1, T2, T3 are forests and coverG. Note thatdT3(x) = 1 and, for anyw ∈
V (T3) − {x, xi−1}, dT3(w) = dT ′

3
(w)�8. If xi−1 is low, then dT ′

3
(xi−1)�

dG′(xi−1) − 2 = dG(xi−1) − 3�7, and so,dT3(xi−1)�8 and�(T3)�8. Hence the
existence of T1, T2, T3 contradicts the choice of G. So xi−1 must
be high.
Similarly, the forestsT1 := (T ′

1 − xixi+2) + {x, xxi−1, xxi+2}, T2 := (T ′
2 − xixi−2) +

{x, xxi, xxi−2}, andT3 := T ′
3 + {x, xxi+1} allow us to conclude thatxi+1 must be high.

Subcase4.3: There is anxi-xi+1 path inT ′
1 − xixi+2, and there are noxi-xi−1 paths in

T ′
1 − xixi+2 andT ′

2 − xixi−2.
Thenxixi−1 ∈ E(T ′

3) andT
′
1 − xixi+2 contains noxi+1-xi+2 path. LetT1 := (T ′

1 −
xixi+2) + {x, xxi+1, xxi+2}, T2 := (T ′

2 − xixi−2) + {x, xixi−1, xxi−2}, andT3 := (T ′
3 −

xixi−1) + {x, xxi−1, xxi}. Then T1, T2, T3 are forests and cover G.
Note thatdT3(x) = 2 and, for anyw ∈ V (T3) − {x}, dT3(w) = dT ′

3
(w)�8. So�(T3)�8.

Hence the existence ofT1, T2, T3 contradicts the choice ofG.
Subcase4.4: There is anxi-xi−1 path inT ′

1 − xixi+2, and there are noxi-xi+1 paths in
T ′
1 − xixi+2 andT ′

2 − xixi−2.
Thenxixi+1 ∈ E(T ′

3) andT
′
1 − xixi+2 contains noxi−1-xi+2 path. LetT1 := (T ′

1 −
xixi+2) + {x, xxi−1, xxi+2}, T2 := (T ′

2 − xixi−2) + {x, xixi+1, xxi−2}, andT3 := (T ′
3 −

xixi+1) + {x, xxi+1, xxi}. ThenT1, T2, T3 are forests and coverG. Note thatdT3(x) = 2
and, for anyw ∈ V (T3)− {x}, dT3(w) = dT ′

3
(w)�8. So�(T3)�8. Hence the existence of

T1, T2, T3 contradicts the choice ofG.
Subcase4.5:There is anxi-xi+1 path inT ′

1−xixi+2, there is noxi-xi−1 path inT ′
1−xixi+2,

there is anxi-xi−1 path inT ′
2 − xixi−2, and there is noxi-xi+1 path inT ′

2 − xixi−2.
ThenT ′

1 − xixi+2 contains noxi+1-xi+2 path, andT ′
2 − xixi−2 contains noxi−1-xi−2

path.
LetT1 := (T ′

1−xixi+2)+{x, xxi+1, xxi+2}, T2 := (T ′
2−xixi−2)+{x, xxi, xxi−2}, and

T3 := T ′
3+{x, xxi−1}. ThenT1, T2, T3 are forests and coverG. Note thatdT3(x) = 1and, for

anyw ∈ V (T3)−{x, xi−1},dT3(w) = dT ′
3
(w)�8. If xi−1 is low, thendT ′

3
(xi−1)�dG′(xi−1)
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− 2 = dG(xi−1) − 3�7, and so,�(T3)�8. Hence the existence ofT1, T2, T3 contradicts
the choice ofG. Soxi−1 must be high.
Similarly, the forestsT1 := (T ′

1 − xixi+2) + {x, xxi, xxi+2}, T2 := (T ′
2 − xixi−2) +

{x, xxi−1, xxi−2}, andT3 := T ′
3 + {x, xxi+1} allow us to conclude thatxi+1 must be high.

Subcase4.6:There is anxi-xi−1 path inT ′
1−xixi+2, there is noxi-xi+1 path inT ′

1−xixi+2,
there is anxi-xi+1 path inT ′

2 − xixi−2, and there is noxi-xi−1 path inT ′
2 − xixi−2.

ThenT ′
1 − xixi+2 contains noxi−1-xi+2 path, andT ′

2 − xixi−2 contains noxi+1-xi−2
path.
LetT1 := (T ′

1−xixi+2)+{x, xxi−1, xxi+2}, T2 := (T ′
2−xixi−2)+{x, xxi, xxi−2}, and

T3 := T ′
3+{x, xxi+1}. ThenT1, T2, T3 are forests and coverG. Note thatdT3(x) = 1and, for

anyw ∈ V (T3)−{x, xi+1},dT3(w) = dT ′
3
(w)�8. If xi+1 is low, thendT ′

3
(xi+1)�dG′(xi+1)

− 2 = dG(xi+1) − 3�7, and so,�(T3)�8. Hence the existence ofT1, T2, T3 contradicts
the choice ofG. Soxi+1 must be high.
Similarly, the forestsT1 := (T ′

1 − xixi+2) + {x, xxi, xxi+2}, T2 := (T ′
2 − xixi−2) +

{x, xxi+1, xxi−2}, andT3 := T ′
3 + {x, xxi−1} allow us to conclude thatxi−1 must be high.

Thereforexi−1 andxi+1 are high. �

We can now complete the proof of Theorem3 as follows.

Proof. By Theorem2, there is a vertexxofG such thatd(x)�5 andxhas at most two high
neighbors. By Lemma4 and Lemma5, we see thatd(x) = 5. Let x0, x1, . . . , x4 denote
the neighbors ofx such thatx0x1 . . . x4x0 is a facial cycle ofG − x. By planarity, there
exist 0� i 
= j �4 such thatxixi−2, xixi+2, xj xj−2, xj xj+2 /∈ E(G). So by Lemma6,
xi−1, xi+1, xj−1, xj+1 are high vertices. Sincexi 
= xj and x0x1x2x3x4x0 is a cycle,
|{xi−1, xi+1, xj−1, xj+1}|�3. But this means thatx has at least three high neighbors, a
contradiction.
It is not hard to see that we may further requireT1, T2 be trees. �

4. Special planar graphs

In this section, we shall see that Theorem3 can be improved for some special classes
of planar graphs, thereby providing further evidence for Conjecture1. Recall that a graph
is outerplanar if it can be embedded in the plane such that all vertices are incident with its
infinite face.

Theorem 7. Let G be a 2-connected outerplanar graph and let C be the cycle of an outer-
planar embedding of G bounding the infinite face. Let y ∈ V (C) and letyx, yz ∈ E(C).
Then there is a forest T in G such thatdG−E(T )(y) = 0, dG−E(T )(x)�1, dG−E(T )(z)�2,
�(G − E(T ))�3,andG − E(T ) is a forest.

Proof. We apply induction on|V (G)|. It is easy to see that the theorem holds when
|V (G)| = 3. So assume that|V (G)|�4. Without loss of generality, we may assume that
x, y, z occur onC in the clockwise order listed.
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First, we consider the case whend(y) = 2. LetH := (G − y) + xz andD := (C −
y) + xz. ThenH can be embedded in the plane so thatH is an outerplanar graph withD
bounding its infinite face. Letxx′ ∈ E(D) with x′ 
= z (because|V (G)|�4). We apply
induction toH,D, z, x, x′ (asG,C, x, y, z, respectively). There is a forestSinH such that
dH−E(S)(x) = 0, dH−E(S)(z)�1, dH−E(S)(x

′)�2,�(H − E(S))�3, andH − E(S) is a
forest. Now letTbe the forest inGobtained fromSby replacing the edgexzofSwith the path
xyzin G. It is easy to see thatdG−E(T )(y) = 0. BecausedH−E(S)(x) = 0, dG−E(T )(x)�1.
BecausedH−E(S)(z)�1, dG−E(T )(z)�2. The possible increase of 1 in the degrees comes
from the edgexz. Therefore, because�(H − E(S))�3, we have�(G − E(T ))�3. Since
G−E(T ) = (H −E(S))+xz anddH−E(S)(x) = 0, we see thatG−E(T ) is also a forest.
So we may assume thatd(y)�3. We label the neighbors ofy asy1, . . . , yk+1 in coun-

terclockwise order onC. Thenk�2. Without loss of generality, assume thaty1 = x and
yk+1 = z. For i = 1, . . . , k, letCi denote the cycle which is the union ofyi+1yyi and the
counterclockwise subpath ofC from yi to yi+1, and letHi denote the subgraph ofG con-
tained in the closed disc bounded byCi . ThenHi is an outerplanar graph andCi bounds its
infinite face. For each 1� i�k, we apply induction toHi, Ci, yi, y, yi+1 (asG,C, x, y, z,
respectively). Therefore, for each 1� i�k, Hi has a forestTi such thatdHi−E(Ti)(y) = 0,
dHi−E(Ti)(yi)�1,dHi−E(Ti)(yi+1)�2,�(Hi −E(Ti))�3, andHi −E(Ti) is a forest. Let
T := ⋃k

i=1 Ti .ThenT is a forest inG. It is easy to see thatdG−E(T )(y) = 0,dG−E(T )(x)�1,
anddG−E(T )(z)�2. Note that fori = 1, . . . , k, dHi−E(Ti)(yi)�1 anddHi−E(Ti)(yi+1)�2.
Hence,dG−E(T )(yi)�3 for i = 2, . . . , k−1. Thus,�(G−E(T ))�3. It is also easy to see
thatG − E(T ) = ⋃k

i=1(Hi − E(Ti)). SincedG−E(T )(y) = 0,G − E(T ) is a forest. �

The following example gives a family of outerplanar graphs which are not(1,2)-
coverable. Take a long cycleC = v0v1 . . . v2n+1v0 and add the following edges:v0v2i+1
for i = 1, . . . , n − 1 andv2i−1v2i+1 for i = 1, . . . , n.
Next, we show that all 4-connected planar graphs are(2,6)-coverable. But first, we

consider Hamiltonian planar graphs.

Corollary 8. If G is a Hamiltonian planar graph, then it is(2,6)-coverable.

Proof. Take a plane embedding ofG and letC be a Hamiltonian cycle inG. Let G1
(respectively,G2) denote the subgraph ofG inside (respectively, outside) the closed disc
bounded byC. ThenG1 andG2 are outer planar graphs (withCas the boundary cycle). Pick
a vertexy ∈ V (C), and apply Theorem7 toGi , i = 1,2, we find a forestTi inGi such that
dGi−E(Ti)(y) = 0 and�(Gi − E(Ti))�3. It is easy to verify that�(G − E(T1 ∪ T2))�6.

�

Tutte [6] proved that every 4-connected planar graph contains a Hamilton cycle. Thus,
by Corollary8, we have the following result.

Corollary 9. If G is a4-connected planar graph, then it is(2,6)-coverable.

It is well known that a graph is outerplanar if and only if it contains noK4-subdivision
orK3,2-subdivision[1, Proposition 7.3.1]. In view of Theorem7, it is natural to consider
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the class of graphs containing noK4-subdivisions and the class of graphs containing no
K3,2-subdivisions.
The graphs containing noK4-subdivisions are also calledseries-parallelgraphs. It is

known that any simple series-parallel graph has a vertex of degree at most two (see[2]).
Therefore, by applying induction on the number of vertices, we can show that any simple
series-parallel graph is(2,0)-coverable.
On the other hand, the graphKn,2 is series-parallel, but is not(1, �n

2 − 2�)-coverable.
So it is natural to consider graphs containing noKn,2-subdivisions. An easier question
is to determine the smallestt andD so that every simple graph with noKn,2-minors is
(t,D)-coverable, forn�2. To this end, we consider the casesn = 2,3. We note that when
n = 2,3, a graph contains aKn,2-minor if, and only if, it contains aKn,2-subdivision.
Note that ifG is a simple graph containing noK2,2-minor, then every block ofG is either

a triangle or induced by an edge. So it is easy to see that any simple graph containing no
K2,2-minor is(1,1)-coverable.
For graphs with noK3,2-minor, we have the following result.

Proposition 10. If G is a simple graph containing noK3,2-subdivision, then G is both
(1,3)-coverable and(2,0)-coverable.

Proof. Firstwe shall prove theexistenceof a(1,3)-cover.Todo this,weprove the following
stronger result.
(1) For any vertexv of G there is a forestT in G such thatdG−E(T )(v) = 0 and�(G −

E(T ))�3.
We use induction on the number ofK4-subdivisions contained inG. If G contains no

K4-subdivision, then it is outerplanar, and (1) follows from Theorem7. So assume thatG
contains aK4-subdivision. In fact, everyK4-subdivision inGmust be isomorphic toK4,
since anyK4-subdivision not isomorphic toK4 is also aK3,2-subdivision.
Let {v1, v2, v3, v4} ⊆ V (G) induce aK4 in G. SinceG has noK3,2-subdivision,G −

{vivj : 1� i 
= j �4} has exactly four componentsCi with vi ∈ V (Ci), i = 1,2,3,4.
Without loss of generality, we may assume thatv ∈ V (C1). By applying induction to
C1, we conclude thatC1 contains a forestT1 such thatdC1−E(T1)(v) = 0 and�(C1 −
E(T1))�3. Similarly, by applying induction toCi , i = 2,3,4,Ci contains a forestTi such
thatdCi−E(Ti)(vi) = 0 and�(Ci − E(Ti))�3. LetT := (

⋃4
i=1 Ti) + {v1v2, v1v3, v1v4}.

It is easy to check thatT is a forest,dG−E(T )(v) = 0, and�(G − E(T ))�3.
To prove thatG is (2,0)-coverable, it suffices to prove the following result (by using

Nash-Williams’ theorem).
(2) If G is a graph containing noK3,2-subdivision, thenG contains at most 2|V (G)| − 2

edges.
It is easy to check that (2) holds when|V (G)|�4. So assume that|V (G)|�5. Then

G is not a complete graph. Further,G is not 3-connected. For otherwise, there are three
internally disjoint paths inG between two non-adjacent vertices, and they would form a
K3,2-subdivision inG.
So let{u, v} be a 2-cut ofGand letCbe a component ofG−{u, v}.We choose{u, v} and

C so that|V (C)| is minimum (among all choices of 2-cuts ofG). Assume for the moment
that |V (C)| = 1. Let V (C) = {x}. ThendG(x) = 2. By applying induction toG − x,
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we see that|E(G − x)|�2|V (G − x)| − 2. Thus,|E(G)|�2|V (G)| − 2. Hence we may
assume|V (C)|�2. LetSdenote the set of edges ofGwith one endpoint in{u, v} and one
endpoint inV (C), and letC∗ := C + ({u, v, uv} ∪ S). By the choice of{u, v} andC,
we can prove thatC∗ is 3-connected. Therefore,C∗ − uv contains two internally disjoint
pathsP,Q betweenu andv. On the other hand,G − V (C) contains a pathR from u to
v and containing at least three vertices. NowP ∪ Q ∪ R gives aK3,2-subdivision inG, a
contradiction. �
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