DISEASE SEVERITY AND HEALTH CARE COSTS OF RELAPSING-REMITTING MULTIPLE SCLEROSIS IN PORTUGAL
Mateus C, Pereira J
University Nova de Lisboa, Lisboa, Lisboa, Portugal
OBJECTIVES: To measure the average health care cost per patient with relapsing remitting multiple sclerosis (RRMS) by level of severity in Portugal. Additionally, and in contrast to previous studies, the health care cost of a relapse by severity level is also calculated. METHODS: The study adopts the perspective of the National Health Service (NHS) and carries out a cost of treatment analysis. Information on treatment profiles and resource use was gathered through a modified Delphi Panel.

THE COST OF MULTIPLE SCLEROSIS (MS) IN EUROPE
Berg J1, Kobelt G2, Lindgren P1, Fredrikson S3, Jonsson B4
1 Stockholms Health Economics, Stockholm, Sweden; 2European Health Economics, Speracedes, France; 3Karolinska University Hospital, Stockholm, Sweden; 4Stockholm School of Economics, Stockholm, Sweden
OBJECTIVES: During the last decade, the introduction of new disease-modifying drugs (DMDs) for MS gave rise to a number of studies on the economic burden of the disease and the cost-effectiveness of different treatment options. Since these surveys were conducted before DMDs were established as part of standard treatment regimens, there is a need for up-to-date cost-of-illness studies that can be used for the economic evaluation of new treatments. Therefore, European Health Economics has conducted a European-wide, cross-sectional bottom-up survey on the costs of MS, involving at least nine countries.

METHODS: The study used a standardised mailed questionnaire providing data on demographics, direct medical and non-medical costs, informal care needs, productivity losses, relapses, utility and fatigue. RESULTS: The results were analysed by country, both for the whole sample and by level of disease severity measured with the Expanded Disability Status Scale (EDSS). Patients were recruited by MS clinics and MS societies, and the response rate ranged between 35% and 72%. Overall, the study includes over 10,000 patients. The samples per country are thus sufficiently large to analyse the change in costs and utility for all levels of disease severity. For example, in Sweden, the total annual cost per MS patient was estimated at €33,580, with costs increasing sevenfold for patients with severe disease compared to patients with no or very mild disability, from €16,338 to €116,502. DMDs were used by 43% of patients and accounted for 11% of total costs. In addition, analysis of variations across countries illustrates the impact of different health care and economic systems on patient management, total costs and distribution of resources. For example, services represented 29% of total costs in Sweden, due to a unique extensive home service available to severe patients. CONCLUSIONS: This alternative to institutionalisation reduces nursing home costs and informal care needs.

THE COST OF DEEP BRAIN STIMULATION FOR THE TREATMENT OF PARKINSON’S DISEASE
Caro J1, 2, Ishak KJ2, Proskorovsky I2
1Caro Research Institute, Concord, MA, USA; 2Caro Research Institute, Montreal, QC, Canada
OBJECTIVE: To estimate for use in economic modeling, the time-dependent effects of deep brain stimulation (DBS) in patients with Parkinson’s Disease (PD) using meta-analysis of case series. METHODS: A discrete event simulation of the course of advanced PD was created. It requires time-dependent functions of the effects of DBS. To obtain these, we searched the PUBMED, OVID and the Science Citation Index databases between 1980 and 2004 for papers reporting longitudinal experience with DBS. Data were extracted by three expert reviewers. The effect of DBS was measured at various time-points relative to baseline, while on and off medication. Time-dependent growth curves were developed by fitting the estimates as functions of time under fixed and random-effects models. RESULTS: Comparisons to baseline in the 85 studies retained showed that while off medication, activating the stimulator improved ADL rapidly (by 50.0% at 3 months) but then improvement declined slowly following a quadratic polynomial. The effect was much weaker and decline linearly while on medication but levodopa dose declined steadily, from a reduction of 590.52 (439.9–741.2 mg at 3 months to 633.8 (497.4–770.2 mg after 1 year. Motor skills improved by 47.2% and then more slowly following a fractional polynomial curve. CONCLUSION: These growth curves will be used to estimate the course of individual patients in simulation providing much more accurate reflection of the actual effects than traditional point estimates or transition probabilities. Given that studies can be either too small or too limited in scope to provide sound estimates of the effect of treatment, the results of meta-analytic curve fitting can be used as precise inputs to build an economic model.