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Abstract

A procedure is presented for calculating stationary fields in magnetic deflection systems (especially saddle coils) in a rotationally
symmetric ferromagnetic surrounding using the FEM method and a vector potential approach. The vector potential and the
current distribution are expanded as Fourier series with respect to the azimuthal coordinate ¢. Consequently each Fourier
harmonic can be handled as a separate two-dimensional problem. Both the energy functional for the m™ harmonic and the local
FEM equations are derived. The global FEM system of equations is given.
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1. Introduction

The computation of stationary fields of magnetic deflection systems (e.g. saddle coils) using the finite element
method (FEM) has been described in various papers (e.g. [1], [2]). The use of the FEM is necessary for magnetic
deflection systems in a ferromagnetic surrounding, e.g. for a deflector inside a magnetic lens. All the authors of the
papers mentioned above ([1], [2]) tried to find a solution for the magnetic field strength of the form

H=grad ®+F,

where @ is the magnetic scalar potential and F is some vector function which is non-vanishing inside the coil
windings only and which is closely related to the current in the coil. Therefore the task to find the magnetic field is
essentially reduced to the solution of the FEM problem for the magnetic scalar potential @ .

Moreover, since both the magnetic scalar potential and the current distribution are expanded into a Fourier series
with respect to the azimuth angle ¢ of the cylindrical coordinate system, each Fourier harmonic of ® can be handled
as a separate two-dimensional FEM problem Therefore only few two-dimensional FEM problems have to be solved
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instead of solving a much more complicated three-dimensional FEM problem, as long as the distribution of
ferromagnetic materials is rotationally symmetric.

The use of the scalar magnetic potential ® is possible because curl H is zero outside the coil windings.
However, this approach is no longer possible if time-dependent processes are considered because eddy currents are
created and curl H is nonzero in eddy current regions. In these cases the magnetic vector potential has to be used.
Time-dependent three-dimensional field approaches with the magnetic vector potential have been described
elsewhere [3], and commercially available FEM software can be used to simulate three-dimensional eddy current
problems. However, the fully three-dimensional approach is very time-consuming and requires a large amount of
computer resources. In the specific case of a deflector inside a complicated magnetic lens surrounding with
shielding ferrites etc. the three-dimensional approach is nearly impossible. Fortunately in electron optics only few
field harmonics are of interest and therefore the three-dimensional problem can be replaced by few two-dimensional
problems. Therefore the purpose of this paper is to modify the procedure prescribed in [1] and [2] by using the
magnetic vector potential throughout. In the present paper, as a first step we focus on stationary problems, especially
for saddle coils. In the subsequent paper of this series we will describe the time-dependant case. For very simple
cases results can be achieved by analytical means, too [4].

2. Energy Functional for the Vector Potential Formulation

The Maxwell equations for a stationary magnetic field are
curl H = J
divB=0 )
B= g A,
The second equation is satisfied with the ansatz
B = curl a, 2

where 4 is the magnetic vector potential. Therefore the system of Maxwell equations reduces to the single equation

1 =
curl[ curl a] =j. (3)
HoH,
Equation (3) can be derived as Euler-Lagrange equation from an energy functional containing the Lagrange density
£=— ! (curlé)2+7ﬁ. “)
2/'[()lur

In the following we use cylindrical coordinates (r, o, z)- In these coordinates (4) can be written as

1 |(1éa. @a,\ (éa, ¢a.Y 1( 0a, éa,)
f=e— || -2 + -—=| + 5| r2+a,—— (5)
2up, |\ r 0p 0Oz oz oOr r or op

+(ja, +j,a,+ja.)

We now expand the components of the vector potential as a Fourier series of m™ harmonics in the azimuthal
coordinate ¢, i.e.

a,(rnp =Y [al(r2)-cos(mg)+ 7 (r,2)-sin(me)} ©

m=1,3,5...

where the Greek indices «, f3,y,...=0,1,2 are running through the coordinates r, ¢,z throughout the paper. In the
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case of deflection systems without tolerancing errors only odd Fourier harmonics contribute to the expansion (6).

In the following we confine ourselves to the case of magnetic saddle coils, although the treatment of toroidal
coils can be handled similarly. As shown by Munro and Chu [1] and Lencova et al [2] the current density
J=U.J, jz) of a saddle coil can be derived from a single function F,(r,¢.z) which is non-vanishing only inside
the coil windings, i.e.
oF, o 1Ok @)

i =0 = = )
J, Jo = e

0z
The function F,(r.¢.2) can be written as a product
£ (r.0.2)= 8(r.2) /(o) ®)
where g(r,z) is given by (1], [2])

g(r2)= {0 outsidethe coil windings}’ ©)

1 insidethe coil windings

and f ((P) is the “current loading function”, which can also be expanded as a Fourier series

flp)="3 f,cosmgp (10)

m=1,3,5,...

with the coefficients

£ = 42R sinmo, (11
m.

where [ is the current inside the coil, AR is the wire thickness and ® is the semi-angle of the saddle winding. The
definition of “outside the coil windings” and “inside the coil windings” is given in [1].

Now the energy functional

W= [€rdrdpd: (12)
can also be expanded as a series
w= Y w" (13)
m=1,3,5...

Integrating over ¢ and using the orthonormalization relations of the trigonometric functions we finally obtain the
energy functional of the m™ harmonic

2 2 2 2
ﬂa,z,, +8i N ﬂbz”’ _ Oa, N Oa, 3 Oa, N 0ob, _ 0Ob;
r 0z r 0z 0z or 0z or

2 1 m 1 2 m 1 2
w" =—”—~J'— + aA+f~al”’—ﬂb(;” | & b+ g rdrdz
or r r or r r

(14)

6 m 1 m
~2 ptopt, B f " 24t pt, ~ gf ,mb;
0z r

where the range of integration extends over the whole region in the r-z-plane considered. Note that the last two
terms in the brackets correspond to the fields of the arc-like and the straight wires of the saddle coil, respectively. It
becomes evident that it was important in equation (6) to include not only the cos terms but also the sin terms.
Otherwise the fields of the straight wires would have been neglected. The last but one term in the brackets in (14)
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containing 0 /0z can be rewritten by using integration by parts.
3. Discretization of the r-z plane and local FEM equations

We utilize the first order FEM method (FOFEM) and subdivide the region in the r-z plane into quadrilaterals, see
Fig. 1.

Fig.1: Part of a finite element mesh. The r-z-plane is subdivided into
quadrilaterals. The quadrilaterals are numbered by ii = 0...nez-2, jj =
0...ner=2, where nez is the number of mesh points in z direction and ner is E1 E5
the number of mesh points in r direction. Each quadrilateral is subdivided 0 2(P
into a left upper triangle and right lower triangle. There are six triangles 0 2
El...E6 surrounding the mesh point p. The corners of the triangles are E2 E4

numbered i = 0...2 as shown for the left upper triangle E4 of the ii-1, jj i, jj
quadrilateral ii, jj and the left lower triangle E1 of the quadrilateral ii—1, E3

Jj-1.

ii-1, jj-1 6 i i1

In each triangle we make the linear ansatz for the vector potential components
ay(r,z)=A)-r+B) - z+C) (15)
b"(r,z)=D" -r+E"-z+F".
. and b, be the values of the components of the vector potential of the m™ harmonic in the i point (node) (i
=0...2) of the triangle considered. The coefficients A;, B, ,C, D, ,E, ,F," are determined by the condition that the

potentials in the corners of the triangle coincide with the potentials a,; in the mesh points. The coefficients are
given by

Let a)

(V)-fesazo +cia, +caars]
By = (V) boay + bz, +b,a2]
=V Moz —na)ato + a2 -l + e = rzg)-al]
D = (Ve + el + et
Er =V M bubr +bby, +bibo]

F' = _(yD) [(rlzz —szl)'bf,o +(V2Zo _rozz)'b:l +(rozl _rlzo)'b::,z] (16)

m
A!Z

aQ
3

]

where
D =byc, —b,c, =b,c, —b,c, =b,c, —byc, amn

and (l’o,Zo), (r,,z,) and (l’z,Zz) are the coordinates of the corners of the triangle. ‘ D‘ is double the area of the
triangle and b;,¢; are the coordinate differences

by =1 —n by =r,—r, by =1,—n (18)
Co =% % € =372 € =24 =%
We denote by AW ™##** the approximation of the energy functional of the m™ Fourier harmonic integrated over
the right lower triangle of the quadrilateral (ji, jj) . (For a left upper triangle the energy functional is AW ™% )

Performing integration by parts in equation (14) and carrying out the usual discretization procedure we obtain the
energy functional integrated over one triangle:
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i=0 c
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c i=0

e . 1 ) 2 1& . 12 ) 2
(m~3§az,i+D-zbibl,ij +[T‘3§bz,iD'§bia1,f]

253

19)

(Similarly the procedure is executed for the left upper triangles). Here ‘ D‘ /2 is the area of the triangle and (r(,,zl.)

denotes the coordinates of the centroid of the triangle.

The local FEM equations, which state how the value of AW ™#**" changes if the potentials at the corners of

the triangles change, are

aAWm,ii,jj,lower 2 2 - 2 2 i i
— miii, jj lower  _m miii, jjlower pm m,ii, jj lower
—a 22 F aj,+2. 2 H by + G

a m a.Bi.j a.pui.j (203)
(L £=0 j=0 =0 j=0
aAWm,[i,jj,lowt’r 2 2 2 2
_ m,ii, jj lower m miii, jj lower m mii, jj lower
" =20 RUp™ g+ 3 Y Sl b+ T (20b)
a,i B=0 j=0 p=0 j=0
(similarly for the left upper triangles). The coefficients are given by
2
m,ii, jj,lower __ gmiii, jj,lower __ _ . . 1 i m
Fooilj = S0.0.41 ==f-r D bb; + 9,2
m,ii, jj,lower __ om,ii, jj,lower __ l 1 1
F =S =—fr| bbb+ —c;i+— | : P
D D 3r. )\ D 3r,
2
m,ii, jj,lower __ Sm,ii,jj,lower —_f. . + m 21
22,0, =020 =—f-r 7 G 9,2 (2la)
r.
m,ii, jj,lower __ om,ii, jj,lower __ e
Fy3i =Sonii =f b
D
m,ii, jj,lower __ ¢m,ii, jj,lower __ . rL .
FZ,O,i,j = Sz,o,i,j =f D’ Cibj
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. o 1 1 1
miii, jjlower _ _ pmii, jj,lower _ _ ~ . =
Hyw =—Ry..; = fm ¢ t——
3 D 3r,
. . 1 1 1
mii, jj lower __ _ mii, jj lower __ - . N =
10,0,/ =R, =—f-m ¢ +
3 D 3r.
m,ii, jj,lower __ _Rm,ii,jj,lower _ lf -m- l b
1,2,i,j - 1,2,i,j - i
3 D
. - 1 1 (21a)
m,ii, jj,lower __ m.ii, jj,lower __ f
Ljdower _ _ pmiivjidover _ _ 2 £ 0 p
2,L,i,j 2,Li,j J
3 D
m,ii, jj,lower __ m,ii, jj,lower __ m,ii, jj,lower __ m,ii, jj,lower __ O
0,1,i,j = 11,04,j — 12, A2 -
mii, jj,lower __ g miii,jjlower __ g miii,jjlower __ ¢ miii,jj,lower __
So,l,i,j = Sl,o,i,j - Sl,z,i,j - SZ,LL/‘ =0
mii, jj lower __ m,ii, jj lower __ m,ii, jj,lower __ m,ii, jj,lower __ mii, jj lower __
HO,O,i,j - H],I,i,j - H2,2,i,j - HO,2,i,j - HZ,O,i,j =0
mii, jj,lower __ pymiii, jjlower __ pmiii,jjlower __ pmiii,jjlower __ pmiii,jjlower __
RO,O,i,j - R],],i,j - R2,2,i,j - RO,Z,i,j - R2,0,i,j =0
m,ii, jj,lower __
Gy, =0
2
. 7 |D|
mii, jj,lower _ X . X ( )
Gl,i - 2 D rc fmg rc’zc bi
m,,ii, jj,lower __
2,i =0
Tm,ii,jj,lmver _ O (21b)
0,i -
m,ii, jj,lower __
I =0
7Z'2
mii, jj,lower __ . . . . ( )
T2,i - 6 |D| ‘fm m g rCaZC
(similarly for the left upper triangles), where the abbreviation
2
V4 1
F=Z.—|p| (22)
2 pp,

has been used. Generally speaking, the terms G{;"*"* come from the arc-like wires of the saddle coil, whereas the
terms 75" come from the straight wires. The local FEM equations (20a, b) are the basis for the FEM software.

Obviously, the local FEM coefficients have the following symmetry:

Fm,ii,jj,lower _ pm,ii, jj,lower
a,pB.i,j =t Bajii
Hm,ii,jj,lawer =—H m,ii, jj,lower
a,pi,j - p.a,j.i
o - (23)
m,ii, jj,lower __ m.ii, jj,lower
o, B, j — B

Sm,ii,jj,lower _ Sm,ii,jj,lawer
a.pii.j ~ YBa.ji

This is important because it causes the matrix of the global FEM system of equations to be symmetric (see next
section).
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4. Global FEM system of equations

The Maxwell equations are fulfilled if the energy functional is minimized. This leads to a linear system of
equations. These equations can be written as

OAW™ OAW™ OAW™ OAW™ OAW™ OAW™
+ + + + +

=0
aa“vl’ El aa’”’ E2 aa“«f’ E3 aa“vl’ E4 6a"‘vl’ E5 aa“l’ E6 (24)
OAW™ OAW™ OAW™ OAW™ OAW™ OAW™
+ + + + + =0,
ob,;, ob; ob; ob; ob,; ob,;
@r JEl @r JE2 P JE3 P /g4 “r JEs @rJE6

where p denotes a point in the finite element mesh, see Fig. 1, and the AW™ are the energy functionals of the
adjacent triangles E1...E6 of p.

Let M :,”3,-%6,”3 +p be the Matrix of the linear system of equations (24a, b). (p, ¢ = 0...nez*ner-1 denote the point
in the finite element mesh, i, j = 0, 1 correspond to the cos and sin terms, o, f = 0...2 denote the component of the
vector potential at a mesh point). The potential components d,; and b,,; (a =0...2, i = 0...nez*ner-1) are arranged
in the solution vector as follows:

T
m m m m m m m m m m m m
agy Ary Ay boy bly byy agy aly ay, by By by (25)
m m m m m m .
aO,nez*ner—l Cl] nez¥ner—1 a2,nez*ner4 bO,nez*nerfl bl,nez*ner—l bz,nez*ner—l

The total number of unknowns is nez - ner-2-3. Now the global system of equations takes the form:

nez*ner—1 2 2 26
ZMbp+3i+a,6q+3~0+/i “Ag, + ZM6F+3i+a,6q+3.1+/} 'bﬂ.q = RS6p+3i+a' (26)
=0 B=0

q=0

The system matrix M represents a (nez . ner)x (nez . ner) block matrix consisting of 2x 2 matrices which are block
matrices themselves consisting of 3 x 3 matrices.

As an example, one block of the system matrix can be expressed as

Mosoasinmsns = FLA ™ 1 ELptpm
M soiastoneryseg  =H ;jxi,_zl,'éj_l'lowr +H ;;}i,_zl,’r{j'upw 27
M g siiastimnorssors = RZ;,_ZI,}{Y_“OW + R;ﬁle:(')ﬁwm

M6[+3-1+(z,6(i—ner)+3-l+/i = S(jg;,’éji]hw” + SZ;;:OY.L‘pper a, ﬂ = 02

The other blocks have a similar structure. For convenience, only the matrix elements containing F!f;'” i

F5 0 are given, the elements containing H /" H 'y 0nwer | RusEiHover | Rristiiuper g mblover g
deduced from (27):
M 6i+30+a.6(i-ner)+30+4f — a”f'ﬁii;bﬁ_l'loww +F a”f'ﬁii;bﬁ'upp”
M i 000 66-nerys30sp = F, n:?/';f;i/jyupper +F ar?};{li.ldﬁ‘lom
M 61430+, 6(i-1)+30+5 F, ;f/‘;i;iﬁ?lvw‘m +F ;il/v;fi{{.)ilyupp” (28)
M6[+3-0+a,6i+3~0+ﬂ _ Fa»f/,;’i;.zjy—l.mwer + F(;tl[.;{;f.zjj,141717(r n Fam;l—ll Gidover Fartl/,;l;i)j;j;).upper + Fam/,;‘i, J-Lower F;z;z:i {yl’—l,upper
M 6i430+a,6(i+1)430+8 F, ;"ﬂifli.lznwowr +F a".lvﬂ[{bli/l’mm
M 6i430+a,6(i+ner—1)430+4 — F o:nﬁ” /,.jlil'lmer +F ;',','@[fig*"“'"w
M 6i430+a,6(i+ner)+30+f F, ;’Ziib{jzyuppw +F a%ib{jzil’lnww
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whereas the right hand side is given by:

m _ _mii-Ljj-Llower _ ~miii-1jjupper _ miii-1,jjlower
RS6i+3~0+a - Ga,Z Ga,Z GaJ
_ (i, jjupper _ ~miii, ji-llower _ ~miii, jj~l.upper
Ga,O Ga.O Ga,l (29)
m _ _pmiii-1jj-Llower _ pm.ii-l,jjupper _ mpm.ii-1,jj.lower
RS6i+3~l+a - Ta,Z Ta,2 Ta.l

__miii, jjupper __ gqrmii, jj=Llower __ grmii, jj—1.upper
TIZ,O Ta,O Ta,] .

The relation between the global node index i and the indices ii, jj of the triangles is given by

i =1ii-ner + jj
ii =i/ner (30)
Jjj =i %ner

where % is the remainder of the integer division and / is the integer division (disregarding the remainder). The
number of upper / lower co-diagonals of the matrix M is nl=6-ner+5, the band width is
2-nl+1=2-(6-ner+5)+1. In the FEM software instead of the matrix (27), (28) we use the corresponding matrix
in “band symmetric storage mode”:

SM!" .. =M. €1V

i—j+nl,j

The system of equations (26)-(29) has to be solved using Dirichlet boundary conditions (flux-parallel boundary
conditions) at the outer boundary of the region in the r-z plane. In the case of saddle coils, only the components
a",by',b;' of the vector potential (6) are non-vanishing, the components @, ,a;' ,b" are zero. This is a consequence
of the special structure of the current density (7) and the local FEM coefficients (21b), respectively. Thus for saddle
coils we could have reduced the number of degrees of freedom per node from six to three from the very beginning.
However, for other coil geometries such as toroidal coils or tapered saddle coils [2], the radial component of the
current density is nonzero. Therefore, components which vanish in the case of saddle coils are non-vanishing for
other coil geometries.

5. Concluding Remarks

For calculating the magnetic field of a deflection coil a set of formulas was derived suitable to be implemented in
an available FEM-program. Existing algorithms were modified by using a vector potential @ instead of the scalar
potential ® in order to prepare the extension to time dependent fields in conductive materials. This extension will
be discussed in a subsequent paper.
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