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Abstract

We study the problem of covering graphs with trees and a graph of bounded maximum degree. By
a classical theorem of Nash-Williams, every planar graph can be covered by three trees. We show that
every planar graph can be covered by two trees and a forest, and the maximum degree of the forest is
at most 8. Stronger results are obtained for some special classes of planar graphs.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

For a graphG, we useV(G) and E(G) to denote the vertex set and edge setf
respectively. For two subgraphtandK of a graph, we uséf U K to denote the union
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oka and K. We say that a grapls can becoveredby subgraphsGy, ..., G, of G if
Ui.1Gi =G.

A well-known theorem of Nash-Williami&] (based on a result proved independently in
[4,7]) states that the edges of a grapitan be covered bytrees if, and only if, for every
A C V(G), e(A)<(JA| — D¢, wheree(A) denotes the number of edges®@fwith both
ends inA. One way to extend this result is to cover graphs with trees (or forests) and a graph
with bounded degree. We say that a graph,i®)-coverabldf it can be covered by at most
t forests and a graph of maximum degize

Itis easy to check that if a grafghis (¢, D)-coverable, then, for any two disjoint subsets
A, B of V(G), fi(A) +e(A, B)<D - |A| + t(JA] + |B| — 1), wheree(A, B) denotes
the number of edges @& with one endpoint inA and the other irB, f;(A) = e(A) if
e(A)<t(JA|—1),andf;(A) = 2¢(A) —t(|A| — 1) otherwise. Unfortunately, this condition
is not sufficient. For example, by deleting one edge from the Petersen graph, we obtain a
graph that satisfies the above inequality wita D = 1, but is not(1, 1)-coverable.

It is interesting to know what can be said about planar graphs. The aforementioned
theorem of Nash-Williams implies that every planar grap{8i€)-coverable. As pointed
out by LovasZ3] there are infinitely many planar graphs which are not (2,3)-coverable:
take a triangle, put a vertex inside and connect it to the vertices of the triangle, and repeat
this operation for each new triangle. After repeating this process for a while, we get a graph
onn vertices with roughly 2/3 vertices of degree 3. This graph does not satisfy the above
inequality aboutf; (A) (withr = 2, D = 3, Bthe set of vertices of degree 3, afathe set of
vertices of degree at least 4), and so, itis not (2,3)-coverable. The double wheaelpd 2
vertices (that is, a cycle of lengthl2+ 2 plus two vertices and all edges from these two
vertices to the cycle) shows that planar graphs need n¢t,li@)-coverable. However, we
believe the following is correct.

Conjecture 1. Every simple planar graph i€, 4)-coverable

As evidence for this conjecture, we shall prove that every simple planar gr&p\8is
coverable. This will be done in Section 3, with the help of a result from Section 2. In
Section 4, we shall show that every simple outerplanar gragh B-coverable, and as a
consequence, every 4-connected planar gragh, §)-coverable. We shall also consider
graphs which are series-parallel or containkw,-subdivision. We conclude this section
with some notation.

Throughout the remainder of this paper, we shall consider only simple graphs.deet
a graph. An edge db with endpointsx andy will be denoted byy or yx. Paths and cycles
in G will be denoted by sequences of verticesofFor anyx € V(G), let Ng(x) :={y €
V(G) : xy € E(G)}, and letdg (x) := |Ng(x)|, the degree ok. WhenG is known from
the context, we shall simply writ&/ (x) andd(x). Let A(G) := maxX{d(x) : x € V(G)}.
For anyS C V(G), we useG — S to denote the graph with vertex SétG) — S and edge
set{uv € E(G) : {u,v} C V(G) — S}. For anyS C E(G), we useG — S to denote the
graph with vertex se¥ (G) and edge sekE(G) — S. WhenS = {s}, we shall simply write
G — 5. LetH be a subgraph d& and letS € V(G) U E(G) such that every edge @ in
Shas both endpoints i (H) U (S N V(G)), then we uséd + S to denote the graph with
vertex setV (H) U (SN V(G)) and edge seE(H) U (S N E(G)).
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Recall that a plane graph is a graph drawn in the plane with no pairs of edges crossing.
A facial cycleof a plane grapi® is a cycle that bounds a face @f A planar triangulation
is a plane graph in which every face is bounded by a triangle.

2. High vertices

In this section, we shall prove the following result about planar graphs. This result will
be used in the next section to prove that all planar graph&aB3-coverable. LeG be a
graph ande € V(G). Thenxis said to benhighif d(x) > 11, andiow otherwise.

Theorem 2. Every planar graph contains a vertex of degree at nfoshich is adjacent to
at most two high vertices

Proof. Suppose the statement is not true. Then there is a planar triangusoch that
every vertex of degree at most 5 is adjacent to at least three high vertices. Therefore, all
vertices ofG have degree at least 3.

Letv € V(G) with d(v) = 4. We say thab is 4-independenif, for any u € N (v),
d(u) # 4; otherwise, we say thatis 4-dependent_etu1, u, be two adjacent 4-dependent
vertices. TherG — {u1, us} has a facial cycleivovsvavy, anduy, vo, v3, v4 are all high
vertices ofG. Furthermore, the notation can be chosen soithats are adjacent to botiy
anduy, andvy (respectivelyp,) is adjacent withi1 (respectivelyu?). In this case we say
thatvy, vz areus-weakanduvs is u1-strong andvi, vz areux-weakandvg is uz-strong

Next, we define a weight functiom : V(G) — R by making changes to the degree
functiond : V(G) — R. For each high vertex of G, we make changes th(v) andd (u)
forall u € N(v) with d(u) <5, according to the following rules:

(R If u € N(v) andd(u) = 3, then subtract 1 froni(v) and add 1 tel(u).

(R2) If u € N(v) andd(u) = 5, then subtrack from d(v) and adds to d(u).

(R3) If u € N(v) anduis 4-independent, then subtracfrom d(v) and adds to d (u).

(R4) If u € N(v), uis 4-dependent, andis u-strong, then subtract 1 from(v) and add 1
tod(u).

(R5) Ifu € N(v), uis 4-dependent, andis u-weak, then subtrac% fromd(v) and add%
to d(u).

Letw : V(G) — R denote the resulting function. For convenience, when we subtract a
quantitya from d(v) and add a quantity to d (u), we shall simply say that sendscharge
o to u or u receivechargeo from v.

Clearly,
Z d(x) = Z o(x).
xeV(G) xeV(G)

SinceGhas 3V(G)| — 6 edgesteV(G) d(x) < 6]V (G)|. Hence there exists a vertgx
of G such thatw(x) < 6. We shall derive a contradiction by showing thatc) > 6 for all
x € V(G). Letx € V(G). We distinguish two cases.
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Casel: xis low.

If d(x) = 3 then, since all its neighbors are high(x) = d(x) + 3 =3+ 3 = 6 by
(R1).

If d(x) = 5 then, since hask > 3 high neighborsep(x) = d(x) + k/3=5+k/3>6
by (R2).

Now assumel(x) = 4. If x is 4-independent then, sinaehask >3 high neighbors,
w(x) =d(x) + 2k/3 =4+ 2k/3>6 by (R3). Ifxis 4-dependent then, singehas three
high neighbors (two are-weak and one ig-strong),w(x) = 4 + % + % +1=06hy(R4)
and (R5).

If 6 <d(x)<10, thenw(x) = d(x)>6.

Case2: x is high.

Letd(x) = k. Thenk >11. SinceG is a planar triangulation; — x has a facial cycle
C¢ such thatV (C;) = N(x). We partitionV (Cy) into the following five sets. LefA :=
{u e N(x) : d(u) = 3, oruis 4-dependent andis u-strong. Let B := {u € N(x) : u is
4-dependent andis u-weak. Let C := {u € N(x) : u is 4-independentLet D := {u €
N(x) : d(u) = 5}. Finally, letS := {u € N(x) : d(u) >6}. Because every vertex of degree
at most 5 has at least 3 high neighbors, one can easily check that the following statements
hold:

(1) if u € A, thenu has two neighbors i, andu receives charge 1 from(by (R1) and
(R4)).

(2) if u € B, then (by planarityJu has one neighbor iB and one neighbor is, andu
receives chargé from x (by (R5)).

(3) if u € C, thenu has at least one neighbor $and at most one neighbor [, andu
receives chargé from x (by (R3)).

(4) if u € D, thenu can have neighbors i@ U D U S, andu receives chargé3 from x (by
(R2)).

(5) if u € S, thenu receives no charge from

Therefore, ifS = ¢, thenA = B = C = ¢, and henceD = V(Cy) and, by (4),
wx) =k— (k/3)>% > 6.

So assumes # @. Let S = {s1,..., sy} such thatsq, ..., s, occur onCy in that
clockwise order. lfn = 1, letS1 = C; andsy = s1. If m>2, the vertices irSdivide Cy,
into kinternally disjoint paths: for £ i <k, letS; denote the clockwise subpath@©f from
s; t0s; 1, wheres,, 11 = s1. LetS) == S; — {s;, si11).

We claim that, for each &£i <m, one of the following holds:

(@ IV(SHI< L.

(b) |V (S| =2andV(s)) C B.

© IV(SH =2,V(S)) CCUDandV(s)ND # ¢

(d) 1V(S)1=3,V(S)) € CU D and all internal vertices of; are contained ifD.

To prove this claim, assume thgf (S)|>2 (that is, not (a)) and le§; = xoxa, ...,
XpXn+1, Wherexo = s; andx,+1 = s;+1. Thus,xg, x,41 € S, n>2, andxq, ..., x, ¢ S.
Recall that we allowxg = x,1, which occurs whem: = 1. Then, for each £ j <n,
xj ¢ A, for otherwise, by (1){x;_1, x;11} € S, contradicting the fact that, ..., x, ¢ S.
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Now assume that there is some € B. Sincex; has at least three high neighbors, one
element of{x;_1, x;41} is high. By symmetry we may assume that ; is high. Then
xj_1 € S.Sincex; € B, xisx;-weak. Saxj;1 € B, x;12 is high, andx; > € S. Hence,
xj_1=xpandx;;» = x,41,n = 2,and{xy, xo} € B.That is,V(Slf) consists of exactly two
vertices which are iB, and (b) holds. So we may assume that ..., x,} € C U D, that
is, V(S!) € CUD. Then, since each; has at least three high ne|ghbovr§, ., Xp_1€D
and, ifn = 2 thenxy € D, orx, € D. So we have (c) and (d).

Now, let us calculaten(x) by finding out how much chargesends to vertices af;.
Suppose (a) holds fas!. If |V (S))| = 1 then the charge thatsends taS; is at most 1=
LW(S )Hlj If |V(S))| = 0 then the charge thatsends toS/ is O_ L'V(S )Hlj If (b) holds
for §7, then by (2), the charge thasends to vertices &f is 5 + 5 =1=|V(S)I/2]. Now
assume (c) or (d) holds fok. If |V (S))| = 2 then by (c) at Ieast one vertex§ffis in D, and
by (3) and (4), the charge thesends to vertices of isatmosg +3 = 1 = ||V (S))|/2]. If
|V (S)| >3, then by (d), allinternal vertices 6f are inD, and by (3) and (4), the charge that
x sends tas/ is atmostn —2)/3+ 3+ 5 = (n+2)/3< [(n+1)/2] = [(IV(S)I+1)/2]
(becausa = |V (S])| > 3). By (5),xsends no charge to verticesSrHence, the total charge
thatx sends to its neighbors is at most

i {IV(S,-’)I + 1J - {(anzl [V(SDD) +m
2 h 2

J = 1d(x)/2].

i=1

Sow(x) =d(x) — |d(x)/2]. Sinced (x) > 11, w(x) >6. O

Theorem?2 no longer holds if we define high vertices as those of degree 10 or more.
Consider a planar triangulation with vertices of degrees 6 and 5. Put into each triangle a
vertex and join it to all vertices of the triangle. We get a planar triangulation with vertices
of degrees 310, 12, and each vertex has at least 3 neighbors of degree at least 10.

3. Covering with forests

In this section we prove that every planar graph is (2,8)-coverable. In fact, we prove the
following stronger result.

Theorem 3. For each planar graph Gthere exist forest§i, T2, and T3 such thatG =
T1UT> U T3 and A(T3) <8.

The proof is by way of contradiction. Suppose Theoisinot true. LeiG be a counter
example with vV (G)| minimum. Without loss of generality, we may assume @ata planar
triangulation. Hence the minimum degree®fs at least 3. We shall derive a contradiction
to Theorem?2 by showing that every vertex @ with degree at most 5 has at least three
high neighbors.

Lemma 4. If x € V(G) andd(x) = 3, then all three neighbors of x are high
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Proof. Consider the graply’ := G — x. By the choice ofG, G’ can be covered by three

forestsT;, T,, andTy such thatd (73) <8. Without loss of generality, we may further assume

that7;, 7,, T; are edge disjoint, and subject to thi&(73)| is minimum. Therefore, for any

u e V(Ty), dT/ (u)=1fori =1, 2. HencedTé(v)gdG/(v) — 2 for every vertexw of G'.
Suppose some neighbor »fis not high, say. Thendg(y) <10. Sodg (y) <9, and

dTé(y) <dgr(y) — 2<7. Letv, w be the other two neighbors Bf Let Ty := 7] + {x, xv},

Ty := T, +{x, xw}, and letT; := T3+ {x, xy}. Itis easy to check thd, 7>, T3 are forests

and covelG. Note thatdz,(y) = dTé(y) +1<8 and, for anyt € V(T3) — {y}, dry(u) =

def(u) <8. S04(T3) <8. Hence, the existence df, T», T3 contradicts the choice @. So

all neighbors ok are high. [

Lemma 5. If x € V(G) andd(x) = 4, then at least three neighbors of x are high

Proof. Letu,y, v andzdenote the neighbors &f occurring in that clockwise order around
x. SinceG is planaruv ¢ E(G) or yz ¢ E(G). Without loss of generality we may assume
thatyz ¢ E(G). ThenG’ := (G — x) + yz is a planar triangulation. By the choice
of G, G’ can be covered by three foredt§, 7, T; such that4(73) <8. We may further
assume thaf;, 7,, T, are edge disjoint, and subject to tHiB(773)| is minimum. Therefore,
de/(v) <dg (v) — 2 for every vertexw of G’.

If yz € E(T3), we letTy := T] + {x, ux}, T> := T, + {x, vx} and T3 := (T3 — yz) +
{x, yx, xz}. Itis easy to see thdt, T, T3 are forests and covés. Note thatdz, (x) = 2
and, for anyw € V(T3) — {x}, dpy(w) = dTé(w)<8. So04(T3) < 8. Hence, the existence
of T1, Tz, T3 contradicts the choice @&.

Soyz ¢ E(Ty). Thenyz € E(T]) U E(T;). By symmetry, we may assume that €
E(T)).

V\/le claim thatu must be high. For, supposeis low. Thends (1) = dg(u) — 1<9
anddTé(u)édGr(u) —2<7.LetTy := (T] — y2) + {x, xy, xz}, T2 := T, + {x, xv}, and
T3 := T3 + {x, xu}. ThenTy, T3, T3 are forests and coves. Note thatdr,(x) = 1 and
dry(u) = dTé(u) + 1<8, and for anyw € V(T3) — {u, x}, dry(w) = dTé(w)g& So
A(T3) <8. Hence the existence @i, 7>, T3 contradicts the choice @.

By a symmetric argument, we can show thas also high.

Next we show thay is high orzis high. Suppose bothandz are low. Sincel} is a forest
andyz € E(T)), T] — yz does not contain both g path and @-v path. By symmetry,
we may assume thadf — yz contain noy—v path. LetTy := (7] — yz) + {x, v, yx, xv},

Tp := Ty + {x, ux} andT3 := T3 + {x, xz}. ThenTy, T», T3 are forests and cové. Note
thatdr,(x) = 1 and, foranyw € V(T3) — {x}, dpy(w) = de/(w)<8. So4(T3) <8. Hence,
the existence ofy, T», T3 contradicts the choice @.

Therefore, at least three neighborscafre high. [

Lemma 6. Letx € V(G) withd(x) = 5,and letxg, x1, x2, x3 andx4 denote the neighbors
of x which occur around x in that clockwise ord€or any0<i <4,if x;x;4+2 ¢ E(G) and
xixi—2 ¢ E(G), then bothy;_1 andx; 1 are high (Subscripts are taken modufo)

Proof. SinceG is a planar triangulationygx1x2x3x4xg is a facial cycle ofG — x. Suppose
0<i<4,xixi+2 ¢ E(G), andx;x;_2 ¢ E(G). Then by the choice d&, G’ = (G — x) +
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{xixi12, x;x;_2} can be covered by three foregts 75, T3, with 4(T3) <8. We may further
assume thaf;, 7,, 7, are edge disjoint, and subject to tHiB(73)| is minimum. Therefore,
de/(v) <dg (v) — 2 for every vertex of G'.

Casel: {x;xj42, xixi_2} C E(Té)

Let Ty := T] + {x, xxj31}, T2 := Ty + {x, xx;_1} and Tz := (T3 — {x;xi42, xix;—2}) +
{x, xxit2, xx;—2, xx;}. Clearly, Ty, T», T3 are forests and covés. Note thatdz,(x) = 3
and, foranyw € V(73) — {x}, dry(w) = de/(w) <8. So4(T3) <8. Hence the existence of
Ty, T», T3 contradicts the choice @&.

Case2: {x;xj42, xixi—2} S E(T]) or {x;x;12, xixi—2} € E(T}).

By symmetry, we may assume th@t;x; 2, x;x;—2} S E(T;). We show that both
x;+1 andx;_1 are high. For, assume by symmetry that; is low. Thendg (x;—1) =
dg(xi—1) — 1<9 anddy; (xi—1) <dgr(xi-1) — 2<7. LetTy := (T{ — {xixi42, xixi-2}) +
{x, xxip2, xxi—2, xx;}, T2 := Ty + {x, xj41x}, T3 := T3 + {x, xx;_1}. ThenTy, T», Tz are
forests and cove®. Note thatir, (x) = 1,dr,(x;—1) <8and, foranyw € V(T3)—{x, x;_1},
dry(w) = de/(w) <8.S04(T3) < 8. Hence the existence Bf, T», T3 contradicts the choice
of G.

Case3: One element ofx;x; 2, x;x;_2} is in E(T3) and the other is i (T}) U E(T).

By symmetry, we may assume that;,» € E(Ty) andx;x;_» € E(T3). We consider
five subcases.

Subcas.1:T] — x;x; 2 contains arx;-x; 11 path. Ther?] — x;x;;2 contains nox; ; 1-
xi+2 path. Inthis case, 16y := (T} — x;x;42) + {x, xxi42, xx;41}, T2 := Ty + {x, xx;_1}
and73 := (T3 — x;x;—2) + {x, xx;, xx;_2}. ThenTy, T, T3 are forests and covés. Note
thatdr;(x) = 2 and, for anyw € V(73) — {x}, dpy(w) = dTg/(w)<8- S04(T3) <8. Hence
the existence of1, T», T3 contradicts the choice @.

Subcase.2: T] — x;x; 42 contains arx;-x;_1 path. Thern] — x;x;;2 contains no; _1-
xi+2 path. Inthis case, 6y := (T} — x;x;y2) + {x, xxi42, xx; 1}, T2 1= Ty + {x, xx;41}
andT3 := (T3 — x;x;—2) + {x, xx;, xx;_2}. ThenTx, T», T3 are forests and coves. Note
thatdr; (x) = 2 and, for anyw € V(73) — {x}, dpy(w) = dTé(w)g& So04(T3) <8. Hence
the existence of1, T», T3 contradicts the choice @.

Subcase3.3: T] — x;x;42 contains neither am;-x; 1 path nor any;-x;_1 path, and
xixi—1 € E(T3). LetTy := (T —x;xiy2) +{x, xi—1, Xixi—1, xxiy2}, T2 := Ty +{x, xx; 11},
and73 := (Té —{xixi_2, xixi—1}) +{x, xx;, xx;_1, xx;_2}. ThenTy, T», T3 are forests and
coverG. Note thatdr; (x) = 3, dp(x;) = dTS/(xi) — 1, and for anyw € V(T3) — {x, x;},
dry(w) = dTS/(w) <8.S04(T3) < 8. Hence the existence Bf, T», T3 contradicts the choice
of G.

Subcase3.4: T{ — x;x;42 contains neither am;-x; 1 path nor any;-x;_1 path, and
xixip1 € E(T3). LetTy := (T —xixiy2) +{x, Xi41, XiXiy1, xxiy2}, T2 := Ty +{x, xx;_1},
andTs := (T3 — {x;xi—2, xixi+1}) + {x, xx;, xx; 41, xx;—2}. ThenTy, T», T3 are forests and
coverG. Note thatdr; (x) = 3, dr;(x;) = dTé(x,-) — 1, and for anyw € V(T3) — {x, x;},
dry(w) = dTS/(w) <8.S04(T3) < 8. Hence the existence Bf, T», T3 contradicts the choice
of G.

Subcase3.5: T] — x;x;42 contains neither am;-x; 1 path nor anx;-x;_1 path, and
xixi—1, Xixiy1 ¢ E(T3). Thenx;x;_1,xixip1 € E(Ty). Let Ty := (T] — xixiy2) +
(%, Xig1, Xixiy1, xxi42}, T2 i= (Ty—x;x; 1) +H{x, xx; 1, xx; 11}, andl3 := (T3—x;x;_2)+
{x, xx;, xx;_2}. ThenTy, T», T3 are forests and cov@. Note thatdr,(x) = 2 and, for any
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w e V(T3) — {x}, dry(w) = de/(w)<8. So4(T3) <8. Hence the existence @, 7>, T3
contradicts the choice @&.

Cased: One element ofx; x; 2, x;x; 2} is in E(T;) and the other is it (T).

Without loss of generality, we may assume thiat; ;> € E(T)) andx;x;_2 € E(T,).
Then, up to symmetry, it suffices to check the following six subcases.

Subcaset.1: T] — x;x;42 contains neither am;-x;_1 path nor anx;-x; 1 path, and
T, — x;x;—2 contains neither am;-x; _1 path nor an;-x; 11 path.

Then {x;jx; 1, x;x;i—1} € E(T3). Let Ty := (T] — x;X;42) + {x, Xi41, X Xi+1, XXi 42},
Ty = (Ty — x;ixi—2) + {x,x;_1, x;x;_1, xx;_2}, and T3 := (T3 — {x;xj31, xix;—1}) +
{x, xx;i41, xx;, xx;—1}. ThenTy, T, T3 are forests and coves. Note thatdr,(x) = 3,
de(x,') = dTé(x,') — 1 and, for anyw € V(T3) — {x, xi}, dT3(w) = dTé(w)<8. So
A(T3) <8. Hence the existence @i, 7>, T3 contradicts the choice @&.

Subcasd.2:T; —x;x; 2 contains both am;-x; _; path and an;-x; 1 path, or7;, —x;x; 2
contains both aw;-x; 1 path and an;-x; 1 path.

By symmetry, we may assume th@ — x;x;4> contains anx;-x;_1 path and an
xi-xi+1 path. ThenT] — x;x; 42> contains nav;1-x;42 path. LetTy := (T} — xixi42) +
{x, xxi41, xxi42}, T2 == (T5 — xixi—2) + {x, xx;, xx;_2}, and T3 := T3 + {x, xx;_1}.
Then Ty, T», T3 are forests and cove®. Note thatdp(x) = 1 and, for anyw €
V(T3) — {x,xi—1}, dpy(w) = de/(w) <8. If x;_1 is low, then dTg/(xl;l)é
de(xi—1) — 2 = dg(xi—1) — 3<7, and so,dr;(x;—1) <8 and 4(73) <8. Hence the
existence of Ty, 7>, T3 contradicts the choice of G. So x;_1 must
be high.

Similarly, the forestdy = (T] — xixi42) + {x, xx;—1, xx;42}, T2 := (T5 — xix;—2) +
{x, xx;, xx;_2}, andT3 := T3 + {x, xx; 11} allow us to conclude that; 1 must be high.

Subcaseét.3: There is an;-x; 11 path inT] — x;x; 12, and there are ng;-x;_1 paths in
Tl/ — XiXi42 ande’ — XjXj_2.

Thenx;x;—1 € E(T3) andT] — x;x; 42 contains nax;1-x;,2 path. LetTy := (T] —
xixip2) + {x, xxiq1, xx;42}, T2 := (T5 — xix;—2) + {x, x;x;_1, xx; _2}, and T3 := (T} —
xixi—1) + {x,xxj_1,xx;}. Then T1,T,, T3 are forests and cover G.
Note thatdr, (x) = 2 and, for anyw € V(T3) — {x}, drz(w) = dTé(w) <8. S04(7T3)<8.
Hence the existence @, T», T3 contradicts the choice @.

Subcaset.4: There is an;-x;_1 path inT] — x;x;,2, and there are ng;-x; ;1 paths in
T]f — XiXj42 ande’ — XiX;j—-2.

Thenx;x;11 € E(T3) andT] — x;x;;2 contains nax; _1-x; 2 path. LetTy := (7] —
xixig2) + {x, xxi_1, xx42}, T2 := (Ty — xixj—2) + {x, X Xj41, xx;_2}, andT3 := (T} —
Xixiy1) + {x, xx;41, xx;}. ThenTy, T, T3 are forests and covés. Note thatdz,(x) = 2
and, foranyw € V(73) — {x}, dry(w) = de/(w) < 8. So4(T3) < 8. Hence the existence of
T1, T», T3 contradicts the choice @.

Subcasd.5: Thereis an;-x; 1 pathin7] —x; x; 42, thereis na;-x; _1 path in7] —x; x; 2,
there is anv;-x;_1 path inT; — x;x;_», and there is n@;-x; ;.1 path inT, — x;x;_>.

ThenT] — x;x;12 contains nav;1-x; 42 path, andl’; — x;x;_» contains nav;_1-x;_»
path.

Let Ty := (T] —xixiy2) + {x, xxi41, xx;42}, T2 := (Ty — x;x;—2) + {x, xx;, xx;_2}, and
T3 := T3+{x, xx;_1}. ThenTy, T», T3 are forests and cov@. Note that/z, (x) = 1and, for
anyw € V(Ts) — {x, xi—1}, dpy (w) = dy (w) <8.If x;_1is low, thendy, (xi—1) <dg' (xi-1)
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—2=dg(xi_1) — 3<7, and soA(T3) < 8. Hence the existence @i, 7>, T3 contradicts
the choice ofG. Sox;_;1 must be high.

Similarly, the forestsly := (T] — xixi12) + {x, xx;, xx; 42}, T2 := (T, — xix;i—2) +
{x, xx;_1, xx;_2}, andT3 := Té + {x, xx;+1} allow us to conclude that; ;1 must be high.

Subcasd.6: Thereis am;-x;_1 path inT] —x; x; 12, thereis no;-x; .1 path inT] —x; x; 42,
there is anx;-x; ;1 path inT; — x;x;_2, and there is na;-x;_1 path inT; — x;x;_>.

ThenT] — x;x; 12 contains nay; _1-x; 2 path, andrl’; — x;x;_» contains nav;1-x; 2
path.

Let Ty := (T] — xixiy2) +{x, xxi—1, xxi42}, T2 := (Ty — xjxi—2) +{x, xx;, xx;_2}, and
T3 := T3+{x, xx;+1}. ThenTy, T», T3 are forests and cov@. Note thatiz, (x) = 1 and, for
anyw € V(T3)—{x, xi11},dry(w) = dpy(w) <8.If xj 11 is low, thendr; (xi 1) <dgr (xi+1)
— 2 =dg(x;1+1) — 3<7, and soA(T3) < 8. Hence the existence @f T», T3 contradicts
the choice ofG. Sox; 1 must be high.

Similarly, the forestsly := (T] — xixi12) + {x, xx;, xx; 42}, T2 := (T, — xix;i—2) +
{x, xxi41, xx;—2}, andT3 := T3+ {x, xx;_1} allow us to conclude that_; must be high.

Thereforex;_1 andx; 1 are high. O

We can now complete the proof of Theor&ms follows.

Proof. By Theoren®, there is a vertex of G such that/(x) <5 andx has at most two high
neighbors. By Lemmd and Lemmab, we see that/(x) = 5. Letxo, x1, ..., x4 denote
the neighbors ok such thatxgxs . .. xaxg is a facial cycle ofG — x. By planarity, there
exist 0<i # j <4 such thatex; 2, xix;12, x;xj_2,x;xj42 ¢ E(G). So by Lemmab,
Xi—1, Xi+1, Xj—1, Xj4+1 are high vertices. Since; # x; and xox1x2x3x4X0 iS a cycle,
[{x;—1, xi4+1, xj—1, x;41}| > 3. But this means that has at least three high neighbors, a
contradiction.

It is not hard to see that we may further requiiie 7> be trees. [J

4. Special planar graphs

In this section, we shall see that Theor8man be improved for some special classes
of planar graphs, thereby providing further evidence for ConjectuRecall that a graph
is outerplanar if it can be embedded in the plane such that all vertices are incident with its
infinite face.

Theorem 7. Let G be a 2-connected outerplanar graph and let C be the cycle of an outer-
planar embedding of G bounding the infinite facety € V(C) and letyx, yz € E(C).
Then there is a forest T in G such th&d_ g7y (y) = 0,dg—gm)(x) <1, de—E1)(2) <2,

A(G — E(T))<3,andG — E(T) is a forest

Proof. We apply induction onV(G)|. It is easy to see that the theorem holds when
[V(G)| = 3. So assume thav (G)| > 4. Without loss of generality, we may assume that
x, vy, z occur onC in the clockwise order listed.
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First, we consider the case whéery) = 2. LetH := (G — y) +xzandD := (C —
y) + xz. ThenH can be embedded in the plane so tHat an outerplanar graph with
bounding its infinite face. Letx’ € E(D) with x’ # z (becausgV (G)|>4). We apply
inductiontoH, D, z, x, x' (asG, C, x, y, z, respectively). There is a foreStn H such that
dy—g5)(¥) = 0,dy_ps5)(2) <1, dy_gs)(x") <2, A(H — E(S))<3,andH — E(S)is a
forest. Now lefl be the forest iis obtained fronBby replacing the edgezof Swith the path
xyzin G. Itis easy to see thal;_g (1) (y) = 0. Becausey _g(s)(x) = 0,dg—g(r)(x) <1.
Becausely_g(s)(z) <1, dc—kr)(z) < 2. The possible increase of 1 in the degrees comes
from the edgexz Therefore, becaus#(H — E(S)) <3, we haved (G — E(T)) < 3. Since
G—E(T)=(H—-E(S))+xzanddy_g(s) (x) = 0, we seethatr — E(T) is also a forest.

So we may assume thdty) > 3. We label the neighbors gfasyi, ..., yr4+1 in coun-
terclockwise order o€. Thenk > 2. Without loss of generality, assume that= x and
kel = z. Fori =1, ..., k, let C; denote the cycle which is the union gf; 1 yy; and the
counterclockwise subpath @ffrom y; to y; 1, and letH; denote the subgraph & con-
tained in the closed disc bounded @y ThenH; is an outerplanar graph aitti bounds its
infinite face. For each &4 i <k, we apply induction td;, C;, v, v, yi+1 (@sG, C, x, y, z,
respectively). Therefore, for eachll <k, H; has a forest; such thatly,_gr,)(y) = 0,
du;— gy (yi) <1,dy, g (ie1) <2, A(H; — E(T;)) <3, andH; — E(T;) is aforest. Let
T = Uf-‘zl T;. ThenTis aforestirG. ltiseasy to see thd; g1y (y) = 0,dg—g(r)(x) <1,
anddg_gr)(z) <2.Notethatfoi =1, ..., k,dp,—gr) (i) <landdy,—g7;) (yi+1) < 2.
Hencedg_g(r)(yi)<3fori =2,...,k—1.Thus,4(G — E(T))<3. Itis also easy to see
thatG — E(T) = Ule(Hi — E(T})). Sincedg—gr)(y) = 0,G — E(T) is a forest. [

The following example gives a family of outerplanar graphs which are (hp?)-
coverable. Take a long cycté = vguv; ... v2,+1v0 and add the following edgespva; 11
fori =1,...,n—21andvy_1vp+1fori =1,..., n.

Next, we show that all 4-connected planar graphs (ar&)-coverable. But first, we
consider Hamiltonian planar graphs.

Corollary 8. If G is a Hamiltonian planar graphthen it is(2, 6)-coverable

Proof. Take a plane embedding @& and letC be a Hamiltonian cycle irG. Let G
(respectivelyG,) denote the subgraph & inside (respectively, outside) the closed disc
bounded byC. ThenG1 andG are outer planar graphs (wi@has the boundary cycle). Pick
avertexy € V(C), and apply Theoremto G;,i = 1, 2, we find a foresf; in G; such that
dg,—g(r;)(y) = 0and4(G; — E(T;)) <3. Itis easy to verify thatl(G — E(T1 U T2)) <6.

O

Tutte [6] proved that every 4-connected planar graph contains a Hamilton cycle. Thus,
by Corollary8, we have the following result.

Corollary 9. If G is a4-connected planar graptthen it is(2, 6)-coverable

It is well known that a graph is outerplanar if and only if it containsk@subdivision
or K3 2-subdivision[1, Proposition 7.3.1]In view of Theoren, it is natural to consider
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the class of graphs containing ky-subdivisions and the class of graphs containing no
K3 2-subdivisions.

The graphs containing n&s-subdivisions are also calleskries-parallelgraphs. It is
known that any simple series-parallel graph has a vertex of degree at most twa]jsee
Therefore, by applying induction on the number of vertices, we can show that any simple
series-parallel graph i, 0)-coverable.

On the other hand, the gragy, » is series-parallel, but is ngf, |5 — 2])-coverable.

So it is natural to consider graphs containing Kig 2-subdivisions. An easier question
is to determine the smallestandD so that every simple graph with n&, >-minors is
(t, D)-coverable, forn > 2. To this end, we consider the cages 2, 3. We note that when
n = 2, 3, a graph contains K, >-minor if, and only if, it contains &, »>-subdivision.

Note that ifG is a simple graph containing i, 2-minor, then every block d is either
a triangle or induced by an edge. So it is easy to see that any simple graph containing no
K2 2-minor is(1, 1)-coverable.

For graphs with nd&3 2-minor, we have the following result.

Proposition 10. If G is a simple graph containing n&s »-subdivision then G is both
(1, 3)-coverable and?2, 0)-coverable

Proof. Firstwe shall prove the existence dfla 3)-cover. To do this, we prove the following

stronger result.

(1) For any vertex of G there is a forestT in G such thatdg_g(r)(v) = 0 and4(G —
E(T))<3.

We use induction on the number &f-subdivisions contained i6. If G contains no
K4-subdivision, then it is outerplanar, and (1) follows from Theofér8o assume th&d
contains aK 4-subdivision. In fact, everks-subdivision inG must be isomorphic t&4,
since anyk 4-subdivision not isomorphic t& 4 is also ak3 »>-subdivision.

Let {v1, v2, v3, v4} € V(G) induce akK4 in G. SinceG has noK3 »-subdivision,G —
{viv; : 1<i # j <4} has exactly four component with v; € V(C)),i = 1,2, 3,4.
Without loss of generality, we may assume that V(Cj1). By applying induction to
C1, we conclude thaCy contains a foresfy such thatdc,—gry)(v) = 0 andA(C1 —
E(T1)) <3. Similarly, by applying inductiont@;, i = 2, 3, 4, C; contains a foresI; such
thatde, _g(r)(v;) = 0andA(C; — E(T;)) <3. LetT := (', T;) + {v1v2, v1v3, viva).

It is easy to check that is a forestdg_g(r)(v) = 0, and4(G — E(T)) <3.

To prove thatG is (2, 0)-coverable, it suffices to prove the following result (by using
Nash-Williams’ theorem).

(2) If Gis a graph containing n&3 2-subdivision, therG contains at most|¥ (G)| — 2
edges.

It is easy to check that (2) holds whéW (G)| <4. So assume tha¥ (G)| >5. Then
G is not a complete graph. Furthe&,is not 3-connected. For otherwise, there are three
internally disjoint paths irG between two non-adjacent vertices, and they would form a
K3 2-subdivision inG.

Solet{u, v} be a 2-cut of5 and letC be a component & — {u, v}. We chooséu, v} and
C so that|V(C)| is minimum (among all choices of 2-cuts @). Assume for the moment
that|V(C)| = 1. LetV(C) = {x}. Thendg(x) = 2. By applying induction taG — x,
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we see thatE(G — x)| <2|V(G — x)| — 2. Thus,|E(G)| <2|V(G)| — 2. Hence we may
assumgV (C)| > 2. LetSdenote the set of edges Gfwith one endpoint ifu, v} and one
endpoint inV(C), and letC* := C + ({u, v, uv} U §). By the choice offu, v} andC,
we can prove thaf™* is 3-connected. Therefor€* — uv contains two internally disjoint
pathsP, Q betweenu andv. On the other hand; — V(C) contains a patiR from u to
v and containing at least three vertices. NBw Q U R gives aK3 »-subdivision inG, a
contradiction. [J
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