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Abstract

Two germs of linear analytic differential systems xk+1Y ′ = A(x)Y with a non-resonant irregular singu-
larity are analytically equivalent if and only if they have the same eigenvalues and equivalent collections 
of Stokes matrices. The Stokes matrices are the transition matrices between sectors on which the system 
is analytically equivalent to its formal normal form. Each sector contains exactly one separating ray for 
each pair of eigenvalues. A rotation in S allows supposing that R+ lies in the intersection of two sectors. 
Reordering of the coordinates of Y allows ordering the real parts of the eigenvalues, thus yielding triangular 
Stokes matrices. However, the choice of the rotation in x is not canonical. In this paper we establish how 
the collection of Stokes matrices depends on this rotation, and hence on a chosen order of the projection of 
the eigenvalues on a line through the origin.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Consider a germ of linear analytic differential system

xk+1Y ′ = A(x)Y, x ∈C, Y ∈C
n, (1)
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Fig. 1. Four sectors when k = 2. The bold lines are the separating rays.

with a non-resonant irregular singularity of Poincaré rank k at 0. Then A(x) is a matrix of germs 
of holomorphic functions at the origin and the eigenvalues of A(0) are distinct. Without loss of 
generality we can suppose that A(0) is diagonal. There exists a unique formal normalizing series 
tangent to the identity Y = Ĥ (x)Z = (id + O(x))Z bringing (1) to the diagonal normal form

xk+1Z′ = (D0 + D1x + · · · + Dkx
k)Z, (2)

with Di diagonal and D0 = A(0). The normal form has a canonical diagonal fundamental matrix 
solution that we call W(x). However, generically, the normalizing series Ĥ is divergent.

Nevertheless, there exists 2k sectors Sj of opening greater than π
k

(see Fig. 1) on which there 
exist unique normalizing holomorphic functions Hj(x) that are asymptotic to Ĥ (x) on Sj . This 
defines a fundamental matrix solution Wj(x) = Hj(x)W(x) of (1) over each Sj . In the abundant 
literature on the subject (see for instance [3,1] and [2]), it is often assumed that the eigenvalues 
of A(0) satisfy the following inequality, a hypothesis that can be realized by means of a rotation 
in x and a permutation of the coordinates in Y .

R(λ1) >R(λ2) > · · · > R(λn). (3)

Under this hypothesis, the columns {w1,j , . . . , wn,j } of each Wj , which form a basis of the 
solution space, are ordered with respect to flatness:{

w1,j ′ ≺ · · · ≺ wn,j ′ , on S2j ∩ S2j+1, for j ′ = 2j,2j + 1,

w1,j ′ � · · · � wn,j ′ , on S2j−1 ∩ S2j , for j ′ = 2j − 1,2j,
(4)

where indices are mod 2k. This comes from the fact that

w�,j (x) = exp

(
− λ�

kxk

)
v�,j (x) (5)

for some vector function v�,j (x) = O(1) on Sj . On the intersection Sj ∩ Sj+1, the bases repre-
sented by Wj and Wj+1 coexist and are linked by a matrix C(j) ∈ GL(n, C):
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Wj+1 = WjC(j), (6)

where indices are modulo 2k.
The C(j) are called Stokes matrices. Generically, more precisely when Ĥ is divergent, some 

of the C(j) are not diagonal and only upper or lower triangular. This is called the Stokes phe-
nomenon: the Stokes matrices measure the obstruction to have (1) analytically equivalent to its 
normal form. Because of (4) we have that C(j) is upper (resp. lower triangular) for j even (resp. 
odd).

Remark 1.1. The choice of fundamental matrix solutions on the different sectors are of course 
only unique up to right multiplication with a diagonal matrix, yielding that each Stokes matrix 
is defined up to left and right multiplication by diagonal matrices. It is possible to choose si-
multaneously fundamental matrix solutions Wj on Sj , j = 1, . . . , 2k, so that all Stokes matrices 
but one are unipotent (the diagonal terms are equal to 1). With such a choice of Stokes matrices 
the monodromy around the origin is the product of the inverses of the Stokes matrices. Deciding 
where we put the nonunipotent Stokes matrix is a non-canonical choice. In view of the fact that 
we will change point of view, we prefer to leave the degree of freedom in the diagonal terms of 
the Stokes matrices.

When x sweeps a sector Sj , with increasing argument, the relative order of flatness of the 
w�,j changes. The change occurs on the separating rays, which are the half-lines determined 

by the condition R 
(

λ�−λ�′
xk

)
= 0. Hence, there are 2k separating rays for each pair of eigenval-

ues (λ�, λ�′), one in each sector Sj . Of course, several pairs of eigenvalues can have the same 
separating rays.

In the presentation above, the choice of a rotation in x corresponds to choosing a starting 
ray eiθ

R
+ in x-space so that all eigenvalues have distinct projections on eikθ

R. We say that the 
direction eikθR+ is non-critical in the eigenvalue space. When this direction is R+, the sector 
S1 is chosen so that all separating rays inside S1 have positive arguments. Hence, when starting 
on R+, we cross them when we turn in the positive direction. This choice is non-canonical. We 
could have chosen another non-critical direction.

The starting ray eiθ
R

+ in x-space yields an order of the projections of the eigenvalues on 
the line eikθ

R oriented in the direction of eikθ , (which will induce an order of flatness on the 
exp

(
− λ�

kxk

)
on eiθ

R
+), and the half-line eiθ

R
+ is called a non-separating ray. The coordinates 

of Y are then permuted so that the order of flatness is in decreasing order. As mentioned above, 
there is no canonical way of choosing θ . The separating rays are the directions eiφ , for which 
R 

(
(λ� − λ�′) e−ikφ

) = 0. They divide the set of non-separating rays eiθ
R

+ into a finite number 
of connected components. When constructing a sector Sj containing a starting ray eiθR+, we 
enlarge it with increasing argument, until it contains exactly one separating ray for each pair 

of eigenvalues. The other sectors are built in the same way with starting rays e
i
(
θ+ �π

k

)
R

+, � =
1, . . . , 2k − 1. We describe how the collection of Stokes matrices associated to a starting ray 
eiθ

R
+ changes when we cross a separating ray. The change is nontrivial. On a separating ray 

eiφ
R

+, some blocks of consecutive eigenvalues have identical projections on the critical ray 
eikφ

R
+. The orders of projections of eigenvalues of each block are opposite on the two sides of 

the critical ray. If we are considering an upper (resp. lower triangular Stokes matrix) C, then the 
new upper (resp. lower) Stokes matrix constructed after crossing the separating ray is obtained 
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as P −1U−1CV P , where U and V are block diagonal matrices with blocks of the lower (resp. 
upper) adjacent Stokes matrices on both sides of C, for the eigenvalues that have changed order, 
and identity blocks elsewhere, and where P is a permutation matrix representing the new order 
of eigenvalues. The precise statement will be given below after we have introduced the necessary 
notations. We illustrate the theorem on an example in C3 for k = 1.

2. The main theorem

Before stating the theorem, let us introduce some notation adequate to our purpose. Indeed, 
we will need to change the order of the eigenvalues in all subsets of eigenvalues that project on a 
unique point on a critical ray eiψ

R
+.

Notation 2.1.

(1) I� and J� represent respectively the � × � identity matrix and the matrix with 1 on the anti-
diagonal and 0 elsewhere.

(2) Let n = s1 + r2 + s3 + r4 + · · · + s2m−1 + r2m + s2m+1 with s2i+1 ∈N and r2i ≥ 2. We let

Ps1,r2,...,s2m+1 = diag(Is1, Jr2, . . . , Jr2m
, Is2m+1). (7)

Calling m the ordered generalized partition of n given by

m = (s1, r2, . . . , s2m+1), (8)

we will also use the shortened notation Pm. (Note that Pm = P −1
m .)

Definition 2.2.

(1) Let f and g be meromorphic functions on a neighborhood of 0 and R be an open ray (i.e. 
R = eiθ

R
+). We say that f is flatter than g on R, and write f ≺ g, or g � f , if f/g → 0 as 

x → 0 along R. If S is a sector, then f ≺ g on S if it is the case for every ray in S.
(2) Similarly, let w(x) = (w1(x), . . . , wn(x)) and w(x) = (w1(x), . . . , wn(x)) be two vectors, 

the coordinates of which are holomorphic on a sector S. We say that w is flatter than w on R

(resp. S), and write w ≺ w if, for all �, w� ≺ w� on R (resp. S).

Definition 2.3. In a system (1) with A(0) = diag(�), where � = (λ1, ..., λn), the separation rays
are given by the solutions to

R

(
λp − λq

xk

)
= 0. (9)

Definition 2.4. A ray eiψ
R

+ is a critical ray if several eigenvalues have equal projections on the 
line eiψ

R.

Remark 2.5. If eiψR+ is a critical ray, then e
i
(

ψ+jπ
k

)
R+, j = 0, . . . , 2k − 1 are its associated 

separating rays. The critical rays are in the complex plane of eigenvalues, while the separating 
rays are in the x-plane. In particular, a critical ray is a separating ray when k = 1.
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Fig. 2. The projections of the eigenvalues on a critical ray. Here, m = (2,2,2,3,1,3,1).

Along the separating rays, the order of the solutions given by their respective order of flatness 
changes, and this happens nowhere else. This means that in a sector containing none of these 
rays, the ordering of solutions by their flatness is constant. Also, since n is finite, is it possible to 
enumerate the separating rays as R1, R2, ..., R2ku, where Rj has argument φj ∈ [0, 2π) and the 
φj are increasing. Note that hypothesis (3) implies that R+ is not a separating ray. Therefore it 
is used as a starting point to build the Stokes matrices.

Definition 2.6. Let R = eiφ
R

+ be a ray and pr(λj ) be the signed length of the projection of 
the eigenvalue λj on its associated ray R = eikφR+ (i.e. pr(λj ) = R(λj e

−ikφ)). We say that the 
order of eigenvalues on the ray R is given by m = (s1, r2, . . . , s2m+1) if the subsets of eigenvalues 
corresponding to indices rj have equal projections, more precisely:

{
pr(λj ) ≥ pr(λj+1), for all j,

pr(λj ) = pr(λj+1) if and only if j ∈ ∑�
i=1 r2(i−1) + ∑�

i=1 s2i−1 + [1, r2� − 1],

(see Fig. 2). Note that when R is not a separating ray, then m = 0 and s1 = n. Also, the order of 

eigenvalues corresponds to the respective order of flatness of the exp
(
−λj

xk

)
on R.

2.1. Statement of the theorem

Theorem 2.7. We consider a system (1) satisfying hypothesis (3), and its Stokes matrices C(j), 
j = 1, . . . , 2k, corresponding to the choice of R+ as starting ray. Let φ1 < · · · < φ2ku be the 
angles of the separating rays. Let eiθ

R
+, with θ ∈ (φ1, φ2), be a new starting ray such that the 

new sectors can be chosen as S̃j = eiθSj (see Fig. 3), and let C̃(j) be new Stokes matrices 
associated to the collection of sectors S̃j . We suppose that the order of eigenvalues on the sepa-
rating ray R1 = eiφ1R

+ is given by m = (s1, r2, . . . , s2m+1). Using a block notation C(j)i,� with 
i, � ∈ {1, . . . , 2m + 1}, the size of the blocks corresponding to the partition of n given by m, then 
the C̃(j) can be chosen as

C̃(j) = Pm · diag
(
Is1,C(j)−1

2,2, Is3, . . . ,C(j)−1
2m,2m, Is2m+1

)
· C(j) · diag

(
Is1,C(j + 1)2,2, Is3, . . . ,C(j + 1)2m,2m, Is2m+1

) · Pm.

(10)
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Fig. 3. The sectors Si (with black boundary) and ̃Si (with grey boundary) when k = 2. The other lines are the separating 
rays.

Example 2.8 (Explicit computation in the case k = 1 and n = 3). Consider the case where 
R1, R2, R3 are distinct, with Rj = eiφjR+. On R1, let us suppose that the projections of λ2
and λ3 coincide. On R2, the projections of λ1 and λ3 coincide, and on R3 the projections of λ1
and λ2 coincide. Take starting rays eiθ�R

+, � ∈ {0, 1, 2, 3} such that

0 = θ0 < φ1 < θ1 < φ2 < θ2 < φ3 < θ3 = π. (11)

Let us write C(1) = C+ = (c+
ij ) and C(2) = C− = (c−

ij ) (see Remark 1.1 for the diagonal terms). 

Then choosing R = eiθ�R
+ as the starting ray, one gets a pair of Stokes matrices

R C(1) = C+ C(2) = C−

R
+

⎛⎝c+
11 c+

12 c+
13

0 c+
22 c+

23
0 0 c+

33

⎞⎠ ⎛⎝c−
11 0 0

c−
21 c−

22 0
c−

31 c−
32 c−

33

⎞⎠

eiθ1R
+

⎛⎝c+
11 c+

13c
−
33 c−

22c
+
12 + c−

32c
+
13

0 c−
33 c−

32
0 0 c−

22

⎞⎠
⎛⎜⎜⎜⎝

c−
11 0 0

c−
22c

−
31−c−

32c
−
21

c−
22c

−
33

c+
33 0

c−
21

c−
22

c+
23 c+

22

⎞⎟⎟⎟⎠

eiθ2R
+

⎛⎜⎜⎜⎝
c+

33
c−

22c
−
31−c−

21c
−
32

c−
22c

−
33

c−
32

c−
33

0 c−
11

c−
22c

+
12

c+
11

0 0 c−
22

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

c−
33 0 0

c−
33c

+
13 c+

11 0

c−
33

(
c−

21c
+
13

c−
22

+ c+
23

)
c−

21c
+
11

c−
22

c+
22

⎞⎟⎟⎠

−R
+

⎛⎜⎜⎜⎝
c+

33
c−

32c
+
22

c−
33

c−
31c

+
11

c−
33

0 c+
22

c−
21c

+
11

c−
22

0 0 c+

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

c−
33 0 0

c−
33c

+
23

c+
22

c−
22 0

c−
33c

+
13+

c−
22c

+
12+ c−

11

⎞⎟⎟⎟⎠

(12)
11 c11 c11
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Let us call the Stokes matrices C
±

for θ3 = π . One would expect that C
∓

would be equal to 
P0,3,0C

±P0,3,0. This is not the case, but the difference comes from the fact that the matrices are 
only determined up to diagonal matrices. Indeed,

DC
+
D−1∗ =

⎛⎝c−
33 0 0
0 c−

22 0
0 0 c−

11

⎞⎠
⎛⎜⎜⎜⎝

c+
33

c−
32c

+
22

c−
33

c−
31c

+
11

c−
33

0 c+
22

c−
21c

+
11

c−
22

0 0 c+
11

⎞⎟⎟⎟⎠
⎛⎝c+

33 0 0
0 c+

22 0
0 0 c+

11

⎞⎠−1

=
⎛⎝c−

33 c−
32 c−

31
0 c−

22 c−
21

0 0 c−
11

⎞⎠ = P0,3,0 C− P0,3,0.

(13)

Similarly we can show that D∗C
−
D−1 = P0,3,0 C+ P0,3,0.

2.2. Proof of the theorem

The first step is the reduction to the case m = 1 (see (8) for the definition of m). This comes 
from the fact that the phenomena at each block of eigenvalues having equal projections on the 
critical ray R1 = eikφ1R

+ are independent. Suppose for instance that the theorem is proved when 
m = 1, and consider the case m = 2. Consider a perturbation of the system in which we multiply 
by eiε , for some small ε, the eigenvalues of the second block of eigenvalues which have equal 
projection on the critical ray R1. Then, when ε is real, small and nonzero, we have two critical 
rays R1 et R

′
1 = eiεR1, and two separating rays R1 and R′

1 = ei ε
k R1. For nonzero ε, the passage 

from the starting ray R+ to the starting ray eiθ
R

+ is obtained by applying Theorem 2.7 twice: 
when ε > 0, we first consider the change in the Stokes matrices when passing R1 using Theo-
rem 2.7; then we change x �→ xe−i(φ1+ ε

2 ) and pass R′
1 using Theorem 2.7 a second time. When 

ε < 0, the passages are in the reverse order. The two passages commute and the final result is 
independent of the sign of ε. Moreover, the construction of the Stokes matrices shows that they 
depend analytically on the eigenvalues. Then the limit passage when ε = 0 is the composition of 
the passages for each block of eigenvalues. The same reasoning can be done for any m ≥ 2.

Hence, from now on, we treat the case m = 1, i.e. n = s1 + r2 + s3 and the eigenvalues λj

with j ∈ [s1 + 1, s1 + r2] have equal projections on the critical ray R1 = eikφ1R
+.

Let

W(x) = diag(ω1(x), . . . ,ωn(x))

be the diagonal fundamental matrix solution of the normal form of (1) at 0. Hypothesis (3)
implies that

ω1 ≺ ω2 ≺ ... ≺ ωn (14)

on R+ and everywhere on S1 ∩S2k . As a matter of fact, this ordering is precisely why we take (3)
as a hypothesis. This order is respected on every thin intersection S2j ∩ S2j+1 and is completely 
reversed on S2j+1 ∩ S2j+2. A direct consequence is that the Stokes matrices are alternatively 
upper and lower triangular.
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This whole construction depends on the choice of R+ as our starting ray, but this choice is not 
canonical.

2.2.1. New order on the eigenvalues
We start by describing the changes induced by choosing R̃ = eiθ

R
+ instead of R+ as starting 

ray commanding the order of the eigenvalues.

Lemma 2.9. Let R1 = eiφ1R
+ be the first separating ray by order of increasing argument. Let us 

suppose that on the associated critical ray R1 = eikφ1R
+ precisely the following signed projec-

tions are equal

R(e−ikφ1λj1) = · · · =R(e−ikφ1λjr2
), (15)

and the others are distinct. If j1 = s1 + 1, then j2 = s1 + 2, . . . , jr2 = s1 + r2. Moreover, for 
φ1 < θ < φ2, the new order of the eigenvalues on eiθ

R
+ is obtained by completely reversing the 

order of the eigenvalues at positions s1 + 1 to s1 + r2 and leaving the others as they were.

Proof. The signed projections on eikθ
R

+ depend continuously on θ , implying that if j1 = s1 +1, 
then j2 = s1 + 2, . . . , jr2 = s1 + r2. Let us call f (θ, λj ) = R(e−ikθλj ). Then ∂

∂θ
f (θ, λj ) =

kI(e−ikθλj ). Since the λ� are distinct, and because (15) is satisfied, it follows that the 
I(e−ikφ1λjm) are distinct. Since R(e−ikθλj1) < · · · < R(e−ikθλjs ) for 0 ≤ θ < φ1, then 
I(e−ikφ1λj1) > · · · > I(e−ikφ1λjs ), from which the conclusion follows. �
Corollary 2.10. Let us suppose that on R1, m subsets of consecutive eigenvalues have equal 
order. Then for φ1 < θ < φ2, the new order of the eigenvalues on R̃ is obtained from the order in 
(3) by completely reversing the order in each group.

2.2.2. New sectors S̃j

Under (3), let 0 ≤ φ1 < · · · < φN < 2π be the arguments of the separating rays, and let

δ = min{φ2 − φ1, . . . , φN − φN−1, φ1,2π − φN } > 0.

The sectors Sj can be chosen so that

Sj =
{
x ; |x| < r, arg(x) ∈

(
(j − 1)π

k
− δ

4
,
jπ

k
+ δ

4

)}
.

This definition allows simply defining the new sectors as

S̃j = e
i
(
φ1+ δ

2

)
Sj . (16)

2.2.3. New Stokes matrices
Let us now describe the Stokes matrices of the system using the starting ray R̃ = eiθ

R
+, i.e. 

the sectors ̃Sj , which we will denote by C̃(j). For that purpose we need to find, for each j , a new 
fundamental matrix solution W̃j on ̃Sj , which exhibits the correct order of flatness on ̃Sj−1 ∩ S̃j

and S̃j ∩ S̃j+1. Then we will have
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C̃j = W̃−1
j W̃j+1. (17)

We claim that such a new fundamental matrix solution can be taken as

W̃j = Wj

⎛⎝Is1 0 0
0 C(j)2,2 0
0 0 Is3

⎞⎠Ps1,r2,s3 . (18)

Without loss of generality we can suppose that j = 1, the other cases being similar. In this case, 
we need only prove that W̃1 is a fundamental matrix solution, the columns of which satisfy{

w̃1 ≺ · · · ≺ w̃n, on S̃2k ∩ S̃1,

w̃1 � · · · � w̃n, on S̃1 ∩ S̃2.
(19)

The proof uses the following facts:

• We know that such a fundamental matrix solution exists. This comes from the sectorial 
normalization theorem ([3]) for the system (1) after a change x �→ e−iθ x.

• Moreover, we know that a matrix W̃j , the columns of which satisfy (19), is unique up to 
right multiplication by a diagonal matrix.

Hence, as soon as we show that the choice (18) is the only possible choice (up to right multipli-
cation by a diagonal matrix) that could meet the constraints (19), then we are sure that it indeed 
does satisfy the constraints.

We discuss what occurs when we cross a separating ray. We say that we are before (resp. 
after) the separating ray eiφ

R
+ if we are in a region arg(x) < φ (resp. arg(x) > φ). Also, note 

that each sector Sj or S̃j contains exactly one separating ray for each pair of eigenvalues. For 
instance, since R1 is the separating ray inside S1 and S̃2k for any pair of eigenvalues within 

{λs1+1, . . . , λs1+r2}, then e
i
(
φ1+ (j−1)π

k

)
R

+ = e
i(j−1)π

k R1 is a separating ray for the same pair of 
eigenvalues inside Sj , and also inside the new sector S̃j−1. (This is a particular case of the 
general fact that if Rp is some separating ray for some subset of eigenvalues inside a sector S�, 

then e
isπ
k Rp is a separating ray for the same subset of eigenvalues inside S�+s .)

It is straightforward that the solutions w̃� = w� for � = 1, .., s1, have the right asymptotic 
behavior because R1 is a separating ray only for pairs of eigenvalues among {λs1+1, . . . , λs1+r2}. 
Hence, w̃1 ≺ · · · ≺ w̃s1 on ̃S2k ∩ S̃1 since it is the case on S2k ∩S1. Also, in S̃1 ∩ S̃2, we have w̃1 �
· · · � w̃s1 since we passed one separating ray for each pair of eigenvalues among λ1, . . . , λs1 .

Similarly, it is straightforward that the solutions w̃� = w� for indices � = s1 + r2 + 1, . . . , n
are adequate.

Moreover, from (5) it is clear that on S̃2k ∩ S̃1, for s1 + 1 ≤ j ≤ s1 + r2,

w̃1 ≺ w̃2 ≺ · · · ≺ w̃s1 ≺ w̃j ≺ w̃s1+r2+1 ≺ · · · ≺ w̃n. (20)

This comes from the fact that S̃2k ∩ S̃1 ⊂ S1, from (5), and from the fact that we have only 
crossed the separating ray R1. We have the asymptotic order reverse to (20) on S̃1 ∩ S̃2. Indeed, 
S̃1 ∩ S̃2 ⊂ S2 is located after the separating ray ei π

k R1 (the second separating ray for the pairs of 
eigenvalues in the block), and before the second separating rays for the other pairs of eigenvalues.
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It remains to compare the solutions w̃� for � ∈ {s1 + 1, . . . , s1 + r2}. If C(1) = (
cl,m

)n

l,m=1, 
then the linear combination

w� = ws1+1cs1+1,� + · · · + ws1+r2cs1+r2,� (21)

provides exactly vectors that have the same order of flatness with respect to wj for j /∈ {s1 + 1,

. . . s1 + r2}. We claim that they are ordered as:{
ws1+1 � · · · � ws1+r2, on S̃2k ∩ S̃1,

ws1+1 ≺ · · · ≺ ws1+r2, on S̃1 ∩ S̃2.
(22)

Hence, reordering the vectors by letting

w̃s1+� = ws1+r2−�

for � ∈ {1, . . . r2}, which corresponds to applying the permutation matrix P0,r2,0 to the part of the 
fundamental matrix solution corresponding to ws1+1, . . . , ws1+r2 (i.e. P(s1,r2,s3) to the full n × n

fundamental matrix solution), yields the theorem.
Let us now prove the claim (22). The first part on S̃2k ∩ S̃1 follows from (5) and the fact 

that we are after R1. To derive the second conclusion, let {ŵ1, . . . , ̂wn} be the basis given by 
the fundamental matrix solution W2 on S2. Then the order of flatness of ws1+1, . . . , ws1+r2 on 

S̃1 ∩ S̃2 is the same as that of ŵs1+1, . . . , ̂ws1+r2 on S2 ∩ S3 because we passed e
πi
k R1. Indeed, 

the difference ŵ� − w� is a linear combination of the wi for i > s1 + r2:

ŵ� − w� =
∑

i>s1+r2

bi�wi,

since C(1) is lower triangular. From (5), all these wi are flatter than w� defined in (21) after we 
have crossed a separating ray associated to them, which is the case on S̃1 ∩ S̃2. Hence wi ≺ w�

on ̃S1 ∩ S̃2. This yields ŵs1+1 ≺ · · · ≺ ŵs1+r2 on ̃S1 ∩ S̃2 ⊂ S2 since we are in S2 and after e
πi
k R1. 

Hence ws1+1 ≺ · · · ≺ ws1+r2 on S̃1 ∩ S̃2. �
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