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Abstract 

A procedure is presented for calculating stationary fields in magnetic deflection systems (especially saddle coils) in a rotationally 
symmetric ferromagnetic surrounding using the FEM method and a vector potential approach. The vector potential and the 
current distribution are expanded as Fourier series with respect to the azimuthal coordinate . Consequently each Fourier 
harmonic can be handled as a separate two-dimensional problem. Both the energy functional for the mth harmonic and the local 
FEM equations are derived. The global FEM system of equations is given.
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1. Introduction 

The computation of stationary fields of magnetic deflection systems (e.g. saddle coils) using the finite element 
method (FEM) has been described in various papers (e.g. [1], [2]). The use of the FEM is necessary for magnetic 
deflection systems in a ferromagnetic surrounding, e.g. for a deflector inside a magnetic lens. All the authors of the 
papers mentioned above ([1], [2]) tried to find a solution for the magnetic field strength of the form 

,FgradH

where  is the magnetic scalar potential and F  is some vector function which is non-vanishing inside the coil 
windings only and which is closely related to the current in the coil. Therefore the task to find the magnetic field is 
essentially reduced to the solution of the FEM problem for the magnetic scalar potential .

Moreover, since both the magnetic scalar potential and the current distribution are expanded into a Fourier series 
with respect to the azimuth angle  of the cylindrical coordinate system, each Fourier harmonic of  can be handled 
as a separate two-dimensional FEM problem Therefore only few two-dimensional FEM problems have to be solved 
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instead of solving a much more complicated three-dimensional FEM problem, as long as the distribution of 
ferromagnetic materials is rotationally symmetric.   

The use of the scalar magnetic potential  is possible because Hcurl  is zero outside the coil windings. 
However, this approach is no longer possible if time-dependent processes are considered because eddy currents are 
created and Hcurl  is nonzero in eddy current regions. In these cases the magnetic vector potential has to be used. 
Time-dependent three-dimensional field approaches with the magnetic vector potential have been described 
elsewhere [3], and commercially available FEM software can be used to simulate three-dimensional eddy current 
problems. However, the fully three-dimensional approach is very time-consuming and requires a large amount of 
computer resources. In the specific case of a deflector inside a complicated magnetic lens surrounding with 
shielding ferrites etc. the three-dimensional approach is nearly impossible. Fortunately in electron optics only few 
field harmonics are of interest and therefore the three-dimensional problem can be replaced by few two-dimensional 
problems. Therefore the purpose of this paper is to modify the procedure prescribed in [1] and [2] by using the 
magnetic vector potential throughout. In the present paper, as a first step we focus on stationary problems, especially 
for saddle coils. In the subsequent paper of this series we will describe the time-dependant case. For very simple 
cases results can be achieved by analytical means, too [4]. 

2. Energy Functional for the Vector Potential Formulation 

The Maxwell equations for a stationary magnetic field are 
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The second equation is satisfied with the ansatz 

,acurlB (2) 

where a  is the magnetic vector potential. Therefore the system of Maxwell equations reduces to the single equation 
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Equation (3) can be derived as Euler-Lagrange equation from an energy functional containing the Lagrange density 
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In the following we use cylindrical coordinates zr ,, . In these coordinates (4) can be written as 
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We now expand the components of the vector potential as a Fourier series of mth harmonics in the azimuthal 
coordinate , i.e. 

,sin,cos,),,(
...5,3,1m

mm mzrbmzrazra  (6) 

where the Greek indices 2,1,0,...,,  are running through the coordinates zr ,,  throughout the paper. In the 
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case of deflection systems without tolerancing errors only odd Fourier harmonics contribute to the expansion (6). 

In the following we confine ourselves to the case of magnetic saddle coils, although the treatment of toroidal 
coils can be handled similarly. As shown by Munro and Chu [1] and Lencova et al [2] the current density  

zr jjjj ,,  of a saddle coil can be derived from a single function zrFr ,,  which is non-vanishing only inside 
the coil windings, i.e. 
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The function zrFr ,,  can be written as a product 

fzrgzrFr ,,,  (8) 

where zrg ,  is given by ([1], [2]) 
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and f  is the “current loading function”, which can also be expanded as a Fourier series 
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with the coefficients 
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where I  is the current inside the coil, R  is the wire thickness and  is the semi-angle of the saddle winding. The 
definition of “outside the coil windings” and “inside the coil windings” is given in [1]. 

Now the energy functional 

dzddrrW £  (12) 

can also be expanded as a series 

5,3,1

.
m

mWW  (13) 

Integrating over  and using the orthonormalization relations of the trigonometric functions we finally obtain the 
energy functional of the mth harmonic 
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where the range of integration extends over the whole region in the r-z-plane considered. Note that the last two 
terms in the brackets correspond to the fields of the arc-like and the straight wires of the saddle coil, respectively. It 
becomes evident that it was important in equation (6) to include not only the cos terms but also the sin terms. 
Otherwise the fields of the straight wires would have been neglected. The last but one term in the brackets in (14) 
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containing zg  can be rewritten by using integration by parts. 

3. Discretization of the r-z plane and local FEM equations 

We utilize the first order FEM method (FOFEM) and subdivide the region in the r-z plane into quadrilaterals, see 
Fig. 1. 

   

In each triangle we make the linear ansatz for the vector potential components 
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Let m
ia ,  and m

ib ,  be the values of the components of the vector potential of the mth harmonic in the ith point (node) (i
= 0…2) of the triangle considered. The coefficients mmmmmm FEDCBA ,,,,,  are determined by the condition that the 
potentials in the corners of the triangle coincide with the potentials m

ia ,  in the mesh points. The coefficients are 
given by 

mmmm acacacDA 2,21,10,0
1

mmmm abababDB 2,21,10,0
1
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mmmm bzrzrbzrzrbzrzrDF 2,01101,20020,1221
1  (16) 

where 

200212210110 cbcbcbcbcbcbD  (17) 

and 00 , zr , 11, zr  and 22 , zr  are the coordinates of the corners of the triangle. D  is double the area of the 
triangle and ii cb ,  are the coordinate differences 
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We denote by lowerjjiimW ,,,  the approximation of the energy functional of the mth Fourier harmonic integrated over 
the right lower triangle of the quadrilateral ),( jjii . (For a left upper triangle the energy functional is upperjjiimW ,,, .)
Performing integration by parts in equation (14) and carrying out the usual discretization procedure we obtain the 
energy functional integrated over one triangle: 

Fig.1: Part of a finite element mesh. The r-z-plane is subdivided into 
quadrilaterals. The quadrilaterals are numbered by ii = 0…nez-2, jj = 
0…ner 2, where nez is the number of mesh points in z direction and ner is 
the number of mesh points in r direction. Each quadrilateral is subdivided 
into a left upper triangle and right lower triangle. There are six triangles 
E1…E6 surrounding the mesh point p. The corners of the triangles are 
numbered i = 0…2 as shown for the left upper triangle E4 of the 
quadrilateral ii, jj and the left lower triangle E1 of the quadrilateral ii 1,
jj 1. 
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(Similarly the procedure is executed for the left upper triangles). Here 2/D  is the area of the triangle and cc zr ,
denotes the coordinates of the centroid of the triangle. 

The local FEM equations, which state how the value of lowerjjiimW ,,,  changes if the potentials at the corners of 
the triangles change, are 
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(similarly for the left upper triangles). The coefficients are given by 
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(similarly for the left upper triangles), where the abbreviation

Df
r0

2 1

2
 (22) 

has been used. Generally speaking, the terms 
lowerjjiim

iG ,,,
,1  come from the arc-like wires of the saddle coil, whereas the 

terms 
lowerjjiim

iT ,,,
,2  come from the straight wires. The local FEM equations (20a, b) are the basis for the FEM software. 

Obviously, the local FEM coefficients have the following symmetry:  
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This is important because it causes the matrix of the global FEM system of equations to be symmetric (see next 
section). 
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4. Global FEM system of equations 

The Maxwell equations are fulfilled if the energy functional is minimized. This leads to a linear system of 
equations. These equations can be written as 
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where p denotes a point in the finite element mesh, see Fig. 1, and the mW  are the energy functionals of the 
adjacent triangles E1…E6 of p.

Let
m

jqip
M

36,36  be the Matrix of the linear system of equations (24a, b). (p, q = 0…nez*ner-1 denote the point 
in the finite element mesh, i, j = 0, 1 correspond to the cos and sin terms,  ,  = 0…2 denote the component of the 
vector potential at a mesh point). The potential components m

ia ,  and 
m

ib ,  (  = 0…2, i = 0…nez*ner-1) are arranged 
in the solution vector as follows: 
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The total number of unknowns is 32nernez . Now the global system of equations takes the form: 
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The system matrix M represents a nerneznernez  block matrix consisting of 22  matrices which are block 
matrices themselves consisting of 33  matrices. 

As an example, one block of the system matrix can be expressed as 
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The other blocks have a similar structure. For convenience, only the matrix elements containing 
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   whereas the right hand side is given by: 
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The relation between the global node index i and the indices ii, jj of the triangles is given by 

nerijj
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jjneriii
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where % is the remainder of the integer division and / is the integer division (disregarding the remainder). The 
number of upper / lower co-diagonals of the matrix M  is 56 nernl , the band width is 

1)56(212 nernl . In the FEM software instead of the matrix (27), (28) we use the corresponding matrix 
in “band symmetric storage mode”: 
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m
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The system of equations (26)-(29) has to be solved using Dirichlet boundary conditions (flux-parallel boundary 
conditions) at the outer boundary of the region in the r-z plane. In the case of saddle coils, only the components 

mmm bba 201 ,,  of the vector potential (6) are non-vanishing, the components 
mmm baa 120 ,,  are zero. This is a consequence 

of the special structure of the current density (7) and the local FEM coefficients (21b), respectively. Thus for saddle 
coils we could have reduced the number of degrees of freedom per node from six to three from the very beginning. 
However, for other coil geometries such as toroidal coils or tapered saddle coils [2], the radial component of the 
current density is nonzero. Therefore, components which vanish in the case of saddle coils are non-vanishing for 
other coil geometries. 

5. Concluding Remarks 

For calculating the magnetic field of a deflection coil a set of formulas was derived suitable to be implemented in 
an available FEM-program. Existing algorithms were modified by using a vector potential a  instead of the scalar 
potential  in order to prepare the extension to time dependent fields in conductive materials. This extension will 
be discussed in a subsequent paper. 
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